
Convex lattice polygons with all lattice points visible

Ralph Morrison and Ayush Kumar Tewari

August 19, 2020

Abstract

Two lattice points are visible to one another if there exist no other lattice points on the line segment
connecting them. In this paper we study convex lattice polygons that contain a lattice point such that
all other lattice points in the polygon are visible from it. We completely classify such polygons, show
that there are finitely many of lattice width greater than 2, and computationally enumerate them. As an
application of this classification, we prove new obstructions to graphs arising as skeleta of tropical plane
curves.

1 Introduction

A lattice point in R2 is any point with integer coordinates, and a lattice polygon is any polygon whose
vertices are lattice points. We say that two distinct lattice points p = (a, b) and q = (c, d) are visible to one
another if the line segment pq contains no lattice points besides p and q, or equivalently if gcd(a−c, b−d) = 1;
by convention we say that any p is visible from itself. Points visible from the origin O = (0, 0) are called
visible points, with all other points being called invisible. The properties of visible and invisible points have
been subject to a great deal of study over the past century, as surveyed in [1, §10.4]. The question of which
structures can appear among visible points, invisible points, or some prescribed combination thereof was
studied in [2], where it was proved that one can find a copy of any convex lattice polygon (indeed, any
arrangement of finitely many lattice points) consisting entirely of invisible points.

Figure 1: Three panoptigons, with a panoptigon point circled and lines of sight illustrated; the middle
polygon has a second panoptigon point, namely the bottom vertex

In this paper we pose and answer a somewhat complementary question: which convex lattice polygons
including the origin contain only visible lattice points? We define a panoptigon1 to be a convex lattice
polygon P containing a lattice point p such that all other lattice points in P are visible from p. We call such
a p a panoptigon point for P . Thus up to translation, a panoptigon is a convex lattice polygon containing
the origin such that every point in P ∩ Z2 is a visible point. Three panoptigons are pictured in Figure 1,
each with a panoptigon point and its lines of sight highlighted; note that the panoptigon point need not be
unique.

One can quickly see that there exist infinitely many panoptigons; for instance, the triangles with vertices
at (0, 0), (1, 0), and (a, 1) are panoptigons for any value of a. However, this is not an interesting family of
examples since any two of these triangles are equivalent, made precisely below.

2020 Mathematics Subject Classification. Primary 52B20; Secondary 52C05, 14T15
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1This name is modeled off of panopticon, an architectural design that allows for one position to observe all others. It comes
from the Greek word panoptes, meaning “all seeing”.
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Definition 1.1. A unimodular transformation is an integer linear map t : R2 → R2 that preserves the
integer lattice Z2; any such map is of the form t(p) = Ap + b, where A is a 2 × 2 integer matrix with
determinant ±1 and b ∈ Z2 is a translation vector. We say that two lattice polygons P and Q are equivalent
if there exists a unimodular triangulation t such that t(P ) = Q.

It turns out that there are infinitely many panoptigons even up to equivalence: note that the triangle
with vertices at (0, 0), (0,−1), and (b,−1) is a panoptigon for every positive integer b, and any two such
triangles are pairwise inequivalent since they have different areas. We can obtain nicer results if we stratify
polygons according to the lattice width of a polygon P , the minimum integer w such that there exists a
polygon P ′ equivalent to P in the horizontal strip R× [0, w]. Although there are infinitely many panoptigons
of lattice widths 1 and 2, we can still classify them completely, as presented in Lemmas 3.1 and 3.2. Once
we reach lattice width 3 or more, we obtain the following powerful result.

Theorem 1.2. Let P be a panoptigon with lattice width lw(P ) ≥ 3. Then |P ∩ Z2| ≤ 13.

Since there are only finitely many lattice polygons with a fixed number of lattice points up to equivalence
[3, Theorem 2], it follows that there are only finitely many panoptigons P with lw(P ) ≥ 3. In Appendix A
we detail computations to enumerate all such lattice polygons. This allow us to determine that there exactly
73 panoptigons of lattice width 3 or more. One is the triangle of degree 3, which has a single interior lattice
point; and the other 72 are non-hyperelliptic, meaning that the convex hull of their interior lattice points is
two-dimensional.

As an application of our classification of panoptigons, we prove new results about tropically planar graphs
[4]. These are 3-regular, connected, planar graphs that arise as skeletonized versions of dual graphs of regular,
unimodular triangulations of lattice polygons. We often stratify tropically planar graphs by their first Betti
number, also called their genus. If G is a tropically planar graph arising from a triangulation of a lattice
polygon P , then the genus of G is equal to the number of interior lattice points of P .

We prove a new criterion for ruling out certain graphs from being tropically planar, notable in that the
graphs it applies to are 2-edge-connected, unlike those ruled out by most existing criteria; this resolves an
open question posed in [4, §5]. We say that a planar graph G is a big face graph if for every planar embedding
of G, there is a bounded face sharing an edge with all other bounded faces.

Theorem 1.3. If G is a big face graph of genus g ≥ 14, then G is not tropically planar.

The idea behind the proof of this theorem is as follows. If a big face graph G is tropically planar, then
it is dual to a regular unimodular triangulation of a lattice polygon P . One of the interior lattice points p
of P must be connected to all the other interior lattice points, so that the bounded face dual to p can share
an edge with all other bounded faces. Thus, the convex hull of the interior lattice points of P must be a
panoptigon. If that panoptigon has lattice width 3 or more, then it can have at most 13 lattice points, and
so G cannot have g ≥ 14.

For the case that the lattice width of the interior panoptigon is smaller, we need an understanding of
which polygons of lattice width 1 or 2 can appear as the interior lattice points of another lattice polygon.
We obtain this in Propositions 4.1 and 4.5, and can once again bound the genus of G. In fact, if we are
willing to rely on our computational enumeration of all panoptigons with lattice width at least 3, then we
can improve this result to say that big face graphs of genus g ≥ 12 are not tropically planar. We will see
that this bound is sharp.

Our paper is organized as follows. In Section 2 we present background on lattice polygons, including a
description of all polygons of lattice width at most 2. In Section 3 we classify all panoptigons. In Section 4
we classify all maximal polygons of lattice width 3 or 4. Finally, in Section 5 we prove Theorem 1.3. Our
computational results are then summarized in Appendix A.
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planar graphs, and for comments on an earlier draft of this paper, as well as two anonymous reviewers for
many helpful suggestions and corrections. We would also like to thank Benjamin Lorenz, Andreas Paffenholz
and Lars Kastner for helping with uploading our results to polyDB. Ralph Morrison was supported by the
Max Planck Institute for Mathematics in the Sciences, and by the Williams College Class of 1945 World
Travel Fellowship. Ayush Kumar Tewari was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR
195 Symbolic Tools in Mathematics and their Application).
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2 Lattice polygons

In this section we recall important terminology and results regarding lattice polygons. This includes the
notion of maximal polygons, and of lattice width. Throughout we will assume that P is a two-dimensional
convex lattice polygon, unless otherwise stated.

The genus of a polygon P is the number of lattice points interior to P . A key fact is that for fixed g ≥ 1,
there are only finitely many lattice polygons of genus g, up to equivalence [5, Theorem 9]. We refer to the
convex hull of the g interior points of P as the interior polygon of P , denoted Pint. If dim(Pint) = 2, we
call P non-hyperelliptic; if dim(Pint) ≤ 1, we call P hyperelliptic. This terminology, due to [5], is inspired by
hyperelliptic curves, whose Newton polygons have all interior points collinear. We say a lattice polygon P
is a maximal polygon if it is maximal with respect to containment among all lattice polygons containing the
same set of interior lattice points.

In the case that P is non-hyperelliptic, there is a strong relationship between P and Pint. Let τ1, . . . , τn be
the one-dimensional faces of a (two-dimensional) lattice polygon Q. Then Q can be defined as an intersection
of half-planes:

Q =

n⋂
i=1

Hτi ,

where Hτ = {(x, y) ∈ R2 | aτx + bτy ≤ cτ} is the set of all points on the same side of the line containing τ
as Q. Without loss of generality, we assume that aτ , bτ , cτ ∈ Z with gcd(aτ , bτ ) = 1. With this convention,
we define

H(−1)
τ = {(x, y) ∈ R2 : aτx+ bτy ≤ cτ + 1},

and from there define the relaxed polygon of Q as

Q(−1) :=

n⋂
i=1

H(−1)
τi .

We can think of Q(−1) as the polygon we would get by “moving out” the edges of Q. It is worth remarking

that that Q(−1) need not be a lattice polygon. We denote Q(−1) ∩ H(−1)
τi as τ

(−1)
i . It is not necessarily the

case that τ
(−1)
i is a one-dimensional face of Q(−1); however, if Q(−1) is a lattice polygon, then Q(−1) ∩ τ (−1)i

must contain at least one lattice point, as proved in [6, Lemma 2.2]. Examples where Q(−1) is not a lattice
polygon, and where Q(−1) is a lattice polygon but an edge has collapsed, are illustrated in Figure 2. There is
a very important case when we are guaranteed to have that Q(−1) is a lattice polygon, namely when Q = Pint

for some non-hyperelliptic lattice polygon P .

Figure 2: Two lattice polygons, one with a relaxed polygon with a non-lattice vertex marked; and one with
a collapsed edge in the relaxed (lattice) polygon

Proposition 2.1 ([7], §2.2). Let P be a non-hyperelliptic lattice polygon, with interior polygon Pint. Then

P
(−1)
int is a lattice polygon containing P whose interior polygon is also Pint. In particular, P

(−1)
int is the unique

maximal polygon with interior polygon Pint.

If we are given a polygon Q and we wish to know if there exists a lattice polygon P with Pint = Q,
it therefore suffices to compute the relaxed polygon Q(−1), and to check whether its vertices have integral
coordinates. This might fail because two adjacent edges τi and τi+1 of Q are relaxed to intersect at a non-

integral vertex of Q(−1); we also might have that some τ
(−1)
i is completely lost, which cannot happen when

Q(−1) is a lattice polygon by [6, Lemma 2.2]. Careful consideration of these obstructions will be helpful in
classifying the maximal polygons of lattice widths 3 and 4 in Section 4.
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An important tool in studying lattice polygons is the notion of lattice width. Let P be a non-empty
lattice polygon, and let v = 〈a, b〉 be a lattice direction with gcd(a, b) = 1. The width of P with respect to v
is the smallest integer d for which there exists m ∈ Z such that the strip

m ≤ ay − bx ≤ m+ d

contains P . We denote this d as w(P, v). The lattice width of P is the minimal width over all possible choices
of v:

lw(P ) = min
v
w(P, v).

Any v which achieves this minimum is called a lattice width direction for P . Equivalently, lw(P ) is the
smallest d such that there exists a lattice polygon P ′ equivalent to P with P ′ ⊂ R× [0, d].

We recall the following result connecting the lattice widths of a polygon and its interior polygon. Let
Td = conv((0, 0), (d, 0), (0, d)) denote the standard triangle of degree d.

Lemma 2.2 (Theorem 4 in [8]). For a lattice polygon P we have lw(P ) = lw(Pint)+2, unless P is equivalent
to Td for some d ≥ 2, in which case lw(P ) = lw(Pint) + 3 = d.

The following result tells us precisely which polygons have lattice width 1 or 2. It is a slight reworking
due to of a result due to [7], also presented in [5, Theorem 10]

Theorem 2.3. Let P be a two-dimensional lattice polygon. If lw(P ) = 1, then P is equivalent to

Ta,b := conv((0, 0), (0, 1), (a, 1), (b, 0))

for some a, b ∈ Z with 0 ≤ a ≤ b and b ≥ 1.
If lw(P ) = 2, then up to equivalence either P = T2; or g(P ) = 1 and P 6= T3 (all such polygons are

illustrated in Figure 3); or g(P ) ≥ 2. In the latter case we have 1
6 (g + 3)(2g2 + 15g + 16) polygons, sorted

into three types:

• Type 1:

(0, 0) (i, 0)

(1, 2) (1 + 2g − i, 2)

where g ≤ i ≤ 2g.

• Type 2:

(0, 0) (i, 0)

(1, 2) (1 + j, 2)

(g + 1, 1)

where 0 ≤ i ≤ g and 0 ≤ j ≤ i; or g < i ≤ 2g + 1 and 0 ≤ j ≤ 2g − i+ 1

• Type 3:

(0, 0) (i, 0)

(k, 2) (k + j, 2)

(g + 1, 1)(0, 1)

where 0 ≤ k ≤ g+1 and 0 ≤ i ≤ g+1−k and 0 ≤ j ≤ i; or 0 ≤ k ≤ g+1 and g+1−k < i ≤ 2g+2−2k
and 0 ≤ j ≤ 2g − i− 2k + 1

4



Figure 3: The 14 genus 1 polygons with lattice width 2

Proof. The classification proved in [7] was similar, except with polygons sorted by genus (g = 0, g = 1, and
g ≥ 2 with all interior lattice points collinear) rather than by lattice width. We can translate their work into
the desired result as follows.

For lw(P ) = 1, we know P has no interior lattice points, so g = 0; all polygons of genus 0 besides T2
have lattice width 1. By [7] all genus 0 polygons besides T2 are equivalent to Ta,b for some a, b ∈ Z with
0 ≤ a ≤ b and b ≥ 1.

For lw(P ) = 2, we deal with the three cases of g = 0, g = 1, and g ≥ 2. If g = 0, then the only
polygon of lattice width 2 is T2. If P is a polygon with genus g = 1, then by Lemma 2.2 we know that
lw(P ) = lw(Pint) + 2 = 0 + 2 = 2 unless P is equivalent to Td for some d. The only value of d such that Td
has genus 1 is d = 3, so every genus 1 polygon except T3 has lattice width 2.

Finally, suppose P is a polygon of lattice width 2 and genus g ≥ 2. Since lw(Td) = d and g(T2) = 0, we
know P 6= Td for any d, and so lw(Pint) = lw(P ) − 2 = 2 − 2 = 0. It follows that all the g interior lattice
points of P must be collinear, and so P is hyperelliptic. Conversely, if P is a hyperelliptic polygon of genus
g ≥ 2, by definition the interior polygon Pint has lattice width 0. Since no triangle Td has genus g ≥ 2 with
all its interior points collinear we may apply Lemma 2.2 to conclude that lw(P ) = lw(Pint) + 2 = 2. This
means that for polygons of genus g ≥ 2, being hyperelliptic is equivalent to having lattice width 2. Combined
with the classification of hyperelliptic polygons in [7], this completes the proof.

A counterpart of lattice width is lattice diameter. Following [9], the lattice diameter `(P ) is the length
of the longest lattice line segment contained in the polygon P :

`(P ) = max{|L ∩ P ∩ Z2| − 1 : L is a line}.

We define a lattice diameter direction 〈a, b〉 to be one such that there exists a line L with slope vector 〈a, b〉
with |L∩P ∩Z2|−1 = `(P ). We remark that there exist other works where lattice diameter is defined as the
largest number of collinear lattice points in the polygon P [10]; this is simply one more than the convention
we set above. The following result relates `(P ) to lw(P ).

Theorem 2.4 ([9], Theorem 3). We have lw(P ) ≤ b 43`(P )c+ 1.

We now present background material on triangulations and tropical curves. Assume for the remainder
of the section that P is a lattice polygon of genus g ≥ 2. A unimodular triangulation of P is a subdivision
of P into lattice triangles of area 1

2 each. Such a triangulation ∆ is called regular if there exists a height
function ω : P ∩ Z2 → R inducing ∆. This means that ∆ is the projection of the lower convex hull of the
image of ω back onto P . See [11] for details on regular triangulations.

Given a regular unimodular triangulation ∆ of a lattice polygon P , we can consider the weak dual graph
of ∆, which consists of 1 vertex for each elementary triangle, with two vertices connected if and only if the
corresponding triangles share an edge. Each vertex in this graph has degree 1, 2, or 3, depending on how
many edges the corresponding triangle has on the boundary of P . We transform the weak dual graph of
∆ into a 3-regular graph as follows: first, iteratively delete any 1-valent vertices and their attached edges.
This will yield a graph with all vertices of degree 2 or 3. Remove each degree 2 vertex by concatenating
the two edges incident to it. Since we have assumed that g(P ) ≥ 2, the end result is a 3-regular graph G
(with loops and parallel edges allowed). We call G the skeleton associated to ∆. Any G that arises from
such a procedure is called a tropically planar graph. An example of a regular unimodular triangulation, the
weak dual graph, and the tropically planar skeleton are pictured in Figure 4. Note that there is a one-to-one
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correspondence between the interior lattice points of P and the bounded faces of G in this embedding, where
two faces of G share an edge if and only if the corresponding interior lattice points are connected by an edge
in ∆.

Figure 4: A regular unimodular triangulation of a polygon, the weak dual graph of the triangulation, and
the corresponding tropically planar skeleton

It is worth remarking that we could still construct a graph G from a non-regular triangulation. The reason
that we insist that ∆ is regular is so that the graph G appears as a subset of a smooth tropical plane curve,
which is a balanced 1-dimensional polyhedral complex that is dual to a regular unimodular triangulation
of a lattice polygon; see [12]. (Indeed, the regularity is necessary if we wish to endow a skeleton with the
structure of a metric graph, with lengths assigned to its edges, as explored in [13] and [6].) Most of the results
that we prove in this paper, and that we recall for the remainder of this section, also hold if we expand to
graphs that arise as dual skeleta of any unimodular triangulation of a lattice polygon.

The first Betti number of a tropically planar graph, also known as its genus2, is equal to the number of
interior lattice points of the lattice polygon P giving rise to it. It is also equal to the number of bounded
faces in any planar embedding of the graph. A systematic method of computing all tropically planar graphs
of genus g was designed and implemented in [13] for g ≤ 5. The algorithm is brute-force, and works by
considering all maximal lattice polygons of genus g, finding all regular unimodular triangulations of them,
and computing the dual skeleta. These computations were pushed up to g = 7 in [4]. In general there is no
known method of checking whether an arbitrary graph is tropically planar short of this massive computation.

A fruitful direction in the study of tropically planar graphs has been finding properties or patterns
that are forbidden in such graphs, so as to quickly rule out particular examples. Since the graph before
skeletonization is dual to a unimodular triangulation of a polygon, any tropically planar graph is 3-regular,
connected, and planar. Several additional constraints are summarized in the following result.

Theorem 2.5 ([15], Proposition 4.1; [4], Theorem 3.4; [16], Theorems 10 and 14). Suppose that G is a
3-regular graph of genus g of one of the forms illustrated in Figure 5, where each gray box represents a
subgraph of genus at least 1. If G is tropically planar, then it must have either the third or fourth forms,
with g = 4 for the third form and g ≤ 5 in the fourth form. In particular, if g ≥ 6, then G is not tropically
planar.

Figure 5: Forbidden patterns in tropically planar graphs of genus g ≥ 6

2This terminology comes from [14] and is motivated by algebraic geometry; it is unrelated to the notion of graph genus
defined in terms of embeddings on surfaces. The first Betti number of a graph is also sometimes called its cyclomatic number.
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The proofs of these results all use the following observation: any cut-edge in a tropically planar graph
must arise from a split in the dual unimodular triangulation that divides the polygon into two polygons
of positive genus. From there, one argues that collections of such splits cannot appear in lattice polygons
in ways that would give rise to graphs of the pictured forms. For planar graphs that are 2-edge-connected
and thus have no cut-edges, the only known general criterion to rule out tropical planarity is the notion of
crowdedness [17]. However, crowded graphs are ones that cannot be dual to any triangulation of any point
set in R2, regardless of whether or not the point set comes from a convex lattice polygon; thus it is not
especially interesting that crowded graphs are not tropically planar. In Section 5 we will find a family of
2-edge-connected, 3-regular planar graphs that are not crowded but are still not tropically planar, the first
known such examples.

3 A classification of all panoptigons

Let P be a convex lattice polygon. Recall from the introduction that P is a panoptigon if there is lattice
point p ∈ P ∩ Z2 such that every other point in P ∩ Z2 is visible from p. In this section we will classify
all panoptigons, stratified by a combination of genus and lattice width. We begin with the panoptigons of
genus 0.

Lemma 3.1. Let P be a panoptigon of genus 0. Then P is one of the following polygons, up to lattice
equivalence:

(0, 0) (2, 0)

(0, 2)

(0, 0)

(0, 1) (a, 1)

(b, 0)

where 0 ≤ a ≤ min{2, b}.

Proof. By [7], any genus 0 polygon is equivalent either to the triangle T2, or to the (possibly degenerate)
trapezoid Ta,b where 0 ≤ a ≤ b and 1 ≤ b. The triangle of degree 2 is a panoptigon, as any non-vertex lattice
point can see every other lattice point. For Ta,b, we note that if a ≥ 3 then the polygon is not a panoptigon:
each lattice point p is on a row with at least 3 other lattice points, not all of which can be visible from p
since the 4 (or more) points in that row are collinear. However, if a ≤ 2, then a point p can be chosen on
the top row that can see the other a points on the top row, as well as all points on the bottom row. Thus
Ta,b is a panoptigon if and only if a ≤ 2.

For polygons with exactly one interior lattice point, there is no obstruction to being a panoptigon.

Lemma 3.2. If P is a polygon of genus 1, then P is a panoptigon.

Proof. Let p be the unique interior lattice point of P , and let q be any other lattice point of P . Since
g(P ) = 1, the point q must be on the boundary. By convexity, the line segment pq must have its relative
interior contained in the interior of the polygon, and so the line segment does not intersect ∂P outside of
q. Since p is the only interior lattice point, we have that the only lattice points of pq are its endpoints. It
follows that q is visible from p for all q ∈ P ∩Z2−{p}. We conclude that P is a panoptigon with panoptigon
point p.

We now consider hyperelliptic polygons of genus g ≥ 2. We will characterize precisely which of these are
panoptigons based on the classification of them in Theorem 2.3 into Types 1, 2, and 3. Any hyperelliptic
polygon can be put into one of these forms in the horizontal strip R× [0, 2]; thus we may say a lattice point
(a, b) of such a polygon is at height b, where every point is either at height 0, height 1, or height 2.

Lemma 3.3. Let P be a hyperelliptic polygon of genus g ≥ 2, transformed so that it of one of the forms
presented in Theorem 2.3. Then P is a panoptigon if and only if

• P is of Type 1, with g ≤ 3; or

7



• P is of Type 2, either with g ≤ 2, or with j = 0 and 0 ≤ i ≤ 1; or

• P is of Type 3, either with j = 0 and i ≤ 2, with k odd if i = 0 and k even if i = 2; or with i = 0 and
j ≤ 2, and k odd if j = 0 and k even if j = 2.

For the reader’s convenience we recall the polygons of Types 1, 2, and 3 in Figure 6.

(0, 0) (i, 0)

(1, 2) (1 + 2g − i, 2)

(0, 0) (i, 0)

(1, 2) (1 + j, 2)

(g + 1, 1)

(0, 0) (i, 0)

(k, 2) (k + j, 2)

(g + 1, 1)(0, 1)

Figure 6: Hyperelliptic polygons of Types 1, 2, and 3

Proof. We start by making the following observations. If p = (a, b) is a panoptigon point for a hyperelliptic
polygon P , then there must be at most 3 points at height b; and if there are exactly 3, then p must be the
middle such point. We also make several remarks in the case that b ∈ {0, 2}. There are no obstructions to
a point at height b seeing a point at height 1, so we will not concern ourselves with this. Choose b′ ∈ {0, 2}
distinct from b, and suppose height b′ has 2 or more lattice points; then two of those points have the form
q = (a, b′) and q′ = (a+ 1, b′). We claim that p cannot view both q and q′. Writing p = (a, b), the midpoints

of the line segments pq and pq′ have coordinates
(
a+a′

2 , 1
)

and
(
a+a′+1

2 , 1
)

, respectively. Exactly one of a+a
′

2

and a+a′+1
2 is an integer, meaning that either q or q′ is not visible from p. So, if p = (a, b) is a panoptigon

point at height b ∈ {0, 2}, there must be exactly one lattice point q = (a′, b′) at height b′ ∈ {0, 2} with b′ 6= b;
moreover, we must have that a− a′ is odd.

We are ready to determine the possibilities for a hyperelliptic panoptigon P of genus g ≥ 2, sorted by
type.

• Let P be a hyperelliptic polygon of Type 1. If g ≤ 3, then we may choose p = (a, 1) that can see every
other point at height 1, as well as all points at heights 0 and 2; in this case P is a panoptigon. If g ≥ 4,
then there are at least 4 points at height 1. Moreover, the number of points at height 0 is i+ 1 where
g ≤ i ≤ 2g, and we have i + 1 ≥ 5 since g ≥ 4. Thus it is impossible to have at most 3 points at one
height and 1 at another. This means that for g ≥ 4, P cannot be a panoptigon

• Let P be a hyperelliptic polygon of Type 2. If g = 2, then P has exactly three points at height 1,
and we can choose the middle point as a panoptigon point. Now assume g ≥ 3; we cannot choose a
panoptigon point at height 1, since there are g+ 1 ≥ 4 points at that height. To avoid having 4 points
on both the top and bottom rows we need 0 ≤ i ≤ g and 0 ≤ j ≤ i; and one of i and j must be 0, so we
need j = 0 since j ≤ i. From there we need at most 3 lattice points on the bottom row, so 0 ≤ i ≤ 2.
If i = 2, then the only possible panopticon point is the middle one on the bottom row, namely (1, 0);
but this point cannot see (1, 2), a contradiction. Thus 0 ≤ i ≤ 1; note that in either case (0, 0) can
serve as a panoptigon point.

• Finally, let P be a hyperelliptic polygon of Type 3. We cannot have a panoptigon point at height 1,
since there are at least g+ 2 ≥ 4 points at that height. If there is a panoptigon point at height 0, then
we must have at most 3 points at height 0 and exactly one point at height 2; that is, we must have
j = 0 and i ≤ 2. Moreover, we need to verify that way may choose a panoptigon point at height 0
that can see the unique point at height 2; this can always be done if i = 1, but if j = 0 then we need k
odd (the only possible panoptigon point is then (0, 0)), and if j = 2 we need k even (the only possible
panoptigon point is then (1, 0)). A similar argument shows that we can choose a panoptigon point at
height 2 if and only if i = 0 and j ≤ 2, with k odd if j = 0 and k even if j = 2.
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As with the lattice width 1 panoptigons, we find infinitely many lattice width 2 panoptigons, namely
those of Type 2 with j = 0 and 0 ≤ i ≤ 1, and those of Type 3.

We have now classified all hyperelliptic panoptigons, and have found that there are infinitely many of
lattice width 1 and infinitely many of lattice width 2. Our last step is to understand non-hyperelliptic
panoptigons; with the exception of the triangle T3, this is equivalent to panoptigons of lattice width 3 or
more. We are now ready to prove that the total number of lattice points of such a panoptigon is at most 13.

Proof of Theorem 1.2. Let us consider the lattice diameter `(P ) of P . We know by [10, Theorem 1] that
|P ∩ Z2| ≤ (`(P ) + 1)2, so if `(P ) ≤ 2 we have |P ∩ Z2| ≤ 9. Thus we may assume `(P ) ≥ 3.

Perform an SL2(Z) transformation so that 〈1, 0〉 is a lattice diameter direction for P , and translate the
polygon so that the origin O = (0, 0) is a panoptigon point. Thus P ∩ Z2 consists of O and a collection of
visible points.

Since `(P ) ≥ 3 and 〈1, 0〉 is a lattice diameter direction, we know that the polygon P must contain 4
lattice points of the form (a, b), (a + 1, b), (a + 2, b), and (a + 3, b). We claim that b ∈ {−1, 1}. Certainly
b 6= 0, since there are only three such points allowed in P : (0, 0) and (±1, 0). We also know that b cannot
be even: any set Z× {2k} has every second point invisible from the origin.

Suppose for the sake of contradiction that the points (a, b), (a + 1, b), (a + 2, b), and (a + 3, b) are
in P with b odd and b ≥ 3 (a symmetric argument will hold for b ≤ −3). Consider the triangle T =
conv(O, (a, b), . . . , (a + 3, b)). By convexity, T ⊂ P . Consider the line segment T ∩ L, where L is the line
defined by y = b − 1. The length of this line segment is 3 − 1

b , and since b ≥ 3 this is strictly greater than
2. Any line segment of length 2 at height b − 1 will intersect at least two lattice points. But since b − 1 is
even and b − 1 ≥ 2, at least one of these lattice points is not visible from O. Such a lattice point must be
contained in T , and therefore in P , a contradiction. Thus we have that b = ±1.

Rotating our polygon 180◦ degrees if necessary, we may assume that b = −1, so that the points
(a,−1), . . . , (a + 3,−1) are contained in P . It is possible that the number k of lattice points on the line
defined by y = −1 is more than 4; up to relabelling, we may assume that (a,−1), . . . , (a + k − 1,−1) are
lattice points in P while (a−1,−1) and (a+k,−1) are not, where k ≥ 4. Applying a shearing transformation(

1 a+ 1
0 1

)
, we may further assume that the points at height −1 are precisely (−1,−1), . . . , (k − 2,−1).

We will now make a series of arguments that rule out many lattice points from being contained in P .
The end result of these constraints is pictured in Figure 7, with points labelled by the argument that rules
them out.

(i) The polygon P has (regular) width at least 3 at height −1, and width strictly smaller than 2 at heights
2 and −2, since it cannot contain two consecutive lattice points at those heights. It follows from
convexity that the width of the polygon is strictly smaller than 1 at height −3, and that the polygon
cannot have any lattice points at all at height −4. It also follows that the polygon cannot have a
nonnegative width at height 8. Thus every lattice point (x, y) in the polygon satisfies −3 ≤ y ≤ 7.

(ii) We can further restrict the possible heights by showing that there can be no lattice points at height −3.
Suppose there were such a point (x,−3) in P . Consider the triangle conv((x,−3), (−1,−1), (2,−1)).
This triangle has area 3, so by Pick’s Theorem [18] satisfies 3 = g+ b

2 − 1, or 4 = g+ b
2 , where g and b

are the number of interior lattice points an boundary lattice points of the triangle, respectively. The 4
lattice points at height −1 contribute 2 to this sum, and the one lattice point at height −3 contributes
1
2 to this sum, meaning that the lattice points at height −2 contribute 3

2 to this sum. It follows that
there must be at least two lattice points at height −2; but this is a contradiction, since at least one of
these points will be invisible from O. We conclude that P cannot contain a lattice point of the form
(x,−3), and thus y ≥ −2 for all lattice points (x, y) ∈ P .

(iii) We know that the lattice point (−2, 0) is not in P since it is not visible from O. If there is any lattice
point of the form (x, y) with y ≥ 1 and y ≤ −x − 2, then the triangle conv(O, (−1,−1), (x, y)) will
contain (−2, 0). Thus no such lattice point (x, y) can exist in P .

(iv) No point of the form (x, y) with x ≥ 2 and y ≥ 0 may appear in P : this would force the point (2, 0)
to appear, as it would lie in the triangle conv(O, (2,−1), (x, y)).
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(v) There are now only finitely many allowed lattice points (x, y) with y ≥ 1, namely those with −y− 1 ≤
x ≤ 2 and 1 ≤ y ≤ 7. For each such point, we consider the triangle conv((x, y), (−1,−1), (−1, 3)). We
claim that only the 13 choices of (x, y) pictured in Figure 7. that do not introduce a forbidden point.
To see this, we note that the points (0, 2), (−2, 2) and (−2, 4) are all forbidden. The point (0, 2) rules
out (x, y) with x = 1 and y ≥ 5; with x = 0 and y ≥ 2; with x = −1 and y ≥ 4; ant with x = −2
and y ≥ 5. For x = −2, the points (−2, 2) and (−2, 4) are already ruled out. For all remaining points
with x ≤ −3, every point besides (−3, 2), (−4, 3), and (−5, 3) introduces the point (−2, 2) or (−2, 4)
or both. This establishes our claim.

(vi) By assumption, we know there are no lattice points of the form (x,−1) where x ≤ −2. It follows that
there are also no lattice points of the form (x,−2) where x ≤ −4, since (−1,−2) would lie in the convex
hull of such a point with O and (2,−1).

(vii) We will now use the fact that we have assumed that P satisfies lw(P ) ≥ 3. We cannot have that P
is contained in the strip −2 ≤ y ≤ 0, so there must be at least one point (x, y) with y ≥ 1. If there
is a point of the form (x′,−1) with x′ ≥ 6, then we would have that conv((x, y), (x′,−1), (−1,−1))
contains the point (2, 0), which is invisible. Thus we can only have points (x′,−1) if −1 ≤ x ≤ 5. A
similar argument shows that P can only contain a point (x,−2) if x is odd with −3 ≤ x ≤ 9.

(i)

(iii)

y = 8

y = −3
(ii)

(iv)

(v)

(vi) (vii)

Figure 7: Possible lattice points in P , with impossible points labelled by the argument ruling them out

We have now narrowed the possible lattice points in our polygon down to the 30 lattice points in Figure
7, five of which we know appear in P . For every such point (x, y), there does indeed exist a polygon P with
lw(P ) ≥ 3 containing (x, y) as well as the five prescribed points such that P ∩Z2 is a subset of the 30 allowed
points, so we cannot narrow down any further.

One way to finish the proof is by use of a computer to determine all possible subsets of the 25 points
that can be added to our initial 5 points to yield a polygon of lattice width at least 3; we would then simply
check the largest number of lattice points. We have carried out this computation, and present the results in
Appendix A. We also present the following argument, which will complete our proof without needing to rely
on a computer.

First we split into four cases, depending on the number k of lattice points at height −1: 4, 5, 6, or 7.
When there are more than 4, we can eliminate more of the candidate points (x, y) with y ≥ 1 or y = −2;
the sets of allowable points in these four cases are illustrated in Figure 8. In each case we will argue that
our polygon P has at most 13 lattice points.

• Suppose k = 4. There are 20 possible points at height −1 or above; since there is at most one point

10



Figure 8: Narrowing down possible points depending on the number of points at height −1

at height −2, it suffices to show that we can fit no more than 12 lattice points at height −1 or above
into a lattice polygon.

First suppose the point (−5, 4) is in P . This eliminates 9 possible points from appearing in P , yielding
at most 20 − 9 + 1 = 12 lattice points total in P . Leaving out (−5, 4) but including (−4, 3) similarly
eliminates 9 possible points. Including (−2, 3) eliminates 8; including (−1, 3) and leaving out (−2, 3)
eliminates 8; including (1, 4) eliminates 9; and including (1, 3) and leaving out (1, 4) eliminates 9. In
all these cases, we can conclude that P has at most 13 lattice points in total.

The only remaining case is that all lattice points of P have heights between −2 and 2. The polygon can
have at most one lattice point at height −2, at most one lattice point at height 2, and some assortment
of the 11 total points with heights between −1 and 1. Once again, P can have at most 13 lattice points.

• Suppose k = 5. If P includes the point (−4, 3), then it cannot include (−2, 3), (−1, 2), or (0, 1).
Combined with the fact that P can only have one lattice point at height −2, this leaves P with at
most 13 total lattice points. A similar argument holds if P includes the point (−2, 3). If P contains
neither (−4, 3) nor (−2, 3), then it has at most 1 point at height 3, at most one point at height −2,
and some collection of the 11 points between. Thus P has at most 13 lattice points.

• Suppose k = 6. Since P has at most one lattice point at height −2, and only 12 points are allowed
outside of that height, P has at most 13 lattice points total.

• Suppose k = 7. Since P has at most one lattice point at height −2, and only 11 points are allowed
outside of that height, P has at most 12 lattice points total.

We conclude that |P ∩ Z2| ≤ 13.

As detailed in Appendix A, we enumerated all non-hyperelliptic polygons containing the five prescribed
points from the previous proof, along with some subset of the other 25 permissible points. The end result
was 69 non-hyperelliptic panoptigons of lattice diameter 3 or more, up to equivalence. In the same appendix
we show that there are 3 non-hyperelliptic panoptigons with lattice diameter at most 2, yielding a grand
total of 72 non-hyperelliptic panoptigons. If we instead wish to count panoptigons of lattice width at least
3, this count becomes 73 due to the inclusion of T3.

We remark that it is possible to give a much shorter proof that there are only finitely many non-
hyperelliptic panoptigons. Suppose that P is a panoptigon of lattice diameter `(P ) ≥ 7. By the same
argument that started our previous proof, we may assume without loss of generality that P has (0, 0) as
a panoptigon point as well as eight or more lattice points at height −1. If P contains a point of the
form (x, y) where y ≥ 2, then the line segment P ∩ L where L is the x-axis must have length at least
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7
(

1− 1
y+1

)
≥ 7

(
1− 1

2+1

)
= 14

3 > 4. As such P must contain at least 4 points at height 0, impossible

since there are only 3 visible points at this height. Similarly P can have no lattice points at height 1: these
would force the inclusion of either (2, 0) or (−2, 0). Finally, if P contains a point of the form (x, y) where
y ≤ −3, then the line segment P ∩ L′ where L′ is the horizontal line at height −2 must have width at least

7
(

1− 1
|y|−1

)
≥ 7

(
1− 1

3−1

)
= 7

2 > 3. As such we know that P must contain at least 3 lattice points at

height −2, impossible since no two consecutive points at that height are both visible. Thus we know that P
only has lattice points at heights 0, −1, and −2, and so is a hyperelliptic polygon. This means that if P is
a non-hyperelliptic panoptigon, it must have `(P ) ≤ 6. Since |P ∩ Z2| ≤ (`(P ) + 1)2, it follows that if P is
a non-hyperelliptic panoptigon then it must have at most (6 + 1)2 = 49 lattice points; there are any finitely
many such polygons. In principle one could enumerate all such polygons with at most 49 lattice points as in
[5] and check which are panoptigons; this would be much less efficient than the computation led to by our
longer proof.

4 Characterizing all maximal polygons of lattice width 3 or 4

In this section we will characterize all maximal polygons of lattice width 3 or 4. By Lemma 2.2, this will allow
us to determine which polygons of lattice width 1 or 2 can be the interior polygon of some lattice polygon.
This will be helpful in Section 5, when we will need to know which of the infinitely many panoptigons of
lattice width at most 2 can be an interior polygon.

For lattice width 3, we do have the triangle T3 as an exceptional case; all other polygons with lattice
width 3 must have an interior polygon of lattice width 1.

Proposition 4.1. Let P be a maximal polygon. Then P has lattice width 3 if and only if up to equivalence

we either have P = T3, or P = T
(−1)
a,b where a ≥ 1

2b− 1, 0 ≤ a ≤ b, and b ≥ 1, and where Ta,b 6= T1.

Proof. If P is equivalent to T3, then it has lattice width 3 as desired. If P is equivalent to some other Td,
then P has lattice width d 6= 3, and so need not be considered.

Now assume P is not equivalent to Td for any d, so that P has lattice width 3 if and only if Pint has
lattice width 1 by Lemma 2.2. This is the case if and only if Pint is equivalent to Ta,b for some a, b ∈ Z where
0 ≤ a ≤ b and b ≥ 1 (where Ta,b 6= T1) by Theorem 2.3. Thus to prove our claim, it suffices by Proposition

2.1 to show that T
(−1)
a,b is a lattice polygon if and only if a ≥ 1

2b− 1.
We set the following notation to describe Ta,b. Starting with the face connecting (0, 0) and (0, 1) and

moving counterclockwise, label the faces of Ta,b as τ1, τ2, τ3, and τ4 (where τ4 does not appear if a = 0).

Pushing out the faces, we find that τ
(−1)
1 lies on the line x = −1, τ

(−1)
2 on the line y = −1, τ

(−1)
3 on the

line x + (b − a)y = b + 1, and τ
(−1)
4 on the line y = 2. Note that working cyclically, we have τ

(−1)
i ∩ τ (−1)i+1

is a lattice point: we get the points (−1,−1), (2b− a+ 1, 1), (2a− b+ 1, 2), and (−1, 2). Thus if these are

the vertices of T
(−1)
a,b , then T

(−1)
a,b is a lattice polygon. Certainly (−1,−1) and (2b−a+ 1, 1) appear in T

(−1)
a,b .

The points (2a − b + 1, 2) and (−1, 2) will appear as (not necessarily distinct) vertices of T
(−1)
a,b if and only

if 2a− b+ 1 ≥ −1; that is, if and only if a ≥ 1
2b− 1. Thus in the case that a ≥ 1

2b− 1, we have that T
(−1)
a,b

is a lattice polygon with vertices at (−1,−1), (2b− a+ 1,−1), (2a− b+ 1, 2), and (−1, 2).

If on the other hand a < 1
2b− 1, then τ

(−1)
4 is not a face of T

(−1)
a,b , and so one of the vertices of T

(−1)
a,b is

τ
(−1)
1 ∩ τ (−1)3 . These faces intersect at the point

(
b+2
b−a ,−1

)
, where we may divide by b− a since a < 1

2b− 1

and so a 6= b. Note that b− a > b− 1
2b+ 1 = 1

2 (b+ 2). It follows that that b+2
b−a < 2, and certainly b+2

b−a > 1,

so
(
b+2
b−a ,−1

)
is not a lattice point. We conclude that T

(−1)
a,b is a lattice polygon if and only if a ≥ 1

2b − 1,

thus completing our proof.

The explicitness of this result, combined with the fact that g
(
T

(−1)
a,b

)
= a+ b+ 2, allows us to count the

number of maximal polygons P of genus g with lattice width 3. First, note that there are
⌊
g−2
2

⌋
choices of

Ta,b with g lattice points: with our assumption that a ≤ b, we can choose a to be any number from 1 up
to
⌊
g−2
2

⌋
, and b is determined from there. Next, we will exclude those choices of a that yield a < 1

2b − 1,

12



or equivalently a ≤ 1
2b −

3
2 since a, b ∈ Z. Given that a + b = g, this is equivalent to a ≤ 1

2 (g − a) − 3
2 , or

3
2a ≤

1
2g −

3
2 , or a ≤ g

3 − 1. Thus the number of polygons we must exclude from the total count
⌊
g−2
2

⌋
is⌊

g
3

⌋
− 1. We conclude that the number of maximal polygons of genus g with lattice width 3 is⌊

g − 2

2

⌋
−
⌊g

3

⌋
+ 1

when g ≥ 4 (which allows us to ignore T3).
We now wish to classify maximal polygons P of lattice width 4. One possibility is that P is T4. Other

than this example, the interior polygon Pint must have lattice width 2. Note that if g(Pint) = 0, then
Pint = T2; this has relaxed polygon T5, which has lattice width 5 and so is not under consideration. If
g(Pint) = 1, then Pint is one of the polygons in Figure 3. It turns out that all of these can be relaxed to a
lattice polygon, each of which has lattice width 4; these polygons are illustrated in Figure 9.

Figure 9: The lattice width 4 polygons with exactly one doubly interior point

Now we deal with the most general case of polygons with lw(P ) = 4, namely those where Pint has lattice
width 2 and genus g′ ≥ 2. Thus Pint must be one of the 1

6 (g + 3)(2g2 + 15g + 16) hyperelliptic polygons
presented in Theorem 2.3. We must now determine which of these hyperelliptic polygons Q have a relaxed
polygon Q(−1) that has lattice points for vertices. We do this over three lemmas, which consider the polygons
of Type 1, Type 2, and Type 3 separately.

Lemma 4.2. If Q is of Type 1, then the relaxed polygon Q(−1) is a lattice polygon if and only if i ≤ 3g+1
2 .

Proof. Let τ1, τ2, τ3, and τ4 denote the four one-dimensional faces of Q, proceeding counterclockwise starting
from the face connecting (0, 0) and (1, 2) (note that τ4 does not appear as a one-dimensional face if i = 2g).

Consider the relaxed faces τ
(−1)
1 , τ

(−1)
2 , τ

(−1)
3 , and τ

(−1)
4 . These lie on the lines −2x + y = 1, y = −1,

2x+ (2i− 2g − 1)y = 2i+ 1, and y = 3. Proceeding cyclically, the intersection points τ
(−1)
i ∩ τ (−1)i+1 of these

relaxed faces are (−1,−1), (2i− g,−1), (3g − 2i+ 2, 3), and (1, 3). All these points are lattice points, so if
they are indeed the vertices of Pint then Q(−1) is a lattice polygon.

The one situation in which our relaxed polygon will not have all lattice points is if τ
(−1)
1 and τ

(−1)
3

intersect at a height strictly below 3, cutting off the face τ
(−1)
4 and yielding a vertex with y coordinate

strictly between 2 and 3. These faces intersect at
(

g+1
2(i−g) ,

i+1
i−g

)
, which has y-coordinate strictly smaller than

3 if and only if i+1
i−g < 3, which can be rewritten as i+ 1 < 3i− 3g, or as 3g+1

2 < i. Thus when i ≤ 3g+1
2 , our

relaxed polygon is a lattice polygon; and when i > 3g+1
2 , it is not.

Lemma 4.3. If Q is of Type 2, then the relaxed polygon Q(−1) is a lattice polygon if and only if i ≥ g
2 + 1

and j ≥ g−1
2 .

Proof. Label the faces of Q cyclically as τ1, τ2, τ3, τ4, and τ5. Due to the form of the slopes of these faces,

the relaxed face τ
(−1)
i will intersect the relaxed face τ

(−1)
i+1 at a lattice point; this is true for τ1 with τ2 and

τ5 by computation, and for any horizontal line with a face of slope 1/k for some integer k. Similarly, we are

fine with the intersections of τ
(−1)
3 and τ

(−1)
4 : these will always intersect at the lattice point (g+ 2, 1). Thus

the only way the relaxed polygon will fail to have lattice vertices is if certain edges are lost while pushing
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out. Considering the normal fan of Q, this leads to two possible cases for Q to not be integral: if the face

τ
(−1)
2 is lost, and if the face τ

(−1)
5 is lost.

First we consider the case that τ
(−1)
2 is lost due to τ

(−1)
1 and τ

(−1)
3 intersecting at a point with y-

coordinate strictly between 0 and −1; note that this can only happen when i < g. The face τ
(−1)
1 is on the

line −2x+ y = 1, and τ
(−1)
3 is on the line x− (g+ 1− i)y = i+ 1. These intersect at

(
− g+2

2g−2i+1 ,−
2i+3

2g−2i+1

)
.

Note that − 2i+3
2g−2i+1 > −1 is equivalent to 2i+3

2g−2i+1 < 1, which in turn is equivalent to 2i+ 3 < 2g − 2i+ 1.

This simplifies to i < g
2 + 1. Thus we have a collapse of τ

(−1)
2 that introduces a non-lattice vertex point if

and only if i < g
2 + 1.

Now we consider the case that τ
(−1)
5 is lost due to τ

(−1)
1 and τ

(−1)
4 intersecting at a point with y-coordinate

strictly between 2 and 3. The face τ
(−1)
4 lies on the line with equation x + (g − j)y = 2g − j + 2. This

intersects τ
(−1)
1 at

(
g+2

2g−2j+1 ,
4g−2j+5
2g−2j+1

)
. Having 4g−2j+5

2g−2j+1 < 3 is equivalent to 4g− 2j+ 5 < 6g− 6j+ 3, which

can be rewritten as 4j < 2g − 2, or j < g−1
2 . Thus we have a collapse of τ

(−1)
5 that introduces a non-lattice

vertex point if and only if j < g−1
2 .

We conclude that Q(−1) is a lattice polygon if and only if i ≥ g
2 + 1 and j ≥ g−1

2

Lemma 4.4. If Q is of Type 3, then the relaxed polygon Q(−1) is a lattice polygon if and only if i ≥ g/2
and j ≥ g/2.

Proof. Label the faces of Q cyclically as τ1, . . . , τ6, where τ1 is the face containing the lattice points (k, 2) and
(0, 1) (with the understanding that some faces might not appear if one or more of i, j and k are equal to 0).

If the faces τ
(−1)
1 , . . . , τ

(−1)
6 are all present in the polygon P (−1), then they intersect at lattice points by the

arguments from the previous proof. Thus we need only be concerned with the following cases: where τ
(−1)
3

collapses due to τ
(−1)
2 and τ

(−1)
4 intersecting at a point (x, y) with 0 > y > −1; and where τ

(−1)
6 collapses

due to τ
(−1)
5 and τ

(−1)
1 intersecting at a point (x, y) with 2 < y < 3.

First we consider τ
(−1)
2 and τ

(−1)
4 . We have that τ

(−1)
2 lies on the line defined by x = −1, and that τ

(−1)
4

lies on the line defined by x− (g + 1− i)y = i+ 1. These lines intersect at (−1,− i+2
g+1−i ). The y-coordinate

is strictly greater than −1 when i+2
g+1−i < 1, i.e. when i + 1 < g + 1 − i, which can be rewritten as i < g

2 .

Thus we lose τ
(−1)
3 to a non-lattice vertex precisely when i < g

2 .

Now we consider τ
(−1)
5 and τ

(−1)
1 . We have that τ

(−1)
1 lies on the line x− ky = −k + 1, unless k = 0 in

which case it lies on the line x = −1; and that τ
(−1)
5 lies on the line x+ (g+ 1− k− j)y = 2g+ 2− k− j. In

the event that k 6= 0, these intersect at
(
gk+g−j+1
g−j+1 , 2g−j+1

g−j+1

)
, which has y-coordinate strictly smaller than 3

when 2g−j+1
g−j+1 < 3, or equivalently if 2g− j+ 1 < 3g− 3j+ 1, or equivalently if j < g

2 . For the k = 0 case, the

intersection point becomes
(
−1, 2g−j+3

g−j+1

)
, which has y-coordinate strictly smaller than 3 when 2g−j+3

g−j+1 < 3,

or equivalently when 2g − j + 3 < 3g − 3j − 3k+ 3, or equivalently when j < g
2 . Thus we have a non-lattice

vertex due to τ
(−1)
5 collapsing precisely when j < g

2 .

We conclude that Q(−1) is a lattice polygon if and only if i ≥ g/2 and j ≥ g/2.

Combining Lemmas 4.2, 4.3, and 4.4 and the preceding discussion, we have the following classification of
maximal polygons with lattice width 4.

Proposition 4.5. Let P be a maximal polygon of lattice width 4. Then up to lattice equivalence, P is either
T4; one of the 14 polygons in Figure 9; or Q(−1), where Q is a hyperelliptic polygon satisfying the conditions
of Lemma 4.2, 4.3, or 4.4.

The most important consequence of Propositions 4.1 and 4.5 is that we can determine which panoptigons
of lattice width 1 or lattice width 2 are interior polygons of some lattice polygon. We summarize this with
the following result.

Corollary 4.6. Let Q be a panoptigon with lw(Q) ≤ 2 such that Q(−1) is lattice polygon. Then |Q∩Z2| ≤ 11.
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Proof. If lw(Q) = 1 with Q(−1) a lattice polygon, then Q must be the trapezoid Ta,b with 0 ≤ a ≤ b, b ≥ 1,
and a ≥ b

2 − 1 by Proposition 4.1. In order for Ta,b to be a panoptigon, we need a ≤ 2 by Lemma 3.1, so

2 ≥ b
2 − 1, implying b ≤ 6. It follows that |Q ∩ Z2| = a+ b+ 2 ≤ 2 + 6 + 2 = 10.

Now assume lw(Q) = 2 with Q(−1) a lattice polygon. If Q has genus 0 then it is T2, and has 6 lattice
points. If Q has genus 1 then it is one of the polygons in Figure 3, and so has at most 9 lattice points.
Outside of these situations, we know that Q is a hyperelliptic panoptigon of genus g ≥ 2 as characterized in
Lemma 3.3. We deal with two cases: where Q has a panoptigon point at height 1, and where it does not.

In the first case, we either have g = 2 with Q of Type 1 or Type 2, or g = 3 with Q of Type 1. A
hyperelliptic polygon of Type 1 has (i+ 1) + (1 + 2g− i) = 2g+ 2 boundary points. A hyperelliptic polygon
of Type 2 has i+ j + 3 boundary points. If Q is of Type 1, then it has in total 3g+ 2 ≤ 11 lattice points. If
Q is of Type 2, then i+ j ≤ 2g+1 = 2 ·2+1 = 5, implying that Q has a total of i+ j+3+g ≤ 5+3+2 = 10
lattice points.

In the second case, we know that Q must have at most 3 points at height 0 or 2, and exactly 1 point
at the other height. First we claim that Q cannot be of Type 1: there are 2g + 2 ≥ 6 boundary points, all
at height 0 or 2, and Q can have at most 4 points total at those heights. For Types 2 and 3, we know by
Lemmas 4.3 and 4.4 that either i ≥ g

2 + 1 and j ≥ g−1
2 , or i ≥ g

2 and j ≥ g
2 . At least one of i and j must

equal 0 to allow for a single point at height 0 or height 2, so these inequalities are impossible for g ≥ 2. Thus
Q cannot have Type 2 or Type 3 either, and this case never occurs.

We conclude that if Q is a panoptigon of lattice width 1 or 2 such that Q(−1) is a lattice polygon, then
|Q ∩ Z2| ≤ 11.

5 Big face graphs are not tropically planar

Let G be a planar graph. Recall that we say that G is a big face graph if for any planar embedding of G,
there exists a bounded face that shares an edge with every other bounded face. Our main examples of big
face graphs will come from the following construction. First we recall the construction of a chain of genus g
from [13, §6]. Start with with g cycles in a row, connected at g− 1 4-valent vertices. We will resolve each of
these 4-valent vertices to result in two 3-valent vertices in one of two ways. Let v be a vertex, incident to the
edges e1, e2, f1, f2 where e1 and e2 are part of one cycle and f1 and f2 are part of another. We will remove
v and replace it with two connected vertices v1 and v2, and we will either connect v1 to e1 and f1 and v2 to
e2 and f2; or we will connect v1 to e1 and e2 and v2 to f1 and f2. Any graph obtained from making such a
choice at each vertex is then called a chain. Figure 10 illustrates, for g = 3, the starting 4-regular graph; the
two ways to resolve a 4-valent vertex; and the resulting chains of genus 3. We remark that although there
are 2× 2 = 4 ways to choose the vertex resolutions, two of them yield isomorphic graphs, giving us 3 chains
of genus 3 up to isomorphism. Note that for every genus, there is exactly one chain that is bridge-less, i.e.
2-edge-connected.

Given a chain of genus g, we construct a looped chain of genus g + 1 by adding an edge from the first
cycle to the last one. The looped chains of genus 4 corresponding to the chains of genus 3 are illustrated in
Figure 11. For larger genus, we remark that two non-isomorphic chains can give rise to isomorphic looped
chains.

In order to argue that any looped chain is a big face graph, we recall the following useful result. By a
special case of Whitney’s 2-switching theorem [19, Theorem 2.6.8], if G is a 2-connected graph, then any other
planar embedding can be reached, up to weak equivalence3, from the standard embedding by a sequence of
flippings. A flipping of a planar embedding finds a cycle C with only two vertices v and w incident to edges
exterior to C, and then reverses the orientation of C and all vertices and edges interior to C to obtain a new
embedding. This process is illustrated in Figure 12, where C is the highlighted cycle v − a− b− w − d− v.

Lemma 5.1. Any looped chain is a big face graph.

Proof. In the standard embedding of a looped chain as in Figure 11, there are (at least) two faces that share
an edge with all other faces: one bounded and one unbounded. Since any looped chain is 2-connected, any

3Weak equivalence means two graph embeddings have the same facial structure, although possibly with different unbounded
faces.
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Figure 10: The starting 4-regular graph in the chain construction; the two choices for resolving a 4-valent
vertex; and the three chains of genus 3, up to isomorphism

Figure 11: The looped chains of genus 4

other embedding can be reached, up to weak equivalence, by a sequence of flippings. It thus suffices to show
that the standard embedding of a looped chain is invariant under flipping.

Consider the standard embedding of a looped chain G, and assume that that C is a cycle in G that has
exactly two vertices v and w incident to edges exterior to C. Let C denote the set of all vertices in or interior
to C. Since G is trivalent and C is 2-regular, we know that v and w are each incident to exactly one edge,
say e for v and f for w, that is exterior to C. We now deal with two possibilities: that C = V (G), and that
C ( V (G).

If C = V (G), then e = f , and the only possibility is that v and w are the vertices added to a chain H
to build the looped chain G; that H is the bridge-less chain; and that C is the outside boundary of H in its
standard embedding. Flipping with respect to C does not change the embedding of this graph.

If C ( V (G), then {e, f} forms a 2-edge-cut for G, separating it into C and C
C

. Consider the structure
of G: is is a collection of 2-edge-connected graphs G1, . . . , Gk, namely a collection of bridge-less chains,
connected in a loop by edges e1, . . . , ek, where ei connects Gi and Gi+1, working modulo k; see Figure 13

v

w

C

a

b c

d →

v

a

bc

w

d

Figure 12: Two embeddings of a planar graph related by a flipping
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Figure 13: The structure of a looped chain, where the bridge-less chains Gi have solid edges and the edges
ei are dotted; the boundaries of the Gi are bold, and are the only possible choices of C for a flipping

for this labelling scheme. We claim that e, f ∈ {e1, . . . , ek}. If not, then without loss of generality e is in
some bridge-less chain Gi. If f ∈ E(Gj) for j 6= i, then the graph remains connected; the same is true if
f ∈ {e1, . . . , ek}. So we would need f to also be in Gi. By the structure of the looped chain, we would the
removal of e and f to disconnect Gi into multiple components, at least one of which is not incident to ei or
ei+1; however, this is impossible based on the structure of a bridge-less chain. It follows that e and f must
be among e1, . . . , ek. The only way to choose a pair {e, f} from among e1, . . . , ek so that they are the only
exterior edges incident to the boundary of a cycle C is if they are incident to the same bridge-less chain Gi;
that is, if up to relabelling we have e = ei and f = ei+1 for some i. Thus C and its interior constitutes one of
the bridge-less chains Gi. But flipping a bridge-less chain does not change the embedding of our (unlabelled)
graph, completing the proof.

Figure 14: The loop of loops Lg for 3 ≤ g ≤ 6

We summarize the connection between big face graphs and panoptigons in the following lemma.

Lemma 5.2. Suppose that G is a tropically planar big face graph arising from a polygon P . Then Pint is a
panoptigon.

This is not an if-and-only-if statement, since not all triangulations of P connect a point of Pint to all
other points of Pint; for instance, the chain of genus 3 with two bridges is not a big face graph, but by [13,
§5] it arises from T4 whose interior polygon is a panoptigon.

Proof. Let ∆ be a regular unimodular triangulation of P such that G is the skeleton of the weak dual graph
of ∆. The embedding of G arising from this construction must have a bounded face F bordering all other
faces. By duality, we know that F corresponds to an interior lattice point p of P . Since F shares an edge
with all other bounded faces, dually p is connected to each other interior point of P by a primitive edge in
∆. Thus Pint is a panoptigon, with p a panoptigon point for it.

One common example of a looped chain of genus g is the loop of loops Lg, obtained by connecting g − 1
bi-edges in a loop. This is illustrated in Figure 14 for g from 3 to 6. For low genus, the loop of loops is
tropically planar. Figure 15 illustrates polygons of genus g for 3 ≤ g ≤ 10 along with collections of edges
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emanating from an interior point; when completed to a regular unimodular triangulation4, they will yield Lg
as the dual tropical skeleton. Thus Lg is tropically planar for g ≤ 10. Another example of a tropically planar
looped chain, this one of genus 11, is pictured in Figure 16, along with a regular unimodular triangulation
of a polygon giving rise to it. Since the theta graph of genus 2 is also tropically planar [13, Example 2.5]
and is a big face graph, there exists at least one tropically planar big face graph of genus g for 2 ≤ g ≤ 11.
We are now ready to prove that this does not hold for g ≥ 14.

Figure 15: Starts of triangulations that will yield the loop of loops as the dual tropical skeleton

Figure 16: A tropically planar big face graph of genus 11, with a regular unimodular triangulation giving
rise to it

Proof of Theorem 1.3. Let G be a tropically planar big face graph, and let P be a lattice polygon giving rise
to it. By Lemma 5.2, Pint is a panoptigon. If lw(Pint) ≤ 2, then g = |Pint ∩ Z2| ≤ 11 by Corollary 4.6. If
lw(Pint) ≥ 3, then g = |Pint ∩Z2| ≤ 13 by Theorem 1.2. Either way, we may conclude that the genus of G is
at most 13.

It follows, for instance, that no looped chain of genus g ≥ 14 is tropically planar.
If we are willing to rely on our computational enumeration of all non-hyperelliptic panoptigons, we can

push this further: there does not exist a tropically planar big face graph for g ≥ 12, and this bound is sharp.
We have already seen in Figure 16 that there exists a tropically planar big face graph of genus 11. To see
that none have higher genus, first note that if Pint is a panoptigon with 12 or 13 lattice points, then Pint

must be non-hyperelliptic by Corollary 4.6. Thus Pint must be one of the 15 non-hyperelliptic panoptigons
with 12 lattice points, or one of the 8 non-hyperelliptic panoptigons with 13 lattice points, as presented in
Appendix A. However, for each of these polygons Q, we have verified computationally that Q(−1) is not a
lattice polygon; see Figure 20. Thus no lattice polygon of genus g ≥ 12 has an interior polygon that is also
a panoptigon. It follows from Lemma 5.2 that no big face graph of genus larger than 11 is tropically planar.

We close with several possible directions for future research.

• For any lattice point p, let vis(p) denote the set of all lattice points visible to p (including p itself).
Given a convex lattice polygon P , define its visibility number to be the minimum number of lattice

4One way to see that this can be accomplished is to use a placing triangulation [11, §3.2.1], where the highlighted panoptigon
point is placed first and the other lattice points are placed in any order.
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points in P needed so that we can see every lattice point from one of them:

V (P ) = min

|S| : S ⊂ P ∩ Z2 and P ∩ Z2 ⊂
⋃
p∈S

vis(p)

 .

Thus P is a panoptigon if and only if V (P ) = 1. Classifying polygons of fixed visibility number
V (P ), or finding relationships between V (P ) and such properties as genus and lattice width, could
be interesting in its own right, and could provide new criteria for determining whether graphs are
tropically planar; for instance, the prism graph Pn = K2 × Cn can only arise from a polygon P with
V (P ) ≤ 2. This question is in some sense a lattice point version of the art gallery problem.

• We can generalize from two-dimensional panoptigons to n-dimensional panoptitopes, which we define
to be convex lattice polytopes containing a lattice point p from which all the polytope’s other lattice
points are visible. A few of our results generalize immediately; for instance, the proof of Lemma 3.2
works in n-dimensions, so any polytope with exactly one interior lattice point is a panoptitope. A
complete classification of n-dimensional panoptitopes for n ≥ 3 will be more difficult than it was in
two-dimensions, especially since it is no longer the case that there are finitely many polytopes with
a fixed number of lattice points. Results about panoptitopes would also have applications in tropical
geometry; for instance, an understanding of three-dimensional panoptitopes would have implications
for the structure of tropical surfaces in R3.

• To any lattice polygon we can associate a toric surface [20]. An interesting question for future research
would be to investigate those toric surfaces that are associated to panoptigons, or more generally toric
varieties associated to panoptitopes.

Appendix A Panoptigon computations

From the proof of Theorem 1.2, we know that any panoptigon of lattice width and lattice diameter both
at least 3 must be equivalent to a polygon consisting of some subset of the thirty lattice points pictured in
Figure 7, where the points (0, 0), (−1,−1), (0,−1), (1,−1), and (2,−1) must be included. Using polymake

[21], we ran through all possible convex polygons consisting only of these 30 points. Ruling out those
without interior lattice points or with all lattice points collinear, we found a total of 215 distinct polygons,
some of which were equivalent under a unimodular transformation. These 215 polygons are available as
the collection “Non-hyperelliptic Panoptigons” in polyDB [22] at https://db.polymake.org. Eliminating
redundant copies, we find that there are a total of 69 non-hyperelliptic panoptigons of lattice width and
lattice diameter both at least 3, up to lattice equivalence; these appear in Figure 19. The panoptigons with
12 or 13 lattice points appear in Figure 20, along with their relaxed polygons. Each relaxed polygon has at
least one nonlattice vertex, marked by a square. The computation of these relaxed polygons verifies that no
non-hyperelliptic panoptigon with 12 or 13 lattice points is the interior polygon of a lattice polygon.

To complete an enumeration of all non-hyperelliptic panoptigons of genus g ≥ 3, it remains to find those
panoptigons P that have lattice diameter smaller than 3. We accomplish this with the following proposition.

Proposition A.1. Let P be a non-hyperelliptic panoptigon of lattice diameter at most 2. Then up to lattice
equivalence P is either the triangle conv((0, 1), (0, 3), (4, 0)), the quadrilateral conv((1, 0), (2, 0), (3, 1), (0, 3)),
or the quadrilateral conv((0, 1), (0, 2), (2, 3), (3, 0)).

These three polygons are illustrated in Figure 17.

Proof. Since P is non-hyperelliptic, we know that lw(P ) ≥ 3. Note that we cannot have `(P ) = 1, since then
we would have lw(P ) ≤ b 43`(P )c + 1 = 2. Thus `(P ) = 2. It follows that lw(P ) ≤ b 43`(P )c + 1=2+1=3, so
lw(P ) = 3. We know P is not T3 since T3 is hyperelliptic, so we know that the interior polygon Pint must
have lattice width 1. It follows that Pint must be a trapezoid of height 1, and since `(P ) = 2 that trapezoid
must have at most 3 lattice points at each height; thus Pint = Ta,b where 0 ≤ a ≤ b ≤ 2. It follows that P
must be contained in one of the polygons pictured in Figure 18; these are the maximal polygons associated
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Figure 17: The three non-hyperelliptic panoptigons from Proposition A.1

Figure 18: Possible interior polygons for Pint, and polygons that must contain P

to the candidates for Pint. In order to refer to the lattice points of these polygons with coordinates, we will
assume that each is positioned to have the lower left corner at the origin (0, 0).

We claim that P cannot have T0,2 T1,2, or T2,2 as its interior polygon. In each of those cases, note that
P automatically has 3 interior points at height 1; since `(P ) = 2, there can be no boundary lattice points
at height 1. In order for boundary lattice points at height 0 to connect to boundary lattice points at height
greater than 1, the points (1, 0) and (4, 0) must be included; but then there are 4 collinear lattice points at
height 0, contradicting `(P ) = 2.

Now suppose Pint = T1,1. Note that no boundary point of the 3× 3 square can see all interior points, so
any panoptigon point q must be an interior point. Without loss of generality, assume that it is q = (1, 1),
meaning that the points (1, 3), (3, 1), and (3, 3) cannot be included in P . Among the two points (2, 3) and
(3, 2), at least one must be included to allow for the desired interior polygon. By symmetry we may assume
that (2, 3) is included. There cannot be any other points at height 3, so (2, 3) must be a vertex of P and
connect to a boundary point of the form (0, b); the only possible such point is (0, 2). It then follows that (3, 2)
cannot be included, since this would yield 4 collinear points at height 2. Thus P has an edge connecting (2, 3)
to (3, 0). The point (2, 0) cannot appear in P since there are already three points with x-coordinate equal
to 2, so (3, 0) must be connected to (0, 1). At this point, we know that P = conv((0, 1), (0, 2), (2, 3), (3, 0)).
This is indeed a panoptigon of lattice width 3 and lattice diameter 2.

Finally we will deal with the case where Pint = T0,1. We deal with several possibilities for the (not
necessarily unique) panoptigon point q of P .

• Suppose q is an interior lattice point of P . By symmetry we may assume q = (1, 1), so the lattice
points (3, 1) and (1, 3) cannot be included. Since there must at least one lattice point at height 3 or
above, either (0, 3) or (0, 4) (or both) must be included. If it is only (0, 4) and not (0, 3), then the
points (1, 0) and (3, 0) must be included, yielding the polygon conv((1, 0), (3, 0), (0, 4)). Otherwise,
(0, 3) is in P . Since (0, 3), (1, 2), and (2, 1) are all lattice points of P , the point (3, 0) cannot be
included. Now, at least one lattice point from the diagonal edge must be included, namely (4, 0),
(2, 2), or (0, 4); in fact, it must be exactly one, since otherwise (1, 3) or (3, 1) would be introduced by
convexity. If P contains (0, 4) or (2, 2) and no other points along that edge, then it must also contain
(3, 0), which we have already ruled out. Thus P contains (4, 0), and as it does not contain (3, 0) it
must have an edge connecting (4, 0) to (0, 1). At this point there is a single possibility for P , namely
P = conv((0, 1), (0, 3), (4, 0)). This polygon is equivalent to the previous one, so we need only include
one. This panoptigon does indeed have lattice diameter 2.

• Now we deal with the case that the panoptigon point is a boundary point. Since the panoptigon point
must see all three interior points, it must either be a vertex of T4 or the midpoint of one of the edges.
Up to symmetry, we may thus assume that q is either (0, 0) or (2, 0). If q = (0, 0), then the point
(1, 3) must be included; otherwise we would need (0, 3), which is not visible to (0, 0). Similarly (1, 3) is
included, but then (2, 2) is included by convexity, and this point is not visible to (0, 0), a contradiction.
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If q = (2, 0), then there are 1, 2, or 3 points at height 0. If there is only q, then the points (0, 1) and
(3, 1) must be included, contradicting `(P ) = 2. If there are 2 points, we will assume by symmetry
that the two points are (1, 0) and (2, 0). The lattice point (3, 1) must then be included and the point
(0, 1) must not be included; the only remaining point to include from the face on the line x = 0 is
(0, 3). No other lattice points can be included, so then P = conv((1, 0), (2, 0), (3, 1), (0, 3)). Finally, if
there are 3 points at height 0 they must be (1, 0), (2, 0), and (3, 0). But now neither (0, 3) nor (1, 3)
may be included since `(P ) = 2. Since (0, 4) is not visible from q, there are no points in P with height
greater than 2, a contradiction to T0,1 being the interior polygon of P .

We conclude that the only non-hyperelliptic panoptigons P with `(P ) ≤ 2 are the three claimed.

Combined with our computation, this gives us the following count.

Corollary A.2. Up to lattice equivalence, there are 72 non-hyperelliptic panoptigons.

The explicitness of our enumeration allows us to find the largest lattice width of any panoptigon: by
Lemma 2.2, the lower right triangle in Figure 20 has lattice width 5, and all the other panoptigons have
lattice width 4 or less.
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Figure 19: All non-hyperelliptic panoptigons with lattice diameter at least 3
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Figure 20: All non-hyperelliptic panoptigons with 12 or 13 lattice points, along with their relaxed polygons
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