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Abstract

For a digraph G and v ∈ V (G), let δ+(v) be the number of out-neighbors of v in G. The Caccetta-
Häggkvist conjecture states that for all k ≥ 1, ifG is a digraph with n = |V (G)| such that δ+(v) ≥ n/k
for all v ∈ V (G), then G contains a directed cycle of length at most k. In [2], N. Lichiardopol proved
that this conjecture is true for digraphs with independence number equal to two. In this paper, we
generalize that result, proving that the conjecture is true for digraphs with independence number at
most (k + 1)/2.



1 Introduction and definitions

For the rest of the paper, we use the words cycle and path to refer to a directed cycle and directed
path, respectively, and every graph considered is a digraph. Furthermore, every digraph G is simple,
meaning it has no loops or parallel edges. Let the girth g(G) of a digraph G be the length of its
shortest cycle, and for a vertex v ∈ V (G), let δ+(v) denote the number of out-neighbors of v in G.
Let ∆+(G) = min

v∈V (G)
δ+(v) be the minimum out-degree of a vertex in G. For vertices u, v ∈ V (G),

let the distance d(u, v) from u to v be the length of the shortest path from u to v (define this to be
zero if u = v). For v ∈ V (G) and i ≥ 1, let N+

i (v) be the set of vertices u with d(v, u) = i, and let
N−

i (v) be the set of vertices u with d(u, v) = i. For a digraph G, call a set of vertices H ⊂ V (G)
independent if there are no edges between any two vertices of H. Let the independence number α(G)
of a digraph G be the size of the largest independent set H ⊂ V (G). For disjoint sets S1, S2 ⊂ V (G),
say that S1 is stable with S2 if there are no edges between a vertex in S1 and a vertex in S2.

We begin with the following simple observation.

Lemma 1.1 Suppose that G is a digraph containing a cycle; then g(G) ≤ 2α(G) + 1.

Proof. Let C be a cycle of G with minimum length, and suppose C has at least 2α(G)+ 2 vertices.
Then there exists a subset S ⊂ V (C) of size α(G) + 1 such that no pair of vertices of S are adjacent
in C. Then there is an edge in G between some pair of vertices in S, which gives a shorter cycle in
G, a contradiction. This proves Lemma 1.1.

The next lemma immediately follows from Lemma 1.1, and is used repeatedly throughout the
paper.

Lemma 1.2 Suppose G is a digraph with g(G) ≥ 2α(G), and that H ⊂ G is a subgraph of G with

α(H) ≤ α(G) − 1. Then H is acyclic.

Proof. If H contains a cycle, then Lemma 1.1 shows that H contains a cycle of length at most
2α(G) − 1, which is a contradiction. This proves Lemma 1.2.

In this paper, we deal with the following formulation of the Caccetta-Häggkvist conjecture, which
was introduced in [1]:

Conjecture 1.1 (Caccetta-Haggkvist) For d ≥ 1, k ≥ 1, if G is a digraph with n = |V (G)| ≤ kd
and ∆+(G) ≥ d, then g(G) ≤ k.

For k = 1 and k = 2 it follows that the digraph is not simple, a contradiction. So, to prove
Conjecture 1.1, we can assume k ≥ 3.

Now, Lemma 1.1 gives that Conjecture 1.1 is true for α(G) ≤ (k − 1)/2. In this paper, we prove
that Conjecture 1.1 is true for α(G) ≤ (k + 1)/2.

2 Main Results

We need the following two lemmas.
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Lemma 2.1 Suppose that G is an acyclic digraph; then for all v ∈ V (G), there exists a path of

length at most 2α(G) − 1 to a vertex of out-degree zero in G.

Proof. Since G is acyclic, there exists a path from v to a vertex of out-degree zero in G. Let P =
(v, v2, · · · , vk) be a shortest such path. Then P is induced, so if k ≥ 2α(G)+1 then {v, v3, · · · , vk} ⊂
V (G) is an independent set of size at least α(G) + 1, which is a contradiction. Thus P has length at
most 2α(G) − 1, as desired. This proves Lemma 2.1.

Lemma 2.2 Let G be an simple digraph with minimum out-degree d ≥ 1, α(G) ≥ 3, and g(G) ≥
2α(G). Set p = 2α(G)− 3, and suppose v ∈ V (G) is a vertex with δ+(v) = d. For odd 1 ≤ i ≤ p, let

Si be the subgraph of G induced by the vertex set V (G) \ (N+
1 (v) ∪ {v} ∪

(

⋃i
j=1N

−

j (v)
)

. Then, for

each odd 1 ≤ i ≤ p, there exists a unique vertex vi ∈ Si such that N+
1 (vi) ⊂ N−

i (v). Furthermore,

|V (G) \ Sp| ≥ (2α(G) − 2)d+ 1.

Proof. Every w ∈ N+
1 (v) has N+

1 (w) ⊂ N+
1 (v) ∪ Sp, since otherwise we obtain a cycle of length at

most 2α(G) − 1, a contradiction. Since |N+
1 (v)| = d, it follows that V (Si) 6= ∅ for odd 1 ≤ i ≤ p.

Now, for odd 1 ≤ i ≤ p, we iteratively choose vi ∈ Si such that N+
1 (vi) ⊂ N−

i (v). Let
{v1, v3, · · · , vi−2} be vertices such that N+

1 (vj) ⊂ N−

j (v) for all odd 1 ≤ j ≤ i − 2 (if i = 1,
this set of vertices is empty). The set T = {v, v1, v3, · · · , vi−2} (if i = 1, then T = {v}) is stable with
Si, so α(Si) ≤ α(G)− (i+1)/2, and thus Si is acyclic by Lemma 1.1. Thus there exists vi ∈ Si with
out-degree zero in Si.

Now, we claim that N+
1 (vi) ⊂ N−

i (v). If not, then vi has an edge to a vertex w1 ∈ N+
1 (v),

which has an edge to a vertex w2 ∈ Si. Let H be the subgraph of Si induced by the set of vertices
with no edge to vi. We may assume w2 ∈ H. We have that {v, v1, · · · , vi} is stable with H, so
α(H) ≤ α(G) − (i + 3)/2. Then by Lemma 2.1 there exists a path (w2 · · ·wj) of length at most
2α(G) − i − 4 from w2 to a vertex wj ∈ H with out-degree zero in H. If wj has out-degree in
Si equal to zero, then since |N+

1 (v)| = d, it follows that wj has an out-neighbor in N−

i (v) and we
obtain a cycle of length at most 2α(G) − 1, a contradiction. If instead wj has an out-neighbor to
wj+1 ∈ Si \H, then we again obtain a cycle of length at most 2α(G)− 1, a contradiction. It follows
that vi has N

+
1 (vi) ⊂ N−

i (v) for odd 1 ≤ i ≤ p, as claimed.
Now, for odd 1 ≤ i ≤ p, let Vi be the set of vertices u ∈ Si such that u has out-degree zero in

Si. Let H = {v} ∪ V1 ∪ V3 ∪ · · · ∪ Vp. For vi ∈ Vi, since N+
1 (vi) ⊂ N−

i (v), it follows that H is an
independent set, so |V (H)| ≤ α(G). We also know that the Vi are nonempty, so |V (H)| ≥ α(G).
Thus |Vi| = 1 for all odd 1 ≤ i ≤ p. This proves the first part of the lemma, namely that for each
odd 1 ≤ i ≤ p there exists a unique vertex vi ∈ Si with N+

1 (vi) ⊂ N−

i (v). For the remainder of the
proof, let {v1, v3, · · · , vp} be those unique vertices.

For odd 3 ≤ i ≤ p, define Xi = N+
1 (vi) ⊂ N−

i (v), and let Ti = N−

i (v)∪N−

i−1(v)\Xi. {v} is stable
with Xi, so by Lemma 1.2, Xi is acyclic and contains a vertex ui ∈ V (Xi) with out-degree zero in Xi.
We claim that N+

1 (ui) ⊂ Ti, and consequently |Ti| ≥ d. If not, then there exists a path of length at
most 2 from ui to a vertex w2 ∈ Si. Since {v, v1, · · · vi−2} is stable with Si, α(Si) ≤ α(G)− (i+1)/2.
Lemma 2.1 gives a path from w2 to vi of length at most 2α(G) − 5. These two paths together form
a cycle in G of length at most 2α(G) − 2, which is a contradiction.

Thus, for odd 3 ≤ i ≤ p, we have |Xi|+ |Ti| ≥ 2d. Also, N+
1 (vi) ⊂ N−

1 (v) gives |N−

1 (v)| ≥ d, and
by the definition of v we have |N+

1 (v)| = d. Together with the vertex v, these give:

|V (G) \ Sp| ≥ (p− 1)d+ 2d+ 1 = (2α(G) − 2)d+ 1
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as desired. This proves Lemma 2.2.

Lemma 2.2 is used to prove the following two theorems.

Theorem 2.1 Suppose that G is a digraph with minimum out-degree d ≥ 1 and n = |V (G)| ≤
2α(G)d; then g(G) ≤ 2α(G).

Proof. As mentioned above, it suffices to consider simple digraphs G with α(G) ≥ 2. The case
α(G) = 2 is proved in [2], so we may further assume that α(G) ≥ 3. Now, for the sake of contradiction,
suppose that g(G) ≥ 2α(G)+1. Then Lemma 2.2 implies that |V (G)\Sp| ≥ (2α(G)−2)d+1, which
together with |V (G)| ≤ 2α(G)d gives |Sp| ≤ 2d − 1. H = {v, v1, v3, · · · , vp−2} is stable with Sp, so
α(Sp) = 1 and Sp is a transitive tournament. Let (w1 · · ·wr) be the unique Hamiltonian path of the
transitive tournament Sp.

Now, J = {v1, v3, · · · , vp} is stable with N+
1 (v), so N+

1 (v) is a transitive tournament. Let its
unique Hamiltonian path be (u1 · · · ud). N+

1 (ud) ⊂ Sp, so there is an out-neighbor wk of ud with
k ≥ d. It follows that wk has an edge to a vertex not in Sp. An edge from wk to v or to w′ ∈ N−

i (v)
for some 1 ≤ i ≤ p yields a cycle of length at most 2α(G), a contradiction. If, instead, wk has an
edge to u′ ∈ N+

1 (v), then u′ has an edge to ud, and we obtain a cycle of length at most three, a
contradiction. This proves Theorem 2.1.

Theorem 2.2 Suppose G is a digraph with minimum out-degree d ≥ 1 and n = |V (G)| ≤ (2α(G)−
1)d; then g(G) ≤ 2α(G) − 1.

Proof. As mentioned above, it suffices to consider simple digraphs G with α(G) ≥ 2. The case
α(G) = 2 is proved in [2], so we further assume that α(G) ≥ 3. For the sake of contradiction,
suppose g(G) ≥ 2α(G). Lemma 2.2 gives a set of vertices {vi} indexed by odd 1 ≤ i ≤ p such that
N+

1 (vi) ⊂ N−

i (v). v1 is stable with N+
1 (v) (otherwise we obtain a cycle of length four), so Lemma

1.2 gives that N+
1 (v) is acyclic. So, there exists u ∈ N+

1 (v) with out-degree zero in N+
1 (v). If u has

an edge to any vertex not in Sp, we obtain a cycle of length at most 2α(G) − 1, a contradiction.
Thus, we must have N+

1 (u) ⊂ Sp and it follows that |Sp| ≥ d.
But Lemma 2.2 also gives that |V (G) \ Sp| ≥ (2α(G) − 2)d + 1, which together with |Sp| ≥ d

implies that |V (G)| ≥ (2α(G) − 1)d + 1, contradicting the assumption that |V (G)| ≤ (2α(G) − 1)d.
This proves Theorem 2.2.

Theorem 2.3 Conjecture 1.1 is true for digraphs G with α(G) ≤ (k + 1)/2.

Proof. Theorem 2.1 and Theorem 2.2 together with Lemma 1.1 give the desired result. This proves
Theorem 2.3.
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