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Abstract

Caro, Davila, and Pepper recently proved δ(G)α(G) ≤ ∆(G)µ(G) for every
graph G with minimum degree δ(G), maximum degree ∆(G), independence num-
ber α(G), and matching number µ(G). Answering some problems they posed, we
characterize the extremal graphs for δ(G) < ∆(G) as well as for δ(G) = ∆(G) = 3.
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1 Introduction

We consider finite, simple, and undirected graphs, and use standard terminology. Re-
cently, Caro, Davila, and Pepper [1] proved the inequality

δ(G)α(G) ≤ ∆(G)µ(G)

for every graph G with minimum degree δ(G), maximum degree ∆(G), independence
number α(G), and matching number µ(G). As an open problem they asked for the
characterization of the extremal graphs, that is, those graphs that satisfy this inequality
with equality. In particular, they asked for the characterization of the cubic graphs G with
α(G) = µ(G). In the present note, we give a simple proof of the above inequality, which
allows to characterize the non-regular extremal graphs. Furthermore, we characterize the
cubic extremal graphs.

2 Results

For positive integers δ and ∆ with δ < ∆, a bipartite graph is (δ,∆)-regular if it has a
bipartition with partite sets A and B such that every vertex in A has degree δ and every
vertex in B has degree ∆.

Theorem 1. If G is a graph with minimum degree δ and maximum degree ∆, then

δα(G) ≤ ∆µ(G). (1)

Furthermore, if δ < ∆, then equality holds in (1) if and only if G is bipartite and (δ,∆)-
regular.
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Proof. Let I be a maximum independent set in G. Let R = V (G) \ I, and let H be the
bipartite spanning subgraph of G that contains all edges of G between I and R. Let M
be a maximum matching in H , and let U be a minimum vertex cover in H . See Figure 1
for an illustration.
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Figure 1: The partition into I and R. The vertical edges form the matching M , and the
encircled vertices form the vertex cover U .

Since G is bipartite, König’s theorem [3] implies that µ(H) = |M | = |U |, and that
U intersects each edge in M in exactly one vertex. Let m be the number of edges of H
between I \ U and U ∩ R. Since each edge leaving I \ U enters U ∩ R, we obtain, for
k = |I ∩ U |, that

δ(α(G)− k) = δ|I \ U | ≤ m ≤ ∆|U ∩R| = ∆(µ(H)− k) ≤ ∆(µ(G)− k). (2)

This implies

δα(G) ≤ δα(G) + (∆− δ)k ≤ ∆µ(H) ≤ ∆µ(G), (3)

that is, the inequality (1) follows.
We proceed to the characterization of the graphs G that satisfy δα(G) = ∆µ(G) for

δ < ∆. Since α(G) and µ(G) are additive with respect to the components, it suffices to
characterize the connected graphs. If G is bipartite and (δ,∆)-regular, and has partite
sets A and B as above, then Hall’s theorem [2] and König’s theorem imply that µ(G) =
|B|, and that α(G) = n − µ(G) = |A|. Furthermore, the number of edges of G equals
δ|A| = δα(G) and ∆|B| = ∆µ(G), that is, δα(G) = ∆µ(G). Now, let G be a connected
graph with δα(G) = ∆µ(G). If H , M , U , m, and k are as above, then equality holds
throughout (2) and (3). This implies that k = 0 and δ|I \ U | = m = ∆|U ∩ R|, which
implies that G[(I \ U) ∪ (U ∩ R)] is a non-empty bipartite graph, where every vertex in
I \ U has degree δ and every vertex in U ∩ R has degree ∆. Since all edges in G leaving
I \U enter U∩R, this implies that no edge of G has only one endpoint in (I \U)∪(U∩R).
Since G is connected, this implies that G equals G[(I \ U) ∪ (U ∩ R)], that is bipartite
and (δ,∆)-regular. This completes the proof.

Note that all cycles satisfy (1) with equality, in particular, there are non-bipartite
extremal graphs. For higher degrees of regularity, that is, for δ = ∆ ≥ 3, the extremal
graphs have a richer structure, which we elucidate for δ = ∆ = 3. A graph G is a bubble
with contact vertex z and partition (I, R) if the vertex set of G can be partitioned into
two sets I and R such that

• every vertex in V (G) \ {z} has degree 3 and z has degree 2,

• I is independent, and

• z lies in R and G[R] contains exactly one edge.

Since a bubble G has degree sequence 3, . . . , 3, 2, it is not bipartite. Counting the edges
of G implies that |R| = |I|+ 1, and, hence, |I| = (n(G)− 1)/2. Figure 2 illustrates some
connected bubbles.
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Figure 2: Four connected bubbles; the contact vertices are the topmost vertices, the
encircled vertices form the sets I, and the rightmost bubble illustrates that a bubble may
properly contain a smaller bubble.

Lemma 1. If G is a bubble with contact vertex z and partition (I, R), then

α(G) = α(G− z) = µ(G) = µ(G− z) = (n(G)− 1)/2.

Furthermore, if G is not 2-connected, then some proper induced subgraph G′ of G is also
a bubble with partition (I ′, R′) such that I ′ ⊆ I and R′ ⊆ R.

Proof. Let p = (n(G) − 1)/2, and let xy be the unique edge of G[R]. Note that z may
coincide with x or y.

Since every matching M of G either contains xy and at most |R| − 2 further edges
incident with the vertices in R \ {x, y} or does not contain xy and at most |I| edges
incident with the vertices in I, we have µ(G) ≤ |R| − 1 = |I| = p.

Let u be any vertex from {x, y, z}. For some set S ⊆ I, let T = NG(S). Since I is
independent, we obtain T ⊆ R, and the vertex degrees imply |T | ≥ |S|. Furthermore, if
T contains u, then the edge xy and the degree of z imply that |T | ≥ |S|+ 1. Altogether,
|NG−u(S)| = |T \{u}| ≥ |S| for every set S ⊆ I, and Hall’s Theorem implies the existence
of a matchingMu inG−u that saturates each vertex in I, in particular, µ(G) = µ(G−z) =
p.

Now, let J be a maximum independent set in G. If J does not contain x, then
Mx and the edges xy imply that |J | ≤ p. Similarly, if J does not contain y, then
|J | ≤ p, which implies α(G) ≤ p. Since I is an independent set of order p, we obtain that
α(G) = α(G− z) = p.

Finally, suppose that G is not 2-connected. If G is not connected, then the vertex
degrees easily imply that the component of G containing the edge xy is also a bubble
with a partition (I ′, R′) such that I ′ ⊆ I and R′ ⊆ R. Hence, we may assume that G
is connected but not 2-connected. Since G is subcubic, this implies that G has a bridge
uv. Let Gu and Gv be the components of G − uv containing u and v, respectively. Let
Iu = V (Gu) ∩ I, d1 =

∑
w∈Iu

dGu
(w), Ru = V (Gu) ∩ R, and d2 =

∑
w∈Ru

dGu
(w). If

u, v ∈ R, then uv is the unique edge xy in G[R], the graph Gu is a bipartite graph
with partite sets Iu and Ru, but d1 and d2 have different parities modulo 3, which is a
contradiction. Hence, by symmetry, we may assume that u ∈ R and v ∈ I. Since d1 is
a multiple of 3, it follows that the unique edge xy of G[R] lies within Ru, and that the
contact vertex of G does not lie Ru. Hence, Gu is a bubble with partition (Iu, Ru), which
completes the proof.
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A graph G is special if it is connected, cubic, and the vertex set of G can be partitioned
into sets V0, V1, . . . , Vℓ such that

• the graph G[V0] is a non-empty bipartite graph with partite sets I0 and R0 such
that every vertex in R0 has degree 3 in G[V0], and

• for every i in [ℓ], the graph G[Vi] is a 2-connected bubble with contact vertex zi.

Note that, since G is connected and V0 is non-empty, it follows that G[V0] is connected,
and that, for every i in [ℓ], the graph G contains a bridge between zi and some vertex in
I0. Since G is cubic, this implies ℓ =

∑
u∈I0

(3− dG[V0](u)). In particular, if ℓ = 0, then G
is bipartite. See Figure 3 for an illustration.
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Figure 3: A cubic graph G with α(G) = µ(G) = 10.

Theorem 2. A connected cubic graph G satisfies α(G) = µ(G) if and only if it is special.

Proof. First, we assume that G is special. For every i in {0}∪ [ℓ], let Gi = G[Vi]. Let the
partite sets I0 and R0 of G0 be as above. For every i in [ℓ], let the bubble Gi have partition
(Ii, Ri). Let I = I0 ∪ I1 ∪ . . . ∪ Iℓ and R = R0 ∪ R1 ∪ . . . ∪ Rℓ. Since α(Gi) = α(Gi − zi)
for every i in [ℓ], we have α(G) = α(G0) +

∑
ℓ

i=1 α(Gi). By the vertex degrees, we have
|NG0

(S)| ≥ |S| for every set S ⊆ R0, which implies α(G0) = |I0|. Together with Lemma
1, we obtain α(G) = |I0| +

∑
ℓ

i=1(n(Gi) − 1)/2. Now, let M be a maximum matching in
G. By Lemma 1, the set M contains at most (n(Gi)− 1)/2 edges of Gi for every i in [ℓ],
which implies µ(G) ≤ µ(G′) +

∑
ℓ

i=1(n(Gi)− 1)/2, where G′ = G[V0 ∪ {z1, . . . , zℓ}]. Since
G′ is bipartite with partite sets I0 and R0 ∪ {z1, . . . , zℓ}, we obtain

|I0|+

ℓ∑

i=1

n(Gi)− 1

2
= α(G)

(1)
≤ µ(G) ≤ |I0|+

ℓ∑

i=1

n(Gi)− 1

2
,

in particular, α(G) = µ(G).
Now, let G be a connected cubic graph with α(G) = µ(G). Let I be a maximum

independent set in G, and let R = V (G) \ I. Let V1, . . . , Vℓ be a maximal collection of
disjoint sets of vertices of G such that, for every i in [ℓ], the graph G[Vi] is a 2-connected
bubble with contact vertex zi and partition (Ii, Ri), where Ii ⊆ I and Ri ⊆ R, and
the unique neighbor of zi outside of Vi belongs to I. Let I0 = I \ (I1 ∪ . . . ∪ Iℓ) and
R0 = R \ (R1 ∪ . . . ∪ Rℓ). If R0 is an independent set, then G is special. Therefore,
for a contradiction, we may assume that xy is an edge of G with x, y ∈ R0. Let G′ =
G−

⋃
i∈[ℓ](Vi \ {zi}), and let G′′ = G′ − {x, y}. See Figure 4 for an illustration.

I ′I0

R0 R′
r r
x y

I

R rr
z1 zℓ

· · ·

Figure 4: The graph G′; removing from G′ the vertices x and y yields G′′ while removing
from G′ all vertices from the bubble B except for its contact vertex yields G′′′.
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If G′′ contains a matching M0 that saturates I0, then, by Lemma 1, the union of {xy},
the matching M0, and maximum matchings in each G[Vi] − zi yields a matching of size
more than |I| = α(G) = µ(G), which is a contradiction. Hence, by Hall’s theorem, there
is a set I ′ ⊆ I0 with |NG′′(I ′)| < |I ′|. Let R′ = NG′(I ′), and let B = G[I ′ ∪ R′]. By
the vertex degrees, the independence of I, and the edge xy, we obtain |R′| > |I ′|, and,
hence, R′ = NG′′(I ′) ∪ {x, y} and |R′| = |I ′| + 1, see Figure 4. Since

∑
u∈I′

dG′(u) is a
multiple of 3, this implies that xy is the only edge of G within R′, that exactly one vertex
in R′ has degree 2 in B, and that all remaining vertices of B have degree 3 in B, that
is, the graph B is a bubble with some contact vertex z and partition (I ′, R′). Since each
zi has degree 1 in G′, and B contains no vertex of degree less than 2, we have I ′ ⊆ I0
and R′ ⊆ R0, see Figure 4. By Lemma 1, we may assume that B is 2-connected. Let
G′′′ = G′ − (V (B) \ {z}). Let z′ be the neighbor of z outside of V (B). Suppose, for
a contradiction, that z′ lies in R0. By the vertex degrees and the independence of I,
for every S ⊆ I0 \ I ′, we have |NG′′′(S)| ≥ |S|, and, in view of the edge zz′, if NG′′′(S)
contains z′, then |NG′′′(S)| > |S|, which implies |NG′′′−z′(S)| ≥ |S|. By Hall’s theorem,
the graph G′′′ − z′ has a matching saturating I0, which, by Lemma 1, together with the
edge zz′, maximum matchings in each G[Vi] − zi, and a maximum matching in B − z
yields a matching of size more than |I| = α(G) = µ(G), which is a contradiction. Hence,
z′ ∈ I. Now, the set V (B) can be added to the collection V1, . . . , Vℓ, contradicting its
maximality, which completes the proof.

For a given connected cubic graph G, the constructive proofs of Lemma 1 and Theorem
2 easily allow to design an efficient algorithm that decides whether α(G) = µ(G), and,
that returns the partition of V (G) into the sets V0, V1, . . . , Vℓ in this case. It remains an
open problem to characterize the extremal k-regular graphs for every k at least 4; it might
even be the case that these graphs are NP-hard to recognize.

Acknowledgment We thank Yair Caro, Randy Davila, and Ryan Pepper for valuable
discussion and for sharing their many crucial examples of extremal graphs.
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