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Abstract

Tuza (1981) conjectured that the size τ(G) of a minimum set of edges that intersects every
triangle of a graph G is at most twice the size ν(G) of a maximum set of edge-disjoint triangles
of G. In this paper we present three results regarding Tuza’s Conjecture. We verify it for graphs
with treewidth at most 6; we show that τ(G) ≤ 3

2
ν(G) for every planar triangulation G different

from K4; and that τ(G) ≤ 9

5
ν(G)+ 1

5
if G is a maximal graph with treewidth 3. Our first result

strengthens a result of Tuza, implying that τ(G) ≤ 2 ν(G) for every K8-free chordal graph G.

1 Introduction

In this paper all graphs considered are simple and the notation and terminology are standard. A
triangle transversal of a graph G is a set of edges of G whose removal results in a triangle-free
graph; and a triangle packing of G is a set of edge-disjoint triangles of G. We denote by τ(G)
(resp. ν(G)) the size of a minimum triangle transversal (resp. maximum triangle packing) of G.
Tuza [14] posed the following conjecture.

Conjecture 1.1 (Tuza, 1981). For every graph G, we have τ(G) ≤ 2 ν(G).

This conjecture was verified for many classes of graphs. In particular, Tuza [15] verified it
for planar graphs, and Haxell and Kohayakawa [9] proved that if G is a tripartite graph, then
τ(G) ≤ 1.956 ν(G). The reader may refer to [1, 4, 5, 8, 10, 11] for more results concerning Tuza’s
Conjecture. In this paper we present three results regarding Tuza’s Conjecture. We verify it for
graphs with treewidth at most 6; and we show that τ(G) ≤ 3

2 ν(G) for every planar triangulation G
different from K4; and that τ(G) ≤ 9

5 ν(G) + 1
5 if G is a 3-tree, i.e., a graph obtained from K3 by

successively choosing a triangle in the graph and adding a new vertex adjacent to its three vertices.
Puleo [13] introduced a set of tools for dealing with graphs that contain vertices of small degree

(Lemma 3.2), and verified Tuza’s Conjecture for graphs with maximum average degree less than 7,
i.e., for graphs in which every subgraph has average degree less than 7. In this paper, we extend
Puleo’s technique (Lemma 3.3) in order to prove Tuza’s Conjecture for graphs with treewidth at
most 6 (Theorem 3.4). Note that there are graphs with treewidth at most 6 and maximum average
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degree at least 7 (Figure 1). In particular, any graph with treewidth at most 6 that contains such
a graph also has maximum average degree at least 7. In particular, this result strengthens a result
of Tuza, implying that τ(G) ≤ 2 ν(G) for every K8-free chordal graph G.

Figure 1: A graph with treewidth 6 and average degree 22/3.

In another direction, motivated by [9], we show that, for certain classes of graphs, the ratio
τ(G)/ν(G) can be bounded by a constant smaller than 2. More specifically, we show that, if G is
a planar triangulation different from K4, then τ(G) ≤ 3

2 ν(G) (Theorem 4.5) and, if G is a 3-tree,
then τ(G) ≤ 9

5 ν(G) + 1
5 (Theorem 5.1).

This paper is organized as follows. In Section 2, we establish the notation and present some
auxiliary results used throughout the paper. In Section 3, we verify Tuza’s Conjecture for graphs
with treewidth at most 6 and, in Sections 4 and 5, we study planar triangulations and 3-trees,
respectively. Finally, in Section 6 we present some concluding remarks.

2 Rooted tree decompositions

In this section we present most of the notation and some auxiliary results regarding tree decompo-
sitions. (See [6, Chp. 12] for an overview on this concept.) A rooted tree is a pair (T, r), where T is
a tree and r is a vertex of T . Given t ∈ V (T ), if t′ is a vertex in the (unique) path in T that joins r
and t, then we say that t′ is an ancestor of t. Every vertex in T that has t as its ancestor is called a
descendant of t. If t 6= r, then the parent of t, denoted by p(t), is the ancestor of t that is adjacent
to t. The successors of t are the vertices whose parent is t, and we denote the set of successors of t
by ST (t). The height of t, denoted by hT (t), is the length (number of edges) of a longest path that
joins t to a descendant of t. When T is clear from the context, we simply write S(t) and h(t).

Definition. A tree decomposition of a graph G is a pair D = (T,V) consisting of a tree T and a
collection V = {Vt ⊆ V (G) : t ∈ V (T )}, satisfying the following conditions:

(T1)
⋃

t∈V (T ) Vt = V (G);

(T2) for every uv ∈ E(G), there exists a t such that u, v ∈ Vt;

(T3) if a vertex v ∈ Vt1 ∩ Vt2 for t1 6= t2, then v ∈ Vt for every t in the path of T that joins t1
and t2. In other words, for any fixed vertex v ∈ V (G), the subgraph of T induced by the
vertices in sets Vt that contain v is connected.

The elements in V are called the bags of D, and the vertices of T are called nodes. The width
of D is the number max{|Vt| : t ∈ V (T )} − 1, and the treewidth tw(G) of G is the width of a tree
decomposition of G with minimum width. Let G be a graph with treewidth k. If |Vt| = k + 1 for
every t ∈ V (T ), and |Vt ∩ Vt′ | = k for every tt′ ∈ E(T ), then we say that (T,V) is a full tree
decomposition of G.
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Note that 3-trees are maximal graphs with treewidth 3. Indeed, the construction of a 3-tree G
describes a tree decomposition of G whose bags are exactly the K4’s formed by the addition of each
new vertex.

The following result was proved by Bodlaender [2] (see also Gross [7]).

Proposition 2.1. Every graph admits a full tree decomposition.

A triple (V, T, r) is a rooted tree decomposition of a graph G if (V, T ) is a full tree decomposition
of G, (T, r) is a rooted tree, and Vt∩Vp(t) 6= Vt∩Vt′ for every t ∈ V (T ) \ {r} and t′ ∈ S(t). In what
follows, we show that every full tree decomposition can be modified into a rooted tree decomposition
with an arbitrary root r.

Proposition 2.2. Every graph admits a rooted tree decomposition.

Proof. Let (T,V, r) be a triple where (T,V) is a full tree decomposition of G and (T, r) is a rooted
tree, with r chosen arbitrarily in T . Let PT (t) be the (unique) path in T that joins r and t.
Choose such (T,V, r) with

∑

t∈V (T ) |PT (t)| minimum. We claim that (V, T, r) is a rooted tree

decomposition. Suppose, for a contradiction, that there exist two nodes t ∈ V (T )\{r} and t′ ∈ S(t)
such that Vt ∩ Vp(t) = Vt ∩ Vt′ . Let T ′ be the tree obtained from T by removing the edge tt′ and
adding the edge p(t)t′, that is, T ′ is such that V (T ) = V (T ′) and E(T ′) = E(T ) \ {tt′} ∪ {p(t)t′}.
Note that (T ′,V) is a full tree decomposition of G, and that |PT ′(t′′)| = |PT (t

′′)| − 1 for every
descendant t′′ of t′. Hence

∑

t∈V (T ′) |PT ′(t)| <
∑

t∈V (T ) |PT (t)|, a contradiction to the choice of T .

For a rooted tree decomposition (V, T, r) of a graph G and a node t ∈ V (T ) \ {r}, the (unique)
vertex in Vt \ Vp(t) is the representative of t. We leave undefined the representative of r.

For a vertex u ∈ V (G), we denote by NG(u) the set of neighbors of u. When G is clear from
the context, we write simply N(u). In what follows, we denote by d(u) the degree of u, by N [u]
the closed neighborhood N(u) ∪ {u} of u, and by ∆(G) the maximum degree of G.

Remark 1. If y is the representative of a leaf t of a rooted tree decomposition of a graph G,
then NG(y) ⊆ Vt.

Proof. Suppose, for a contradiction, that there is a node y′ ∈ NG(y) \ Vt. By (T2), there is a
bag Vt′ such that y, y′ ∈ Vt′ , and hence, by (T3), we have that y ∈ Vp(t), a contradiction.

3 Graphs with treewidth at most 6

In this section, we verify Conjecture 1.1 for graphs with treewidth at most 6 by extending the
technique introduced by Puleo [13] for dealing with vertices of small degree. For that, we use the
following definitions (see also [13]).

Definition. Given a graph G, a nonempty set V0 ⊆ V (G) is called reducible if there is a
set X ⊆ E(G) and a set Y of edge-disjoint triangles in G such that the following conditions hold:

(i) |X| ≤ 2|Y |;

(ii) X ∩ E(A) 6= ∅ for every triangle A in G that contains a vertex of V0; and
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(iii) if u, v /∈ V0 and uv ∈ E(A) for some A ∈ Y , then uv ∈ X.

In this case we say that (V0,X, Y ) is a reducing triple for G and, equivalently, we say that V0 is
reducible using X and Y . If there is no reducible set for G, we say that G is irreducible.

The following lemma comes naturally (see [13, Lemma 2.2]).

Lemma 3.1. Let (V0,X, Y ) be a reducing triple for a graph G and consider G′ = G−X − V0.
If τ(G′) ≤ 2 ν(G′), then τ(G) ≤ 2 ν(G).

A graph G is robust if, for every v ∈ V (G), each component of G[N(v)] has order at least 5. The
proofs of Lemma 3.3 and Theorem 3.4 make frequent use of following result (see [13, Lemma 2.7]).

Lemma 3.2. Let G be an irreducible robust graph and let x, y ∈ V (G). The following statements
hold.

(a) If d(x) ≤ 6, then ∆
(

G[N(x)]
)

≤ 1 and
∣

∣E
(

G[N(x)]
)∣

∣ 6= 2;

(b) If d(x) ≤ 6 and d(y) ≤ 6, then xy /∈ E(G);

(c) If d(x) = 7 and d(y) = 6, then N [y] 6⊆ N [x]; and

(d) If d(x) ≤ 8 and d(y) = 5, then N [y] 6⊆ N [x].

We extend the result above in the following lemma. In the pictures throughout its proof, given
a reducing triple (V0,X, Y ) for a graph G, and two nonadjacent vertices x and y of G, we illustrate
the triangles in Y as follows. The triangles in Y containing x and y are illustrated, respectively,
in dashed blue and dotted green, while the triangles in Y not containing x or y are illustrated in
solid red. The dashdotted gray lines illustrate edges that may not exist, and thin light gray lines
indicate unused edges.

Lemma 3.3. Let G be an irreducible robust graph and let x, y ∈ V (G). If d(x) ≤ 6, d(y) ≤ 6,
and |N(x) ∪N(y)| ≤ 7, then

(a) d(x) = d(y) = 5;

(b) |N(x) ∩N(y)| = 3; and

(c) G[N(x)] ≃ G[N(y)] ≃ K5.

Proof. By Lemma 3.2(b), we have that xy /∈ E(G).

Proof of (a). Since G is robust, we may assume that d(x) ≥ d(y) ≥ 5 without loss of generality.
Suppose, for a contradiction, that d(x) = 6 and let N(x) = {v1, v2, v3, v4, v5, v6}. In what follows,
we divide the proof according to the size of |N(x) ∩N(y)|.

Case |N(x) ∩N(y)| = 6.

We have N(y) = N(x). By Lemma 3.2(a), G[N(x)] = G[N(y)] is either empty, or an edge, or a
matching of size 3. Assume without loss of generality that E

(

G[N(x)]
)

⊆ {v1v4, v2v5, v3v6}. Let
X = E(G[N(x)]) and Y = {v1v3v5, v2v4v6, xv1v2, yv2v3, xv3v4, yv4v5, xv5v6, yv1v6} (Figure 2a).
Then |X| ≤ 15 < 2|Y |. Triangles in G containing x or y contain two vertices in N(x), so
contain an edge of X, and every edge of a triangle in Y is either incident to x or y, or is in X.
Thus

(

{x, y},X, Y
)

is a reducing triple for G, a contradiction.
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Case |N(x) ∩N(y)| = 5.

Without loss of generality, v1 6∈ N(y). We may assume that E
(

G[N(x)]
)

⊆ {v1v4, v2v5, v3v6}
by Lemma 3.2(a). Moreover, if |N(y)| = 6 and v7 ∈ N(y) \ N(x), then we may also as-
sume that E

(

G[N(y)]
)

⊆ {v2v5, v3v6, v4v7, v5v7}. Let Z = {xv1, v1v2} ∪ E(G[{v2, . . . , v6}])
and W = {v2v4v6, xv1v2, yv2v3, xv3v4, yv4v5, xv5v6}. For |N(y)| = 5, put X = Z and Y = W ,
and note that |X| ≤ 12 = 2|Y |; and for |N(y)| = 6, put X = Z ∪ {yv7, v6v7} and
Y = W ∪ {yv6v7}, and note that |X| ≤ 14 = 2|Y | (Figure 2b). Triangles in G containing x
(resp. y) contain either v1 (resp. v7) or two vertices in {v2, . . . , v6}, so contain an edge of X, and
every edge of a triangle in Y is either incident to x or y, or is in X. Thus

(

{x, y},X, Y
)

is a
reducing triple for G, a contradiction.

Case |N(x) ∩N(y)| = 4.

Without loss of generality, v1, v2 6∈ N(y). In this case, |N(y)| = 5. Let v7 ∈ N(y) \ N(x).
By Lemma 3.2(a), G[N(y)] is either empty or an edge ab. If G[N(y)] is a clique, let ab be an
arbitrary edge in G[N(y)]. Let c, d, z ∈ N(y) \ {a, b} with c, d ∈ N(x). Each one in {c, d, z}
dominates N(y). Figures 2c and 2d depict the cases in which v7 belongs or not to {a, b}, respec-
tively. Let u,w ∈ (N(x) ∩ N(y)) \ {c, d}. Possibly z ∈ {u,w}. By Lemma 3.2(a), G[N(x)] is a
matching of size at most 3, so G[{v1, v2, u, w}] is a matching of size at most 2. Without loss of
generality, we may assume that v1u, v2w ∈ E(G). Let X = {xv1, xv2, v1u, v2w} ∪E(G[N(y)])
and Y = {xcd, yac, ybd, zad, zbc, xv1u, xv2w}. Then |X| ≤ 14 = 2|Y |. Triangles in G containing
x contain either v1 or v2, or two vertices in N(y), and triangles containing y contain two vertices
in N(y), so all such triangles contain an edge of X. Also, every edge of a triangle in Y is either
incident to x or y, or is in X. Thus

(

{x, y},X, Y
)

is a reducing triple for G, a contradiction.

Proof of (b). Clearly |N(x) ∩ N(y)| ≥ 3. So it is enough to show that |N(x) ∩ N(y)| ≤ 3.
Let N(x) = {v1, v2, v3, v4, v5} and suppose, for a contradiction, that N(y) = {v2, v3, v4, v5, v6},
where possibly v6 = v1. By Lemma 3.2(a), |E(G[{v2, . . . , v5}])| ≥ 5, thus we may assume, without
loss of generality, that v2v3, v3v4, v4v5, v5v2 ∈ E(G). Consider X = {xv1, yv6} ∪ E(G[{v2, . . . , v5}])
and Y = {xv2v5, xv3v4, yv2v3, yv4v5}. Then |X| ≤ 8 = 2|Y |. Triangles in G containing x (resp. y)
either contain v1 (resp. v6) or contain two vertices in {v2, . . . , v5}, hence contain an edge of X.
Moreover, every edge of a triangle in Y is either incident to x or y, or is in X. So

(

{x, y},X, Y
)

is
a reducing triple for G (Figure 3a), a contradiction.

Proof of (c). Let N(x) = {v1, v2, v3, v4, v5} and N(y) = {v3, v4, v5, v6, v7}. Suppose, for a
contradiction, that G[N(y)] is not complete. By Lemma 3.2(a), only two vertices in N(y) are
nonadjacent. These two vertices might both be in N(x), or only one is in N(x), or none is in N(x).
So, we may assume, without loss of generality, that either v3v5, or v4v7, or v6v7 is not in G.

If v3v5 is not in G, then we have E(G[N(x)]) = E(G[N(y)]) = {v3v5} by Lemma 3.2(a).
In this case, consider X = E(v2v3v4) ∪ E(v4v5v6) ∪ {v2v5, v1v3, v3v6, v5v7, xv1, yv7} and
Y = {v2v3v4, v4v5v6, xv1v3, xv2v5, yv3v6, yv5v7}. Every triangle in G containing x (resp. y) ei-
ther contains v1 (resp. v7) or contains two vertices in {v2, . . . , v5} (resp. {v3, . . . , v6}), so contains
an edge of X (Figure 3b).

If either v4v7 or v6v7 is not in G, then we may assume, without loss of generality,
that E(G[N(x)]) ⊆ {v1v2, v1v3, v1v4} by Lemma 3.2(a). Let w, z ∈ {v4, v6}, with wv7 ∈ E(G)
and zv7 6∈ E(G), and, in this case, consider X = E(G[N(y)]) ∪ {xv1, xv2, v2v4} and
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x y
v1

v2

v3 v4

v5

v6

(a)

x y

v1 v7

v3

v4

v5

v2 v6

(b)

x y

c
u=z

w=b

d

a=v7

v1

v2

(c)

x y

d
w=a

u=b

c

z=v7

v1

v2

(d)

Figure 2: Illustration of the reducing triples of the proof of Lemma 3.3(a).

Y = {xv3v5, xv2v4, yv3v7, v3v4v6, yv5z, v5v7w}. Triangles in G containing x or y either contain v1
or v2, or contain two vertices in N(y), so contain an edge of X (Figures 3c and 3d).

In both cases, |X| = 12 = 2|Y | and every edge of a triangle in Y is either adjacent to x or y, or
is in X. So

(

{x, y},X, Y
)

is a reducing triple for G, a contradiction.

Now we are able to prove the main result of this section.

Theorem 3.4. If G is a graph with treewidth at most 6, then τ(G) ≤ 2 ν(G).

Proof. Suppose, for a contradiction, that the statement does not hold, and let G be a graph
with treewidth at most 6 and such that τ(G) > 2 ν(G), and that minimizes |V (G)| subject to these
conditions. We claim that G is irreducible. Indeed, suppose that G has a reducing triple (V0,X, Y ),
and let G′ = (G−X)− V0. Note that G′ has treewidth at most 6, and, by the minimality of G,
we have τ(G′) ≤ 2 ν(G′). By Lemma 3.1, τ(G) ≤ 2 ν(G), a contradiction.

Claim. G is robust.

Proof. Suppose, for a contradiction, that x is a vertex of G such that G[N(x)] contains a compo-
nent C with at most four vertices. Let EC = {xv : v ∈ V (C)} and M ′ be a maximum matching
in C.

If M ′ = ∅, then there is no triangle in G containing the edges in EC . Thus, for G′ = G − EC ,
we have that τ(G′) = τ(G) and ν(G′) = ν(G). The minimality of G implies that τ(G′) ≤ 2 ν(G′),
and so τ(G) ≤ 2 ν(G), a contradiction.
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x y

v1

v3

v2

v0

v4

v6

v5

(a)

x y

v1

v3

v4

v5

v7

v2 v6

(b)

x y

v1

v3

v4

v5

v7

v2 v6

(c)

x y

v1

v3

v4

v5

v7

v2 v6

(d)

Figure 3: Reducing triples of the proof of Lemma 3.3(b) and (c).

If M ′ = {v1v2}, then C is either a star or a triangle. If C is a star, let u be its center, and if C
is a triangle, then let u be the vertex of C different from v1 and v2. Note that if A is a triangle
of G containing edges of EC , then A contains v1v2 or A contains xu. Let G′ = G− E(xv1v2).
By the minimality of G, we have τ(G′) ≤ 2 ν(G′). Thus let X ′ and Y ′ be a minimum triangle
transversal and a maximum triangle packing of G′, respectively. Note that X ′ ∪ {v1v2, xu} is a
triangle transversal of G, and Y ′ ∪ {xv1v2} is a triangle packing of G. Hence

τ(G) ≤ |X ′|+ 2 = τ(G′) + 2 ≤ 2 ν(G′) + 2 = 2|Y ′|+ 2 ≤ 2 ν(G),

a contradiction.
Finally, if M ′ = {u1u2, v1v2}, then we put G′ = G− E(xu1u2)− E(xv1v2). Let X ′ and Y ′

be a minimum triangle transversal and a maximum triangle packing of G′, respectively. Note
that X ′ ∪ {u1u2, v1v2, xv1, xv2} is a triangle transversal of G, and Y ′ ∪ {xu1u2, xv1v2} is a triangle
packing of G. Hence

τ(G) ≤ |X ′|+ 4 = τ(G′) + 4 ≤ 2 ν(G′) + 4 = 2|Y ′|+ 4 ≤ 2 ν(G),

a contradiction.

Suppose that |V (G)| ≤ 7. As G is irreducible and robust, and d(v) ≤ 6 for every v ∈ V (G),
Lemma 3.2(b) implies that E(G) = ∅. Thus τ(G) ≤ 2 ν(G), a contradiction. So |V (G)| ≥ 8.
By Proposition 2.2, G has a rooted tree decomposition (T,V, r). Because |V (G)| ≥ 8, we have
that |V (T )| > 1, and hence there is a node t ∈ V (T ) with h(t) = 1. If t 6= r, let w be the
representative of t; otherwise let w be an arbitrary vertex of Vt.

First suppose that S(t) = {t′}, and let z be the representative of t′. Recall that z /∈ Vt and that
d(z) ≤ 6 by Remark 1. Because G is robust, d(z) ∈ {5, 6}. Also, (T − t′,V \{Vt′}, r) is a rooted tree
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decomposition for G− z with t as a leaf, because S(t) = {t′}. So we can apply Remark 1 to G− z
and t, and conclude that NG−z(w) ⊆ Vt \ {w}. Thus d(w) = |N(w)| ≤ |NG−z(w)| + 1 ≤ |Vt| ≤ 7.
If d(w) = 7, then w must be adjacent to z and to every vertex in Vt \ {w}, so we would have that
N [z] ⊆ N [w] because Vt′ ⊆ Vt∪{z}. This contradicts either Lemma 3.2(c) or Lemma 3.2(d). So we
may assume that d(w) ≤ 6, and hence wz /∈ E(G) by Lemma 3.2(b). Thus N(z)∪N(w) ⊆ Vt\{w},
and hence |N(z) ∪ N(w)| ≤ |Vt| − 1 ≤ 6. On the other hand, by Lemma 3.3, we have that
d(z) = d(w) = 5 and |N(z) ∩N(w)| = 3, which imply that |N(z) ∪N(w)| = 7, a contradiction.

Therefore |S(t)| = ℓ > 1. Let S(t) = {t1, . . . , tℓ} and let zi be the representative of ti for
i = 1, . . . , ℓ. Note that N(z1) ∪ · · · ∪ N(zℓ) ⊆ Vt, and |Vt| ≤ 7. Thus, by Lemma 3.3, d(zi) = 5
and G[N(zi)] ≃ K5 for every i ∈ {1, . . . , ℓ}, and |N(zi)∩N(zj)| = 3 for i, j ∈ {1, . . . , ℓ} with i 6= j.
This implies that |N(zi) ∪N(zj)| = 7 and so N(zi) ∪N(zj) = Vt, for i, j ∈ {1, . . . , ℓ} with i 6= j.

Suppose that ℓ = 2. Note that t is a leaf of (T ′,V ′, r), where T ′ = T − t1 − t2
and V ′ = V \ {Vt1 , Vt2}, hence dG−x−y(w) ≤ 6. So d(w) ≤ 8. We may assume, without loss of gen-
erality, that w ∈ N(z1). Hence, because G[N(z1)] is a complete graph, we have that N [z1] ⊆ N [w],
a contradiction to Lemma 3.2(d). We conclude that ℓ ≥ 3.

Let Vt = {v1, . . . , v7}, with N(z1) = {v1, . . . , v5} and N(z2) = {v3, . . . , v7}. Because N(z3) ⊆ Vt,
|N(z1) ∩N(z3)| = |N(z2) ∩N(z3)| = 3, and d(z3) = 5, exactly one vertex from N(z1) ∩ N(z2) is
in N(z3). So we may assume, without loss of generality, that N(z3) = {v1, v2, v3, v6, v7}. Note that
every pair of vertices in Vt is contained in at least one N(zi) for i ∈ {1, 2, 3}. Thus G[Vt] ≃ K7

because G[N(zi)] ≃ K5 for i ∈ {1, 2, 3}. Let X = E(G[Vt]) and note that |X| = 21. Put

Y1 = {z1v1v4, z1v2v5, z2v3v4, z2v5v6, z3v1v6, z3v2v3} and
Y2 = {v1v2v7, v2v4v6, v3v6v7, v4v5v7, v1v3v5},

and Y = Y1∪Y2 (Figure 4). Note that |Y | = 11 and |X| ≤ 2 |Y |. Also, every triangle in G that con-
tains z1, z2, or z3 contains two vertices in {v1, . . . , v7}, and hence contains an edge of X; and every
edge of a triangle in Y is either incident to z1, z2, or z3, or is in X. Therefore

(

{z1, z2, z3},X, Y
)

is a reducing triple for G, a contradiction. This concludes the proof.

z1

z2 z3

v1

v2

v3

v4

v5

v6 v7

Figure 4: Reducing triple from the proof of Theorem 3.4. Triangles in Y containing z1, z2, and z3
are illustrated, respectively, in dashed blue, dotted green, and dashdotted red, while the remaining
triangles in Y are in wavy cyan, solid orange, and dashdotdotted purple.

Theorem 3.4 strengthens the following result of Tuza [15] regarding chordal graphs.

Proposition 3.5. [15, Proposition 3(b)] If G is a K5-free chordal graph, then τ(G) ≤ 2 ν(G).
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Indeed, if G is chordal, then tw(G) ≤ ω(G) − 1, where ω(G) is the size of a maximum clique
in G (see [6, Prop. 12.3.11]). Hence, if G is also Kt-free, then tw(G) ≤ t − 2, and Theorem 3.4
implies the following strengthening of Proposition 3.5.

Corollary 3.6. If G is a K8-free chordal graph, then τ(G) ≤ 2 ν(G).

4 Planar triangulations

A graph is planar if it can be drawn in the plane so that its edges intersect only at their ends. Such
a drawing is called a planar embedding of the graph. A simple graph is a maximal planar graph if
it is planar and adding any edge between two nonadjacent vertices destroys that property. In any
planar embedding of a maximal planar graph, all faces are bounded by a triangle, the so called
facial triangles, so such a graph is also referred to as a planar triangulation.

In this section, we prove that τ(G)/ν(G) ≤ 3/2 for every planar triangulation G different
from K4. The proof is divided into two parts. In Lemma 4.2 we present an upper bound for τ(G),
and in Lemma 4.4 we present a lower bound for ν(G).

For the proof of Lemma 4.2, we need the following theorem of Petersen [12]. A bridge is a cut
edge in a graph.

Theorem 4.1 (Petersen, 1981). Every bridgeless cubic graph contains a perfect matching.

Fix a planar embedding of a maximal planar graph G. The dual graph G∗ of G is the graph
whose vertex set is the set of faces of G, and in which two vertices are adjacent if the corresponding
faces share an edge. As G is simple, G∗ has no bridge. Therefore G∗ is a bridgeless cubic graph.
In the next result we use that a 2-connected planar graph is bipartite if and only if every face is
bounded by an even cycle (see [6, Ch. 4, Exercise 24]).

Lemma 4.2. If G is a planar graph with n vertices, then τ(G) ≤ n − 2, with equality if G is a
planar triangulation.

Proof. We may assume G is simple and distinct from K3. Let H be a maximal planar graph
containing G. Note that τ(G) ≤ τ(H) and that G = H if G is a planar triangulation. By Euler’s
formula, H has 2n − 4 faces. As H is a planar triangulation, H∗ is a bridgeless cubic graph on
2n − 4 vertices. Thus, H∗ contains a perfect matching M∗ by Theorem 4.1. Let M be the edges
of H corresponding to the edges in M∗. Note that |M | = |M∗| = n− 2, and that every face of H
contains precisely one edge of M . This implies that every face of H−M is the symmetric difference
of two faces of H, and so is a cycle of length 4. Thus H −M is 2-connected and hence bipartite.
Therefore H − M has no triangles, and hence τ(H) ≤ |M | = n − 2. Moreover, any triangle
transversal X of H must contain an edge in each of the 2n− 4 facial triangles of H. Each edge is
in exactly two facial triangles, so |X| ≥ n− 2. This implies that in fact τ(H) = n− 2.

In the proof of Lemma 4.4, we will use the well-known Brooks’ Theorem [3] on the chromatic
number χ(G) of G. Recall that ∆(G) is the maximum degree of G.

Theorem 4.3 (Brooks, 1941). If G is a connected graph, then χ(G) ≤ ∆(G) or G is either an odd
cycle or a complete graph.

An independent set in a graph G is a set of pairwise nonadjacent vertices of G. One can check
that every graph G has an independent set of size at least |V (G)|/χ(G).
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Lemma 4.4. If G is a planar triangulation on n vertices, different from K4, then ν(G) ≥ 2
3(n− 2).

Proof. The dual G∗ of G is connected and cubic, different from K4, and has 2n − 4 vertices. By
Theorem 4.3, χ(G∗) = 3. Therefore G∗ contains an independent set Y ∗ of size at least 2n−4

3 . Let Y
be the facial triangles of G corresponding to vertices of G∗ in Y ∗. Because Y ∗ is an independent
set in G∗, the set Y is a triangle packing in G. Hence ν(G) ≥ |Y | = |Y ∗| ≥ 2

3(n− 2).

In fact, the proof of Lemma 4.4 assures that, in any planar triangulation different from K4,
with f facial triangles, there exists a packing of triangles with at least f/3 facial triangles. This re-
sult will be slightly strengthened in the next subsection for a particular type of planar triangulation,
and its strengthening will be used in Section 5, which addresses 3-trees.

The main result of this section comes directly from Lemmas 4.2 and 4.4.

Theorem 4.5. If G is a planar triangulation different from K4, then τ(G) ≤ 3
2 ν(G).

Note that K5 − e is a planar triangulation and ν(K5 − e) = 2, hence the bound given by
Theorem 4.5 is tight, because τ(K5 − e) = 3 by Lemma 4.2. In fact, there is an infinite class of
planar triangulations for which this bound is tight. This is a consequence of Lemma 4.2 and the
next lemma.

Lemma 4.6. Let G be a planar triangulation with no separating triangle. Let H be the planar
triangulation obtained from G by adding, for each facial triangle t of G, a new vertex vt adjacent
to the three vertices in t. Then ν(H) ≤ 2n − 4, where n is the number of vertices in G.

Proof. Let X be a triangle packing containing only facial triangles of H. Each vertex vt is in three
facial triangles of H, and each two of these three facial triangles share an edge. So at most one of
the three facial triangles containing vt is in X. As there are 2n − 4 different vertices vt in H, the
packing X contains at most 2n − 4 facial triangles. To complete the proof, it is enough to prove
that, for each triangle packing Y of H, there is a triangle packing X with at least |Y | triangles,
consisting of only facial triangles of H. Every triangle in Y that is not facial is a triangle in G.
As G has no separating triangle, such triangle is facial in G and therefore we can replace it in X
by one of the facial triangles in H incident to the vertex added to the corresponding face of G.

A planar triangulation H as in the statement of Lemma 4.6 has n+2n− 4 = 3n− 4 vertices, so
Lemma 4.4 implies that ν(H) ≥ 2

3(3n − 6) = 2n− 4 and Lemma 4.2 implies that τ(H) = 3n− 6.
Hence, τ(H) = 3

2 ν(H). Moreover, there are infinitely many planar triangulations with no separat-
ing triangles (Figure 5).

Figure 5: A planar triangulation with no separating triangle.
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The hypothesis of G having no separating triangle in Lemma 4.6 is necessary. For instance,
if we consider H obtained as in Lemma 4.6 from the planar triangulation K5 − e, which has a
separating triangle and has n = 5 vertices, then ν(H) = 7 > 6 = 2n − 4.

4.1 Restricted 3-trees

As observed after Lemma 4.4, any planar triangulation contains a packing of facial triangles with at
least one third of its facial triangles. We start by proving that, if we require the packing to contain
some specific facial triangle, then such a packing exists with almost as many facial triangles.

Recall that a planar triangulation can be drawn in the plane with any of its facial triangles
as the boundary of the external face of the planar embedding. Let us refer to the facial triangle
corresponding to the external face of an embedding as the external facial triangle.

Proposition 4.7. For an arbitrary planar embedding of a planar triangulation G different from K4,
there is a triangle packing P of facial triangles of G containing the external facial triangle, and
such that |P| ≥ ⌈(f − 1)/3⌉, where f is the number of facial triangles of G.

Proof. Let v∗ be the vertex of G∗ corresponding to the external face of G, and let G′ = G∗−N [v∗].
By Theorem 4.3, G′ contains an independent set I ′ of size ⌈(f − 4)/3⌉, hence the set P of facial
triangles of G corresponding to the vertices in I ′∪{v∗} is a triangle packing of facial triangles of G,
containing the external facial triangle, and |P| ≥ ⌈(f − 4)/3⌉ + 1 ≥ ⌈(f − 1)/3⌉.

Figure 6 illustrates that Proposition 4.7 is best possible.

Figure 6: A planar triangulation whose embedding has ten faces and a triangle packing containing
three facial triangles, one of them being the external facial triangle.

The planar triangulation in Figure 6 happens to be a 3-tree. Next we present a special family of
planar 3-trees for which we can always guarantee a packing containing the external facial triangle
and with at least one third of its facial triangles. This result will be used in the next section.

One can prove by induction on n that any facial triangle in a planar 3-tree G on n ≥ 4 vertices
is contained in a copy of K4 in G. Given a planar embedding of a planar 3-tree G distinct from K3,
we say that the copy of K4 in G that contains the external facial triangle is the root clique of G,
and we denote by r(G) the maximum number of vertices of G inside a face of its root clique. For
example, the graph G in Figure 6 is such that r(G) = 3. We say that a planar 3-tree G is restricted
if it is not K3 and r(G) = 2. If, additionally, the root clique of G has two faces with precisely one
vertex of G inside, then we say that G is super restricted. Note that a restricted planar 3-tree has
at least 6 and at most 10 vertices, and hence has an even number of faces between 8 and 16.

Proposition 4.8. For an arbitrary planar embedding of a restricted (resp. super restricted) planar
3-tree G, there is a triangle packing P of facial triangles of G containing the external facial triangle,
and such that |P| ≥ ⌈f/3⌉ (resp. |P| = 5), where f is the number of faces in the embedding.
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Proof. By Proposition 4.7, there is a packing P of facial triangles of G including the external facial
triangle, and such that |P| ≥ ⌈(f − 1)/3⌉. If f − 1 6≡ 0 (mod 3), then ⌈(f − 1)/3⌉ = ⌈f/3⌉, and P
is the desired triangle packing. So we may assume that f − 1 ≡ 0 (mod 3). In this case, we have
f ∈ {10, 16}, and hence G is one of the graphs in Figures 7a–7j, which have either ten faces and
a packing with at least four facial triangles including the external facial triangle; or sixteen faces
and a packing of at least six facial triangles including the external facial triangle. If G is super
restricted, then G is one of the graphs in Figures 7k and 7l, which have twelve faces and a packing
of at least five facial triangles including the external facial triangle.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Restricted and super restricted planar 3-trees of the proof of Proposition 4.8.

5 3-Trees

In this section, we prove that τ(G) ≤ 9
5 ν(G) + 1

5 for every 3-tree G. For a graph G, we say
that the pair (X,Y ) is a 9

5 -TP of G if X is a triangle transversal, Y is a triangle packing of G,
and |X| ≤ 9

5 |Y |+ 1
5 . If G has a 9

5 -TP, then τ(G) ≤ 9
5 ν(G) + 1

5 .
Let (T,V, r) be a rooted tree decomposition of a graph G. For a node t ∈ V (T ) \ {r}, we denote

by R(t) the set of all representatives of the descendants of t in T . Note that the representative of t
is also in R(t). Recall that S(t) is the set of successors of t. For every triple of vertices ∆ ⊆ Vt,
let S∆(t) = {t′ ∈ S(t) : Vt′ ∩ Vt = ∆}. When t is clear from the context, we simply write S∆.

Our proof relies on the analysis of nodes of T with small height, and guarantees that a minimal
counterexample has a particular configuration.
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Theorem 5.1. If G is a 3-tree, then τ(G) ≤ 9
5 ν(G) + 1

5 .

Proof. The statement holds if |V (G)| ≤ 6. Indeed, if |V (G)| = 4, then τ(G) = 2 and ν(G) = 1;
if |V (G)| = 5, then τ(G) = 3 and ν(G) = 2; and if |V (G)| = 6, then τ(G) ≤ 4 and ν(G) = 3.

Suppose, for a contradiction, that the statement does not hold and let G be a minimal coun-
terexample. Then |V (G)| ≥ 7 and thus every full tree decomposition of G of width 3 has at least 4
nodes. Let (T,V, r) be a rooted tree decomposition of G of width 3, with r being a node of degree 1
in T . Because |V (T )| ≥ 4 and |S(r)| = 1, we have h(r) > 1.

In what follows, we present several claims regarding G and (T,V, r).

Claim 1. Every node t of T with h(t) = 1 is such that |S(t)| = 1.

Proof. Let S(t) = {t1, . . . , tk} and, for a contradiction, suppose that k ≥ 2. Let vi be the represen-
tative of ti for i = 1, . . . , k. Let Vt = {a, b, c, d} with Vt∩Vp(t) = {b, c, d}. Since h(t) = 1, at least one

triangle ∆ in {abc, abd, acd} is such that S∆ 6= ∅. Let G′ = G−R(t) and note that G′ is a 3-tree. By
the minimality of G, there exists a 9

5 -TP (X ′, Y ′) of G′. If exactly one triangle ∆ in {abc, abd, acd},
say ∆ = abc, is such that S∆ 6= ∅ (Figure 8a), then

(

X ′ ∪ {ab, bc, ac}, Y ′ ∪ {acv1, abv2}
)

is a 9
5 -TP

of G, because τ(G) ≤ τ(G′) + 3 ≤ 9
5 ν(G

′) + 16
5 ≤ 9

5(ν(G) − 2) + 16
5 < 9

5 ν(G) + 1
5 . This is a

contradiction, so at most one triangle ∆ in {abc, abd, acd} is such that S∆ = ∅.
Assume, without loss of generality, that t1 ∈ Sabc and t2 ∈ Sabd. Suppose that |S(t)| = 2

and let e ∈ X ′ ∩ E(bcd). Without loss of generality, either e = bc or e = cd. If e = bc, then
let X = X ′ ∪ {ad, av1, bv2}. If e = cd, then let X = X ′ ∪ {ab, cv1, dv2} (Figure 8b). In both
cases,

(

X,Y ′ ∪ {acv1, abv2}
)

is a 9
5 -TP of G, a contradiction. Therefore |S(t)| ≥ 3.

Assume, without loss of generality, that either t3 ∈ Sabd or t3 ∈ Sacd. Note that E(bcd) ∩X ′ 6= ∅.
Then

(

X ′∪{ab, bc, cd, ac, bd, ad}, Y ′∪{acv1, abv2 adv3}
)

is a 9
5 -TP of G, a contradiction (Figure 8c).

a

b

c d

(a)

a

b

c d

(b)

a

b

c d

(c)

Figure 8: Illustrations of the nodes of height 1 of the proof of Claim 1.

Note that h(r) > 2. Indeed, if h(r) = 2, then the only vertex t in S(r) is such that h(t) = 1,
and, by Claim 1, |S(t)| = 1, which would imply that |V (T )| = 3, a contradiction. So h(r) ≥ 3 and
there is a node t ∈ V (T ) \ {r} such that h(t) = 2. Let L = {ℓ1, . . . , ℓm} be the set of successors
of t that are leaves of T , and let Q = S(t) \ L = {q1, . . . , qk}. Let ui be the representative of ℓi
for i = 1, . . . ,m. By Claim 1, |S(qi)| = 1 for i = 1, . . . , k. For every such i, let S(qi) = {q′i},
and let Q′ = {q′1, . . . , q

′

k}. Let vi be the representative of qi and v′i be the representative of q′i
for i = 1, . . . , k (Figure 9).

Let Vt = {a, b, c, d} with Vt ∩ Vp(t) = {b, c, d}.
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· · · · · ·

· · ·

t

ℓ1 ℓ2 ℓm q1 q2 qk

q′1 q′2 q′k

(u1) (u2) (um) (v1) (v2) (vk)

(v′1) (v′2) (v′k)

Figure 9: Notation for the descendants of t in T and their representatives.

Claim 2. Let ∆ be a triple of vertices in Vt with ∆ 6= bcd. Let t′ ∈ S∆(t) and G′ = G − R(t′).
If |S∆(t)| ≥ 3, then there exists a minimum triangle transversal X ′ of G′ with E(∆) ⊆ X ′.

Proof. Without loss of generality, ∆ = abd. Let X ′ be a minimum triangle transversal of G′.
If E(∆) ⊆ X ′, then X ′ is the desired triangle transversal. So we may assume that E(∆) 6⊆ X ′ and,
without loss of generality, that S∆(t) \ {t′} = {ℓ1, . . . , ℓm′} ∪ {q1, . . . , qk′}. Let Fi = {aui, bui, dui}
for i = 1, . . . ,m′; and Hi = E

(

G
[

Vqi ∪ Vq′
i

])

\ E(abd) for i = 1, . . . , k′. Since E(∆) 6⊆ X ′,
we have that |X ′ ∩ Fi| ≥ 1 for i = 1, . . . ,m′, and |X ′ ∩ Hi| ≥ 2 for i = 1, . . . , k′. Therefore
X ′′ =

(

X ′ \ ({Fi : i ∈ [m′]} ∪ {Hi : i ∈ [k′]})
)

∪ E(abd) ∪ {viv
′

i : i ∈ [k′]} is a triangle transversal
of G, and |X ′′| ≤ |X ′| −m′ − 2k′ + 3− (|E(abd) ∩X ′|) + k′ ≤ |X ′| −m′ − k′ + 2 ≤ |X ′|, where
the last inequality holds because m′ + k′ + 1 = |S∆(t)| ≥ 3. So X ′′ is the desired transversal.

Claim 3. Let ∆ be a triple of vertices in Vt with ∆ 6= bcd. Then |S∆(t)| ≤ 2.

Proof. Without loss of generality, ∆ = abd. Suppose, for a contradiction, that |S∆(t)| ≥ 3. If there
is a node in S∆(t) ∩ L, say ℓ1, then let G′ = G− u1. By Claim 2, there is a minimum triangle
transversal X ′ of G′ with E(abd) ⊆ X ′. By the minimality of G, there is a triangle packing Y ′ in G′

such that (X ′, Y ′) is a 9
5 -TP of G′. Then (X ′, Y ′) is also a 9

5 -TP of G, a contradiction. Similarly,
if there is a node in S∆(t) ∩Q, say q1, then let G′ = G− v1 − v′1. By Claim 2, there is a minimum
triangle transversal X ′ of G′ such that E(abd) ⊆ X ′. By the minimality of G, there is a triangle
packing Y ′ in G′ such that (X ′, Y ′) is a 9

5 -TP of G′. Now
(

X ′ ∪ {v1v
′

1}, Y
′ ∪ {v1v

′

1w1}
)

is a 9
5 -TP

of G, where w1 is a vertex adjacent to both v1 and v′1, a contradiction.

Given a 4-clique K in G and a set A ⊆ E(G) such that E(K) ∩A = {e}, we denote by K ⊗A
the only edge in K that does not share any vertex with e. For instance, Vt ⊗ {bc} = ad.

Claim 4. Let G′ = G−R(t). If X ′ is a triangle transversal of G′, then there exists a triangle
transversal of G with at most size |X ′|+min{5 + k, 1 +m+ 2k}.

Proof. From X ′, we will build two triangle transversals of G, one of size at most |X ′|+ 5 + k,
and another one of size at most |X ′|+ 1 +m+ 2k. Clearly X ′ ∩ E(bcd) 6= ∅, because X ′

is a triangle transversal of G′ and bcd is a triangle in G′. Hence |X ′ ∩ E
(

G[Vt]
)

| ≥ 1
and therefore X1 = X ′ ∪ E

(

G[Vt]
)

∪ {viv
′

i : i ∈ [k]} is a triangle transversal of G with
|X1| = |X ′|+ |E

(

G[Vt]
)

| − |X ′ ∩ E
(

G[Vt]
)

|+ k ≤ |X ′|+ 5 + k. For the second transversal, with-
out loss of generality, assume that bc ∈ X ′. Let ei = Vℓi ⊗ {bc, ad} for i = 1, . . . ,m, and
let fi = Vqi ⊗ {bc, ad} and f ′

i = Vq′
i

⊗ {bc, ad, fi} for i = 1, . . . , k. Then the second triangle

14



transversal of G is X2 = X ′ ∪ {bc, ad} ∪ {e1, . . . , em} ∪ {f1, . . . , fk} ∪ {f ′

1, . . . , f
′

k}, for which
|X2| = |X ′|+ 1 +m+ 2k.

Now, we may conclude the proof of the theorem. For every triple of vertices ∆ ⊆ Vt such
that ∆ 6= bcd, let h(∆) = 1 +max

{

h(t′) : t′ ∈ S∆(t)
}

, let k′ =
∣

∣

{

∆ ⊆ Vt : h(∆) = 2
}∣

∣ and
m′ =

∣

∣

{

∆ ⊆ Vt : h(∆) = 1
}
∣

∣. Note that k′ ≥ 1 because h(t) = 2. Also k′ + m′ ≤ 3. Let G+

be the graph obtained from G
[

Vt ∪R(t)
]

by removing, for each triple of vertices ∆ ⊆ Vt such that
∆ 6= bcd and |S∆(t)| = 2, the vertices in R(x), for precisely one x ∈ S∆(t) with x ∈ L whenever
possible. By Claim 3, graph G+ is a restricted planar 3-tree. Also, G+ has f = 4 + 4k′ + 2m′

faces. By Proposition 4.8, G+ contains a triangle packing P+ of facial triangles containing bcd
and such that |P+| ≥ ⌈f/3⌉, and if G+ is super restricted, then |P+| = 5. Let Q+ be the set
{

qi ∈ Q : vi /∈ V (G+)
}

. For each qi ∈ Q+, let Ti = viv
′

iwi, where wi is a vertex adjacent to both vi
and v′i, and let P = P+ ∪ {Ti : qi ∈ Q+}. Note that |P| = |P+|+ (k − k′).

Let G′ = G−R(t) and (X ′, Y ′) be a 9
5 -TP of G′. The only triangle in P containing edges of G′

is bcd. Hence Y = Y ′∪
(

P \{bcd}
)

is a triangle packing of G of size at least |Y ′|+ |P+|−1+(k−k′).
By Claim 4, there exists a triangle transversal X of G with size at most |X ′|+min{5+k, 1+m+2k}.

If m′ = 2, then k′ = 1 and G+ is super restricted. In this case, |P+| = 5, and therefore
|Y | ≥ |Y ′|+ |P+| − 1 + (k − k′) = |Y ′|+ 5− 1 + k − 1 = |Y ′|+ 3 + k. Also, 5(5 + k) < 9(3 + k),
thus

|X| ≤ |X ′|+ 5 + k <
9

5
(|Y ′|+ 3 + k) +

1

5
≤

9

5
|Y |+

1

5
,

and (X,Y ) would be a 9
5 -TP of G, a contradiction. So m′ ≤ 1.

Now, a simple calculation shows that, if k ∈ {1, 2, 3, 4, 5, 6}, k′ ∈ {1, 2, 3}, m ∈ {0, 1, 2, 3, 4},
and m′ ∈ {0, 1} are such that k ≥ k′ ≥ ⌈k/2⌉, m ≥ m′ ≥ ⌈m/2⌉, and m′ + k′ ≤ 3, then we have

min{5 + k, 1 +m+ 2k} ≤
9

5

(⌈

f

3

⌉

− 1 + (k − k′)

)

.

Therefore, since |P+| ≥ ⌈f/3⌉, we have

|X| ≤ |X ′|+min{5 + k, 1 +m+ 2k}

≤
9

5
|Y ′|+

1

5
+

9

5

(⌈

f

3

⌉

− 1 + (k − k′)

)

≤
9

5

(

|Y ′|+

⌈

f

3

⌉

− 1 + (k − k′)

)

+
1

5

≤
9

5
|Y |+

1

5
.

implying that (X,Y ) is a 9
5 -TP of G, a contradiction. This concludes the proof.

6 Concluding remarks

In this paper we present three results related to Tuza’s Conjecture. In Section 3, we obtained a
lemma (Lemma 3.3) that extends Puleo’s tools [13], and allowed us to verify Tuza’s Conjecture
for graphs with treewidth at most 6. Any minimal counterexample to Tuza’s Conjecture is an
irreducible robust graph, so Lemma 3.3 might help in achieving further results regarding this
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problem. In Sections 4 and 5, we obtained stronger versions of Tuza’s Conjecture for specific
classes of graphs. We believe that the techniques used here may also be useful to deal with other
classes of graphs, perhaps by introducing new ingredients.
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