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A well-known result of Benjamini, Lyons, Peres, and Schramm states that
if G is a finitely generated Cayley graph of a group Γ, then Γ is amenable
if and only if G admits a Γ-invariant random spanning tree with at most
two ends. We show that this is equivalent to the existence of a Γ-invariant
random spanning double ray in a power of G.

1 Introduction

In this paper we study (Cayley) graphs G having a random spanning double ray the
distribution of which is invariant under the action of some subgroup of the automorphism
group AutG of G.

Our first result is

Theorem 1. The edges of the square grid can be decomposed into a random, Z2-invariant,

pair of spanning double rays. Moreover, if G is a connected locally finite Cayley graph of

an Abelian group Γ, then G admits a random Γ-invariant spanning double ray.

A spanning double ray is a connected subgraph containing all vertices in which every
vertex has exactly two neighbours. The square grid is the Cayley graph of Z2 with respect
to a minimal generating set.

Theorem 1 raises the question of which Cayley graphs admit a random spanning double
ray that is invariant under the action of the underlying group, see also Problem 4 below.
Benjamini et al. [2] showed that amenability is a necessary condition. The fact that
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the square grid admits a Z
2-invariant random spanning double ray was well-known, an

example is the Peano UST curve, see e.g. [6].
Alspach [1] conjectured that every Cayley graph of any finite Abelian group admits

a decomposition of its edge set into Hamilton cycles. By [5] every Cayley graph of Zd

admits a decomposition of its edge set into spanning double rays, confirming Alspach’s
conjecture in spirit for this class of groups. In light of this and the first part of Theorem 1
it is natural to ask whether every Cayley graph of a 1-ended Abelian group admits a
random decomposition into double rays which is invariant under the group action.

It is an open problem [4, Problem 3] whether every connected, 1-ended, finitely gen-
erated Cayley graph has a spanning double ray, let alone an invariant one. But it is
known that a spanning double ray can always be found, if we are allowed to extend the
generating set S into S ∪ S2 [10]; see also [4, Corollary 6]. The main result of this paper
implies that if we extend S further into S ∪S2 ∪S3, then we can guarantee the existence
of an invariant random spanning double ray. It holds in a more general setup of groups
acting on graphs:

Theorem 2. Let G be a countably infinite, connected, amenable graph, and let Γ be a

closed subgroup of AutG that acts transitively on G. Then there is a Γ-invariant random

spanning double ray in G3.

It was known that G3 contains a (deterministic) spanning double ray for every count-
able, connected, 1-ended [8] or 2-ended [4] graph G, and this fact motivated our work.

A further source of motivation, and an important tool in the proof of Theorem 2, is
a well-known result of Benjamini et al. [2] showing that amenable Cayley graphs admit
invariant random spanning trees with 1 or 2 ends. In fact they proved a much more
general statement ([2, Theorem 5.3]), that provides probabilistic characterisations of
amenability. With Theorem 2 we can add a further probabilistic characterisation, which
combined with their statement gives the following:

Corollary 3 (Partly [2, Theorem 5.3]). Let Γ be a closed unimodular subgroup of AutG
that acts transitively on a countably infinite, locally finite, connected graph G. Then the

following conditions are equivalent:

1. G is amenable;

2. there is a Γ-invariant random spanning tree of G with at most 2 ends a.s.;

3. there is a Γ-invariant random nonempty connected subgraph ω of G that satisfies

pc(ω) = 1 with positive probability;

4. there is a Γ-invariant random spanning double ray in G3;

5. there is a Γ-invariant random spanning double ray in Gk for some k ∈ N;

6. Γ is amenable.
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Figure 1: Edge tiling of Z2. Figure 2: Connecting two tiles.

Our contribution to this is items 4, 5. If the unimodularity condition is dropped, then
the following implications still hold: 1 → 2 → 3 → 6 [2, Theorem 5.3], and 2 → 4 → 5
→ 6: indeed, 2 → 4 is Theorem 2, and 5 → 6 is obtained by applying the implication 2
→ 6 on Gk. We do not know whether the implication 5 → 2 holds.

We conjecture that Theorem 2 can be strengthened by replacing G3 with G2, using
the techniques of [10, 4] when G is 2-connected. (For this, one would need to produce
an invariant ladder-like spanning structure to play the role of the random spanning tree
we use in our proof.) The following might be much harder:

Problem 4 ([3, Question 4.5]). Does every amenable, 1-ended Cayley graph G =
Cay(Γ, S) admit a Γ-invariant spanning double ray?

We suspect that Corollary 3 still holds when the action is quasi-transitive rather than
transitive; in that case, the power G3 would be optimal, as one could decorate G by
attaching an appropriate finite tree to each vertex. If G is assumed to be 2-connected,
then G2 should be the optimal power.

2 Proof of Theorem 1

We first outline a procedure to turn a one-ended spanning tree of Z2 into a colouring of
the edge set of Z2 in which each colour induces a spanning double ray. For this purpose,
first consider a decomposition of the edge set of Z2 into tiles, see Figure 1 (the bold solid
and dotted edges together form one tile). Note that the subgroup Γ of Z2 generated by
(±2,±2) acts in a natural way on the tiles. Further, 2-colour the edges of each tile as
shown in Figure 1: the bold solid edges form one colour class, the bold dotted edges form
the other). Colour different tiles so that the colouring is invariant under the action of Γ.

View the tiles as the vertices of the Cayley graph Cay(Γ, {(±2,±2)}) of Γ, and note
that any two adjacent tiles intersect in exactly two vertices. Call these two vertices the
attachment vertices of those tiles, and call the unique cycle of length 4 containing both of
them their attachment square. Furthermore, every tile contains four edges of each colour
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Figure 3: The tree T ↓
t and one of the corresponding paths in Z

2.

that are not contained in any attachment square; call those the internal edges of the tile.
Observe that we can connect the colour classes in two adjacent tiles by swapping the
colours within their attachment square, see Figure 2. It is not hard to see that colour
swaps at attachment squares can be used to connect the colour classes of multiple squares
as well. In fact, the following is true:

Proposition 5. If T is a one-ended spanning tree of Cay(Γ, {(±2,±2)}) ≃ Z
2, then

swapping the colours at all attachment squares that correspond to edges of T results in a

colouring where each colour class comprises a spanning double ray.

Proof. Clearly, swapping colours within any family of attachment squares does not change
the degree of any vertex in either colour class. In particular, the subgraphs induced by
the resulting colour classes will be 2-regular, and it only remains to show that they are
connected.

For a tile t, let t↑ be the neighbour of t that lies on the unique ray in T starting at t
and let T ↓

t be the component of T − t↑ which contains t.

We claim that all internal edges of the squares in T ↓
t in each colour class are connected

by a path contained in the union of the squares in T ↓
t , see Figure 3. This is easily proved

by induction. If t is a leaf of T ↓
t it is obvious. If we inductively assume that it holds for

the neighbours of t in T ↓
t (whose maximum distance to a leaf in their respective subtree

T ↓
s is smaller), then it is straightforward to see that the statement also holds for t using

the trivial fact that replacing an edge of a cycle by a path results in a connected graph.
Finally note, that every vertex is adjacent to an internal edge of each colour (although

these two internal edges might be internal to different tiles). Since for any two tiles t

and t′, there is a tile s such that both t and t′ are contained in T ↓
s , this implies that each

colour class is connected and thus a spanning double ray.

It is well known that Z2 admits an invariant measure on one ended spanning trees, see
for example [7]. If we choose the tree T in the above construction according to such a
measure, then it is easy to see that the colour of an edge of Z2 only depends on whether
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or not a specific edge is contained in T . Hence cylinder sets are measurable and we end
up with a Γ-invariant decomposition of Z2 into spanning double rays.

To finish the proof of Theorem 1, note that Γ has finite index in Z
2. Thus any Γ-

invariant measure µ on subgraphs of Z2 can be made into a Z
2-invariant measure

ν =
1

[Z2 : Γ]

∑

i

µi,

where µi are translations of µ with respect to a system of representatives of the cosets of
Γ. This shows that Z2 has an invariant decomposition into double rays, and in particular,
Z
2 contains an invariant spanning copy of Z.
Next, we show that the Cayley graph of Zd with respect to the standard generators

admits an invariant spanning double ray. First consider the case d = 3. Let Zi be a copy
of the standard Cayley graph of Z for every i. To sample a random spanning double ray
R in X := Z1×Z2×Z3, we first sample a pair of independent spanning double rays R12,
R3 in Z1 × Z2 and Z0 × Z3, respectively, each according to the law of the Z

2-invariant
spanning double ray we obtained above.1

Let f be one of the two isomorphisms from Z0 to R12 mapping 0 ∈ Z0 to 0 ∈ Z1 ×Z2,
chosen by a fair coin flip. Extend f canonically to a map φ : Z0 × Z3 → R12 × Z3 by
‘multiplying’ with Z3. Then R := φ(R3) is a random spanning double ray of X.

Clearly, the law of R is invariant under the canonnical action of Z on X in the Z3

coordinate. We claim that it is also invariant under the canonnical action of Z2 in the
other two coordinates.

For this, let r12 be the (random) labelling of the pairs of vertices (x, y) of Z1×Z2 where
r12(x, y) is the distance between x and y along R12. Let B = I1 × I2 × I3, where Ii is a
finite subpath of Zi, be a ‘box’ in X, to be thought of as a cylinder set of our σ-algebra.
Notice that conditioning on the values of r12 inside I1 × I2 uniquely determines the
distribution of R∩B by the construction of R. As R12 is invariant under the canonnical
action of Z2 on Z1 × Z2, so is r12. Thus the distribution of R ∩ B coincides with that
of R ∩ gB for every g ∈ Z

2, which completes the proof that R is invariant under the
canonical action of Z3 on X.

This construction generalises to Z
d, d > 3 by induction as follows. Assume we have

proved that the standard Cayley graph of Zd−1 admits both an invariant spanning double
ray as well as an invariant spanning copy H of the standard Cayley graph of Zd−2. We
repeat the above construction with X := Z1 × Z2 · · · × Zd, with R12 as before, but with
R3 being a sample of H in Z0 ×Z3 × Z4 × · · ·Zd. Repeating the above ideas yields now
an invariant spanning double ray in X. We now also need an invariant spanning copy
of Z

d−1 in X, to prove our inductive hypothesis, but this is easier: we can just take
R12 ×H.

Finally, let Γ be an arbitrary finitely generated Abelian group, let S be a finite gen-
erating set, and let G be the Cayley graph of Γ with generators S. Let S′ ⊆ S be a
maximal set of linearly independent generators with infinite order. Then the subgroup

1Alternatively, we could just use the Peano UST curve from [6].
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Γ′ of Γ generated by S′ has finite index in Γ, and the Cayley graph G′ of Γ′ with respect
to S′ is the standard Cayley graph of Zd for some d.

From now on, view G′ as a subgraph of G with the obvious embedding. We will use a
spanning double ray in G′ to define a spanning double ray in G as follows. Let M1∪M2 be
the decomposition of the edge set of the spanning double ray into two perfect matchings.
In order to make the choice canonical, decide by a fair coin flip which of the two sets
is M1. It is well known that every Cayley graph of a finite Abelian group admits a
Hamilton path, see [9]. From such a path in the Cayley graph of Γ/Γ′ (with generators
corresponding to S), it is easy to construct a path P in G which starts at 0 and visits
every coset of Γ′ precisely once. Pick such a path P arbitrarily, let p be the other endpoint
of P and let fp be the automorphism of G mapping x to x+ p.

We claim that the subgraph of G consisting of M1, fp(M2), and all translates of P by
elements of Γ′ is the desired spanning double ray. Since P visits every coset exactly once,
every vertex of G lies on a unique translate of P . Vertices in G′ and fp(G

′) are incident
to an additional matching edge in M1 and fp(M2) respectively, whence R is 2-regular.
To see that it is connected, observe that contracting all edges in translates of P gives the
spanning double ray of G′ that we started with.

To finish the proof, note that if the spanning double ray in G′ was taken from an
invariant distribution on spanning double rays, then the result of the above construction
is invariant under Γ′. Since [Γ : Γ′] is finite, we can then use the same argument as in
the case of Z2 to turn this into a Γ-invariant spanning double ray.

3 Proof of Theorem 2

Let (TG, µ) be the probability space arising from the implication 1 → 2 of Corollary 3
(the condition of unimodularity is not needed for that implication, see the remark after
the statement), so that the elements of TG are the spanning trees of G, and consider the
product probability space

T := (Ω,Σ,P) = TG ×
∏

v∈V

U<v
,

where U<v
denotes the uniform distribution on total orders on the neighbours of v in G.

We will construct a map φ : Ω → 2E(G3), mapping each ω = (T, (<v)v∈V ) ∈ Ω to a
spanning double ray of G3. The main idea behind the definition of this map φ stems
from [4], and is illustrated in Figure 4. To explain it, let us first pretend that T is a
spanning tree of a finite graph G, rooted at a vertex v, and we want to use it to obtain a
Hamilton cycle of G3. We do this by induction on the size of T as follows. Suppose that
for each subtree Ti of T obtained by removing v, we have a path Pi in G3 from the root
vi of Ti to one of its neighbours v†i in Ti visiting each vertex of Ti exactly once (unless vi
is the unique vertex of Ti, in which case Pi is the trivial path). Then we can join the Pi

using an edge from G3 as shown in Figure 4, to obtain a path from v to a neighbour v†,
proving the inductive hypothesis. We can the produce a Hamilton cycle of G3 by adding
the v–v† edge to that path.

6



v

v1 v2 v†

(v1)†

Figure 4: Edges of types (i) and (ii) together with vi–(vi)†-paths form a v–v†-path.

It is possible to produce such a Hamilton cycle by making local decisions at each
vertex of T simultaneously, rather than working recursively: given a fixed ordering of the
neighbours of v in Figure 4, we can decide which additional edges to join the Pi with
without seeing the Pi. This is the key observation that will allow us to use the same idea
in our situation, where T is infinite, with one or two ends. These ‘local’ decisions are
encoded in the aforementioned map φ. This is where the orders (<v)v∈V will be used.

We define φ as follows. Let T be a 1- or 2-ended spanning tree of G. For a vertex v,
denote by N∞

v the (one or two) neighbours of v in T that lie in an infinite component

of T − v, and let N 6∞
v be the remaining neighbours of v in T . Clearly <v gives rise to a

total order on N 6∞
v . Denote by vi the i-th largest element in this order. If N 6∞

v 6= ∅, then
denote by v† the maximal element, otherwise let v† = v.

Now let φ(ω) ⊆ E(G3) consist of the following edges:

(i) for v ∈ V (G) with N 6∞
v 6= ∅ the edge connecting v and (v1)†

(ii) for v ∈ V (G) with N 6∞
v 6= ∅ and vi <v v† the edge connecting vi to (vi+1)†, and

(iii) for uv ∈ E(G) where u ∈ N∞
v and v ∈ N∞

u

(This case only materialises when T contains a double ray, and that double ray
contains uv.)

- if u = maxN∞
v and v = maxN∞

u the edge uv,

- if u = maxN∞
v and v 6= maxN∞

u the edge u†v,

- if u 6= maxN∞
v and v 6= maxN∞

u the edge u†v†,

As we will prove below (Lemma 7), items (i) and (ii) implement the intuition of Fig-
ure 4, while item (iii) ensures that if R is a double ray in T 3 (which is unique if it exists),
then for each edge uv in R, we choose exactly one edge joining the subtree of T − uv
rooted at u to the subtree rooted at v, and we choose it in such a way to ensure all
vertices have degree 2. If G is 1-ended, then we may assume T to be 1-ended too by a
result of Timar [11], in which case item (iii) can be dropped and the proof of Lemma 7
accordingly simplified.

We would like to interpret the pushforward of T via φ as a measure on subgraphs of
G3. In order to do so, it is desirable that cylinder sets (i.e. events telling us what happens
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on finite subgraphs of G3) are measurable. The following proposition says that this is
the case.

Lemma 6. For every cylinder set C of 2E(G3), the set φ−1(C) is measurable in T .

Proof. It is sufficient to show that for every edge e ∈ E(G3) the event [e ∈ φ(ω)] is
measurable.

First note that the event

[u ∈ N 6∞
v ] = [uv ∈ E(T ) and ∃Vu ⊆ V (G) : u ∈ Vu, |Vu| < ∞,no edge leaving Vu is in T − uv]

is T -measurable for any pair u, v. Since there are only countably many finite sets con-
taining u, this is a countable union of cylinder sets, and thus T -measurable. Conse-
quently the events [u ∈ N∞

v ], [u = vi], [u = v†], and [u = maxN∞
v ] are measurable

because they can be obtained by finite intersections and unions of events of the form
[xy ∈ E(T )],[x ∈ N 6∞

y ], [x /∈ N 6∞
y ] and [x <z y]. Finally, the event [e ∈ φ(ω)] can be

obtained by finite intersections and unions of the above events, hence it is measurable in
T .

Theorem 2 is now an easy consequence of the following lemma.

Lemma 7. Let H be the random subgraph of G3 defined by the pushforward of (Ω,Σ,P)
via φ. Then H almost surely is a spanning double ray.

Proof. We prove the statement of the proposition for a fixed tree T . This is sufficient
since P(A) =

∫
P(A | T ) dµ(T ) where µ is the measure on the space TG.

For a vertex v denote by T 6∞
v the subtree of T induced by v and all finite components of

T − v. Let h(v) the maximum distance from v to a vertex in T 6∞
v . We prove by induction

on h that the subgraph of H induced by the vertices of T 6∞
v is a spanning path from v

to v†. If h(v) = 0, this is trivially true. For the induction step, note that there can’t

be an edge of type (iii) inside T 6∞
v . Indeed, if xy is such an edge, then there is an edge

e separating x and y in T such that neither component of G − e is finite which implies
that x /∈ T 6∞

y . Now the induction hypothesis together with the definition of edges of type
(i) and (ii) prove the claim.

In particular, this claim shows that all vertices of T 6∞
v lie in the same component of H

and that apart from v and v† all of them have degree 2.
If T has one end, then for any vertex x there is a vertex v such that x ∈ T 6∞

v \ {v, v†},
showing that x has degree 2. Furthermore, for any two vertices x, y there is a vertex v
such that T 6∞

v contains both x and y, showing that H is connected.
If T has two ends, then the edges for which both components of T − e are infinite form

a double ray. Note that these are precisely the edges uv for which u ∈ N∞
v and v ∈ N∞

u .
Let x be a vertex on this double ray, and let y and z be its neighbours. Then the edges
of type (iii) corresponding to xy and xz connect T 6∞

x to T 6∞
y and T 6∞

z respectively. In
particular, this shows that H is connected. Finally note that one of the edges of type
(iii) attaches to x and the other one attaches to x† (depending on whether y <x z or
z <x y), thus making sure that both x and x† have degree 2 in H.
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