Cubic graphs with equal independence number and matching number

Elena Mohr Dieter Rautenbach
Institute of Optimization and Operations Research, Ulm University, Germany \{elena.mohr, dieter.rautenbach\}@uni-ulm.de

Abstract

Caro, Davila, and Pepper recently proved $\delta(G) \alpha(G) \leq \Delta(G) \mu(G)$ for every graph G with minimum degree $\delta(G)$, maximum degree $\Delta(G)$, independence number $\alpha(G)$, and matching number $\mu(G)$. Answering some problems they posed, we characterize the extremal graphs for $\delta(G)<\Delta(G)$ as well as for $\delta(G)=\Delta(G)=3$.

Keywords: Independence number; matching number
MSC 2010: 05C69, 05C70

1 Introduction

We consider finite, simple, and undirected graphs, and use standard terminology. Recently, Caro, Davila, and Pepper [1] proved the inequality

$$
\delta(G) \alpha(G) \leq \Delta(G) \mu(G)
$$

for every graph G with minimum degree $\delta(G)$, maximum degree $\Delta(G)$, independence number $\alpha(G)$, and matching number $\mu(G)$. As an open problem they asked for the characterization of the extremal graphs, that is, those graphs that satisfy this inequality with equality. In particular, they asked for the characterization of the cubic graphs G with $\alpha(G)=\mu(G)$. In the present note, we give a simple proof of the above inequality, which allows to characterize the non-regular extremal graphs. Furthermore, we characterize the cubic extremal graphs.

2 Results

For positive integers δ and Δ with $\delta<\Delta$, a bipartite graph is (δ, Δ)-regular if it has a bipartition with partite sets A and B such that every vertex in A has degree δ and every vertex in B has degree Δ.

Theorem 1. If G is a graph with minimum degree δ and maximum degree Δ, then

$$
\begin{equation*}
\delta \alpha(G) \leq \Delta \mu(G) \tag{1}
\end{equation*}
$$

Furthermore, if $\delta<\Delta$, then equality holds in (11) if and only if G is bipartite and (δ, Δ) regular.

Proof. Let I be a maximum independent set in G. Let $R=V(G) \backslash I$, and let H be the bipartite spanning subgraph of G that contains all edges of G between I and R. Let M be a maximum matching in H, and let U be a minimum vertex cover in H. See Figure $\mathbb{1}$ for an illustration.

Figure 1: The partition into I and R. The vertical edges form the matching M, and the encircled vertices form the vertex cover U.

Since G is bipartite, König's theorem [3] implies that $\mu(H)=|M|=|U|$, and that U intersects each edge in M in exactly one vertex. Let m be the number of edges of H between $I \backslash U$ and $U \cap R$. Since each edge leaving $I \backslash U$ enters $U \cap R$, we obtain, for $k=|I \cap U|$, that

$$
\begin{equation*}
\delta(\alpha(G)-k)=\delta|I \backslash U| \leq m \leq \Delta|U \cap R|=\Delta(\mu(H)-k) \leq \Delta(\mu(G)-k) \tag{2}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\delta \alpha(G) \leq \delta \alpha(G)+(\Delta-\delta) k \leq \Delta \mu(H) \leq \Delta \mu(G) \tag{3}
\end{equation*}
$$

that is, the inequality (1) follows.
We proceed to the characterization of the graphs G that satisfy $\delta \alpha(G)=\Delta \mu(G)$ for $\delta<\Delta$. Since $\alpha(G)$ and $\mu(G)$ are additive with respect to the components, it suffices to characterize the connected graphs. If G is bipartite and (δ, Δ)-regular, and has partite sets A and B as above, then Hall's theorem [2] and König's theorem imply that $\mu(G)=$ $|B|$, and that $\alpha(G)=n-\mu(G)=|A|$. Furthermore, the number of edges of G equals $\delta|A|=\delta \alpha(G)$ and $\Delta|B|=\Delta \mu(G)$, that is, $\delta \alpha(G)=\Delta \mu(G)$. Now, let G be a connected graph with $\delta \alpha(G)=\Delta \mu(G)$. If H, M, U, m, and k are as above, then equality holds throughout (22) and (31). This implies that $k=0$ and $\delta|I \backslash U|=m=\Delta|U \cap R|$, which implies that $G[(I \backslash U) \cup(U \cap R)]$ is a non-empty bipartite graph, where every vertex in $I \backslash U$ has degree δ and every vertex in $U \cap R$ has degree Δ. Since all edges in G leaving $I \backslash U$ enter $U \cap R$, this implies that no edge of G has only one endpoint in $(I \backslash U) \cup(U \cap R)$. Since G is connected, this implies that G equals $G[(I \backslash U) \cup(U \cap R)]$, that is bipartite and (δ, Δ)-regular. This completes the proof.

Note that all cycles satisfy (1) with equality, in particular, there are non-bipartite extremal graphs. For higher degrees of regularity, that is, for $\delta=\Delta \geq 3$, the extremal graphs have a richer structure, which we elucidate for $\delta=\Delta=3$. A graph G is a bubble with contact vertex z and partition (I, R) if the vertex set of G can be partitioned into two sets I and R such that

- every vertex in $V(G) \backslash\{z\}$ has degree 3 and z has degree 2,
- I is independent, and
- z lies in R and $G[R]$ contains exactly one edge.

Since a bubble G has degree sequence $3, \ldots, 3,2$, it is not bipartite. Counting the edges of G implies that $|R|=|I|+1$, and, hence, $|I|=(n(G)-1) / 2$. Figure 2 illustrates some connected bubbles.

Figure 2: Four connected bubbles; the contact vertices are the topmost vertices, the encircled vertices form the sets I, and the rightmost bubble illustrates that a bubble may properly contain a smaller bubble.

Lemma 1. If G is a bubble with contact vertex z and partition (I, R), then

$$
\alpha(G)=\alpha(G-z)=\mu(G)=\mu(G-z)=(n(G)-1) / 2
$$

Furthermore, if G is not 2-connected, then some proper induced subgraph G^{\prime} of G is also a bubble with partition $\left(I^{\prime}, R^{\prime}\right)$ such that $I^{\prime} \subseteq I$ and $R^{\prime} \subseteq R$.

Proof. Let $p=(n(G)-1) / 2$, and let $x y$ be the unique edge of $G[R]$. Note that z may coincide with x or y.

Since every matching M of G either contains $x y$ and at most $|R|-2$ further edges incident with the vertices in $R \backslash\{x, y\}$ or does not contain $x y$ and at most $|I|$ edges incident with the vertices in I, we have $\mu(G) \leq|R|-1=|I|=p$.

Let u be any vertex from $\{x, y, z\}$. For some set $S \subseteq I$, let $T=N_{G}(S)$. Since I is independent, we obtain $T \subseteq R$, and the vertex degrees imply $|T| \geq|S|$. Furthermore, if T contains u, then the edge $x y$ and the degree of z imply that $|T| \geq|S|+1$. Altogether, $\left|N_{G-u}(S)\right|=|T \backslash\{u\}| \geq|S|$ for every set $S \subseteq I$, and Hall's Theorem implies the existence of a matching M_{u} in $G-u$ that saturates each vertex in I, in particular, $\mu(G)=\mu(G-z)=$ p.

Now, let J be a maximum independent set in G. If J does not contain x, then M_{x} and the edges $x y$ imply that $|J| \leq p$. Similarly, if J does not contain y, then $|J| \leq p$, which implies $\alpha(G) \leq p$. Since I is an independent set of order p, we obtain that $\alpha(G)=\alpha(G-z)=p$.

Finally, suppose that G is not 2-connected. If G is not connected, then the vertex degrees easily imply that the component of G containing the edge $x y$ is also a bubble with a partition $\left(I^{\prime}, R^{\prime}\right)$ such that $I^{\prime} \subseteq I$ and $R^{\prime} \subseteq R$. Hence, we may assume that G is connected but not 2-connected. Since G is subcubic, this implies that G has a bridge $u v$. Let G_{u} and G_{v} be the components of $G-u v$ containing u and v, respectively. Let $I_{u}=V\left(G_{u}\right) \cap I, d_{1}=\sum_{w \in I_{u}} d_{G_{u}}(w), R_{u}=V\left(G_{u}\right) \cap R$, and $d_{2}=\sum_{w \in R_{u}} d_{G_{u}}(w)$. If $u, v \in R$, then $u v$ is the unique edge $x y$ in $G[R]$, the graph G_{u} is a bipartite graph with partite sets I_{u} and R_{u}, but d_{1} and d_{2} have different parities modulo 3, which is a contradiction. Hence, by symmetry, we may assume that $u \in R$ and $v \in I$. Since d_{1} is a multiple of 3 , it follows that the unique edge $x y$ of $G[R]$ lies within R_{u}, and that the contact vertex of G does not lie R_{u}. Hence, G_{u} is a bubble with partition (I_{u}, R_{u}), which completes the proof.

A graph G is special if it is connected, cubic, and the vertex set of G can be partitioned into sets $V_{0}, V_{1}, \ldots, V_{\ell}$ such that

- the graph $G\left[V_{0}\right]$ is a non-empty bipartite graph with partite sets I_{0} and R_{0} such that every vertex in R_{0} has degree 3 in $G\left[V_{0}\right]$, and
- for every i in $[\ell]$, the graph $G\left[V_{i}\right]$ is a 2 -connected bubble with contact vertex z_{i}.

Note that, since G is connected and V_{0} is non-empty, it follows that $G\left[V_{0}\right]$ is connected, and that, for every i in $[\ell]$, the graph G contains a bridge between z_{i} and some vertex in I_{0}. Since G is cubic, this implies $\ell=\sum_{u \in I_{0}}\left(3-d_{G\left[V_{0}\right]}(u)\right)$. In particular, if $\ell=0$, then G is bipartite. See Figure 3 for an illustration.

Figure 3: A cubic graph G with $\alpha(G)=\mu(G)=10$.
Theorem 2. A connected cubic graph G satisfies $\alpha(G)=\mu(G)$ if and only if it is special.
Proof. First, we assume that G is special. For every i in $\{0\} \cup[\ell]$, let $G_{i}=G\left[V_{i}\right]$. Let the partite sets I_{0} and R_{0} of G_{0} be as above. For every i in $[\ell]$, let the bubble G_{i} have partition $\left(I_{i}, R_{i}\right)$. Let $I=I_{0} \cup I_{1} \cup \ldots \cup I_{\ell}$ and $R=R_{0} \cup R_{1} \cup \ldots \cup R_{\ell}$. Since $\alpha\left(G_{i}\right)=\alpha\left(G_{i}-z_{i}\right)$ for every i in $[\ell]$, we have $\alpha(G)=\alpha\left(G_{0}\right)+\sum_{i=1}^{\ell} \alpha\left(G_{i}\right)$. By the vertex degrees, we have $\left|N_{G_{0}}(S)\right| \geq|S|$ for every set $S \subseteq R_{0}$, which implies $\alpha\left(G_{0}\right)=\left|I_{0}\right|$. Together with Lemma 11, we obtain $\alpha(G)=\left|I_{0}\right|+\sum_{i=1}^{\ell}\left(n\left(G_{i}\right)-1\right) / 2$. Now, let M be a maximum matching in G. By Lemma 1, the set M contains at most $\left(n\left(G_{i}\right)-1\right) / 2$ edges of G_{i} for every i in $[\ell]$, which implies $\mu(G) \leq \mu\left(G^{\prime}\right)+\sum_{i=1}^{\ell}\left(n\left(G_{i}\right)-1\right) / 2$, where $G^{\prime}=G\left[V_{0} \cup\left\{z_{1}, \ldots, z_{\ell}\right\}\right]$. Since G^{\prime} is bipartite with partite sets I_{0} and $R_{0} \cup\left\{z_{1}, \ldots, z_{\ell}\right\}$, we obtain

$$
\left|I_{0}\right|+\sum_{i=1}^{\ell} \frac{n\left(G_{i}\right)-1}{2}=\alpha(G) \stackrel{\mathbb{1} \mid}{\leq} \mu(G) \leq\left|I_{0}\right|+\sum_{i=1}^{\ell} \frac{n\left(G_{i}\right)-1}{2},
$$

in particular, $\alpha(G)=\mu(G)$.
Now, let G be a connected cubic graph with $\alpha(G)=\mu(G)$. Let I be a maximum independent set in G, and let $R=V(G) \backslash I$. Let V_{1}, \ldots, V_{ℓ} be a maximal collection of disjoint sets of vertices of G such that, for every i in $[\ell]$, the graph $G\left[V_{i}\right]$ is a 2 -connected bubble with contact vertex z_{i} and partition $\left(I_{i}, R_{i}\right)$, where $I_{i} \subseteq I$ and $R_{i} \subseteq R$, and the unique neighbor of z_{i} outside of V_{i} belongs to I. Let $I_{0}=I \backslash\left(I_{1} \cup \ldots \cup I_{\ell}\right)$ and $R_{0}=R \backslash\left(R_{1} \cup \ldots \cup R_{\ell}\right)$. If R_{0} is an independent set, then G is special. Therefore, for a contradiction, we may assume that $x y$ is an edge of G with $x, y \in R_{0}$. Let $G^{\prime}=$ $G-\bigcup_{i \in[\ell]}\left(V_{i} \backslash\left\{z_{i}\right\}\right)$, and let $G^{\prime \prime}=G^{\prime}-\{x, y\}$. See Figure 4 for an illustration.

Figure 4: The graph G^{\prime}; removing from G^{\prime} the vertices x and y yields $G^{\prime \prime}$ while removing from G^{\prime} all vertices from the bubble B except for its contact vertex yields $G^{\prime \prime \prime}$.

If $G^{\prime \prime}$ contains a matching M_{0} that saturates I_{0}, then, by Lemma 1 , the union of $\{x y\}$, the matching M_{0}, and maximum matchings in each $G\left[V_{i}\right]-z_{i}$ yields a matching of size more than $|I|=\alpha(G)=\mu(G)$, which is a contradiction. Hence, by Hall's theorem, there is a set $I^{\prime} \subseteq I_{0}$ with $\left|N_{G^{\prime \prime}}\left(I^{\prime}\right)\right|<\left|I^{\prime}\right|$. Let $R^{\prime}=N_{G^{\prime}}\left(I^{\prime}\right)$, and let $B=G\left[I^{\prime} \cup R^{\prime}\right]$. By the vertex degrees, the independence of I, and the edge $x y$, we obtain $\left|R^{\prime}\right|>\left|I^{\prime}\right|$, and, hence, $R^{\prime}=N_{G^{\prime \prime}}\left(I^{\prime}\right) \cup\{x, y\}$ and $\left|R^{\prime}\right|=\left|I^{\prime}\right|+1$, see Figure 4. Since $\sum_{u \in I^{\prime}} d_{G^{\prime}}(u)$ is a multiple of 3 , this implies that $x y$ is the only edge of G within R^{\prime}, that exactly one vertex in R^{\prime} has degree 2 in B, and that all remaining vertices of B have degree 3 in B, that is, the graph B is a bubble with some contact vertex z and partition $\left(I^{\prime}, R^{\prime}\right)$. Since each z_{i} has degree 1 in G^{\prime}, and B contains no vertex of degree less than 2 , we have $I^{\prime} \subseteq I_{0}$ and $R^{\prime} \subseteq R_{0}$, see Figure 4. By Lemma 1, we may assume that B is 2 -connected. Let $G^{\prime \prime \prime}=G^{\prime}-(V(B) \backslash\{z\})$. Let z^{\prime} be the neighbor of z outside of $V(B)$. Suppose, for a contradiction, that z^{\prime} lies in R_{0}. By the vertex degrees and the independence of I, for every $S \subseteq I_{0} \backslash I^{\prime}$, we have $\left|N_{G^{\prime \prime \prime}}(S)\right| \geq|S|$, and, in view of the edge $z z^{\prime}$, if $N_{G^{\prime \prime \prime}}(S)$ contains z^{\prime}, then $\left|N_{G^{\prime \prime \prime}}(S)\right|>|S|$, which implies $\left|N_{G^{\prime \prime \prime}-z^{\prime}}(S)\right| \geq|S|$. By Hall's theorem, the graph $G^{\prime \prime \prime}-z^{\prime}$ has a matching saturating I_{0}, which, by Lemma 1 together with the edge $z z^{\prime}$, maximum matchings in each $G\left[V_{i}\right]-z_{i}$, and a maximum matching in $B-z$ yields a matching of size more than $|I|=\alpha(G)=\mu(G)$, which is a contradiction. Hence, $z^{\prime} \in I$. Now, the set $V(B)$ can be added to the collection V_{1}, \ldots, V_{ℓ}, contradicting its maximality, which completes the proof.

For a given connected cubic graph G, the constructive proofs of Lemma 1 and Theorem 22 easily allow to design an efficient algorithm that decides whether $\alpha(G)=\mu(G)$, and, that returns the partition of $V(G)$ into the sets $V_{0}, V_{1}, \ldots, V_{\ell}$ in this case. It remains an open problem to characterize the extremal k-regular graphs for every k at least 4 ; it might even be the case that these graphs are NP-hard to recognize.

Acknowledgment We thank Yair Caro, Randy Davila, and Ryan Pepper for valuable discussion and for sharing their many crucial examples of extremal graphs.

References

[1] Y. Caro, R. Davila, and R. Pepper, New results relating independence and matchings, arXiv:1909.09093.
[2] P. Hall, On representatives of subsets, Journal of the London Mathematical Society 10 (1935) 26-30.
[3] D. König, Graphen und Matrizen, Matematikai és Fizikai Lapok 38 (1931) 116-119.

