Pushable chromatic number of graphs with degree constraints*

Julien Bensmail ${ }^{a}$, Sandip Das ${ }^{b}$, Soumen Nandi ${ }^{c}$, Théo Pierron ${ }^{d, f}$, Soumyajit Paul ${ }^{c}$, Sagnik Sen ${ }^{e}$, Éric Sopena ${ }^{f}$
(a) Université Côte d'Azur, Inria, CNRS, I3S, France
(b) Indian Statistical Institute, Kolkata, India
(c) Institute of Engineering \& Management, Kolkata, India
(d) Masaryk University, Brno, Czech Republic
(e) Indian Institute of Technology - Dharwad, Dharwad, India
(f) Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

November 25, 2019

Abstract

Pushable homomorphisms and the pushable chromatic number χ_{p} of oriented graphs were introduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented graph \vec{G}, we have $\chi_{p}(\vec{G}) \leq \chi_{o}(\vec{G}) \leq 2 \chi_{p}(\vec{G})$, where $\chi_{o}(\vec{G})$ denotes the oriented chromatic number of \vec{G}. This stands as first general bounds on χ_{p}. This parameter was further studied in later works.

This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular degree conditions. For all $\Delta \geq 29$, we first prove that the maximum value of the pushable chromatic number of an oriented graph with maximum degree Δ lies between $2^{\frac{\Delta}{2}-1}$ and $(\Delta-3) \cdot(\Delta-1) \cdot 2^{\Delta-1}+2$ which implies an improved bound on the oriented chromatic number of the same family of graphs. For subcubic oriented graphs, that is, when $\Delta \leq 3$, we then prove that the maximum value of the pushable chromatic number is 6 or 7 . We also prove that the maximum value of the pushable chromatic number of oriented graphs with maximum average degree less than 3 lies between 5 and 6 . The former upper bound of 7 also holds as an upper bound on the pushable chromatic number of planar oriented graphs with girth at least 6.

Keywords: oriented coloring, push operation, graph homomorphism, maximum degree, subcubic graph, maximum average degree

1 Introduction and main results

An oriented graph is a loopless directed graph without opposite arcs. Equivalently, an oriented graph \vec{G} can be seen as an orientation of a simple undirected graph G. Throughout this paper, we stick to the notation from the previous sentence. That is, we always refer to an oriented graph \vec{G} using an arrow symbol, which makes apparent that \vec{G} is an orientation of G. We denote by $V(G)$ and $E(G)$ the sets of vertices and edges of G, respectively, while we denote by $V(\vec{G})$ and $A(\vec{G})$ the sets of vertices and arcs of \vec{G}, respectively. Also, when referring to a notation, notion or term for \vec{G} that is usually defined for undirected graphs, we implicitly refer to the corresponding notation, notion or term regarding G.

The notions of oriented coloring and oriented chromatic number of oriented graphs were introduced by Courcelle [2] in 1994, and have been intensively studied since then (see the recent survey [19] for

[^0]more details). One way of defining these notions is through the notion of graph homomorphisms. For two oriented graphs \vec{G} and \vec{H}, a homomorphism from \vec{G} to \vec{H} is a mapping $\phi: V(\vec{G}) \rightarrow V(\vec{H})$ such that $u v \in A(\vec{G})$ implies $\phi(u) \phi(v) \in A(\vec{H})$. We write $\vec{G} \rightarrow \vec{H}$ whenever a homomorphism from \vec{G} to \vec{H} exists. The oriented chromatic number $\chi_{o}(\vec{G})$ of \vec{G} is the minimum order (number of vertices) of an oriented graph \vec{H} such that $\vec{G} \rightarrow \vec{H}$.

In 2004, Klostermeyer and MacGillivray [9] introduced the pushable chromatic number of oriented graphs. Pushing a vertex v of an oriented graph \vec{G} means changing the orientation of all arcs incident with v, i.e., replacing every arc $v u$ by the arc $u v$, and vice versa. Two oriented graphs \vec{G} and \vec{G}^{\prime} are in a push relationship if \vec{G}^{\prime} can be obtained from \vec{G} by pushing some vertices of \vec{G}. Note that being in push relationship is an equivalence relation. The class of the oriented graphs that are in a push relationship with \vec{G} is denoted by $[\vec{G}]$. Observe that any two oriented graphs from $[\vec{G}]$ have the same underlying graph, which is G.

For two oriented graphs \vec{G} and \vec{H}, a pushable homomorphism from \vec{G} to \vec{H} is a mapping $\phi: V(\vec{G}) \rightarrow$ $V(\vec{H})$ such that there exists $\vec{G}^{\prime} \in[\vec{G}]$ for which ϕ is a homomorphism from \vec{G}^{\prime} to \vec{H}. We write $\vec{G} \xrightarrow{\text { push }} \vec{H}$ whenever there exists a pushable homomorphism from \vec{G} to \vec{H}. The pushable chromatic number $\chi_{p}(\vec{G})$ of \vec{G} is the minimum order of an oriented graph \vec{H} such that $\vec{G} \xrightarrow{\text { push }} \vec{H}$.

The seminal work of Klostermeyer and MacGillivray on these notions opened the way to more works on the topic. For instance, results on the pushable chromatic number can be found in 11, 7, 18, while the push operation was further studied in [6, 8, 10, 12, 14, 15, 16, 17. Some complexity issues related to pushable homomorphisms were studied in 7, 9]. Regarding our investigations in this paper, an important result from the seminal work [9] of Klostermeyer and MacGillivray is the following general relation between χ_{o} and χ_{p}.

Theorem 1.1 (Klostermeyer, MacGillivray [9). For every oriented graph \vec{G}, we have

$$
\chi_{p}(\vec{G}) \leq \chi_{o}(\vec{G}) \leq 2 \chi_{p}(\vec{G})
$$

Theorem 1.1 yields another point for studying the pushable chromatic number of oriented graphs, as it is a way to get bounds on the oriented chromatic number. Sen, in [18, also established a strong connection between pushable homomorphisms and oriented homomorphisms of oriented graphs.

The notions of oriented chromatic number and pushable chromatic number can also be extended to undirected graphs G by setting

$$
\chi_{o}(G)=\max \left\{\chi_{o}(\vec{G}): \vec{G} \text { is an orientation of } G\right\}
$$

and

$$
\chi_{p}(G)=\max \left\{\chi_{p}(\vec{G}): \vec{G} \text { is an orientation of } G\right\}
$$

A natural question is, given a family \mathcal{F} of undirected graphs, how large can the oriented chromatic number and the pushable chromatic number of its members be? In other words, we are interested in the two parameters $\chi_{o}(\mathcal{F})=\max \left\{\chi_{o}(G): G \in \mathcal{F}\right\}$ and $\chi_{p}(\mathcal{F})=\max \left\{\chi_{p}(G): G \in \mathcal{F}\right\}$. Regarding the pushable chromatic number, partial results were obtained for the families of outerplanar graphs, 2-trees, planar graphs, planar graphs with girth restrictions, and graphs with bounded acyclic chromatic number (see [7, 9, 18]). However, to the best of our knowledge, nothing general is known regarding the family \mathcal{G}_{Δ} of graphs with maximum degree Δ and the family \mathcal{G}_{Δ}^{c} of connected graphs with maximum degree Δ. Unlike the ordinary chromatic number, the oriented and pushable chromatic number for the families \mathcal{G}_{Δ} and \mathcal{G}_{Δ}^{c} can be different. Finding the oriented and pushable chromatic number $\mathcal{G}_{\Delta}^{\mathrm{c}}$ is our main concern in this paper.

We thus initiate the study of the pushable chromatic number of $\mathcal{G}_{\Delta}^{\mathrm{c}}$. Adapting a probabilistic proof used by Kostochka, Sopena and Zhu in [11], we first provide general bounds for large enough Δ.

Theorem 1.2. For all $\Delta \geq 29$, we have

$$
2^{\frac{\Delta}{2}-1} \leq \chi_{p}\left(\mathcal{G}_{\Delta}^{\mathrm{c}}\right) \leq(\Delta-3) \cdot(\Delta-1) \cdot 2^{\Delta-1}+2
$$

Note that the lower bound and the upper bound in Theorem 1.2 are both exponential in Δ. Also, it is worth mentioning that the upper bound established in Theorem 1.2 is better than the upper bound that one would directly get from Theorem 1.1 and the best upper bound on $\chi_{o}\left(\mathcal{G}_{\Delta}\right)$ to date, which is that $\chi_{o}\left(\mathcal{G}_{\Delta}\right) \leq 2 \Delta^{2} \cdot 2^{\Delta}$ (see [11]). Actually, employing another trick used by Duffy in [3], Theorem 1.2 also yields the following improved upper bound on $\chi_{o}\left(\mathcal{G}_{\Delta}^{c}\right)$ as a side result.

Theorem 1.3. For all $\Delta \geq 29$, we have

$$
2^{\frac{\Delta}{2}} \leq \chi_{o}\left(\mathcal{G}_{\Delta}^{\mathrm{c}}\right) \leq(\Delta-3) \cdot(\Delta-1) \cdot 2^{\Delta}+2
$$

When it comes to coloring graphs with given maximum degree, a natural step to make is considering graphs with low maximum degree. This concern is actually a major one regarding oriented coloring, as it is still open what the value of $\chi_{o}\left(\mathcal{G}_{3}^{\mathrm{c}}\right)$ is. Sopena [19] conjectured that $\chi_{o}\left(\mathcal{G}_{3}^{\mathrm{c}}\right)=7$, and, to date, we know that $7 \leq \chi_{o}\left(\mathcal{G}_{3}\right) \leq 9$ and $7 \leq \chi_{o}\left(\mathcal{G}_{3}^{\mathrm{c}}\right) \leq 8$ hold (see [5, 19] and 4], respectively).

Due to the general connection between the oriented chromatic number and the pushable chromatic number, it makes sense wondering about $\chi_{p}\left(\mathcal{G}_{3}^{\mathrm{c}}\right)$ as well. In this work, we provide the following result as a first step towards this question.

Theorem 1.4. We have $6 \leq \chi_{p}\left(\mathcal{G}_{3}^{\mathrm{c}}\right) \leq \chi_{p}\left(\mathcal{G}_{3}\right) \leq 7$.
In graph coloring theory, another relevant aspect related to the vertex degrees is the maximum average degree. Precisely, the maximum average degree $\operatorname{mad}(G)$ of a graph G is

$$
\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}: H \text { is a subgraph of } G\right\} .
$$

In this work, we also study the pushable chromatic number of the family $\mathcal{G}_{3}^{\operatorname{mad}}=\{G: \operatorname{mad}(G)<3\}$ of graphs with maximum average degree less than 3 . Our main result reads as follows.

Theorem 1.5. We have $5 \leq \chi_{p}\left(\mathcal{G}_{3}^{\mathrm{mad}}\right) \leq 7$.
It was previously proved in [18] that for the family $\mathcal{G}_{8 / 3}^{\operatorname{mad}}=\left\{G: \operatorname{mad}(G)<\frac{8}{3}\right\}$ we have $\chi_{p}\left(\mathcal{G}_{8 / 3}^{\mathrm{mad}}\right)=4$. More precisely, in that result the equality follows from the existence of planar graphs with girth 8 and pushable chromatic number 4. This, and, because planar graphs with girth at least 6 have maximum average degree strictly less than 3 , Theorem 1.5 yield the following, where \mathcal{P}_{6} denotes the family of planar graphs with girth at least 6 .

Theorem 1.6. We have $4 \leq \chi_{p}\left(\mathcal{P}_{6}\right) \leq 7$.
This paper is organized as follows. We start off by introducing, in Section 2, some notation, terminology, and preliminary results. The next sections are devoted to proving Theorems 1.2 and 1.3 (Section 3), Theorem 1.4 (Section (4), and Theorem 1.5 (Section 5). Open questions and perspectives for future work are discussed in Section 6.

2 Notation, terminology, and preliminary results

For an arc $u v$ of an oriented graph \vec{G}, we say that u is a - -neighbor of v while v is a + -neighbor of u. The set of the --neighbors (+-neighbors, respectively) of any vertex v of \vec{G} is denoted by $N^{-}(v)\left(N^{+}(v)\right.$, respectively). For a set S of vertices of \vec{G} and some $\alpha \in\{-,+\}$, we define $N^{\alpha}(S)=\bigcup_{v \in S} N^{\alpha}(v)$.

To prove that all oriented graphs from a given family admit homomorphisms to a given oriented graph \vec{H}, we generally need \vec{H} to have very strong properties. In most of the proofs from the literature on the topic, and in our proofs in the current paper as well, a strong property we consider is the possibility,

Figure 1: The Paley tournament Pal_{7} on seven vertices.
given a partial homomorphism from an oriented graph \vec{G} to \vec{H}, to extend the partial homomorphism to another vertex v of \vec{G}, assuming some of its neighbors (which can be in any of $N^{-}(v)$ and $N^{+}(v)$) have already been assigned an image. A way to define this intuition is through the notion of Property $P(j, k)$, which we define formally in what follows.

A j-vector $\vec{a}=\left(a_{1}, \ldots, a_{j}\right)$ is a vector where $a_{i} \in\{-,+\}$ for every $i \in\{1, \ldots, j\}$. We denote by $\vec{a}^{c}=\left(a_{1}^{c}, \ldots, a_{j}^{c}\right)$ the j-vector where $a_{i}^{c} \neq a_{i}$ for every $i \in\{1, \ldots, j\}$. Let $J=\left\{v_{1}, \ldots, v_{j}\right\}$ be a set of j vertices of $V(\vec{G})$. Then we define the set

$$
N^{\vec{a}}(J)=\left\{v \in V(\vec{G}): v \in N^{a_{i}}\left(v_{i}\right) \text { for all } 1 \leq i \leq j\right\} \cup\left\{v \in V(\vec{G}): v \in N^{a_{i}^{c}}\left(v_{i}\right) \text { for all } 1 \leq i \leq j\right\}
$$

Observe that $N^{\vec{a}}(J)=N^{\vec{a}^{c}}(J)$. We say that \vec{G} has Property $P(j, k)$ if for every j-vector \vec{a} and every j-set J we have $\left|N^{\vec{a}}(J)\right| \geq k$.

A bijective homomorphism whose inverse is also a homomorphism is an isomorphism. An oriented graph \vec{G} is vertex-transitive if for every two vertices $u, v \in V(\vec{G})$ there is an isomorphism f of \vec{G} such that $f(u)=v$. We also say that \vec{G} is arc-transitive if given any two $\operatorname{arcs} u v, x y \in A(\vec{G})$ it is possible to find an isomorphism f of \vec{G} such that $f(u)=x$ and $f(v)=y$.

In the context of oriented homomorphisms and pushable homomorphisms, Paley tournaments stand, due to their very regular structure, as good candidates to map families of oriented graphs to. In this work, our upper bounds in Theorems 1.4 and 1.5 are actually obtained via pushable homomorphisms to $\overrightarrow{\mathrm{Pal}}_{7}$, the Paley tournament on seven vertices. $\overrightarrow{\mathrm{Pal}}_{7}$ (depicted in Figure 11) is the oriented graph (tournament) with vertex set $\mathbb{Z} / 7 \mathbb{Z}=\{0,1, \ldots, 6\}$ in which $i j$ is an arc if and only if $j-i$ is a nonzero square in $\mathbb{Z} / 7 \mathbb{Z}$ (where, here and further, all operations involving vertices of $\overrightarrow{\mathrm{Pal}}_{7}$ are understood modulo 7). In other words, $i j$ is an arc if and only if $j-i \in\{1,2,4\}$.

In this work, we will make use of the following properties of interest of $\overrightarrow{\mathrm{Pal}_{7}}$.
Lemma 2.1 (Marshall [13]). $\overrightarrow{\mathrm{Pal}}_{7}$ is vertex-transitive and arc-transitive.
Lemma 2.2 (Marshall [13]). $\overrightarrow{\mathrm{Pal}}_{7}$ has Properties $P(1,6)$ and $P(2,2)$.
We also note the following other interesting property of $\overrightarrow{\mathrm{Pal}_{7}}$.
Observation 2.3. For every $i \in V\left(\overrightarrow{\mathrm{Pal}}_{7}\right)$ and $\alpha, \beta, \gamma \in\{+,-\}$, we have

$$
N^{\alpha}\left(N^{\beta}(i)\right)= \begin{cases}V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) \backslash\{i\} & \text { if } \alpha=\beta \tag{1}\\ V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) & \text { if } \alpha \neq \beta\end{cases}
$$

and

$$
\begin{equation*}
N^{\alpha}\left(N^{\beta}\left(N^{\gamma}(i)\right)\right)=V\left(\overrightarrow{\operatorname{Pal}_{7}}\right) \tag{2}
\end{equation*}
$$

Proof. As $\overrightarrow{\mathrm{Pal}}_{7}$ is vertex-transitive, it is enough to verify the above equations for $i=0$, which can easily be done by hand.

3 Proofs of Theorems 1.2 and 1.3

Let t be a fixed integer. For a given integer j, we set $f_{t}(j)=(t-j)(t-2)+1$. In the next result, we show that if an oriented graph \vec{G} has Property $P\left(t-1, f_{t}(t-1)\right)$ for some t, then it also has Property $P\left(j, f_{t}(j)\right)$ for all $j \in\{0,1, \ldots, t-1\}$.

Lemma 3.1. If an oriented graph \vec{G} has Property $P\left(t-1, f_{t}(t-1)\right.$) for some t, then it also has Property $P\left(j, f_{t}(j)\right)$ for all $j \in\{0,1, \ldots, t-1\}$.

Proof. Suppose \vec{G} has Property $P(j, k)$. Now consider any $(j-1)$-vector $\vec{a}^{\prime}=\left(a_{1}, \ldots, a_{j-1}\right)$, any $(j-1)$ set $J^{\prime}=\left\{v_{1}, \ldots, v_{j-1}\right\}$, and a vertex v_{j} of $\vec{G} \operatorname{not}$ in J^{\prime}. Let $\vec{a}_{+}=\left(a_{1}, \ldots, a_{j-1},+\right), \vec{a}_{-}=\left(a_{1}, \ldots, a_{j-1},-\right)$ and $J=\left\{v_{1}, \ldots, v_{j-1}, v_{j}\right\}$. Since \vec{G} has Property $P(j, k)$, we must have $\left|N^{\vec{a}_{+}}(J)\right| \geq k$ and $\left|N^{\vec{a}_{-}}(J)\right| \geq k$. Observe that $N^{\vec{a}_{+}}(J) \cap N^{\vec{a}_{-}}(J)=\emptyset$ and that $N^{\vec{a}_{+}}(J), N^{\vec{a}_{-}}(J) \subseteq N^{\vec{a}^{\prime}}\left(J^{\prime}\right)$. Thus \vec{G} has Property $P(j-1,2 k)$. We are now done by induction since $f_{t}(j-1) \leq 2 f_{t}(j)$ for all $j \in\{0,1, \ldots, t-1\}$.

We now prove the existence of tournaments having Property $P(j, k)$ for particular values of j and k.
Lemma 3.2. For all $t \geq 29$, there exist tournaments with Property $P(t-1, t-1)$ and order

$$
c=(t-3) \cdot(t-1) \cdot 2^{t-1}
$$

Proof. Let \vec{C} be a random tournament in which every arc is oriented in one way or the other with equal probability $\frac{1}{2}$. We show below that the probability that \vec{C} does not have Property $P(t-1, t-1)$ is strictly less than 1 when $|\vec{C}|=c=(t-3) \cdot(t-1) \cdot 2^{t-1}$. Let $\mathbb{P}(J, \vec{a})$ denote the probability that the bad event $\left|N^{\vec{a}}(J)\right|<f_{t}(t-1)=(t-2)+1$ occurs, where J is a $(t-1)$-set of \vec{C} and \vec{a} is a $(t-1)$-vector. Then

$$
\begin{aligned}
\mathbb{P}(J, \vec{a}) & \leq \sum_{\substack{|S| \leq t-2 \\
S \cap J=\emptyset}} \mathbb{P}\left(S=N^{\vec{a}}(J)\right)=\sum_{\substack{|S| \leq t-2 \\
S \cap J=\emptyset}} \prod_{x \in S} \mathbb{P}\left(x \in N^{\vec{a}}(J)\right) \cdot \prod_{x \notin J \cup S} \mathbb{P}\left(x \notin N^{\vec{a}}(J)\right) \\
& =\sum_{\substack{|S| \leq t-2 \\
S \cap J=\emptyset}} 2 \cdot 2^{-|S||J|} \cdot\left(1-2 \cdot 2^{-|J|}\right)^{c-|J|-|S|} \\
& =\sum_{i=0}^{t-2}\binom{c-(t-1)}{i} \cdot 2^{-i(t-2)} \cdot\left(1-2^{-(t-2)}\right)^{c-i-(t-1)} \\
& =\left(1-2^{-(t-2)}\right)^{c} \cdot \sum_{i=0}^{t-2} \frac{c^{i}}{i!} \cdot 2^{-i(t-2)} \cdot\left(\frac{2^{t-2}}{2^{t-2}-1}\right)^{i+t-1} \\
& <e^{-c 2^{-(t-2)}} \cdot \sum_{i=0}^{t-2} c^{i} \frac{2^{(t-2)(t-1)}}{\left(2^{t-2}-1\right)^{i+t-1}} \leq e^{-c 2^{-(t-2)}} \cdot \frac{2^{(t-2)(t-1)}}{\left(2^{t-2}-1\right)^{t-1}} \cdot \sum_{i=0}^{t-2} c^{i} \\
& <2 e^{-c 2^{-(t-2)}} \cdot \frac{c^{t-1}-1}{c-1} \leq e^{-c 2^{-(t-2)}} \cdot c^{t-1} .
\end{aligned}
$$

Let $\mathbb{P}(\mathcal{B})$ denote the probability that at least one bad event occurs. To prove the statement it is then enough to show that $\mathbb{P}(\mathcal{B})<1$. Let T denote the set of all $(t-1)$-sets of vertices of \vec{C}, and W denote the
set of all $(t-1)$-vectors having + in the first coordinate. Note that given any $(t-1)$-vector \vec{a}, exactly one of \vec{a} and \vec{a}^{c} must belong to W. Then

$$
\begin{aligned}
\mathbb{P}(\mathcal{B}) & \leq \sum_{J \in T} \sum_{\vec{a} \in W} \mathbb{P}(J, \vec{a})<\binom{c}{t-1} \cdot 2^{t-2} \cdot e^{-c 2^{-(t-2)}} \cdot c^{t-1} \\
& <\frac{c^{t-1}}{(t-1)!} \cdot 2^{t-2} \cdot e^{-c 2^{-(t-2)}} \cdot c^{t-1}<\frac{2^{t-2}}{(t-1)!} \cdot e^{-c 2^{-(t-2)}} \cdot c^{2(t-1)} \\
& <e^{-c 2^{-(t-2)}} \cdot c^{2(t-1)}<\left(\frac{(t-3)^{2} \cdot(t-1)^{2} \cdot 2^{2(t-1)}}{e^{2(t-3)}}\right)^{t-1}<1
\end{aligned}
$$

In particular, the last inequality follows because $t \geq 29$. This completes the proof.
We now show that if a tournament \vec{C} has Property $P\left(j, f_{t}(j)\right)$ for all $j \in\{1, \ldots, \Delta-1\}$ where $t=\Delta$, then any connected oriented graph with maximum degree Δ and degeneracy $\Delta-1$ admits a pushable homomorphism to \vec{C}.

Lemma 3.3. Let \vec{C} be an oriented graph having Property $P\left(j, f_{t}(j)\right)$ for all $j \in\{1, \ldots, \Delta-1\}$ where $t=\Delta$, and \vec{G} be a connected oriented graph with maximum degree Δ and degeneracy $\Delta-1$. Then $\vec{G} \xrightarrow{\text { push }} \vec{C}$.
Proof. Let us assume the vertices of \vec{G} are labeled v_{1}, \ldots, v_{k} so that each vertex has at most $\Delta-1$ neighbors with smaller index. For every $l \in\{1, \ldots, k\}$, we denote by \vec{G}_{l} the oriented graph induced by the vertices in $\left\{v_{1}, \ldots, v_{l}\right\}$. We now inductively construct a homomorphism $g: \vec{G} \rightarrow \vec{C}$ with the following properties:

- For every $l \in\{1, \ldots, k\}$, the partial mapping $g\left(v_{1}\right), \ldots, g\left(v_{l}\right)$ is a homomorphism from \vec{G}_{l} to \vec{C}.
- For every $i>l$, all neighbors of v_{i} with index at most l have different images by the mapping g.

For $l=1$, consider any partial mapping $g\left(v_{1}\right)$. Suppose now that the function g satisfies the above two properties for all $i \leq l$ for some fixed $l \in\{1, \ldots, k-1\}$. Let A be the set of neighbors of v_{l+1} with index greater than $l+1$, and B be the set of vertices with index at most l and with at least one neighbor in A. Note that $|B| \leq(\Delta-2)|A|$.

Let D be the set of possible options for $g\left(v_{l+1}\right)$ leading to the partial mapping being a homomorphism from \vec{G}_{l+1} to \vec{C}. Let A^{\prime} be the set of neighbors of v_{l+1} with index less than $l+1$. Therefore, due to Property $P\left(\left|A^{\prime}\right|, f_{t}\left(\left|A^{\prime}\right|\right)\right)$ of \vec{C}, we have

$$
|D| \geq f_{t}\left(\left|A^{\prime}\right|\right)=\left(\Delta-\left|A^{\prime}\right|\right)(\Delta-2)+1>(\Delta-2)|A| \geq|B|
$$

which implies $|D|>|B|$. Thus choose any vertex from $D \backslash B$ as the image $g\left(v_{l+1}\right)$. Note that the resulting partial mapping satisfies the two required conditions as well. This concludes the proof.

We are now ready to prove Theorem 1.2 .
Proof of Theorem 1.2. The lower bound follows from Theorem 1.1 and the bound $2^{\Delta / 2} \leq \chi_{o}\left(\mathcal{G}_{\Delta}\right)$ established by Kostochka, Sopena and Zhu in [11. We now focus on proving the upper bound. Let \vec{G} be a connected oriented graph with maximum degree $\Delta \geq 29$. Note that if \vec{G} is not Δ-regular then \vec{G} is $(\Delta-1)$-degenerate. In that case we are done by Lemmas 3.2 and 3.3 . So assume \vec{G} is Δ-regular. Delete one arc $u v$ from \vec{G} to obtain a connected oriented graph with maximum degree Δ and degeneracy $\Delta-1$. This new oriented graph admits a pushable homomorphism g to an oriented graph \vec{C} with Property $P\left(j, f_{t}(j)\right)$ for all $j \in\{1, \ldots, \Delta-1\}$. Now add two new vertices x and y to \vec{C} to obtain a new oriented graph $\overrightarrow{\hat{C}}$. Modify the pushable homomorphism g to \hat{g} by setting $\hat{g}(u)=x, \hat{g}(v)=y$ and $\hat{g}(w)=g(w)$ for all $w \neq u, v$. Moreover, choose the direction of the arcs incident with x and y in such a way that \hat{g} is a pushable homomorphism from \vec{G} to $\overrightarrow{\hat{C}}$.

Figure 2: A cubic oriented graph with pushable chromatic number 6 (i), and an oriented graph with maximum average degree strictly less than 3 and pushable chromatic number 5 (ii).

The proof of Theorem 1.2 above can also be employed to prove Theorem 1.3
Proof of Theorem 1.3. The lower bound is due to a result of Kostochka, Sopena and Zhu in [11]. Let us now focus on the upper bound. From Lemmas 3.2 and 3.3 we know that if \vec{G} has maximum degree Δ and is $(\Delta-1)$-degenerate, then $\chi_{o}(\vec{G}) \leq 2 \chi_{p}(\vec{G}) \leq 2(\Delta-3) \cdot(\Delta-1) \cdot 2^{\Delta}$. Thus we are done for all oriented graphs of \mathcal{G}_{Δ} but the ones that are Δ-regular. For these oriented graphs, the upper bound can be proved similarly as in the proof of Theorem 1.2 .

4 Proof of Theorem 1.4

The lower bound follows from the existence of subcubic oriented graphs with pushable chromatic number 6, such as the one depicted in Figure 2(i). To prove the upper bound of Theorem 1.4 we show that any subcubic oriented graph \vec{G} admits a pushable homomorphism to the Paley tournament $\overrightarrow{\mathrm{Pal}_{7}}$ on seven vertices. We prove this is the rest of this section.

Assume that this does not hold for all subcubic oriented graphs, and consider \vec{H} a minimum (with respect to its number of vertices) subcubic oriented graph that does not admit a pushable homomorphism to $\overrightarrow{\mathrm{Pal}_{7}}$. We prove that \vec{H} cannot contain certain configurations until we finally reach a contradiction to its existence. Note that \vec{H} must be connected due to the minimality condition.

We first show that \vec{H} must be cubic.
Lemma 4.1. \vec{H} is cubic.
$\xrightarrow{\text { Proof. Assume }} \vec{H}$ has a degree-1 vertex u. By minimality, there exists a pushable homomorphism f from $\vec{H}-\{u\}$ to $\overrightarrow{\mathrm{Pal}_{7}}$. It is possible to extend f to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}}$ due to Property $P(1,6)$, a contradiction. Now assume \vec{H} has a degree- 2 vertex u with neighbors v and w. Consider the oriented graph $\overrightarrow{H_{1}}$ obtained from \vec{H} by deleting u and adding the arc $w v$ if v and w are not already adjacent. By minimality, there exists a pushable homomorphism f from $\overrightarrow{H_{1}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$. It is possible to extend f to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}}_{7}$ due to Property $P(2,2)$, a contradiction.

Also, we note that \vec{H} cannot be a tournament.
Lemma 4.2. \vec{H} is not a tournament.
Proof. Any tournament on four vertices is in a push relationship with one of the following two tournaments (both contained in $\left.\overrightarrow{\mathrm{Pal}_{7}}\right):(i)$ the induced tournament $\overrightarrow{\mathrm{Pal}_{7}}[\{0,1,2,4\}]$ and (ii) the induced tournament $\overrightarrow{\mathrm{Pal}_{7}}[\{1,2,3,4\}]$. Thus, if \vec{H} is an orientation of K_{4} then it must admit a pushable homomorphism to $\overrightarrow{\mathrm{Pal}_{7}}$, a contradiction.

Observe that a connected cubic oriented graph that is not a tournament (i.e., not an orientation of K_{4}), must have one of the configurations depicted in Figure 3 In what follows, we prove that none of these configurations can be present in \vec{H}, and thus that it cannot exist.

Figure 3: Configurations needed for proving Theorem 1.4. Black square vertices are vertices whose full neighborhood is part of the configuration. White circle vertices are vertices that might have other neighbors outside the configuration.

Before going on to show that \vec{H} does not contain the said configurations, we first introduce some notation and raise some remarks. We below deal with partial matrices, i.e. matrices whose entries are either empty or contain an element of $V\left(\overrightarrow{\mathrm{Pal}_{7}}\right)$. The $i j^{t h}$ entry of a matrix X is denoted by $X(i, j)$. Given two matrices X_{1} and X_{2} of the same dimension, the matrices $X_{1} \pm X_{2}$ are well defined by setting $\left(X_{1} \pm X_{2}\right)(i, j)=X_{1}(i, j) \pm X_{2}(i, j)$, with the convention that $\emptyset \pm x=x \pm \emptyset=\emptyset$ for every entry x.

In the upcoming lemmas, we will often use implicitely the following observation to check the correctness of some extensions of pushable homomorphisms : if, for some (i, j), we have $\left(X_{2}-X_{1}\right)(i, j) \in\{1,2,4\}$, then taking $f(u)=X_{1}(i, j)$ and $f(v)=X_{2}(i, j)$ defines a homomorphism of the arc $u v$ to $\overrightarrow{\mathrm{Pal}_{7}}$. Similarly, if $\left(X_{2}-X_{1}\right)(i, j) \in\{3,5,6\}$ for some (i, j), then taking $f(u)=X_{1}(i, j)$ and $f(v)=X_{2}(i, j)$ defines a homomorphism of the arc $v u$ to $\overrightarrow{\mathrm{Pal}_{7}}$.
Lemma 4.3. The configuration depicted in Figure 3(i) cannot be contained in \vec{H}.
Proof. Assume that \vec{H} contains the configuration depicted in Figure 3(i). Let $\overrightarrow{H_{1}}$ be the oriented graph obtained from \vec{H} by deleting the vertices in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and let $\overrightarrow{H_{2}}$ be the oriented graph obtained from \vec{H} by deleting the arc between u_{2} and v_{3}. By minimality, $\overrightarrow{H_{1}}$ admits a pushable homomorphism f to $\overrightarrow{\mathrm{Pal}_{7}}$. Up to pushing vertices in $\overrightarrow{H_{1}}$, we may assume that f is actually an oriented homomorphism. As $\overrightarrow{\mathrm{Pal}}{ }_{7}$ is vertex-transitive, without loss of generality we may assume that $f\left(u_{1}\right)=0$. Moreover, up to pushing v_{1}, v_{2} and v_{4} in that order, we may assume that \vec{H} has the $\operatorname{arcs} u_{1} v_{1}, v_{2} v_{1}, v_{4} v_{1}$. Furthermore, up to exchanging v_{2} and v_{4} and then pushing v_{3}, we may also assume that $\overrightarrow{H_{2}}$ has the arcs $v_{2} v_{4}$ and $v_{3} v_{2}$.

We show that for every $\ell \in\{1, \ldots, 6\}$ we can extend f to an oriented homomorphism from $\overrightarrow{H_{2}}$ to $\overrightarrow{\mathrm{Pal}}$ satisfying $f\left(v_{3}\right)=\ell$. This allows to conclude: let $\beta \in\{+,-\}$ such that v_{3} is a β-neighbor of u_{2} in \vec{H} after having possibly pushed v_{3} to obtain the arc $v_{3} v_{2}$. Since $\left|N^{\beta}\left(f\left(u_{2}\right)\right)\right|=3$, there exists $\ell \in N^{\beta}\left(f\left(u_{2}\right)\right) \backslash\{0\}$. We then extend f to an oriented homomorphism from $\overrightarrow{H_{2}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $f\left(v_{3}\right)=\ell$. Due to the choice of ℓ, this is also an oriented homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}}$, a contradiction.

Therefore, in order to prove that \vec{H} cannot contain the configuration depicted in Figure 3(i), it only remains to extend f to an oriented homomorphism from $\overrightarrow{H_{2}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ satisfying $f\left(v_{3}\right)=\ell$ for every $\ell \in\{1, \ldots, 6\}$. To this end, we consider the following matrices:

$$
X_{v_{1}}=\left[\begin{array}{lll}
1 & 2 & 4 \\
1 & 2 & 4 \\
1 & 2 & 4
\end{array}\right], X_{v_{2}}=\left[\begin{array}{lll}
0 & 1 & 3 \\
6 & 0 & 2 \\
4 & 5 & 0
\end{array}\right], X_{v_{4}}=\left[\begin{array}{lll}
4 & 5 & 0 \\
0 & 1 & 3 \\
6 & 0 & 2
\end{array}\right]
$$

and

$$
X_{v_{3}}^{+}=\left[\begin{array}{ccc}
6 & 0 & 2 \\
4 & 5 & 0 \\
0 & 1 & 3
\end{array}\right], X_{v_{3}}^{-}=\left[\begin{array}{ccc}
3 & 4 & 6 \\
5 & 6 & 1 \\
2 & 3 & 5
\end{array}\right]
$$

Let $\alpha \in\{+,-\}$ such that $v_{3} \in N^{\alpha}\left(v_{4}\right)$, and $\ell \in\{1, \ldots, 6\}$. Observe that all values $\{1, \ldots, 6\}$ are present in the matrix $X_{v_{3}}^{\alpha}$, hence we can take $(i, j) \in\{1,2,3\}^{2}$ such that $\ell=X_{v_{3}}^{\alpha}(i, j)$. We can then

(i) The graph T_{3}

(ii) The graph T_{4}

Figure 4: Two cubic graphs mentioned in the proof of Theorem 1.4

Figure 5: The 8 orientations of the inner cycle induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$.
extend f to an oriented homomorphism from $\overrightarrow{H_{2}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ by choosing $f\left(v_{k}\right)=X_{v_{k}}(i, j)$ for all $k \in\{1,2,4\}$ and $f\left(v_{3}\right)=X_{v_{3}}^{\alpha}(i, j)=\ell$, which concludes the proof.

Before moving on to proving Lemma 4.5, we need to show the following.
Lemma 4.4. The graph T_{3} depicted in Figure 4(i) cannot be contained in H.
Proof. Since T_{3} is cubic and H is connected, if H contains T_{3} then $H=T_{3}$. Therefore, it is enough to show that for any orientation $\overrightarrow{T_{3}}$ of T_{3}, there exists a pushable homomorphism f from $\overrightarrow{T_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$. Note that regardless of the orientation $\overrightarrow{T_{3}}$, it is always possible to push some vertices among $\left\{u_{1}, u_{2}, u_{3}\right\}$ so that $\overrightarrow{T_{3}}$ has the arcs $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}$. Moreover, we can also push some of the vertices among $\left\{v_{1}, v_{2}, v_{3}\right\}$ to obtain the $\operatorname{arcs} u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}$ as well.

We now define a homomorphism from $\overrightarrow{T_{3}}$ to $\overrightarrow{\mathrm{Pal}}$. We first set $f\left(u_{1}\right)=1, f\left(u_{2}\right)=2$ and $f\left(u_{3}\right)=4$. As shown in Figure [5 whatever the orientation of the triangle induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$ in $\overrightarrow{T_{3}}$ is, we are always able to choose $f\left(v_{1}\right) \in\{2,3,5\}, f\left(v_{2}\right) \in\{3,4,6\}$ and $f\left(v_{3}\right) \in\{1,5,6\}$ to extend f to an oriented homomorphism from $\overrightarrow{T_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$.

Lemma 4.5. The configuration depicted in Figure 3(ii) cannot be contained in \vec{H}.
Proof. Assume that \vec{H} contains the configuration depicted in Figure 3(ii). Due to Lemmas 4.3 and 4.4 . we may assume that u_{1} and u_{2} are distinct non-adjacent vertices. Moreover, it is possible to push some of the vertices among $\left\{v_{1}, v_{2}\right\}$ to make sure that \vec{H} has the $\operatorname{arcs} u_{1} v_{1}, u_{2} v_{2}$. Furthermore, by symmetry, we may assume the arc $v_{1} v_{2}$ is present in \vec{H}.

Let $\overrightarrow{H_{1}}$ be the oriented graph obtained by adding the arc $u_{1} u_{2}$ in \vec{H}. We also denote by $\overrightarrow{H_{2}}$ the oriented graph obtained from $\overrightarrow{H_{1}}$ by deleting the vertices v_{1}, v_{2} and v_{3}. By minimality, $\overrightarrow{H_{2}}$ admits a pushable homomorphism f to $\overrightarrow{\mathrm{Pal}_{7}}$. Up to replacing $\overrightarrow{H_{2}}$ (together with $\overrightarrow{H_{1}}$ and \vec{H}) by a push-equivalent oriented graph, we may assume that f is an oriented homomorphism. However, note that this may cause the arc $u_{1} u_{2}$ to be reversed in $\overrightarrow{H_{2}}$. This occurs if we needed to push u_{1} or u_{2} in $\overrightarrow{H_{2}}$ in order to make f an oriented homomorphism. We again push (if needed) v_{1} and v_{2} to obtain the $\operatorname{arcs} u_{1} v_{1}$ and $u_{2} v_{2}$ in \vec{H}.

Observe that $u_{1} u_{2}$ and $v_{1} v_{2}$ are both present in \vec{H} or both reversed. By symmetry, we may only consider the first case. Finally, up to pushing v_{3}, we assume that the arc $v_{3} v_{1}$ is in \vec{H}.

Let $\overrightarrow{H_{3}}$ be the oriented graph obtained from \vec{H} by deleting the arc between u_{3} and v_{3}. Similarly to the proof of Lemma 4.3, we first extend f to an oriented homomorphism from $\overrightarrow{H_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$, with some additional constraint on $f\left(v_{3}\right)$, and then extend f to \vec{H}.

As $\overrightarrow{\mathrm{Pal}}_{7}$ is arc-transitive, without loss of generality we may assume that $f\left(u_{1}\right)=0$ and $f\left(u_{2}\right)=1$. Now consider the following matrices:

$$
X_{v_{1}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
2 \\
4
\end{array}\right], X_{v_{2}}=\left[\begin{array}{l}
2 \\
3 \\
5 \\
3 \\
5
\end{array}\right], X_{v_{3}}^{+}=\left[\begin{array}{c}
4 \\
0 \\
6 \\
5 \\
2
\end{array}\right], X_{v_{3}}^{-}=\left[\begin{array}{l}
0 \\
6 \\
4 \\
1 \\
3
\end{array}\right] .
$$

Let $\alpha, \beta \in\{+,-\}$ such that v_{3} is an α-neighbor of v_{2} and a β-neighbor of u_{3}. Let S_{α} be the set of all integers appearing in at least one entry in $X_{v_{3}}^{\alpha}$. Observe that for every $\ell \in S_{\alpha}$, there exists $j \in\{1, \ldots, 5\}$ such that $\ell=X_{v_{3}}^{\alpha}(1, j)$. By choosing $f\left(v_{k}\right)=X_{v_{k}}(1, j)$ for $k \in\{1,2\}$ and $f\left(v_{3}\right)=\ell$, we can extend f to an oriented homomorphism from $\overrightarrow{H_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ satisfying $f\left(v_{3}\right)=\ell$.

Observe that $\left|S_{\alpha}\right|=5$. Hence, since $\left|N^{\beta}\left(f\left(u_{2}\right)\right)\right|=3$, we may choose an $\ell \in N^{\beta}\left(f\left(u_{2}\right)\right) \cap S_{\alpha}$. The corresponding extension of f is now an oriented homomorphism from $\overrightarrow{H_{1}}$, to $\overrightarrow{\mathrm{Pal}}_{7}$. Since \vec{H} is a subgraph of $\overrightarrow{H_{1}}$, we obtain a contradiction. Therefore, \vec{H} cannot contain the configuration depicted in Figure 3 (ii).

The proof of Lemma 4.7 is similar to Lemma 4.5 In particular, we first prove an auxiliary lemma in the spirit of Lemma 4.4.
Lemma 4.6. The graph H cannot be the graph T_{4} depicted in Figure Z $_{\text {(ii) }}$.
Proof. It is enough to show that for any orientation \vec{T}_{4} of the cubic graph T_{4} depicted in Figure 4 (ii) there exists a pushable homomorphism f from $\overrightarrow{T_{4}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$. We consider two cases, depending on parity of the number of backward arcs of the 4 -cycles of $\overrightarrow{T_{4}}$.
Case 1: Suppose that $\overrightarrow{T_{4}}$ contains a 4 -cycle with an odd number of backward arcs. By symmetry, assume that this cycle is the outer one. We can now push some vertices among $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ to make sure that $\overrightarrow{T_{4}}$ has the $\operatorname{arcs} u_{1} u_{2}, u_{1} u_{4}, u_{4} u_{3}$ and $u_{3} u_{2}$. Up to pushing some vertices among $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, we may also assume that $\overrightarrow{T_{4}}$ contains all the arcs $u_{i} v_{i}$ for $i \in\{1,2,3,4\}$. Let $f\left(u_{1}\right)=0, f\left(u_{2}\right)=4, f\left(u_{3}\right)=2$ and $f\left(u_{4}\right)=1$. As shown in Figure 6, whatever the orientation of the 4 -cycle induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is, we are always able to choose $f\left(v_{1}\right) \in\{1,2,4\}, f\left(v_{2}\right) \in\{1,5,6\}, f\left(v_{3}\right) \in\{3,4,6\}$ and $f\left(v_{4}\right) \in\{2,3,5\}$ to extend f to a homomorphism from $\overrightarrow{T_{4}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$.
Case 2: Suppose that every 4 -cycle of \vec{T}_{4} has an even number of backward arcs. Up to pushing some vertices among $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, we may assume that $\overrightarrow{T_{4}}$ has the $\operatorname{arcs} u_{1} u_{2}, u_{1} u_{4}, u_{3} u_{2}$ and $u_{3} u_{4}$. We also push some vertices among $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $\overrightarrow{T_{4}}$ contains all the arcs $u_{i} v_{i}$ for $i \in\{1,2,3,4\}$. By hypothesis, observe that $\overrightarrow{T_{4}}$ must contain the $\operatorname{arcs} v_{1} v_{2}, v_{1} v_{4}, v_{3} v_{2}$ and $v_{3} v_{4}$. We can then define an oriented homomorphism from \vec{T}_{4} to $\overrightarrow{\text { Pal }}$ by setting $f\left(u_{1}\right)=f\left(u_{3}\right)=0, f\left(v_{1}\right)=f\left(v_{3}\right)=f\left(u_{2}\right)=f\left(u_{4}\right)=1$ and $f\left(v_{2}\right)=f\left(v_{4}\right)=2$.

Using this auxiliary lemma, we may prove that \vec{H} does not contain the next configuration.
Lemma 4.7. The configuration depicted in Figure ${ }^{3}($ iii) cannot be contained in \vec{H}.
Proof. Assume that \vec{H} contains the configuration depicted in Figure 3(iii). We follow the same approach as in Lemma 4.5 we first use Lemma 4.6 and symmetry to show we can add the are $u_{1} u_{2}$. Then we remove some vertices and use minimality to obtain a pushable homomorphism, that we extend in two steps to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$.

Figure 6: The 16 possible orientations of the inner cycle induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

We first assume that u_{1} and u_{2} are distinct non-adjacent vertices due to Lemmas 4.5 and 4.6 Up to renaming the vertices of the graph, we assume that if u_{3}, u_{4} are adjacent, then either u_{1}, u_{4} are adjacent or u_{2}, u_{3} are adjacent. Moreover, up to pushing v_{1} or v_{2}, we may assume that \vec{H} has the $\operatorname{arcs} v_{1} u_{1}, v_{2} u_{2}$. Furthermore, by symmetry, we may assume the arc $v_{2} v_{1}$ is present in \vec{H}.

Let $\overrightarrow{H_{1}}$ be the oriented graph obtained from \vec{H} by adding the arc $u_{1} u_{2}$ and an arc between u_{3} and u_{4} (if such is not already present) in such a way that the oriented cycle induced by the vertices $\left\{u_{3}, v_{3}, v_{4}, u_{4}\right\}$ has an even number of forward and backward arcs.

After that, let $\overrightarrow{H_{2}}$ be the oriented graph obtained from $\overrightarrow{H_{1}}$ by deleting the set of vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and $\overrightarrow{H_{3}}$ be the oriented graph obtained from \vec{H} by deleting the arc between u_{3} and v_{3}, and the arc between u_{4} and v_{4}.

By minimality, $\overrightarrow{H_{2}}$ admits a pushable homomorphism f to $\overrightarrow{\text { Pal }} 7$. Again, up to replacing $\overrightarrow{H_{2}}$ (together with $\overrightarrow{H_{1}}$ and \vec{H}) by a push-equivalent oriented graph, we may assume that f is an oriented homomorphism. Observe that the arc $u_{1} u_{2}$ may now be reversed. We push v_{1} or v_{2} if needed to make sure that $\overrightarrow{H_{2}}$ contains $v_{1} u_{1}$ and $v_{2} u_{2}$. Now either $\overrightarrow{H_{2}}$ contains both $u_{1} u_{2}$ and $v_{2} v_{1}$ or both $u_{2} u_{1}$ and $v_{1} v_{2}$. By symmetry, we consider only the first case. Moreover, since $\overrightarrow{\mathrm{Pal}}_{7}$ is arc-transitive, we may assume that $f\left(u_{1}\right)=0$ and $f\left(u_{2}\right)=1$.

Up to pushing v_{3} or v_{4} if needed, we may assume that $\overrightarrow{H_{1}}$ contains the arcs $v_{1} v_{4}$ and $v_{2} v_{3}$. Now consider the following matrices:

$$
\begin{gathered}
X_{v_{1}}=\left[\begin{array}{ccc|ccc}
3 & 5 & 6 & 3 & 5 & 6 \\
3 & 5 & 6 & 3 & 5 & 6 \\
3 & 5 & 6 & 3 & 5 & 6 \\
\hline 2 & 2 & 4 & 2 & 4 & 4 \\
2 & 2 & 4 & 2 & 4 & 4 \\
2 & 2 & 4 & 2 & 4 & 4
\end{array}\right], X_{v_{2}}=\left[\begin{array}{ccc|ccc}
6 & 4 & 4 & 5 & 2 & 3 \\
6 & 4 & 4 & 5 & 2 & 3 \\
6 & 4 & 4 & 5 & 2 & 3 \\
\hline 4 & 6 & 6 & 5 & 2 & 3 \\
4 & 6 & 6 & 5 & 2 & 3 \\
4 & 6 & 6 & 5 & 2 & 3
\end{array}\right], X_{v_{4}}=\left[\begin{array}{ccc|ccc}
4 & 6 & 0 & 4 & 6 & 0 \\
5 & 0 & 1 & 5 & 0 & 1 \\
0 & 2 & 3 & 0 & 2 & 3 \\
\hline 5 & 5 & 0 & 5 & 0 & 0 \\
0 & 0 & 2 & 0 & 2 & 2 \\
1 & 1 & 3 & 1 & 3 & 3
\end{array}\right], \\
X_{v_{3}}^{+}=\left[\begin{array}{lll|lll}
1 & 1 & 1 & 0 & 0 & 2 \\
0 & 1 & 5 & \emptyset & 1 & 2 \\
1 & 6 & 5 & 4 & \emptyset & \emptyset \\
\hline 6 & 0 & 1 & \emptyset & 1 & 2 \\
1 & 1 & 3 & 4 & \emptyset & 6 \\
5 & 3 & 0 & 3 & 5 & \emptyset
\end{array}\right], X_{v_{3}}^{-}=\left[\begin{array}{ccc|ccc}
0 & 5 & 6 & 3 & 5 & 6 \\
1 & 5 & 6 & 1 & 5 & 6 \\
3 & 5 & 6 & 3 & 5 & 6 \\
\hline 1 & 3 & \emptyset & 4 & 5 & 6 \\
5 & 3 & 1 & 3 & 0 & 1 \\
6 & 0 & 1 & 4 & 1 & 2
\end{array}\right] .
\end{gathered}
$$

Let $\overrightarrow{H_{3}}$ be the oriented graph obtained by deleting the arc between u_{3} and v_{3} and the arc between u_{4} and v_{4} in $\overrightarrow{H_{1}}$. For every $\ell \in\{0, \ldots, 6\}$, we first extend f to a pushable homomorphism from $\overrightarrow{H_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $f\left(v_{3}\right)=\ell$. We then apply this construction with the right value of ℓ to obtain a pushable homomorphism from $\overrightarrow{H_{1}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$.

Let $\alpha \in\{+,-\}$ such that v_{3} is an α-neighbor of v_{4} and let $\ell \in\{0, \ldots, 6\}$. Observe that there exists $i, j \in\{1, \ldots, 6\}$ such that $\ell=X_{v_{3}}^{\alpha}(i, j)$. We push the vertex v_{1} (resp. v_{2}) in $\overrightarrow{H_{3}}$ if $i>3$ (resp. $j>3)$. Now, if we choose $f\left(v_{k}\right)=X_{v_{k}}(i, j)$ for all $k \in\{1,2,4\}$ and any $f\left(v_{3}\right)=\ell$, then f is a pushable homomorphism from $\overrightarrow{H_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$.

It now remains to choose the value of ℓ to apply this construction and extend it to $\overrightarrow{H_{1}}$. Let $\beta_{3}, \beta_{4} \in$ $\{+,-\}$ such that v_{3} is a β_{3}-neighbor of u_{3}, and v_{4} is a β_{4}-neighbor of u_{4} in $\overrightarrow{H_{1}}$. Consider the set of integers

$$
S^{\alpha}=\left(\bigcup_{\left\{(i, j): X_{v_{4}}(i, j) \in N^{\beta_{4}}\left(f\left(u_{4}\right)\right)\right\}}\left\{X_{v_{3}}^{\alpha}(i, j)\right\}\right) \backslash\{\emptyset\} .
$$

Observe that S^{α} depends on the value of $f\left(u_{4}\right)$ and β_{4}.
Note that for each $\ell \in S^{\alpha}$ there exists an extension of f to a pushable homomorphism from $\overrightarrow{H_{3}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $f\left(v_{4}\right) \in N^{\beta_{4}}\left(f\left(u_{4}\right)\right)$ and $f\left(v_{3}\right)=\ell$. In particular, if ℓ also lies in $N^{\beta_{3}}\left(f\left(u_{3}\right)\right)$, then f is also a pushable homomorphism from $\overrightarrow{H_{1}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$. Therefore, we can conclude as soon as $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{\alpha} \neq \emptyset$.

This is already the case if $\left|S^{\alpha}\right| \geq 5$. Therefore, we may assume that $\left|S^{\alpha}\right|<5$, which may happen for some values of $f\left(u_{4}\right)$ and β_{4}. To handle those instances, we split the rest of the proof into two cases. In each of them, we modify f so that $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{\alpha} \neq \emptyset$, afterwards, which allows to extend f to a pushable homomorphism from $\overrightarrow{H_{1}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$. Since \vec{H} is a subgraph of $\overrightarrow{H_{1}}$, this leads to a contradiction. Therefore, \vec{H} cannot contain the configuration depicted in Figure 3(iii).
Case 1: Suppose that v_{3} is a -neighbor of v_{4}, that is, $\alpha=-$ and the arc $v_{3} v_{4}$ is present. In this case, $\left|S^{-}\right|<5$ only if $f\left(u_{4}\right)=1$ and $\beta_{4}=-$, and we have $S^{-}=\{0,3,5,6\}$. The only way of having $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{-}=\emptyset$. happens when $N^{\beta_{3}}\left(f\left(u_{3}\right)\right)=\{1,2,4\}$, which implies $f\left(u_{3}\right)=0$ and $\beta_{3}=+$. Since $f\left(u_{3}\right)=0$ and $f\left(u_{4}\right)=1, \overrightarrow{H_{1}}$ contains the arc $u_{3} u_{4}$. This means that the oriented cycle induced by $\left\{u_{3}, v_{3}, v_{4}, u_{4}\right\}$ has an odd number of backward and forward arcs. Since this property is invariant with respect to the push operation, this was also valid when $\overrightarrow{H_{1}}$ was constructed. Due to this construction, we obtain that u_{3} and u_{4} were adjacent in \vec{H} itself. Moreover, by hypothesis, this implies that either u_{1} and u_{4} are adjacent, or u_{2} and u_{3} are adjacent.

- If u_{1} and u_{4} are adjacent, then we must have the arc $u_{1} u_{4}$, since $f\left(u_{1}\right)=0$ and $f\left(u_{4}\right)=1$. In this case, since \vec{H} is cubic, the only neighbors of u_{4} are u_{1}, u_{3} and v_{4}, so we can modify f by setting $f\left(u_{4}\right)=2$, so that we now have $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{-} \neq \emptyset$.
- If u_{2} and u_{3} are adjacent, then we must have the arc $u_{3} u_{2}$, since $f\left(u_{3}\right)=0$ and $f\left(u_{2}\right)=1$. Similarly, we modify f by setting $f\left(u_{3}\right)=4$, so that we now have $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{-} \neq \emptyset$.

Case 2: Suppose that v_{3} is a + -neighbor of v_{4}, that is, $\alpha=+$ and the arc $v_{4} v_{3}$ is present. We have $\left|S^{+}\right|<5$ only when $\left(f\left(u_{4}\right), \beta_{4}\right)=(1,+),(2,+),(0,-),(1,-)$ or $(6,-)$. In these cases, we respectively have $S^{+}=\{0,3,5,6\},\{0,1,5\},\{0,1,5,6\},\{0,1,2,4\}$ or $\{0,1,3,6\}$.

For $S^{+}=\{0,1,5,6\}$, there exist no $f\left(u_{3}\right)$ and β_{3} satisfying $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{+}=\emptyset$. Thus it is not possible to have $\left(f\left(u_{4}\right), \beta_{4}\right)=(0,-)$. Also note that in order to satisfy $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{+}=\emptyset$, for each value of $\left(f\left(u_{4}\right), \beta_{4}\right)=(1,+),(2,+),(1,-)$ or $(6,-)$, we must have $\left(f\left(u_{3}\right), \beta_{3}\right)=(0,+),(2,+),(0,-)$ or $(6,-)$. Since u_{3} and u_{4} are adjacent in $\overrightarrow{H_{1}}$, it is not possible to have $f\left(u_{3}\right)=f\left(u_{4}\right)$. Therefore, there exists $\gamma \in\{+,-\}$ such that $\left(f\left(u_{4}\right), \beta_{4}\right)=(1, \gamma)$, and thus $\left(f\left(u_{3}\right), \beta_{3}\right)=(0, \gamma)$. In particular, $\overrightarrow{H_{1}}$ contains the arc $u_{3} u_{4}$. This means that the oriented cycle induced by $\left\{u_{3}, v_{3}, v_{4}, u_{4}\right\}$ has an odd number of backward and forward arcs. Since this property is invariant with respect to the push operation, this was again also the case when $\overrightarrow{H_{1}}$ was constructed. This implies that u_{3} and u_{4} are adjacent in \vec{H} itself. By hypothesis, either u_{1} and u_{4} are adjacent, or u_{2} and u_{3} are adjacent.

- If u_{1} and u_{4} are adjacent, then we must have the arc $u_{1} u_{4}$, since $f\left(u_{1}\right)=0$ and $f\left(u_{4}\right)=1$. In this case, we modify f by setting $f\left(u_{4}\right)=2$, so that we now have $N^{\beta_{4}}\left(f\left(u_{4}\right)\right) \cap S^{+} \neq \emptyset$.
- If u_{2} and u_{3} are adjacent, then we must have the arc $u_{3} u_{2}$, since $f\left(u_{3}\right)=0$ and $f\left(u_{2}\right)=1$. In this case, we modify f by setting $f\left(u_{3}\right)=4$, so that now we have $N^{\beta_{3}}\left(f\left(u_{3}\right)\right) \cap S^{+} \neq \emptyset$.

Lemma 4.8. The configuration depicted in Figure $3($ iv) cannot be contained in \vec{H}.
Proof. Let X be a graph on four vertices having a degree-3 vertex x with neighbors a_{1}, a_{2} and b. Let $h: V(X) \rightarrow V\left(\overrightarrow{\mathrm{Pal}_{7}}\right)$ be a function such that $h\left(a_{1}\right)=0$ and $h\left(a_{2}\right)=1$. Furthermore let $h^{*}: V(X) \rightarrow$ $V\left(\overrightarrow{\mathrm{Pal}_{7}}\right)$ be a function such that $h^{*}\left(a_{1}\right)=h^{*}\left(a_{2}\right)=0$. Now let \vec{X} be an orientation of X. Moreover, let $\overrightarrow{X^{\prime}}$ be the orientation of X obtained from \vec{X} by pushing the vertex x. Without loss of generality assume that the arc $a_{1} x$ is present in \vec{X}. Therefore \vec{X} is of one of the following four types below. For each type we list a number of observations following, notably, from the arc-transitivity of $\overrightarrow{\mathrm{Pal}_{7}}$.
Type 1: \vec{X} has the arcs $a_{1} x, a_{2} x$ and $b x$. Observe that for any $l \in V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) \backslash\{2,4,6\}$ it is possible to extend h to a homomorphism from \vec{X} or $\overrightarrow{X^{\prime}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $h(b)=l$. Moreover, for any $l \in V\left(\overrightarrow{\mathrm{Pal}_{7}}\right)$ it is possible to extend h^{*} to a homomorphism from \vec{X} or $\overrightarrow{X^{\prime}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $h^{*}(b)=l$.
Type 2: \vec{X} has the arcs $a_{1} x, a_{2} x$ and $x b$. Observe that for any $l \in V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) \backslash\{0,1\}$ it is possible to extend h to a homomorphism from \vec{X} or $\overrightarrow{X^{\prime}}$ to $\overrightarrow{\mathrm{Pal}}_{7}$ such that $h(b)=l$. Moreover, for any $l \in V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) \backslash\{0\}$ it is possible to extend h^{*} to a homomorphism from \vec{X} or $\overrightarrow{X^{\prime}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $h^{*}(b)=l$.
Type 3: \vec{X} has the arcs $a_{1} x, x a_{2}$ and $b x$. Observe that for any $l \in V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) \backslash\{1\}$ it is possible to extend h to a homomorphism from \vec{X} or $\overrightarrow{X^{\prime}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $h(b)=l$.

Type 4: \vec{X} has the arcs $a_{1} x, x a_{2}$ and $x b$. Observe that for any $l \in V\left(\overrightarrow{\mathrm{Pal}_{7}}\right) \backslash\{0\}$ it is possible to extend h to a homomorphism from \vec{X} or $\overrightarrow{X^{\prime}}$ to $\overrightarrow{\mathrm{Pal}_{7}}$ such that $h(b)=l$.

Assume now that \vec{H} contains the configuration depicted in Figure 3 (iv). Let $\overrightarrow{H_{1}}$ be the oriented graph obtained from \vec{H} by deleting the vertex $b_{0}, \overrightarrow{H_{2}}$ be the oriented graph obtained from $\overrightarrow{H_{1}}$ by deleting the set of vertices $\left\{x_{1}, x_{2}, x_{3}\right\}$, and $\overrightarrow{H_{3}}$ be the oriented graph obtained from $\overrightarrow{H_{2}}$ by deleting the set of vertices $\left\{a_{11}, a_{12}\right\}$. By minimality, $\overrightarrow{H_{1}}$ admits a pushable homomorphism f_{1} to $\overrightarrow{\mathrm{Pal}_{7}}$. Up to replacing \vec{H} by a push equivalent oriented graph, we may assume that f_{1} is an oriented homomorphism. Let f_{2} and f_{3} be the restriction of f_{1} to $\overrightarrow{H_{2}}$ and $\overrightarrow{H_{3}}$, respectively.

In what follows, we say that the vertex x_{i} is Type- j, for some $j \in\{1,2,3,4\}$, if the oriented graph induced by $\left\{a_{i 1}, a_{i 2}, x_{i}, b_{0}\right\}$ is the same as the Type- j orientation of \vec{X} or $\overrightarrow{X^{\prime}}$ where x_{i} plays the role of x and b_{0} plays the role of b for $i \in\{1,2,3\}$ and $j \in\{1,2,3,4\}$. Note that if x_{i} is Type- 1 (Type- 3 , respectively), then pushing the vertex b_{0} will turn it to Type- 2 (Type- 4 , respectively), and vice versa. Now we want to extend f_{2} or f_{3} to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}} 7$. Note that from the above we know that if x_{i} is Type- 1 then it may forbid at most three values for $f\left(b_{0}\right)$, if x_{i} is Type- 2 then it may forbid at most two values for $f\left(b_{0}\right)$, and if x_{i} is Type- 3 or Type- 4 then it may forbid at most one value for $f\left(b_{0}\right)$. Moreover, we may push b_{0} to ensure that at most one vertex among $\left\{x_{1}, x_{2}, x_{3}\right\}$ is Type-1. Therefore, if any of them is Type-3 or Type-4, then we will be able to extend f_{2} to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}}_{7}$.

The only bad situation is to have one Type- 1 vertex and two Type- 2 vertices among $\left\{x_{1}, x_{2}, x_{3}\right\}$. We here consider two cases:

Case 1: If x_{1} is Type-1, then we simply push a_{11} and a_{12} to make it Type-2. Then we are able to extend f_{3} to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$.

Case 2: Assume that x_{2} is Type-1 and x_{1}, x_{3} are Type-2. Without loss of generality assume that $f_{1}\left(a_{21}\right)=0$ and $f_{1}\left(a_{22}\right)=1$ (since if $f_{1}\left(a_{21}\right)=f_{1}\left(a_{22}\right)$, then x_{2} forbids only two values for $\left.f\left(b_{0}\right)\right)$. Therefore, x_{2} forbids the values $2,4,6$ for $f\left(b_{0}\right)$.

Figure 7: Configurations needed for proving Theorem 1.5. Black square vertices are vertices whose full neighborhood is part of the configuration. White circle vertices are vertices that might have other neighbors outside the configuration, or be equal.

By definition of type $2, x_{1}$ (resp. x_{3}) forbids the values $f_{1}\left(a_{11}\right), f_{1}\left(a_{12}\right)$ (resp. $\left.f_{1}\left(a_{31}\right), f_{1}\left(a_{32}\right)\right)$. We can then extend f_{2} to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$ unless $\left\{f_{1}\left(a_{11}\right), f_{1}\left(a_{12}\right), f_{1}\left(a_{31}\right), f_{1}\left(a_{32}\right)\right\}=$ $\{0,1,3,5\}$.

For $S \subseteq\left\{a_{11}, a_{12}\right\}$, we denote by $\overrightarrow{H_{2}}(S)$ the graph obtained from $\overrightarrow{H_{2}}$ by pushing the vertices of S. Note that for each choice of S, we can extend f_{3} to an oriented homomorphism f_{S} from $\overrightarrow{H_{2}}(S)$ to $\overrightarrow{\mathrm{Pal}_{7}}$. We may even ensure that for every vertex $v \notin S$, we have $f_{S}(v)=f_{2}(v)$ and, for $v \in\left\{a_{11}, a_{12}\right\}$, $f_{\left\{a_{11}, a_{12}\right\}}(v)=f_{\{v\}}(v)$. We show that there exists a choice of S such that f_{S} can be extended to $\vec{H}(S)$.

Let $S=\left\{a_{11}, a_{12}\right\}$, and observe that x_{1} has Type-1 in $\vec{H}(S)$.

- If $\left(f_{1}\left(a_{11}\right), f_{1}\left(a_{12}\right)\right)=\left(f_{S}\left(a_{12}\right), f_{S}\left(a_{11}\right)\right)$, then due to the property of Type- 1 vertices, x_{1} does not forbid the values $f_{S}\left(a_{11}\right)=f_{1}\left(a_{12}\right)$ and $f_{S}\left(a_{12}\right)=f_{1}\left(a_{11}\right)$ for b_{0} anymore. In particular, we can extend f_{S} to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$.
- If $f_{1}\left(a_{11}\right) \neq f_{S}\left(a_{12}\right)$, then we claim that $f_{\left\{a_{12}\right\}}$ can be extended to $\vec{H}\left(\left\{a_{12}\right\}\right)$. Indeed, in $\vec{H}\left(\left\{a_{12}\right\}\right)$, x_{1} is Type-3 or Type-4. In particular, we can extend $f_{\left\{a_{12}\right\}}$ unless $f_{\left\{a_{12}\right\}}\left(a_{12}\right)=f_{\left\{a_{12}\right\}}\left(a_{11}\right)$. However, note that we have $f_{S}\left(a_{12}\right)=f_{\left\{a_{12}\right\}}\left(a_{12}\right)$ and $f_{\left\{a_{12}\right\}}\left(a_{11}\right)=f_{2}\left(a_{11}\right)=f_{1}\left(a_{11}\right)$ by definition of f_{S}. This is impossible by hypothesis.
- Otherwise, we have $f_{1}\left(a_{12}\right) \neq f_{S}\left(a_{11}\right)$. Similarly to the previous item, we claim that $f_{\left\{a_{11}\right\}}$ can be extended to $\vec{H}\left(\left\{a_{11}\right\}\right)$. Indeed, x_{1} is again Type- 3 or Type-4, so $f_{\left\{a_{11}\right\}}$ can be extended unless $f_{\left\{a_{11}\right\}}\left(a_{11}\right)=f_{\left\{a_{11}\right\}}\left(a_{12}\right)$, which is again impossible by hypothesis.

In each case, we can thus extend f_{3} to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}}{ }_{7}$, which concludes the proof.

5 Proof of Theorem 1.5

The lower bound follows from the existence of oriented graphs with maximum average degree less than 3 and pushable chromatic number 5, such as the one depicted in Figure 2(ii). To prove the upper bound of Theorem 1.5, we show below that every oriented graph with maximum average degree less than 3 admits a pushable homomorphism to the Paley tournament $\overrightarrow{\mathrm{Pal}_{7}}$ on seven vertices. Towards a contradiction, let us assume that there exists \vec{H}, a minimum (with respect to number of vertices) oriented graph having $\operatorname{mad}(\vec{H})<3$ that does not admit a pushable homomorphism to $\overrightarrow{\mathrm{Pal}_{7}}$. Note that \vec{H} must be connected due to the minimality condition. We prove below that, by minimality, none of the configurations depicted in Figure 7 can appear in \vec{H}.
Lemma 5.1. None of the configurations (i)-(v) depicted in Figure 7 can be contained in \vec{H}.

Proof. (i) Suppose \vec{H} has a degree-1 vertex u with neighbor v, where u is an α-neighbor of v for $\alpha \in$ $\{+,-\}$. By minimality, $\vec{H}-\{u\}$ admits a pushable homomorphism f to $\overrightarrow{\mathrm{Pal}_{7}}$. We can extend f to \vec{H} by setting

$$
f(u)= \begin{cases}f(v)+1 & \text { if } \alpha=+ \\ f(v)+3 & \text { if } \alpha=-\end{cases}
$$

a contradiction. Therefore, \vec{H} cannot contain the configuration depicted in Figure 7(i).
(ii) Assume \vec{H} has two adjacent degree-2 vertices u and v. By minimality, $\vec{H}-\{u, v\}$ admits a pushable homomorphism f to $\overrightarrow{\mathrm{Pal}}_{7}$. According to Equation (2), f can be extended to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$, a contradiction. Therefore, \vec{H} cannot contain the configuration depicted in Figure 7 (ii).
(iii) Assume \vec{H} contains the configuration depicted in Figure 7(iii) (where, here and further, we deal with the vertices of a configuration through the notation introduced in the corresponding figure). By minimality, $\vec{H}-\left\{v_{2}\right\}$ admits a pushable homomorphism f to $\overrightarrow{\mathrm{Pal}}$. Suppose that $v_{1} \in N^{\left(\alpha_{1}, \alpha_{2}\right)}\left(u_{1}, u_{2}\right)$. If $f\left(v_{1}\right)=f\left(u_{3}\right)$, then push v_{1} and update $f\left(v_{1}\right)$ to some value in $N^{\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}\right)}\left(f\left(u_{1}\right), f\left(u_{2}\right)\right)$ (this is possible since $\overrightarrow{\mathrm{Pal}_{7}}$ has property $P(2,2)$). Note that the resulting updated f remains a pushable homomorphism. Additionally, now we have $f\left(v_{1}\right) \neq f\left(u_{3}\right)$. It is now possible to extend f to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$ due to Equation (11) on page 4, a contradiction. Therefore, \vec{H} cannot contain the configuration depicted in Figure 7 (iii).
$(i v)-(v)$ Assume \vec{H} contains one of the configurations depicted in Figure 7 (iv) and (v). Let S be the set of black vertices of the configuration. By minimality, $\vec{H}-S$ admits a pushable homomorphism f to $\overrightarrow{\mathrm{Pal}}{ }_{7}$. Now, push v_{1}, if needed, so that at most two of the 2-paths connecting v_{1} to the u_{i} 's are directed 2-paths. Without loss of generality, assume that, in the worst-case scenario, u_{2} and u_{3} are the vertices that are connected by a directed 2 -path to v_{1}. Assume v_{1} is an α-neighbor of u_{1} for some $\alpha \in\{+,-\}$. Choose a vertex $i \in N^{\alpha}\left(f\left(u_{1}\right)\right) \backslash\left\{f\left(u_{2}\right), f\left(u_{3}\right)\right\}$ and assign $f\left(v_{1}\right)=i$. Now we are able to extend f to a pushable homomorphism from \vec{H} to $\overrightarrow{\mathrm{Pal}_{7}}$ due to Equation (11) on page 4 a contradiction. Therefore, \vec{H} cannot contain the configurations depicted in Figure 7(iv) and (v).

We are now ready to prove Theorem [1.5, which we do using the so-called discharging method.
Proof of Theorem 1.5. Let us assign the charge $\operatorname{ch}(v)=d(v)$ to each vertex v of \vec{H}. Since $\operatorname{mad}(\vec{H})<3$, the total sum of the charges is strictly less than $3|V(\vec{H})|$, that is,

$$
\sum_{v \in V(\vec{H})} \operatorname{ch}(v)<3|V(\vec{H})|
$$

Now apply the following discharging procedure: Every vertex v of \vec{H} with degree at least 4 sends $1 / 2$ to each of its neighbors with degree 2 . We show in the following that for every vertex v the resulting charge $\operatorname{ch}^{*}(v)$ is at least 3 , which contradicts the assumption $\operatorname{mad}(H)<3$. We consider the vertices v accordingly to their degree, which satisfies $d(v)>1$ by Lemma 5.1(i).

- $d(v)=2$. Since \vec{H} does not contain the configurations depicted in Figures 7(ii) and 7(iii), the neighbors of v have degree at least 4 and thus v does not send any charge. Furthermore, v receives exactly $2 \times 1 / 2=1$. Thus, $\operatorname{ch}^{*}(v)=2+1=3$.
- $d(v)=3$. Since \vec{H} does not contain the configuration depicted in Figure $7(i i i), v$ does not send any charge. Furthermore, v does not receive any charge. Therefore, we have $\operatorname{ch}^{*}(v)=3$.
- $d(v)=4$. Since \vec{H} does not contain the configuration depicted in Figure 7 (iv), v sends at most $2 \times 1 / 2=1$. Therefore, we have $\operatorname{ch}^{*}(v) \geq 4-1=3$.
- $d(v)=5$. Since \vec{H} does not contain the configuration depicted in Figure 7(v), v sends at most $3 \times 1 / 2=3 / 2$. Therefore, we have $\operatorname{ch}^{*}(v) \geq 5-3 / 2=7 / 2>3$.
- $d(v)=k \geq 6 . v$ sends at most $k \times 1 / 2=k / 2$ charges. Therefore, we have $\operatorname{ch}^{*}(v) \geq k-k / 2=$ $k / 2 \geq 6 / 2=3$.

Therefore, every vertex v of \vec{H} gets final charge $\operatorname{ch}^{*}(v)$ at least 3 . Hence

$$
3|V(\vec{H})|>\sum_{v \in V(\vec{H})} \operatorname{ch}(v)=\sum_{v \in V(\vec{H})} \operatorname{ch}^{*}(v) \geq 3|V(\vec{H})|
$$

since no charge was created after assigning the initial charges, which is a contradiction. Thus every oriented graph with maximum average degree less than 3 admits a pushable homomorphism to $\overrightarrow{\mathrm{Pal}}$.

6 Conclusions and perspectives

In this work, we have studied the pushable chromatic number of several classes of graphs with degree constraints. We have provided bounds for graphs with large maximum degree Δ (Theorem 1.2), graphs with maximum degree $\Delta \leq 3$ (Theorem (1.4), and graphs with maximum average degree less than 3 (Theorem 1.5). None of our results is tight however, and a natural direction for further work could thus be to tighten our bounds. In particular, we wonder whether there exist subcubic graphs or graphs with maximum average degree less than 3 with pushable chromatic reaching the upper bounds we have established. Let us mention that we first checked the proof of Theorem 1.4 through computer programs (before coming up with the presented matrices), and that we did not find any tournament on six vertices for which all configurations in Figure 3 are reducible. Also, although we managed to generate many graphs with maximum average degree less than 3 (planar graphs with girth at least 6 , respectively) and check their pushable chromatic number via computer programs, we were not able to spot one with pushable chromatic 6 (5 , respectively). These two facts might be good hints regarding the maximum value of the pushable chromatic number of these families of graphs.

Another interesting direction for further research on the topic could be to generalize our results to graphs with given maximum degree Δ more than 3 , graphs with given maximum average degree, and planar graphs with given girth. In other words, we wonder how these graph parameters influence the pushable chromatic number. We would be quite interested, for instance, in having bounds for graphs with maximum degree Δ at most 4 .

Finally, several recent works have established that, when it comes to coloring, pushable graphs and signed graphs sometimes have very comparable behaviors. Let us recall that a signed graph is a graph in which each edge is either positive or negative, and that comes with a vertex-resigning operation which consists in switching the sign of all edges incident with a vertex. It would be interesting to know if, in general, graphs with degree constraints have their pushable chromatic number and signed chromatic number behaving the same. We will propose a study of this very question, inspired from our results in the current work, in a forthcoming paper.

References

[1] J. Bensmail, S. Nandi, and S. Sen. On oriented cliques with respect to push operation. Discrete Applied Mathematics, 232:50-63, 2017.
[2] B. Courcelle. The monadic second order logic of graphs VI: On several representations of graphs by relational structures. Discrete Applied Mathematics, 54(2):117-149, 1994.
[3] C. Duffy. Homomorphisms of (j, k)-mixed graphs. PhD Thesis, University of Victoria/University of Bordeaux, 2015.
[4] C. Duffy. A note on colourings of connected oriented cubic graphs. arXiv preprint 1908.02883 [cs.DM], 2019.
[5] C. Duffy, G. MacGillivray, and É. Sopena. Oriented colourings of graphs with maximum degree three and four. Discrete Mathematics, 342(4):959-974, 2019.
[6] D. C. Fisher and J. Ryan. Tournament games and positive tournaments. Journal of Graph Theory, 19(2):217-236, 1995.
[7] G. Guégan and P. Ochem. Complexity dichotomy for oriented homomorphism of planar graphs with large girth. Theoretical Computer Science, 596:142-148, 2015.
[8] W. F. Klostermeyer. Pushing vertices and orienting edges. Ars Combinatoria, 51:65-76, 1999.
[9] W. F. Klostermeyer and G. MacGillivray. Homomorphisms and oriented colorings of equivalence classes of oriented graphs. Discrete Mathematics, 274(1-3):161-172, 2004.
[10] W. F. Klostermeyer and Ľ. Šoltés. Hamiltonicity and reversing arcs in digraphs. Journal of Graph Theory, 28(1):13-30, 1998.
[11] A. V. Kostochka, É. Sopena, and X. Zhu. Acyclic and oriented chromatic numbers of graphs. Journal of Graph Theory, 24:331-340, 1997.
[12] G. MacGillivray and K. L. B. Wood. Re-orienting tournaments by pushing vertices. Ars Combinatoria, 57, 2000.
[13] T. H. Marshall. Homomorphism bounds for oriented planar graphs. Journal of Graph Theory, 55:175-190, July 2007.
[14] K. M. Mosesian. Strongly basable graphs (in Russian). Akad. Nauk. Armian. SSR Dokl., 54:134-138, 1972.
[15] O. Pretzel. On graphs that can be oriented as diagrams of ordered sets. Order, 2:25-40, 1985.
[16] O. Pretzel. On reordering graphs by pushing down maximal vertices. Order, 3:135-153, 1986.
[17] O. Pretzel. Orientations and edge functions on graphs. Surveys in Combinatorics, London Math. Soc. Lecture Notes, 66:161-185, 1991.
[18] S. Sen. On homomorphisms of oriented graphs with respect to the push operation. Discrete Mathematics, 340(8):1986-1995, 2017.
[19] É. Sopena. Homomorphisms and colourings of oriented graphs: An updated survey. Discrete Mathematics, 339(7):1993-2005, 2016.

[^0]: *The authors were partly supported by ANR project HOSIGRA (ANR-17-CE40-0022) and by IFCAM project "Applications of graph homomorphisms" (MA/IFCAM/18/39).

