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Abstract

The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called

reduced if it has no isolated vertices and no two vertices with the same set of neighbors.

A reduced graph G is said to be maximal if any reduced graph containing G as a proper

induced subgraph has a higher rank. The main intent of this paper is to present some results

on maximal graphs. First, we introduce a characterization of maximal trees (a reduced tree

is a maximal tree if it is not a proper subtree of a reduced tree with the same rank). Next,

we give a near-complete characterization of maximal ‘generalized friendship graphs.’ Finally,

we present an enumeration of all maximal graphs with ranks 8 and 9. The ranks up to 7

were already done by Lepović (1990), Ellingham (1993), and Lazić (2010).
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1 Introduction

Let G be a simple graph with vertex set {v1, . . . , vn}. The adjacency matrix of G is an n × n

matrix A(G) whose (i, j)-entry is 1 if vi is adjacent to vj and 0 otherwise. The number of vertices

∗Corresponding author
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of G is the order of G. The rank of G, denoted by rank(G), is the rank of A(G). We say that

G is reduced if it has no isolated vertex and no two vertices with the same set of neighbors. In

the literature, reduced graphs are also known as canonical graphs [9, 10, 12, 13]. There are only

finitely many reduced graphs of rank r since the order of such graphs are at most 2r−1 [1, 3]. A

natural question is: what is the maximum order of a reduced graph with a given rank r. Kotlov

and Lovász [8] answered this question asymptotically. They proved that the maximum order of

such graph is O(2r/2). Later on, Akbari, Cameron, and Khosrovshahi [1] made the following

conjecture on the exact value of the maximum order.

Conjecture 1. For every integer r > 2, the maximum order of any reduced graph of rank r is

equal to

n(r) =

{

2 · 2r/2 − 2 if r is even,

5 · 2(r−3)/2 − 2 if r > 1 is odd.

Ghorbani, Mohammadian, and Tayfeh-Rezaie [5] showed that if Conjecture 1 is not true,

then there would be a counterexample of rank at most 47. They also showed that the order

of every reduced graph of rank r is at most 8n(r) + 14. The maximum order of graphs with a

fixed rank within the families of trees, bipartite graphs and triangle-free graphs were determined

[4, 6].

In this paper, we consider maximal graphs with respect to rank. A reduced graph G is called

maximal if it is not a proper induced subgraph of a reduced graph with the same rank as G. In

other words, G is maximal if for any reduced graph H such that G is obtained by removing a

vertex form H, one has rank(H) > rank(G). Note that the graphs attaining the maximum order

in Conjecture 1 would be necessarily maximal. Maximal graphs can also be considered within a

specific family of graphs. Let F be a given family of graphs. A reduced graph G ∈ F is called

maximal within F if for any reduced graph H ∈ F such that G is obtained by removing a vertex

form H, we have rank(H) > rank(G). In the classification of graphs with respect to the rank,

maximal graphs are central objects, since any reduced graph of rank r is an induced subgraph

of a maximal graph with rank r. This remains valid for maximal graphs within a specific family

of graphs. In the paper, we consider both maximal graphs in its general sense (in Sections 3

and 4) and maximal graphs within the family of trees (in Section 2).

In [4], a characterization of maximal trees (i.e. maximal graphs within the family of trees) is

reported. In Section 2, we show that the characterization of [4] is not exhaustive and we present

a complete characterization of maximal trees. In fact, there is one more construction of such

trees which is missing in [4]. Ellingham [3] presented some families of maximal graphs and char-

acterized maximal friendship graphs. In Section 3, we present a near-complete characterization

of maximal ‘generalized friendship graphs.’ All maximal graphs of rank up to 7 were presented

in [3] and independently in [12, 13, 10, 9]. We continue this line of work by constructing all

maximal graphs of rank 8 and 9. A report on this construction is given in Section 4.
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Figure 1: A maximal tree which is not obtained by (i) or (ii).

2 Maximal trees

A vertex with degree one is called pendant. A vertex adjacent to a pendant vertex is said to

be pre-pendant. A tree is reduced if it has no two pendant vertices with the same neighbor.

A maximal tree is a tree which is maximal within the family of trees, i.e. it is not a proper

subgraph of a reduced tree with the same rank.

In [4], a characterization of maximal trees was reported as follows: every maximal tree T of

rank r > 4 is obtained from a maximal tree T ′ of rank r − 2 in one of the following two ways:

(i) attaching a vertex of a P2 to a vertex of T ′ of rank r − 2 which is neither pendant nor

pre-pendant;

(ii) attaching a pendant vertex of a P3 to a pre-pendant vertex of T ′ with rank r − 2;

where Pn denotes the path graph of order n. We claim that the above characterization is not

exhaustive. To see this, consider the tree T of Figure 1. For any given real numbers α, β, the

vector shown on the vertices of T forms a null vector of A(T ). (Observe that the components

of the given vector on the neighbors of every vertex sum up to 0.) In fact any null vector of

A(T ) has this form and thus by Lemma 4 (below), T is a maximal tree. Note that T cannot be

obtained by (i). However, it can be obtained by attaching a pendant vertex of a P3 to a pre-

pendant vertex of some tree T ′ which is not maximal. This means that T cannot be constructed

by (i) nor by (ii).

In this section, we show that there is one more construction which completes the character-

ization of maximal trees given in [4].

We denote the column space and the null space of a matrix M by Col(M) and Nul(M),

respectively. A vertex v of a graph G is called a null vertex if for every x ∈ Nul(A(G)), the

corresponding component to v is zero. Note that a pre-pendant vertex is always a null vertex.

If S is a subset of vertices of G, we denote the graph obtained by removing the vertices of S

from G by G− S. For simplicity, we use G− v for G− {v}. We denote the degree of a vertex v

in a graph G by dG(v), or by d(v).

The following lemma is well-known and easy to verify.

Lemma 2. Let G be a graph and u be a pendant vertex of G with the neighbor v. Then

rank(G) = rank(G− {u, v}) + 2.
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From Lemma 2 and induction, the following fact can be deduced.

Lemma 3. The rank of any tree is twice its matching number.

The following lemma gives a characterization of maximal trees in terms of null vertices.

Lemma 4 ([4]). A reduced tree T is maximal if and only if for every vertex v which is not

pre-pendant, rank(T ) = rank(T − v); or equivalently, v is a null vertex if and only if it is

pre-pendant.

Now, we present the main result of this section on the characterization of maximal trees.

Theorem 5. Every maximal tree T of rank r > 4 is obtained from a maximal tree T ′ of a

smaller rank in one of the following three ways:

(i) attaching a vertex of a P2 to a vertex of T ′ with rank r − 2 which is neither pendant nor

pre-pendant;

(ii) attaching a pendant vertex of a P3 to a pre-pendant vertex of T ′ with rank r − 2;

(iii) attaching a pre-pendant vertex of a P5 to a pre-pendant vertex of T ′ with rank r − 4 for

r > 8.

Proof. We first show that any tree resulting from (i)–(iii) is maximal. Let T ′ be a maximal tree

and T is obtained by attaching a vertex v1 of a P2 to a vertex u of T ′. Let v2 be the other vertex

of P2. In view of Lemma 2, dimNul(A(T )) = dimNul(A(T ′)). We see that any x′ ∈ Nul(A(T ′))

can be extended to a x ∈ Nul(A(T )) by defining x(v1) = 0 and x(v2) = −x′(u). It follows that,

besides v1, all other null vertices and also pre-pendant vertices of T and of T ′ coincide. So by

Lemma 4, T is maximal.

Next, let T be obtained by (ii) from T ′. Suppose that v1, v2, v3 are the vertices of a P3, where

v1 is attached to a pre-pendant vertex u of T ′ and u′ is the pendant neighbor of u. From Lemma 2

it follows that rank(T ) = rank(T ′) + 2 which means dimNul(A(T )) = dimNul(A(T ′)) + 1. Let

{x′
1, . . . ,x

′
s−1} be a basis for Nul(A(T ′)). We introduce a basis {x1, . . . ,xs} for Nul(A(T )) as

follows. For 1 6 i 6 s − 1, we extend x′

i to xi ∈ Nul(A(T )) by defining xi(v1) = xi(v2) =

xi(v3) = 0. Further, let xs to be zero on V (T ′ − u′), xs(u
′) = −xs(v1) = xs(v3) = 1 and

xs(v2) = 0. In view of Lemma 4, it turns out that T is a maximal tree. The argument for (iii)

is similar to (ii).

Now, let T be a maximal tree of rank r > 4 which is not obtained by (i). We prove that

T is obtained by (ii) or (iii). Note that the only reduced tree of rank > 4 and diameter 6 3

is P4 which is not maximal. So the diameter of T is at least 4. Consider a longest path P

in T and call its first five vertices from one end u, v, w, y, z, respectively. So u is a pendant

vertex and d(v) = 2. We claim that w is not a pre-pendant vertex. Otherwise, for any vector

x ∈ Nul(A(T )), we have x(w) = 0. Also, since the sum of the components of x corresponding

4



T ′
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Figure 2: The situation of T in Case (iii).

to the neighbors of v is zero, we have x(u) = 0 which is impossible by Lemma 4. This proves

the claim. Furthermore, if d(w) > 3, then by Lemmas 2 and 4, T − {u, v} would be a maximal

tree of rank r − 2 (since Nul(A(T − {u, v})) can be obtained by the restriction of the vectors

of Nul(A(T )) to T − {u, v}) which contradicts the assumption on T . Thus d(w) = 2. We show

that T ′ = T − {u, v, w} is a reduced tree of rank r− 2. Applying Lemmas 2 and 4, we find that

rank(T ′) = rank(T − u)− 2 = r − 2. To prove that T ′ is reduced, it suffices to show that y is a

pre-pendant vertex in T . Let M be a maximum matching of T . If y is not covered by M , then

wy 6∈ M . It turns out that (M \ {vw}) ∪ {uv,wy} is a matching of T with larger size than M

which in turn implies that y is covered by every maximum matching of T , and so by Lemma 3,

rank(T − y) = r − 2. From Lemma 4, it follows that y is a pre-pendant vertex of T , as desired.

Hence T ′ is reduced. If T ′ is a maximal tree, then T is obtained by (ii). Now, suppose that T ′

is not a maximal tree. Let p be the pendant neighbor of y. Recall that z is also a neighbor of

y. We show that

(a) p is the only null vertex of T ′ which is not pre-pendant;

(b) z is a pre-pendant vertex of T ′;

(c) dT ′(y) = 2;

(d) T ′′ = T ′ − {y, p} is a maximal tree of rank r − 4.

The claimed conditions is demonstrated in Figure 2. From (a)–(d) it follows that T is obtained

by (iii). So the proof will be completed by verifying (a)–(d) as follows.

(a) As T ′ is not maximal, in view of Lemma 4, T ′ has at least one non-pre-pendant null vertex.

Suppose that q 6= p is a null vertex of T ′ which is not pre-pendant. Let {x′
1, . . . ,x

′
s−1} be

a basis for the null space of A(T ′). We introduce a basis {x1, . . . ,xs} for the null space

of A(T ) as follows. For 1 6 i 6 s − 1, we let xi(a) = x′

i(a) for every a ∈ V (T ′) and we

set xi(u) = xi(v) = xi(w) = 0. Moreover, let xs be zero on V (T ′ − p), xs(u) = −xs(w) =

xs(p) = 1, and xs(v) = 0. All x1, . . . ,xs are zero on q which means that q is a non-pre-

pendant null vertex for T which is a contradiction by Lemma 4. Therefore, p is a unique

non-pre-pendant null vertex of T ′.

(b) We claim that all the neighbors of y, excluding p, are pre-pendant. To obtain a contra-

diction, let h be a non-pre-pendant neighbor of y. Since p is the only non-pre-pendant
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null vertex of T ′, h is not a null vertex and thus there is a vector x ∈ Nul(A(T ′)) such

that x(h) 6= 0. Let T ′′ be the connected component of T ′ − y containing h. We define the

vector y on V (T ) such that y(a) = 2x(a) for a ∈ V (T ′′), y(p) = −x(h), and y(b) = x(b)

for the remaining vertices b of T ′. Clearly, y belongs to Nul(A(T ′)) with y(p) 6= 0. So p

is not a null vertex which is a contradiction. Therefore, excluding p all the neighbors of y

(including z) are pre-pendant.

(c) We establish this claim by a contradiction. Assume that dT ′(y) = k > 3, and T ′
1, . . . , T

′

k

are the components of T ′ − y. If for at least two j’s, T ′

j contains a vertex in distance > 4

from y, then we have a path longer than P in T which is a contradiction. So, for some j,

any pendant vertex q of T ′

j have distance ℓ 6 3 from y. If ℓ = 3, let Q = qq1q2y be the

path between q and y. The vertex q1 is pre-pendant and thus a null vertex. The vertex q2

is a neighbor of y and by (b), it is pre-pendant and hence a null vertex. Now, since Q is

a longest path between a vertex of T ′

j and y, we have dT (q1) = 2. As the two neighbors

of q are null, it follows that q is also null which is a contradiction. If ℓ = 2, then we

consider Q = qq1y. Since y is a pre-pendant vertex, y is a null vertex. Similarly, we have

dT (q1) = 2. Thus q is a null vertex which is a contradiction. It turns out that k = 2.

(d) Lemma 2 implies that rank(T ′′) = r − 4. As y and p are null vertices of T ′, Nul(A(T ′′))

can be obtained by the restriction of any vector of Nul(A(T ′)) to T ′′. From (a), it follows

that every non-pre-pendant vertex of T ′′ is not a null vertex and so by Lemma 4, T ′′ is a

maximal tree.

The proof is now complete.

For an illustration of how maximal trees with rank up to 8 can be constructed by Theorem 5,

see Table 2.

3 Maximal generalized friendship graphs

Ellingham [3] constructed three families of maximal graphs. One of these, was the family of

friendship graphs F = F (n) defined by

V (F ) = {a, b1, . . . , bn, c1, . . . , cn},
E(F ) = {abi, aci, bici | 1 6 i 6 n}.

We extend this family to the generalized friendship graphs, denoted by F (k,m), which are the

graphs obtained by adding a vertex to m disjoint copies of the complete graph Kk, and joining

it to all the vertices of the copies of Kk. The resulting graph has mk + 1 vertices. The special

case F (2,m) is the friendship graph. Also F (1,m) is the star with m edges which is not reduced

and thus is not a maximal graph. Ellingham proved that:

6



Rank Maximal trees

2

4

6

8

Table 1: Maximal trees up to rank 8 and their recursive constructions by Theorem 5; the white

vertices demonstrate the paths P2, P3, and P5.

Theorem 6 ([3]). The graph F (2,m) is maximal if and only if m is a square-free integer.

Our goal in this section is to extend this result to the generalized friendship graphs. We

start with the following useful lemma.

Lemma 7 ([2]). Let B be a symmetric matrix and

A =













B y

y⊤ b













.

(i) If y 6∈ Col(B), then rank(A) = rank(B) + 2.

(ii) If y ∈ Col(B) with Bx = y and b 6= y⊤x, then rank(A) = rank(B) + 1.

(iii) If y ∈ Col(B) with Bx = y and b = y⊤x, then rank(A) = rank(B).

Theorem 8. Let k > 2 and m > 1. If mk or mk/2 is a square-free integer, then F (k,m) is a

maximal graph.
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Proof. We fix k > 2 and m > 1. Let A be the adjacency matrix of F (k,m). We write A as

A =



















0 1⊤k 1⊤k · · · 1⊤k
1k Jk − Ik O · · · O

1k O Jk − Ik · · · O
...

...
. . .

...

1k O O · · · Jk − Ik



















,

where Jk is the all 1’s k × k matrix and 1k is the all 1’s vector of length k. (We remove the

subscript k in what follows as it is clear from the context.) It is straightforward to see that A

is invertible with

A−1 =
1

d























−a2 a1⊤ a1⊤ a1⊤ · · · a1⊤

a1 bJ − dI −J −J · · · −J

a1 −J bJ − dI −J · · · −J

a1 −J −J bJ − dI · · · −J
...

...
...

. . .
...

a1 −J −J −J · · · bJ − dI























,

where a = k − 1, b = mk − 1, and d = mk(k − 1).

Let y ∈ Col(A) be a (0, 1)-vector with Ax = y and x⊤Ax = 0. We show that y = 0 or y

is a column of A. This, in view of Lemma 7, implies that F (k,m) is a maximal graph. Let us

partition x and y as

x =













x0

x1

...

xm













and y =













y0

y1

...

ym













,

where x1, . . . ,xm, y1, . . . ,ym are vectors of length k. Let γi be the number of 1’s in yi, that is

γi = y⊤

i 1, and thus y⊤

i Jyj = γiγj. We have

0 = dx⊤Ax

= dy⊤A−1y

= −a2y20 + 2ay0

m
∑

i=1

y⊤

i 1+

m
∑

i=1

y⊤

i (bJ − dI)yi − 2
∑

16i<j6m

y⊤

i Jyj

= −(k − 1)2y20 + 2(k − 1)y0

m
∑

i=1

γi +
m
∑

i=1

(

(mk − 1)γ2i −mk(k − 1)γi
)

− 2
∑

16i<j6m

γiγj.

Therefore,

− (k − 1)2y20 +
m
∑

i=1

(

mkγ2i −mk(k − 1)γi + 2(k − 1)y0γi
)

−
(

m
∑

i=1

γi

)2

= 0. (1)
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First, assume that y0 = 0. Let

ℓ =
m
∑

i=1

γi.

Then from (1) it follows that

mk

(

m
∑

i=1

γ2i − (k − 1)ℓ

)

− ℓ2 = 0. (2)

We claim that mk | ℓ. From (2), it is seen that mk | ℓ2. Now, if mk is square-free, then we

must have mk | ℓ and we are done. So let mk be even with mk/2 square-free. If 4 ∤ mk, then

mk is square-free and again we are done. Hence we can assume that 4 | mk. Thus 8 ∤ mk

since mk/2 is square-free. Assume that mk = 4n0. From (2), we have n0 | ℓ2, and since n0 is

square-free, n0 | ℓ. From (2), it is clear that ℓ is even. It turns out that
∑m

i=1 γ
2
i is also even.

Hence the first term of (2) is divisible by 8, and so 8 | ℓ2. This yields 4 | ℓ which in turn implies

that mk = 4n0 | ℓ, and the claim follows. Note that γi 6 k for i = 1, . . . ,m and thus ℓ 6 mk.

Hence ℓ = 0 or ℓ = mk. If ℓ = 0, then y = 0. If ℓ = mk, then γ1 = · · · = γm = k, and so

y1 = · · · = ym = 1, which means that y is the first column of A.

Next, assume that y0 = 1. From (1) it follows that

mk

(

m
∑

i=1

γ2i − (k − 1)ℓ

)

− (ℓ− (k − 1))2 = 0. (3)

It is clear that mk | (ℓ− (k− 1))2. If mk is square-free, then mk | ℓ− (k− 1). If mk is even with

mk/2 square-free, then, as in the previous case, we may suppose that mk = 4n0 for some odd

integer n0. From (3), it is seen that ℓ− (k−1) is even. It follows that either both ℓ and k−1 are

even or both are odd. As the parity of
∑m

i=1 γ
2
i and ℓ are the same, we see that

∑m
i=1 γ

2
i −(k−1)ℓ

is also even. Hence from (3) we have that 8 | (ℓ − (k − 1))2 and so 4 | ℓ − (k − 1). Therefore,

mk = 4n0 | ℓ− (k − 1). Since ℓ− (k − 1) < mk, it follows that ℓ = k − 1. Plugging in this into

(3), we obtain
m
∑

i=1

γ2i = (k − 1)2 =

(

m
∑

i=1

γi

)2

.

This is only possible if exactly one of γi’s is k − 1 and the rest are zero. Consequently, exactly

one of the yi’s is a column of J − I, and the rest are 0. This means that y is the i-th column

of A for some 2 6 i 6 mk + 1.

Now, we consider the converse of Theorem 8 which holds for k = 2 by Theorem 6. We prove

it for k = 3 in the following theorem. The case k > 4 will be discussed afterwards.

Theorem 9. The graph F (3,m) is maximal if and only if 3m or 3m/2 is a square-free integer.

Proof. If 3m is square-free or m is even with 3m/2 square-free, by Theorem 8, F (3,m) is maxi-

mal. The remaining values of m are those divisible by 3, by 8, or by a square of an odd integer.
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We show that for these values of m, F (3,m) is not maximal. In view of Lemma 7, proving that

F (3,m) is not maximal amounts to finding a (0, 1)-vector y ∈ Col(A) with y⊤A−1y = 0 such

that y is neither 0 nor a column of A. Since A is invertible, any y belongs to Col(A). To have

y⊤A−1y = 0, it suffices to find a solution for (1), equivalently for (2) if y0 = 0 or for (3) if

y0 = 1. Note that the columns of A provide solutions for (1) with y0 = 1 and exactly one of

γ1, . . . , γm is equal to 2 and the rest to 0 or y0 = 0, and γ1 = · · · = γm = 3. To complete the

proof, we find non-zero solutions other than those coming from the columns of A.

For m = 3 and y0 = 1, γ1 = 3, γ2 = γ3 = 1 satisfies (3). In our solutions for other values of

m, y0 = 0. So we consider (2) with k = 3. Note that 0 6 γi 6 3. To simplify (2), let ar be the

number of γi, 1 6 i 6 m, which are equal to r for r = 0, 1, 2, 3. Therefore, we may write (2) as

3m(a1 + 4a2 + 9a3)− 6m(a1 + 2a2 + 3a3)− (a1 + 2a2 + 3a3)
2 = 0. (4)

We observe that

if (m,a1, a2, a3) is a sulotion to (4), then so is (mb, a1b, a2b, a3b) for any b > 1. (5)

m a1 a2 a3

6 1 1 3

8 3 0 3

6t− 3 t− 2 t+ 1 t− 1

(2t+ 1)2 3t 0 4t2 + t

Table 2: Some solutions to Equation (4)

If m > 3 is divisible by 3, then m = 6t for t > 1 or m = 6t − 3 for t > 2. For m = 6,

a solution to (4) is given in Table 2. This together with (5) gives a solution for any m = 6t.

For m = 6t − 3 with t > 2, a solution to (4) is given in Table 2. If m = 8t, then a solution is

obtained by the solution for m = 8 given in Table 2 and employing (5). If m is a multiple of a

square of odd integer (2t+ 1)2, again a solution is obtained from Table 2 and (5).

Finally, we show that if m is large enough in terms of k, then the converse of Theorem 8

holds, that is there are no maximal graphs F (k,m) besides those given in Theorem 8.

Theorem 10. Let k > 2 and m > 1. If mk is divisible by a square of an odd integer or divisible

by 8, and m >
(5k2−19k+20)2

4k , then F (k,m) is not maximal.

Proof. For k = 2, 3, the result follows from Theorems 6 and 9. So we assume that k > 4.

Similar to the proof of Theorem 9, our goal is to find solutions to (2) with y0 = 0. Note that

columns of A provide the (trivial) solution γ1 = · · · = γm = k to (2). To complete the proof, we

find non-zero solutions other than this trivial one.
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By the assumption, we may write mk = cq2 for some positive integers c, q, where either q

is odd, or q = 2 and c is even. This in turn implies that whenever mk is even, then c is also

even. If (γ1, . . . , γm) is a solution to (2), then mk divides ℓ2. So we will look for a solution with

ℓ = cq. We observe that if (γ1, . . . , γm) satisfies

m
∑

i=1

γi = cq,

m
∑

i=1

γ2i = (k − 1)cq + c,

then it is a solution for (2). We will show that there is a solution containing only 0’s, 1’s, 2’s,

(k − 1)’s, and k’s, i.e.

{

u+ 2v + (k − 1)w + kt = cq,

u+ 4v + (k − 1)2w + k2t = (k − 1)cq + c,
(6)

where u, v, w, t are the multiplicities of 1’s, 2’s, (k − 1)’s, k’s, respectively. Solving (6) in w and

t, yields

w :=
c(q − 1)− (k − 1)u− 2(k − 2)v

k − 1
, t :=

c+ (k − 2)u+ 2(k − 3)v

k
. (7)

It follows that (6) has an integer solution whenever

(k − 1) | c(q − 1)− (k − 1)u− 2(k − 2)v,

k | c+ (k − 2)u+ 2(k − 3)v,

that is
{

2v ≡ −c(q − 1) (mod k − 1),

2u+ 6v ≡ c (mod k).
(8)

If k is even, then, as noted above, c is also even. Therefore, we have the following solution

for (8):

v := −c(q − 1)

2
(mod k − 1), u :=

c

2
− 3v (mod k/2).

For odd k, either q is odd, or q = 2 in which case c is even. Hence c(q − 1)/2 is an integer and

c/2 exists mod k. Thus the following gives a solution for (8):

v := −c(q − 1)

2
(mod (k − 1)/2), u :=

c

2
− 3v (mod k).

From (7), it follows that t is always positive. Further, we have either

0 6 u 6 k/2− 1, 0 6 v 6 k − 2, or 0 6 u 6 k − 1, 0 6 v 6 (k − 3)/2. (9)

Hence (k− 1)u+2(k− 2)v is at most (k/2− 1)(5k − 9) for k > 4. It turns out that w > 0 since

c(q − 1)− (k − 1)u− 2(k − 2)v >

(√
mk − 1

)

− (k/2 − 1)(5k − 9) > 0,

11



where the last inequality holds for m >
(5k2−19k+20)2

4k . It remains to verify that u+v+w+t < m:

from the first equation of (6),

w + t <
cq

k − 1
=

mk

q(k − 1)
6

mk

2(k − 1)
6

2m

3
,

and from (9),

u+ v 6
3k − 5

2
<

m

3
.

Consequently, we obtain a solution of (2) different from the trivial one.

We expect that the condition on m in Theorem 10 can be improved by considering solutions

of (3). However, it cannot be removed completely. As a matter of fact, in many cases, the

assertion does not hold when m is small. By a computer search, we found all the solutions of

(2) and (3) for k 6 15,m 6 100. As a result, we come up with several couples (m,k) such that

mk is divisible by 8 or by a square of an odd integer but F (k,m) is maximal; see Table 3.

k m

4 2

5 —

6 3, 4

7 8, 9

8 2, 3, 4, 5, 9

9 2, 3, 5, 6, 7, 8

k m

10 4, 5, 8, 9

11 8, 9, 16, 18

12 2, 3, 4, 6, 8, 9, 10

13 8, 9, 16, 18

14 4, 8, 9, 12, 16, 18

15 3, 5, 6, 8, 9, 10, 12, 16, 18

Table 3: The list of k 6 15,m 6 100 such that mk is divisible by 8 or by a square of an odd

integer yet F (k,m) is maximal

In the next theorem, under certain conditions, we prove the fact suggested by Table 3 for

m 6 12.

Theorem 11. If mk = 8q with m 6 12, k > 11, and q a square-free odd integer, then F (k,m)

is a maximal graph.

Proof. For k = 11, 12, the result follows from Table 3. So we may assume that k > 13. It suffices

to show that Equations (2) and (3) have no non-trivial solutions. We keep using the notation

of the proof of Theorem 8.

We first consider the solutions of (3). Let γ1, . . . , γm satisfies (3). Then mk | (ℓ − k + 1)2,

and since mk = 8q with q odd and square-free, we have that mk/2 | ℓ−k+1. Note that ℓ 6 mk,

and ℓ = k−1 only for the trivial solution of (3). It follows that ℓ = mk/2+k−1. Let ǫi = γi− k
2

12



for i = 1, . . . ,m. Then we see that

m
∑

i=1

ǫi = k − 1, (10)

m
∑

i=1

ǫ2i =
mk2

4
− mk

4
− k + 1. (11)

Since 0 6 γi 6 k, we have 0 6 |ǫi| 6 k/2. Let

|ǫ1|, . . . , |ǫb| 6
k

2
− 1, |ǫb+1| = · · · = |ǫm| = k

2
. (12)

From (11), it follows that b(k − 1) 6 mk/4 + k − 1 which implies that b 6
⌊

mk
4(k−1)

⌋

+ 1. Thus,

as k > 13, we have b 6 3 for m 6 11, and b 6 4 for m = 12.

First, let b = 1, that is ǫ2 = · · · = ǫm = ±k/2. Hence, ǫ2 + · · · + ǫm = jk/2 for some

integer j ≡ m − 1 (mod 2). It turns out that (10) holds only if ǫ1 = −1 or k/2 − 1. If

ǫ = −1, then j must be even which means that m must be odd. Now from (11), we have

1 + (m− 1)k2/4 = mk2/4−mk/4− k+1 which implies that k = m+4. So k must be odd and

so is mk, a contradiction. If ǫ = k/2− 1, then (11) cannot hold, again a contradiction.

Next, let b = 2. So, by (11),

ǫ21 + ǫ22 = k2/2−mk/4− k + 1. (13)

We claim that m must be even. Otherwise, k = 8q′ for some odd q′, and so the right hand side

of (13) is an odd integer. It also turns out that both ǫ1 and ǫ2 are integers: one odd and the

other one even. So −2mq′ +1 ≡ ǫ21 + ǫ22 ≡ 1, 5 (mod 8). This implies that m is even, as desired.

It follows that ǫ3+ · · ·+ ǫm = jk for some integer j. From (10), then it follows that ǫ1+ ǫ2 = −1

or k − 1. As ǫ1 and ǫ2 are at most k/2 − 1, the second option is not possible. So ǫ1 + ǫ2 = −1.

Assume that ǫ1 > ǫ2. If ǫ1 6 k/2 − 3, then ǫ2 > 2 − k/2, and thus ǫ21 + ǫ22 6 k2/2 − 5k + 13.

On the other hand, by (13) and since m 6 12, we have ǫ21 + ǫ22 > k2/2 − 4k + 1. So we must

have −4k + 1 6 −5k + 13 which does not hold for k > 13. It follows that ǫ1 = k/2 − 2 and

ǫ2 = 1− k/2, and so ǫ21 + ǫ22 = k2/2− 3k + 5. From (13), we have −2k + 5 = −mk/4 + 1 which

implies that k = q+2, that is k is odd. So 8 | m and thus m = 8 which leads to a contradiction.

Now, let b = 3, so m > 8. By (11),

ǫ21 + ǫ22 + ǫ23 = 3k2/4−mk/4− k + 1. (14)

From (10) and (12), we see that ǫ1 + ǫ2 + ǫ3 = jk/2 − 1 for some j ∈ {0,±1,±2}. If |ǫ1| =
|ǫ2| = |ǫ3| = k/2− 1, then ǫ21 + ǫ22 + ǫ23 = 3k2/4− 3k+3. So −2k+3 = −mk/4 + 1 6 −2k+1, a

contradiction. It turns out that at least two of the |ǫ1|, |ǫ2|, |ǫ3| are less than k/2− 1. So

ǫ21 + ǫ22 + ǫ23 6 (k/2 − 1)2 + 2(k/2 − 2)2 = 3k2/4− 5k + 9.

As m 6 12, the right hand side of (14) is at least 3k2/2−4k+1. It follows that −5k+9 > −4k+1

which holds only for k 6 8.
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Finally, let b = 4. This is only possible for m = 12. By (11),

ǫ21 + ǫ22 + ǫ23 + ǫ24 = k2 − 4k + 1.

From (10), we see that ǫ1 + ǫ2 + ǫ3 + ǫ4 = jk/2− 1 for some integer j. It turns out that not all

of the |ǫ1|, |ǫ2|, |ǫ3|, |ǫ4| can be k/2 − 1. So

ǫ21 + ǫ22 + ǫ23 + ǫ24 6 3(k/2 − 1)2 + (k/2 − 2)2 = k2 − 5k + 7.

It follows that −5k + 7 > −4k + 1, which holds only for k 6 6.

Now, we deal with the solutions of (2). Let γ1, . . . , γm satisfies (2). Then mk | ℓ2, and since

mk = 8q with q odd and square-free, we have that mk/2 | ℓ. Note that ℓ = 0 and ℓ = mk only

hold for the trivial solution γ1 = · · · = γm = 0 and γ1 = · · · = γm = k, respectively. Therefore,

ℓ = mk/2. Let ǫi = γi − k
2 for i = 1, . . . ,m. Then

m
∑

i=1

ǫi = 0, (15)

m
∑

i=1

ǫ2i =
mk2

4
− mk

4
. (16)

Let ǫ1, . . . , ǫb be as in (12). From (16), it follows that b(k − 1) 6 mk/4 which implies that

b 6
⌊

mk
4(k−1)

⌋

. Thus, we have b 6 2 for m 6 11 and b 6 3 for m = 12.

With b = 1, (15) can be satisfied only if ǫ1 = ǫ2+· · ·+ǫm = 0. In this case, (16) can be satisfied

only if m = k which is not possible since m 6 12 < k. Next, let b = 2. So m > 8. We have

ǫ1+ ǫ2 = 0 or ±k/2 and ǫ21+ ǫ22 = k2/2−mk/4. First, assume that ǫ1+ ǫ2 = 0. If |ǫ1| = k/2− 1,

then we have k2/2 − 2k + 2 = ǫ21 + ǫ22 = k2/2 − mk/4 6 k2/2 − 2k, which is a contradiction.

Hence |ǫ1| 6 k/2 − 2, and so k2/2− 4k + 8 > ǫ21 + ǫ22 = k2/2 −mk/4 > k2/2 − 3k, which holds

only for k 6 8. Second, with no loss of generality, we can assume that ǫ1 + ǫ2 = k/2. In view of

(12), both ǫ1 and ǫ2 must be positive. So ǫ21+ ǫ22 < k2/4. This implies k2/2−mk/4 < k2/4, that

is m > k which is impossible. Finally, let b = 3. So m = 12 and ǫ21 + ǫ22 + ǫ23 = 3k2/4 − 3k. By

(12), ǫ1 + ǫ2 + ǫ3 = jk/2 for some j ∈ {0,±1,±2}. It turns out that not all of the |ǫ1|, |ǫ2|, |ǫ3|
can be k/2 − 1. So

3k2/4− 3k = ǫ21 + ǫ22 + ǫ23 6 2(k/2 − 1)2 + (k/2 − 2)2 = 3k2/4− 4k + 6,

which can be satisfied only for k 6 6. The proof is now complete.

We close this section by a summary of the results on maximality of F (k,m): for integers

k > 2 and m > 1,

(i) F (k,m) is maximal if mk or mk/2 is square-free;

(ii) the converse of (i) holds for k = 2, 3 or m >
(5k2−19k+20)2

4k ;
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(iii) F (k,m) is maximal if mk = 8q with k > 11, m 6 12, and q a square-free odd integer.

These provide a near-complete characterization of maximal F (k,m). We leave the complete

characterization as an open problem.

4 Maximal graphs with small rank

In this section we present some statistics of maximal graphs with small rank. We start by

Table 4 in which all the maximal graphs with rank at most 5 are depicted.

Rank Maximal graphs

2

3

4

5

Table 4: Maximal graphs with rank up to 5.

The maximal graphs up to rank 7 were enumerated in [3] and independently in the series of

the papers [12, 13, 10, 9]. More information on maximal graphs up to rank 7 was given in [9]

from which we quote Tables 5 and 6 containing the distribution of maximal graphs with ranks

6 and 7 based on their orders.

Order 6 7 8 9 10 11 12 13 14

# Maximal graphs 5 0 2 5 2 2 6 2 3

Table 5: The distribution of maximal graphs with rank 6.

We continue this line of work for the ranks 8 and 9. This is done by implementing an

algorithm for constructing all maximal graphs with a given rank from [3, 1]. For a given integer

r, the input of the algorithm is the set of reduced graphs with both order and rank equal

15



Order 7 8 9 10 11 12 13 14 15 16 17 18

# Maximal graphs 13 4 18 2 32 13 63 11 19 5 0 3

Table 6: The distribution of maximal graphs with rank 7.

to r and the output of the algorithm is the set of all maximal graphs of rank r. The input

of the algorithm was generated by using Mckay database of small graphs [11]. Consequently,

we construct all maximal graphs with rank 8 and 9. We found that there are exactly 2807

maximal graphs with rank 8. Their orders run over from 8 to 30. Also, there are exactly 122511

maximal graphs with rank 9. Their orders run over from 9 to 38 with exceptions of 33, 35,

36. In Table 7, for the sake of completion, a summary of the number of maximal graphs of

rank up to 9 is given. Moreover, the distributions of maximal graphs with rank 8 and 9 based

on their orders are given in Tables 8 and 9. In Table 10, we report more detailed information

based on the orders and sizes (the number of edges) of maximal graphs with rank 8. The

Magma program and the data sets of maximal graphs with ranks 6, 7, 8, 9 is available online at

https://wp.kntu.ac.ir/ghorbani/comput.

Rank 2 3 4 5 6 7 8 9

# Maximal graphs 1 1 3 8 27 183 2807 122511

Table 7: The number of maximal graphs with rank up to 9.

Order 8 9 10 11 12 13 14 15 16 17 18 19

# Maximal graphs 38 52 80 78 117 98 90 254 137 81 115 243

Order 20 21 22 23 24 25 26 27 28 29 30

# Maximal graphs 884 252 134 69 57 7 7 5 3 2 4

Table 8: The distribution of maximal graphs with rank 8.

Order 9 10 11 12 13 14 15 16 17 18

# Maximal graphs 192 472 1014 786 1402 1562 2198 1963 3509 2824

Order 19 20 21 22 23 24 25 26 27 28

# Maximal graphs 3660 17229 51315 20069 8663 2941 1622 528 266 136

Order 29 30 31 32 33 34 35 36 37 38

# Maximal graphs 39 42 42 24 0 7 0 0 2 4

Table 9: The distribution of maximal graphs with rank 9.
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n m #

12 1

13 4

14 3

15 5

16 6

17 4

8 18 3

19 5

20 2

21 1

22 1

23 1

24 1

28 1

14 1

15 5

16 4

17 4

18 9

9 19 6

20 7

21 7

22 4

23 2

24 2

25 1

19 3

20 2

21 5

22 2

23 6

24 10

25 8

26 7

10 27 10

28 4

29 8

30 7

31 2

32 1

33 1

34 1

35 2

39 1

23 3

24 5

25 7

26 13

27 11

28 8

29 5

30 2

31 2

11 32 3

33 4

34 3

35 3

36 4

37 1

39 1

41 1

42 1

43 1

n m #

27 3

28 4

29 11

30 9

31 9

32 17

33 7

34 9

35 5

36 7

12 37 2

38 9

39 1

40 3

41 2

42 8

43 3

44 3

45 3

46 1

54 1

34 2

35 1

36 4

37 12

38 9

39 8

40 10

41 7

42 4

43 2

13 44 6

45 9

46 5

47 1

48 7

49 1

51 2

53 3

54 2

56 1

60 2

39 2

41 1

43 9

44 4

45 6

46 2

47 18

48 7

49 12

50 5

14 51 9

53 4

54 1

57 1

58 2

59 1

61 1

63 1

64 1

65 2

67 1

n m #

46 1

47 2

48 7

49 4

50 7

51 11

52 37

53 29

54 25

55 17

56 22

15 57 17

58 10

59 12

60 13

61 10

62 4

63 10

64 7

65 3

67 2

69 2

71 1

72 1

52 1

54 2

56 3

57 6

58 4

59 5

60 10

61 11

62 19

63 19

64 18

65 9

16 66 6

67 8

68 3

69 1

70 4

72 1

73 2

74 1

75 1

78 2

80 1

55 1

57 1

58 1

59 1

60 2

61 3

62 3

17 63 1

64 3

65 8

66 3

67 6

68 4

69 3

70 1

71 4

n m #

72 5

73 2

74 3

75 2

76 5

77 4

17 78 4

79 2

80 2

81 1

82 3

84 1

85 1

88 1

58 1

60 1

61 1

62 6

63 2

64 9

65 5

66 17

67 3

68 12

69 2

18 70 21

71 4

72 9

73 4

74 4

76 4

77 1

80 1

81 2

84 1

86 1

87 3

97 1

59 1

62 1

63 1

64 4

65 1

66 4

67 3

68 9

69 8

70 9

71 14

19 72 23

73 10

74 17

75 19

76 25

77 30

78 10

79 16

80 9

81 2

82 4

83 8

84 7

85 2

n m #

86 1

87 1

19 91 1

96 1

99 1

102 1

70 3

71 6

72 8

73 21

74 18

75 24

76 44

77 49

78 48

79 71

80 80

81 57

82 82

83 56

84 62

20 85 54

86 44

87 37

88 26

89 34

90 23

91 11

92 7

93 3

94 6

95 2

96 2

97 1

98 1

100 2

106 2

76 2

77 1

78 8

79 4

80 6

81 10

82 8

83 7

84 11

85 7

86 19

87 17

21 88 13

89 19

90 10

91 8

92 8

93 14

94 17

95 9

96 11

97 12

98 8

99 6

100 4

101 2

n m #

102 4

103 4

21 104 1

106 1

108 1

83 1

84 1

85 3

86 4

87 2

88 8

89 2

90 1

91 7

92 2

93 3

94 3

95 10

96 11

22 97 11

98 10

99 1

100 3

101 3

102 2

103 6

104 9

105 3

106 5

107 5

108 2

109 3

110 2

111 5

112 1

113 2

114 1

121 1

127 1

91 1

93 1

94 3

95 2

96 4

97 3

98 4

99 1

100 2

101 2

23 102 2

103 1

104 2

105 3

106 2

107 3

108 1

109 3

110 1

111 1

113 4

114 1

115 3

116 2

n m #

117 1

118 3

119 4

120 1

23 122 3

123 1

124 1

125 1

128 2

98 2

99 2

100 1

102 1

103 2

104 3

106 5

108 7

110 1

113 5

115 1

24 117 1

118 2

119 1

123 2

124 4

126 3

127 1

128 1

129 1

130 4

133 2

134 3

136 1

144 1

106 1

114 1

25 121 1

122 1

125 1

145 2

117 1

125 1

26 133 3

141 1

169 1

122 1

150 1

27 151 1

169 1

170 1

134 1

28 162 1

196 1

29 142 1

197 1

155 1

30 187 1

211 1

225 1

Table 10: The distribution of maximal graphs with rank 8 in terms of order n and size m.
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