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ON DOMINATING PAIR DEGREE CONDITIONS FOR

HAMILTONICITY IN BALANCED BIPARTITE DIGRAPHS

JANUSZ ADAMUS

Abstract. We prove several new sufficient conditions for hamiltonicity and
bipancyclicity in balanced bipartite digraphs, in terms of sums of degrees over
dominating or dominated pairs of vertices.

1. Introduction

This article is concerned with sufficient conditions for hamiltonicity and bi-
pancyclicity in balanced bipartite digraphs. More specifically, we study several
Meyniel-type criteria, that is, theorems asserting existence of hamiltonian cycles
under certain conditions on the sums of degrees of non-adjacent vertices. There are
numerous such criteria, and open problems, in general digraphs (see, e.g., [4, 5] and
the references therein). Over the last few years, various analogues of these theorems
and conjectures have been established for bipartite digraphs [1, 2, 3, 7, 8, 10, 11].
These results, generally speaking, do not follow from their non-bipartite analogues
and require different arguments and techniques.

We begin with a short review of the relevant results to provide context for our
present work. Throughout this paper, D denotes a strongly connected balanced
bipartite digraph of order 2a (see Section 2 for details on notation and terminology).

The main feature of Meyniel-type criteria is that a degree condition be only
imposed on pairs of non-adjacent vertices. The first such criterion in the bipartite
setting was proved in [3].

Theorem 1.1 ([3, Thm. 1.2]). Let D be as above, with a ≥ 2, and suppose that

d(u) + d(v) ≥ 3a

for every pair of distinct vertices {u, v} such that uv /∈ A(D) and vu /∈ A(D).
Then, D is hamiltonian.

The lower bound of 3a is sharp (see examples in [3]). The condition from The-
orem 1.1 may be further strengthened, in the spirit of [5], by requiring that it be
satisfied only by dominating and dominated pairs of vertices. This was done in [1].

Theorem 1.2 ([1, Thm. 1]). Let D be as above, with a ≥ 3, and suppose that

d(u) + d(v) ≥ 3a

whenever {u, v} is a dominating or dominated pair. Then, D is hamiltonian.
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At this point, there are two natural questions: First, are the above assumptions
enough to imply existence of cycles of all even lengths in D, perhaps modulo some
exceptional digraphs (Bondy’s metaconjecture)? And secondly, could we expect the
same conclusion if the degree sum condition was only satisfied by the dominating
pairs of vertices? The answer to the first question is positive. More precisely, we
have the following result.

Theorem 1.3 ([2, Thm. 1.3]). Let D be as above, with a ≥ 3, and suppose that

d(u) + d(v) ≥ 3a

whenever {u, v} is a dominating or dominated pair. Then, D is either bipancyclic

or a directed cycle of length 2a.

The second question seems much harder. However, most recently, Wang and
Wu [11] proposed an interesting variant of the degree sum condition that allows
them to obtain hamiltonicity by only imposing the condition on dominating pairs
of vertices.

Theorem 1.4 ([11, Thm. 1.10]). Let D be a strongly connected balanced bipartite

digraph of order 2a, where a ≥ 3, and let k be an integer satisfying max{1, a4} <
k ≤ a

2 . Suppose that for every dominating pair {u, v} of vertices in D,

d(u) ≥ 2a− k and d(v) ≥ a+ k, or d(u) ≥ a+ k and d(v) ≥ 2a− k.

Then, D is hamiltonian.

The authors of [11] posed also several interesting problems related to the above
theorems. Among them:

(a) Are the assumptions of Theorem 1.4 enough to imply bipancyclicity of D?
(b) Is there an integer k ≥ 0 such that D is hamiltonian if the inequality

d(u) + d(v) ≥ 3a+ k is only imposed on the dominating pairs {u, v}?

The main goal of the present article is to prove the following positive answers to
these two questions.

Theorem 1.5. If D satisfies the hypotheses of Theorem 1.4, then D is either

bipancyclic or a directed cycle of length 2a.

Theorem 1.6. Let D be a strongly connected balanced bipartite digraph of order

2a, where a ≥ 2. Suppose that for every dominating pair {u, v} of vertices in D,

d(u) + d(v) ≥ 3a+ 1 .

Then, D is hamiltonian.

Theorems 1.5 and 1.6 are proved in Sections 4 and 3, respectively. In the last
section, we discuss some corollaries and open problems.

2. Notation and terminology

We consider digraphs in the sense of [4]: A digraph D is a pair (V (D), A(D)),
where V (D) is a finite set (of vertices) and A(D) is a set of ordered pairs of distinct
elements of V (D), called arcs (i.e., D has no loops or multiple arcs).

The number of vertices |V (D)| is the order of D (also denoted by |D|). For
vertices u and v from V (D), we write uv ∈ A(D) to say that A(D) contains the
ordered pair (u, v). If uv ∈ A(D), then u is called an in-neighbour of v, and v is
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an out-neighbour of u. A pair of vertices u, v ∈ V (D) is called dominating (resp.
dominated) when there exists a vertex w such that uw ∈ A(D) and vw ∈ A(D)
(resp. wu ∈ A(D) and wv ∈ A(D)).

For vertex sets S, T ⊂ V (D), denote by A[S, T ] the set of all arcs of A(D) from

a vertex in S to a vertex in T . We define
↔

a(S, T ) := |A[S, T ]|+ |A[T, S]|.
For a vertex set S ⊂ V (D), we denote by N+(S) the set of vertices in V (D)

dominated by the vertices of S; i.e.,

N+(S) = {u ∈ V (D) : vu ∈ A(D) for some v ∈ S} .

Similarly, N−(S) denotes the set of vertices of V (D) dominating vertices of S; i.e,

N−(S) = {u ∈ V (D) : uv ∈ A(D) for some v ∈ S} .

If S = {v} is a single vertex, the cardinality of N+({v}) (resp. N−({v})), denoted
by d+(v) (resp. d−(v)) is called the outdegree (resp. indegree) of v in D. The degree
of v is d(v) := d+(v) + d−(v).

More generally, for a vertex v ∈ V (D) and a subdigraph E of D, we will denote
the cardinality of N+({v})∩V (E) by d+E(v). Similarly, the cardinality of N−({v})∩

V (E) will be denoted by d−E(v). We set dE(v) := d+E(v) + d−E(v). We will denote
by Ec the subdigraph of D spanned by the vertices V (D) \ V (E). Consequently,
d+Ec(v) = |N+({v}) ∩ V (D) \ V (E)| and d−Ec(v) = |N−({v}) ∩ V (D) \ V (E)|.

A directed cycle (resp. directed path) on vertices v1, . . . , vm in D is denoted
by [v1, . . . , vm] (resp. (v1, . . . , vm)). We will refer to them as simply cycles and
paths (skipping the term “directed”), since their non-directed counterparts are not
considered in this article at all. A cycle passing through all the vertices of D is
called hamiltonian, or a Hamilton cycle. A digraph containing a hamiltonian cycle
is called a hamiltonian digraph. A digraph containing cycles of all lengths is called
pancyclic.

A digraph D is strongly connected when, for every pair of vertices u, v ∈ V (D),
D contains a path originating in u and terminating in v and a path originating in v
and terminating in u. A digraph D in which, for every pair of vertices u, v ∈ V (D)
precisely one of the arcs uv, vu belongs to A(D) is called a tournament.

A digraph D is bipartite when V (D) is a disjoint union of independent sets V1

and V2 (the partite sets). It is called balanced if |V1| = |V2|. One says that a
bipartite digraph D is complete when d(x) = 2|V2| for all x ∈ V1. A complete
bipartite digraph with partite sets of cardinalitites a and b will be denoted by
K∗

a,b . A balanced bipartite digraph containing cycles of all even lengths is called
bipancyclic. A matching from V1 to V2 is an independent set of arcs with origin
in V1 and terminus in V2 (u1u2 and v1v2 are independent arcs when u1 6= v1 and
u2 6= v2). If D is balanced, one says that such a matching is perfect if it consists of
precisely |V1| arcs.

Finally, to streamline the proofs of Theorems 1.5 and 1.6, we will use the following
shorthand terminology (borrowed from [11]).

Definition 2.1. Let D be a balanced bipartite digraph of order 2a. For an integer
k ≥ 0, we say that D satisfies condition (Bk), when every dominating pair {u, v}
satisfies

d(u) ≥ 2a− k and d(v) ≥ a+ k, or d(u) ≥ a+ k and d(v) ≥ 2a− k.
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Also, for k ≥ 0, we say that D satisfies condition (Dk), when every dominating pair
{u, v} satisfies

d(u) + d(v) ≥ 3a+ k .

3. Proof of Theorem 1.6

Throughout this section we assume that D is a strongly connected balanced
bipartite digraph with partite sets of cardinalities a ≥ 2, which satisfies condition
(D1). The proof of Theorem 1.6 is based on the following four simple lemmas.

Lemma 3.1. Suppose that D is non-hamiltonian. Then, for every vertex u ∈ V (D)
there exists a vertex v ∈ V (D) \ {u} such that {u, v} is a dominating pair.

Proof. For a proof by contradiction, suppose that D contains a vertex u0 which
has no common out-neighbour with any other vertex in D. We claim that then
no vertex of D has a common out-neighbour with any other vertex. Indeed, let
v ∈ V (D) \ {u0} be arbitrary. By strong connectedness of D, there is a path
P = (u0, u1, . . . , us), with us = v. By assumptions on u0, we have d−(u1) = 1 and
hence d(u1) ≤ a + 1. If then u1 had a common out-neighbour with some vertex
w ∈ V (D), we would have d(w) ≥ 2a, by condition (D1). In particular, w would be
dominated by all the vertices from the opposite partite set, and so u0 would have
w as a common out-neighbour with all vertices from its partite set; a contradiction.
It thus follows that u1 has no common out-neighbour with any other vertex in D.
Repeating the above argument for all the subsequent vertices on P , we obtain in
the end that v has no common out-neighbour with any other vertex in D. This
proves our claim, since v was arbitary.

The strong connectedness now implies that D is, in fact, a cycle of length 2a.
This contradicts the assumptions of the lemma. �

Lemma 3.2. If D is non-hamiltonian, then d(u) ≥ a+ 1 for every vertex u in D.

Proof. This follows immediately from Lemma 3.1, condition (D1), and the fact that
the degree of every vertex in D is bounded above by 2a. �

Lemma 3.3. D contains a cycle factor.

Proof. Suppose that D is non-hamiltonian. Let X and Y denote the two partite
sets of D. Observe that D contains a cycle factor if and only if there exist both a
perfect matching from X to Y and a perfect matching from Y to X . Therefore, by
the König-Hall theorem (see, e.g., [6]), it suffices to show that |N+(S)| ≥ |S| for
every S ⊂ X and |N+(T )| ≥ |T | for every T ⊂ Y .

For a proof by contradiction, suppose that a non-empty set S ⊂ X is such that
|N+(S)| < |S|. Then |S| ≥ 2, for else the sole vertex x0 of S would satisfy d+(x0) =
0, which is not possible in a strongly connected digraph. Since |N+(S)| < |S|, there
exist vertices x1, x2 ∈ S with a common out-neighbour. By condition (D1), we get

3a+1 ≤ d(x1)+ d(x2) = (d+(x1)+ d+(x2)) + (d−(x1)+ d−(x2)) ≤ 2(|S| − 1)+ 2a ,

and hence 2|S| ≥ a+ 3.
Now, for every y ∈ Y \N+(S), we have d(y) = d+(y) + d−(y) ≤ a+(a− |S|). It

follows that |S| ≤ a − 1, for else we would have d(y) ≤ a, contrary to Lemma 3.2.
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Consequently, |Y \ N+(S)| ≥ 2. Moreover, no two vertices of Y \ N+(S) form a
dominating pair. Indeed, for if y1, y2 ∈ Y \N+(S) were such a pair, we would have

3a+ 1 ≤ d(y1) + d(y2) ≤ 2(2a− |S|) ≤ 4a− (a+ 3) ,

a contradiction. Thus, in fact, for every y ∈ Y \N+(S), we have

d+(y) ≤ a− (|Y \N+(S)| − 1) = a− (a− |N+(S)| − 1) ≤ |S| .

Consequenly, for every such y,

d(y) = d+(y) + d−(y) ≤ |S|+ (a− |S|) = a ,

which again contradicts Lemma 3.2.
This completes the proof of existence of a perfect matching from X to Y . The

proof for a matching in the opposite direction is analogous. �

We shall also need the following result from [3]. Note that, by Lemma 3.3, D
contains a cycle factor.

Lemma 3.4 ([3]). Suppose that D is non-hamiltonian, and let {C1, . . . , Cl} be a

cycle factor in D with a minimal number of elements. Then,

↔

a (V (C1), V (D) \ V (C1)) ≤
|C1|(2a− |C1|)

2
.

Proof of Theorem 1.6. Let D be a balanced bipartite digraph on 2a vertices,
and let X and Y denote its partite sets. By Lemma 3.3, D contains a cycle factor
{C1, . . . , Cl}. Assume l is minimum possible, and for a proof by contradiction
suppose that l ≥ 2. We may assume that |C1| ≤ · · · ≤ |Cl|. Set t := |C1|/2. Then,
1 ≤ t ≤ a/2, since l ≥ 2 and |C1| ≤ |C2|. Moreover, by Lemma 3.4, we have

(3.1)
↔

a (V (C1), V (D) \ V (C1)) ≤ 2t(a− t) .

Without loss of generality, we may assume that

(3.2)
↔

a (V (C1) ∩X,V (D) \ V (C1)) ≤ t(a− t) ,

as otherwise

(3.3)
↔

a (V (C1) ∩ Y, V (D) \ V (C1)) ≤ t(a− t) .

We will first show that t ≥ 2. Suppose otherwise. Then C1 is a 2-cycle consisting
of, say, arcs x1y1 and y1x1. By (3.1),

d(x1) + d(y1) = (dC1
(x1) + dC1

(y1)) + (dCc

1
(x1) + dCc

1
(y1))

≤ 4 + 2(a− 1) = 2a+ 2 ,

which in light of Lemma 3.2 implies that d(x1) = d(y1) = a + 1, and dC1
(x1) =

dC1
(y1) = 2. By Lemma 3.1, there exists a vertex x′ ∈ X \ {x1} such that {x1, x

′}
is a dominating pair. Condition (D1) then implies that d(x′) = 2a. In particular,
x′y1 ∈ A(D). We have x′ ∈ V (Cj) for some 1 < j ≤ l. Let y′ denote the
successor of x′ on the cycle Cj . Note that {y1, y

′} form a dominating pair (as
they both dominate x′), hence d(y′) = 2a, by condition (D1) again. In particular,
x1y

′ ∈ A(D), and so the cycle C1 can be merged into Cj by replacing the arc x′y′

on Cj with the path (x′, y1, x1, y
′). This contradicts the minimality of l. Thus,

indeed, t ≥ 2.
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Let now x1, . . . , xt ∈ X and y1, . . . , yt ∈ Y be the vetices of C1, labeled so that

(3.4) dCc

1
(x1) ≤ · · · ≤ dCc

1
(xt) and dCc

1
(y1) ≤ · · · ≤ dCc

1
(yt) .

Then, by (3.2), dCc

1
(x1) ≤ a − t. The remainder of the proof splits into two cases

depending on whether or not the latter inequality is strict.

Case 1. Suppose first that dCc

1
(x1) = a − t. In this case we have dCc

1
(xi) = a − t

for all 1 ≤ i ≤ t, by (3.2). It follows that no two vertices xi, xj in X ∩ V (C1) form
a dominating pair. Indeed, otherwise

3a+ 1 ≤ d(xi) + d(xj) = (dC1
(xi) + dC1

(xj)) + (dCc

1
(xi) + dCc

1
(xj))

≤ 4t+ 2(a− t) = 2a+ 2t ≤ 3a ,

a contradiction. Consequently,

(3.5) d−C1
(yj) = 1 for each 1 ≤ j ≤ t .

In particular, d+C1
(x1) = 1. Now, as d(x1) ≥ a + 1 (Lemma 3.2) and dCc

1
(x1) =

a − t, it follows that d−C1
(x1) ≥ t and so both y1 and y2 dominate x1. However,

by equality in (3.2), inequality (3.1) implies that (3.3) holds, hence (by (3.4))
dCc

1
(y1) + dCc

1
(y2) ≤ 2(a− t). This, together with (3.5) and condition (D1), yields

3a+ 1 ≤ d(y1) + d(y2) = (dC1
(y1) + dC1

(y2)) + (dCc

1
(y1) + dCc

1
(y2))

≤ 2(t+ 1) + 2(a− t) = 2a+ 2 ,

which is impossible, as a ≥ 2.

Case 2. Suppose then that dCc

1
(x1) = a − t − µ1 for some µ1 > 0. We claim that

then x1 forms a dominating pair with at least µ1 distinct vertices from C1. Indeed,
the inequality d(x1) ≥ a+ 1 implies that

(3.6) d+C1
(x1) ≥ (a+ 1)− (a− t− µ1)− d−C1

(x1) ≥ 1 + t+ µ1 − t = µ1 + 1 ,

and so x1 dominates at least µ1 vertices on C1 apart from its own successor on C1.
Note that, for any 1 ≤ i < j ≤ t such that xi, xj satisfy dCc

1
(xi) + dCc

1
(xj) ≤

2(a− t), the pair {xi, xj} is not dominating. Indeed, for such xi, xj we have

d(xi) + d(xj) = (dC1
(xi) + dC1

(xj)) + (dCc

1
(xi) + dCc

1
(xj))

≤ 4t+ 2(a− t) = 2a+ 2t ≤ 3a .

In particular, {x1, x2} is not a dominating pair, by (3.2) and (3.4).
Moreover, for all xi, xj as above and for any vertices x′, x′′ such that {xi, x

′} and
{xj , x

′′} are dominating pairs (which exist, by Lemma 3.1, although not necessarily
distinct), we have by condition (D1)

d(x′) + d(x′′)

≥ 6a+ 2− [(d+C1
(xi) + d+C1

(xj)) + (d−C1
(xi) + d−C1

(xj)) + (dCc

1
(xi) + dCc

1
(xj))]

≥ 6a+ 2− [t+ 2t+ 2(a− t)] = 4a− t+ 2 ,

hence d(x′) ≥ (4a− t+ 2)− 2a = 2a− t+ 2, and so

(3.7) dCc

1
(x′) ≥ (2a− t+ 2)− 2t ≥ a− t+ 2 .

Now, let s ≥ 1 and µ1 ≥ · · · ≥ µs > 0 be such that dCc

1
(xi) = a− t − µi for all

1 ≤ i ≤ s, and dCc

1
(xk) ≥ a − t for s < k ≤ t. As in (3.6), for each 1 ≤ i ≤ s, xi

dominates at least µi vertices, say, y
i1, . . . , yiµi on C1 apart from its own successor
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on C1. Denote by Ii the subset of {1, . . . , t} of indices of the predecessors on C1 of
those yi1, . . . , yiµi . Since no two xi, xj form a dominating pair, we have

({i} ∪ Ii) ∩ ({j} ∪ Ij) = ∅ for all 1 ≤ i < j ≤ s .

Let I := {1, . . . , t} \
⋃s

i=1({i} ∪ Ii). Then, by (3.7),

t
∑

i=1

dCc

1
(xi) =

s
∑

i=1



dCc

1
(xi) +

∑

j∈Ii

dCc

1
(xj)



 +
∑

k∈I

dCc

1
(xk)

≥

s
∑

i=1

((a− t− µi) + µi ·(a− t+ 2)) + (t−

s
∑

i=1

(1 + µi))·(a− t)

=

s
∑

i=1

µi +

t
∑

i=1

(a− t) > t(a− t) ,

which contradicts inequality (3.2). This completes the proof of the theorem. �

4. Proof of Theorem 1.5

The proof of Theorem 1.5 is based on Theorems 1.3 and 1.4, and the following
result of Thomassen.

Theorem 4.1 ([9, Thm. 3.5]). Let G be a strongly connected digraph of order n,
n ≥ 3, such that d(u) + d(v) ≥ 2n whenever u and v are non-adjacent. Then, G is

either pancyclic, or a tournament, or n is even and G is isomorphic to K∗
n

2
,n
2

.

Let a, k be integers such that a ≥ 3 and max{1, a4} < k ≤ a
2 . Note that then

a+ k ≤ 2a− k. Throughout this section, we assume that D is a strongly connected
balanced bipartite digraph of order 2a, which satisfies condition (Bk). By Theo-
rem 1.4, D contains a Hamilton cycle C. Assume that D is not equal to C. We
shall show that then D contains cycles of all even lengths.

Lemma 4.2. For every vertex u ∈ V (D) there exists a vertex v ∈ V (D) \ {u} such

that {u, v} is a dominating pair. In particular, d(u) ≥ a+ k.

Proof. For a proof by contradiction, suppose that u0 ∈ V (D) has no common out-
neighbour with any other vertex on D. Let u+

0 denote the successor of u0 on C.
Then, d−(u+

0 ) = 1 and so d(u+
0 ) ≤ a + 1. Since a + 1 < min{a + k, 2a − k}, it

follows that u+
0 has no common out-neighbour with any other vertex, by condition

(Bk). Repeating this argument for all the subsequent vertices along C, one gets
that every vertex on C is dominated in D only by its predecessor on C. Thus,
D = C, contrary to our assumptions. The second claim follows immediately, by
condition (Bk) and the fact that a+ k ≤ 2a− k. �

Remark 4.3. Note that every vertex u ∈ V (D) lies on a 2-cycle. Indeed, by
Lemma 4.2, d+(u) + d−(u) > a and hence N+(u) ∩N−(u) 6= ∅.

Lemma 4.4. Suppose D is not bipancyclic. Then:

(a) For every u ∈ V (D),

k + 1 ≤ d−(u) ≤ a− 1 and k + 1 ≤ d+(u) ≤ a− 1 .
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(b) If {u, v} is a non-dominating pair, with u, v in the same partite set, then

d(u) < 2a− k and d(v) < 2a− k .

(c) If d(u) ≥ 2a− k, then for any v ∈ V (D) \ {u},

d+(u) + d−(v) ≥ a+ 2 and d+(v) + d−(u) ≥ a+ 2 .

Proof. Part (a) follows from Lemma 4.2 and the fact that D contains a Hamilton
cycle. For the proof of (b), suppose that d(u) ≥ 2a− k. Then, Lemma 4.2 implies
d(u) + d(v) ≥ (2a− k) + (a+ k) = 3a. Hence, by part (a),

d+(u) + d+(v) = (d(u) + d(v)) − (d−(u) + d−(v)) ≥ 3a− 2(a− 1) = a+ 2 ,

and so N+(u) ∩N+(v) 6= ∅; a contradiction.
Finally, if d(u) ≥ 2a− k then, by Lemma 4.2, d(u) + d(v) ≥ 3a and hence

d+(u) + d−(v) = (d(u) + d(v))− (d−(u) + d+(v)) ≥ 3a− 2(a− 1) = a+ 2 ,

by part (a), again. The other inequality of (c) is proved analogously. �

4.1. Proof of Theorem 1.5. By Theorem 1.3, we may assume that D contains
a dominated pair {u, v} with d(u) + d(v) < 3a, for else there is nothing to show.
Then, by Lemma 4.2, we have 2(a+ k) < 3a, hence k < a

2 and a+ k < 2a− k.
Let X = {x1, . . . , xa} and Y = {y1, . . . , ya} be the two partite sets of D, and

suppose without loss of generality that X contains a non-dominating pair {x′, x′′},
as above. Let p ≥ 2 denote the maximal integer such that X contains vertices
{x(1), . . . , x(p)} no two of which form a dominating pair. Then, by Lemma 4.4(b),
condition (Bk) implies that

(4.1) d(x) ≥ 2a− k , for every x ∈ X \ {x(1), . . . , x(p)} .

Further, for any 1 ≤ i < j ≤ p, we have N+(x(i)) ∩N+(x(j)) = ∅, and hence

(4.2) a ≥ p(k + 1) ,

by Lemma 4.4(a). Since k > a
4 , by assumption, it follows that p ≤ 3. Moreover,

when p = 3, then a ≥ p(k + 1) and k > a
4 imply a > 12, and hence k ≥ 4. To sum

up, we have

(4.3) p = 2, or else p = 3 and k ≥ 4 .

For the remainder of this proof we shall assume that k ≥ 3. The case k = 2
requires a different argument and it will be settled separately in Section 4.2. We
will reduce the proof to a straightforward application of Thomassen’s Theorem 4.1,
by proving the following claim.

Claim 1. D is bipancyclic, else it contains a Hamilton cycle C = [y1, x1, . . . , ya, xa]
such that

d+(xi) + d−(yi) ≥ a+ 2 , for every 1 ≤ i ≤ a .

For the proof of the claim, suppose first that k = 3. Then, p = 2, by (4.3). Let
x′, x′′ be the only two vertices in X with degrees strictly less than 2a − k. By
Lemma 4.4(c), it suffices to show that D contains a Hamilton cycle C such that
d+(x′) + d−(x′−) ≥ a + 2 and d+(x′′) + d−(x′′−) ≥ a + 2, where x′− (resp. x′′−)
denotes the predecessor of x′ (resp. x′′) on C.
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Let then C = [y1, x1, . . . , ya, xa] be a fixed Hamilton cycle inD, and suppose that
the predecessor x′− of x′ has d(x′−) < 2a − k. Assume without loss of generality
that x′ = x1 (and so x′− = y1). To simplify notation, set

α := d+(x1) and β := d−(y1) .

We may assume that β ≤ a− 3, for if β ≥ a− 2, then Lemma 4.4(a) implies

α+ β ≥ (k + 1) + (a− 2) = a+ 2 .

Next, let

l := min{n ≥ 2 : y1xn ∈ A(D), xn 6= x′′} .

By Lemma 4.2, we have d+(y1) ≥ (a+ k)− β = a− (β − k), hence

(4.4) l ≤ β − k + 3 ,

where the inequality is strict unless x′′ ∈ {x2, . . . , xβ−k+2} and y1x
′′ ∈ A(D).

Now, the pair {y1, yl} is dominating (both dominate xl), thus d(yl) ≥ 2a−k and

(4.5) |N+(yl) \ {x1, . . . , xl}| ≥ d(yl)− d−(yl)− l

≥ (2a− k)− (a− 1)− l = a− k − l + 1 .

On the other hand,

(4.6) |N−(x1) \ {y1, . . . , yl}| ≥ d(x1)− d+(x1)− l ≥ (a+ k)− α− l .

By (4.4), the right sides of inequalities (4.5) and (4.6) are positive, else α+β ≥ a+3.
It thus follows from (4.5) and (4.6) that there exists l+ 1 ≤ m ≤ a such that

(4.7) ylxm ∈ A(D) and ymx1 ∈ A(D) (hence also d(ym) ≥ 2a− k) ,

unless

(4.8) (a− k − l + 1) + (a+ k − α− l) ≤ a− l .

By (4.4), the latter inequality implies α+ β ≥ a+ 1. Hence, either α+ β ≥ a+ 2,
or α + β = a + 1 and we have equalities in (4.8) and (4.4), or else there exists
l + 1 ≤ m ≤ a such that (4.7) holds. In the latter case, D contains a Hamilton
cycle

C′ = [y1, xl, . . . , ym, x1, . . . , yl, xm, . . . , xa] ,

where the dotted parts indicate the appropriate pieces of C. On this new cycle,
the predecessor of x′ is of degree at least 2a− k, and hence, by Lemma 4.4(c), we
have decreased by one the number of pairs of vertices not satisfying the condition
of Claim 1. In may still be the case that the predecessor of x′′ on C′ has degree
less than 2a− k. If so, we repeat the above construction to replace C′ by another
Hamilton cycle C′′, on which the condition from Claim 1 is already satisfied by all
pairs.

The equalities in (4.8) and (4.4) can actually only occur when D is bipancyclic,
as is shown in Lemma 4.5 below. We have thus proved Claim 1 in case k = 3.

Suppose than that p = 3, and hence k ≥ 4. Let x′, x′′, x′′′ be the only three
vertices in X with degrees strictly less than 2a− k. By Lemma 4.4(c) and the first
part of the proof, it suffices to show that D contains a Hamilton cycle C such that
d+(x′) + d−(x′−) ≥ a+ 2, where x′− denotes the predecessor of x′ on C.
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Let then C = [y1, x1, . . . , ya, xa] be a fixed Hamilton cycle inD, and suppose that
the predecessor x′− of x′ has d(x′−) < 2a − k. Assume without loss of generality
that x′ = x1 (and so x′− = y1). To simplify notation, set

α := d+(x1) and β := d−(y1) .

We may assume that β ≤ a− 4, for if β ≥ a− 3, then Lemma 4.4(a) implies

α+ β ≥ (k + 1) + (a− 3) ≥ a+ 2 .

Next, let

l := min{n ≥ 2 : y1xn ∈ A(D), xn /∈ {x′′, x′′′}} .

By Lemma 4.2, we have d+(y1) ≥ (a+ k)− β = a− (β − k), hence

(4.9) l ≤ β − k + 4 ,

where the inequality is strict unless x′′, x′′′ ∈ {x2, . . . , xβ−k+3}, y1x
′′ ∈ A(D), and

y1x
′′′ ∈ A(D).
As in the first part of the proof, the pair {y1, yl} being dominating implies

d(yl) ≥ 2a− k, and so the inequality (4.5) holds. Of course, we have (4.6) as well.
By (4.9), the right sides of (4.5) and (4.6) are now positive, else α+ β ≥ a+ 4. It
thus follows from (4.5) and (4.6) that there exists l + 1 ≤ m ≤ a such that

(4.10) ylxm ∈ A(D) and ymx1 ∈ A(D) (hence also d(ym) ≥ 2a− k) ,

unless (4.8) holds. By (4.9) and since k ≥ 4, the latter inequality implies α + β ≥
a+1. Hence, either α+ β ≥ a+2, or α+ β = a+1 and we have equalities in (4.8)
and (4.9), or else there exists l + 1 ≤ m ≤ a such that (4.10) holds. In the latter
case, as in the first part of the proof, D contains a Hamilton cycle C′, on which the
predecessor of x′ is of degree at least 2a − k. Hence, we have reduced to the case
p = 2, which is already settled. On the other hand, the equalities in (4.8) and (4.9)
can only occur when D is bipancyclic, by Lemma 4.5 below, so the proof of Claim 1
is now complete.

Suppose now that D is not bipancyclic, and C = [y1, x1, . . . , ya, xa] is a Hamilton
cycle for which the condition of Claim 1 is satisfied. We associate with D a new
digraph, G, constructed as follows. Set V (G) := {v1, . . . , va}, and vivj ∈ A(G)
whenever xiyj ∈ A(D), for i, j ∈ {1, . . . , a}, i 6= j. Then, G is strongly connected
because it contains a Hamilton cycle [v1, . . . , va] (induced from C).

Note that a ≥ 3, so G has at least three vertices. Moreover, for every 1 ≤ i ≤ a,
we have

(4.11) d+G(vi) ≥ d+D(xi)− 1 and d−G(vi) ≥ d−D(yi)− 1 .

Therefore, by Claim 1, dG(vi) ≥ a for every 1 ≤ i ≤ a, and thus G satisfies the
assumptions of Theorem 4.1.

Notice that every cycle [vi1 , . . . , vil ] of length l in G corresponds to a cycle of
length 2l in D, namely [yi1 , xi1 , . . . , yil , xil ]. Also, by Remark 4.3, D contains a
cycle of length 2. To complete the proof it thus suffices to show that G is not a
tournament nor a balanced bipartite digraph.

If G were a tournament, then it would contain no cycle of length 2, and hence
dG(vi) = d+G(vi)+d−G(vi) ≤ a− 1 for every i; a contradiction. On the other hand, if

1 ≤ i ≤ a is such that dD(xi) ≥ 2a− k then d+D(xi) ≥ a− k + 1, by Lemma 4.4(a),

and hence d+G(vi) ≥ a−k, by (4.11). Since k < a
2 , it follows that vi dominates more

than half of the vertices of G, and so G is not balanced bipartite. �
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4.2. Special cases. There remain a few cases of digraphs not covered by the above
proof. We do not know of any uniform way of tackling them all at once, and instead
proceed on a case by case basis. We begin with a lemma that completes the proof
of Theorem 1.5 in the case of k ≥ 3.

Lemma 4.5. Under the above notation, suppose that p = 2, k = 3, and we have

equalities in (4.8) and (4.4), or else p = 3, k ≥ 4, and we have equalities in (4.8)
and (4.9). Then, D is bipancyclic.

Proof. Let C = [y1, x1, . . . , ya, xa] be the fixed Hamilton cycle from the above
proof. The equality in (4.8) implies equalities in all the inequalities that led to it.
In particular, x1 is dominated by each of the {y1, . . . , yl}, and d−(yl) = a − 1, so
either yl is dominated by all the vertices from X \ {x1} or else it is dominated by
all the vertices from X \ {x′′}. The equality in (4.4) (when p = 2) or in (4.9) (when
p = 3), in turn, implies that x′′ = xr for some 1 < r < l, and y1xr ∈ A(D). Also,
l ≥ 4.

Suppose first that x1yl /∈ A(D). Then, D contains cycles of all even lengths
(induced from C, by chords into yl), except at most for the cycle C2s with s =
a− l+2. Now, if s ≤ l−1, then D contains a 2s-cycle [x1, . . . , ys] (where, as before,
the dotted part indicates an appropriate piece of C). If, in turn, s ≥ l, then either
the cycle [y1, xr, . . . , xa] is of length 2s, or else it is of length greater than 2s and
we can shorten it to a 2s-cycle by replacing an xq − yl path on C by the arc xqyl
with a suitable choice of r ≤ q < l − 1.

Suppose then that xryl /∈ A(D). Then, D contains cycles of all even lengths,
except at most for the cycle C2s with s = a − l + r + 1. Now, if 2r ≥ l, then D
contains a 2s-cycle

[y1, xr, . . . , yl−1, x1, . . . , x2r−l+1, yl, . . . , xa] .

If, in turn, 2r ≤ l − 1, then r < l − 2 (as l ≥ 4) and the cycle [y1, xr, . . . , xa] is of
length 2(a− r + 1), where

2(a− r + 1) ≥ 2(a− r + 1) + 2(2r − l + 1) = 2(a− l + r + 2) .

Thus, [y1, xr, . . . , xa] can be shortened to a 2s-cycle by replacing an xq − yl path
on C with the arc xqyl with a suitable choice of r < q < l − 1. �

It remains to consider the case when D is such that k = p = 2. Fix a Hamilton
cycle C = [y1, x1, . . . , ya, xa] on D. By (4.2), we have a ≥ 6. On the other hand, if
a ≥ 8, then k > a

4 implies k ≥ 3. Thus, a = 6 or a = 7. In both cases, for every
x ∈ X \ {x′, x′′}, we have d(x) ≥ 2a− 2. Hence, for every such x,

(4.12) d−(x) = d+(x) = a− 1 ,

for else D contains cycles of all even lengths through x (induced from C). It is easy
to see that then D contains all cycles of even lengths less than 2(a− 1). Indeed, let
2 ≤ s ≤ a− 2 and suppose without loss of generality that d+(x1) = d−(x1) = a− 1.
If ys+1x1 ∈ A(D) then D contains the 2s-cycle [x1, . . . , ys+1]. If x1ya−s+2 ∈ A(D),
then D contains the 2s-cycle [x1, ya−s+2, . . . , y1]. If, in turn, ys+1x1 /∈ A(D) and
x1ya−s+2 /∈ A(D), then D contains all other arcs adjacent to x1, and hence it
contains the 2s-cycle [x1, ya−s+1, . . . , ys+2]. It thus remains to show thatD contains
a subhamiltonian cycle C2(a−1).
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Suppose first that a = 6. Then, we have equality in (4.2), and hence

(4.13) d+(x′) = d+(x′′) = 3, and d−(x′) = d−(x′′) = a− 1 ,

by Lemma 4.4. We may assume that d(x′−) < 2a−k or d(x′′−) < 2a−k, for else D
satisfies the condition from Claim 1 in the proof in Section 4.1, and the remainder
of that proof carries through. Without loss of generality, assume then that x′ = x1

(hence x′− = y1) and d(y1) < 2a− k. We may further assume that yax1 /∈ A(D),
for else D contains the 2(a− 1)-cycle [ya, x1, . . . , xa−1]. Then, by (4.13), we must
have ya−1x1 ∈ A(D). Of the 3 vertices {x2, . . . , xa−2} at most one doesn’t satisfy
(4.12). Similarly, at most one of the {y2, . . . , ya−2} has degree less than 2a− 2, by
Lemma 4.4 and since p = 2, d(y1) < 2a− k. Therefore, there exists 2 ≤ i ≤ a− 2
such that yixa−1, yaxi ∈ A(D), or yixa, y1xi ∈ A(D), or else yixi+1 ∈ A(D). In
either of the first two cases, we obtain a cycle of length 2(a − 1) by replacing the
arc yixi on the cycle [ya−1, x1, . . . , xa−2] with an appropriate path of length 3. In
the latter case, in turn, D contains the 2(a− 1)-cycle [xi+1, . . . , yi].

Finally, suppose a = 7. Then, the inequalities d(x′) ≥ a + 2, d(x′′) ≥ a + 2,
together with (4.2), imply that

(4.14) d−(x′) = a− 1, or else d−(x′′) = a− 1 .

For if d−(x′) ≤ a − 2 and d−(x′′) ≤ a − 2, then d+(x′) + d+(′′) ≥ 8 and hence
{x′, x′′} is a dominating pair; a contradiction. Without loss of generality, assume
then that x′ = x1 and d−(x1) = a− 1. We may further assume that yax1 /∈ A(D),
for else D contains the 2(a− 1)-cycle [ya, x1, . . . , xa−1]. Then, by (4.14), we must
have ya−1x1 ∈ A(D). Of the 4 vertices {x2, . . . , xa−2} at most one doesn’t satisfy
(4.12). Similarly, at most two of the 4 vertices {y2, . . . , ya−2} have degree less than
2a− 2, by Lemma 4.4 and since p = 2. Therefore, there exists 2 ≤ i ≤ a− 2 such
that yixa−1, yaxi ∈ A(D), or yixa, y1xi ∈ A(D), or else yixi+1 ∈ A(D). In either
of the first two cases, we obtain a cycle of length 2(a− 1) by replacing the arc yixi

on the cycle [ya−1, x1, . . . , xa−2] with an appropriate path of length 3. In the latter
case, in turn, D contains the 2(a− 1)-cycle [xi+1, . . . , yi]. �

5. Final remarks

First of all, for the sake of completeness, let us note that analogues of Theo-
rems 1.5 and 1.6 for dominated pairs hold true as well. More precisely, we have the
following results.

Theorem 5.1. Let D be a strongly connected balanced bipartite digraph of order

2a, where a ≥ 3, and let k be an integer satisfying max{1, a4} < k ≤ a
2 . Suppose

that for every dominated pair {u, v} of vertices in D,

d(u) ≥ 2a− k and d(v) ≥ a+ k, or d(u) ≥ a+ k and d(v) ≥ 2a− k.

Then, D is either bipancyclic or a directed cycle of length 2a.

Theorem 5.2. Let D be a strongly connected balanced bipartite digraph of order

2a, where a ≥ 2. Suppose that for every dominated pair {u, v} of vertices in D,

d(u) + d(v) ≥ 3a+ 1 .

Then, D is hamiltonian.
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Indeed, with a given digraph D one can associate a digraph D′ on the same
vertices, and with arcs uv ∈ A(D′) whenever vu ∈ A(D). Then, for every u ∈
V (D′) = V (D), we have d−D′(u) = d+D(u) and d+D′(u) = d−D(u), hence dD′(u) =
dD(u). Moreover, a pair of vertices {u, v} is dominating in D′ if and only if it is
dominated in D. The above results thus follow immediately from Theorems 1.5
and 1.6, by observing that any cycle [u1, . . . , us] in D′ corresponds to a cycle on
the same vertices in D traversed in the opposite direction, [us, . . . , u1].

Next, let us have a look at the lower bound on the integer k in Theorems 1.4
and 1.5. Of course, the assumption that k > a

4 leaves out nearly half of the
possible cases in condition (Bk). However, a careful analysis of the proof from
Section 4.1 shows that this argument carries through, for a large enough, so long as
k is bounded below by a constant of the form λa for some real λ > 0. Consequently,
for all but finitely many exceptional digraphs satifying condition (Bk) of this type,
hamiltonicity implies bipancyclicity:

Proposition 5.3. For every λ > 0 there exists a0 such that the following holds:

If D is a strongly connected hamiltonian balanced bipartite digraph of order 2a, with
a ≥ a0, k is an integer satisfying max{1, λa} < k ≤ a

2 , and for every dominating

pair {u, v} of vertices in D,

d(u) ≥ 2a− k and d(v) ≥ a+ k, or d(u) ≥ a+ k and d(v) ≥ 2a− k ,

then D is bipancyclic or else a directed cycle of length 2a.

It would be therefore very interesting to know whether condition (Bk) with
max{1, λa} < k ≤ a

2 and λ < 1
4 does imply hamiltonicity of a digraph. We do

not know the answer to this question, and it seems implausible that the techniques
of [11] could be used to obtain such a result.

Another interesting problem is this: Is condition (D1) enough to imply bipan-
cyclicity of a strongly connected balanced bipartite digraph, modulo some excep-
tional cases? Again, the techniques used in the present paper seem insufficient to
have a go at it.

Finally, in the context of Theorem 1.6, it is perhaps worth mentioning that our
present methods can be pushed a bit further, and the conclusions of Lemmas 3.1
and 3.3 hold, in fact, even if a digraph D satisfies just (D0). We do not include
the proofs here, because they are much less elegant and require considering several
special cases. They do however give hope that an analogue of Theorem 1.6 with
condition (D1) replaced by (D0) could be true.
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