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Graph classes with linear Ramsey numbers∗

Bogdan Alecu† Aistis Atminas‡ Vadim Lozin§ Viktor Zamaraev¶

Abstract

The Ramsey number RX(p, q) for a class of graphs X is the minimum n such that
every graph in X with at least n vertices has either a clique of size p or an independent
set of size q. We say that Ramsey numbers are linear in X if there is a constant k such
that RX(p, q) ≤ k(p + q) for all p, q. In the present paper we conjecture that if X is
a hereditary class defined by finitely many forbidden induced subgraphs, then Ramsey
numbers are linear in X if and only if X excludes a forest, a disjoint union of cliques and
their complements. We prove the “only if” part of this conjecture and verify the “if”
part for a variety of classes. We also apply the notion of linearity to bipartite Ramsey
numbers and reveal a number of similarities and differences between the bipartite and
non-bipartite case.

1 Introduction

According to Ramsey’s Theorem [20], for all natural p and q there exists a minimum number
R(p, q) such that every graph with at least R(p, q) vertices has either a clique of size p or an
independent set of size q.

The exact values of Ramsey numbers are known only for small values of p and q. However,
with the restriction to specific classes of graphs, Ramsey numbers can be determined for all
p and q. In particular, in [23] this problem was solved for planar graphs, while in [5] it was
solved for line graphs, bipartite graphs, perfect graphs, P4-free graphs and some other classes.

These studies reveal, in particular, that different classes have different rates of growth of
Ramsey numbers. In the present paper, we denote the Ramsey numbers restricted to a class
X by RX(p, q) and focus on classes with a smallest speed of growth of RX(p, q). Clearly,
RX(p, q) cannot be smaller than the minimum of p and q. We say that Ramsey numbers are
linear in X if there is a constant k such that RX(p, q) ≤ k(p+ q) for all p, q.

All classes in this paper are hereditary, i.e., closed under taking induced subgraphs. It
is well known that a class of graphs is hereditary if and only if it can be characterized in
terms of minimal forbidden induced subgraphs. If the number of minimal forbidden induced
subgraphs for a class X is finite, we say that X is finitely defined.
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It is not difficult to see that all classes of bounded co-chromatic number have linear
Ramsey numbers, where the co-chromatic number of a graph G is the minimum k such that
the vertex set of G can be partitioned into k subsets each of which is either a clique or an
independent set. Unfortunately, as we show in Section 2, this is not an if and only if statement
in general. We conjecture, however, that in the universe of finitely defined classes the two
notions coincide.

Conjecture 1. A finitely defined hereditary class is of linear Ramsey numbers if and only if
it is of bounded co-chromatic number.

In [7], it was conjectured that a finitely defined class X has bounded co-chromatic number
if and only if the set of minimal forbidden induced subgraphs for X contains a P3-free graph,
the complement of a P3-free graph, a forest (i.e., a graph without cycles) and the complement
of a forest. The authors of [7] go on to show that their conjecture is equivalent to the older
Gyárfás-Sumner conjecture [14, 24]. Naturally, if this conjecture is true, we expect, following
Conjecture 1:

Conjecture 2. A finitely defined class X is of linear Ramsey numbers if and only if the set
of minimal forbidden induced subgraphs for X contains a P3-free graph, the complement of
a P3-free graph, a forest and the complement of a forest.

In Section 3, we prove the “only if” part of Conjecture 2. In other words, in the universe
of finitely defined classes, the property of a class X having linear Ramsey numbers lies in
between that of X having bounded co-chromatic number and that of X avoiding the specified
induced subgraphs.

In Section 4, we focus on the “if” part of Conjecture 2 and verify it for a variety of classes
defined by small forbidden induced subgraphs. Moreover, for all the considered classes we
derive exact values of the Ramsey numbers.

In Section 5, we extend the notion of linearity to bipartite Ramsey numbers and show
that some of the results obtained for non-bipartite numbers can be extended to the bipartite
case as well. However, in general, the situation with linear bipartite Ramsey numbers seems
to be more complicated and we restrict ourselves to a weaker analog of Conjecture 2, which
is also verified for some classes of bipartite graphs. In the rest of the present section, we
introduce basic terminology and notation.

All graphs in this paper are finite, undirected, without loops and multiple edges. The
vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively. For
a vertex x ∈ V (G) we denote by N(x) the neighbourhood of x, i.e., the set of vertices of G
adjacent to x. The degree of x is |N(x)|. We say that x is complete to a subset U ⊂ V (G) if
U ⊆ N(x) and anticomplete to U if U ∩N(x) = ∅. A subgraph of G induced by a subset of
vertices U ⊆ V (G) is denoted G[U ]. By G we denote the complement of G and call it co-G.

A clique in a graph is a subset of pairwise adjacent vertices and an independent set is a
subset of pairwise non-adjacent vertices. For a graph G, let α(G) denote the independence
number of G, ω(G) the clique number, χ(G) the chromatic number and z(G) the co-chromatic
number.

By Kn, Cn and Pn we denote a complete graph, a chordless cycle and a chordless path
with n vertices, respectively. Also, Kn,m is a complete bipartite graph with parts of size n
and m, and K1,n is a star. A disjoint union of two graphs G and H is denoted G + H. In
particular, pG is a disjoint union of p copies of G.
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If a graph G does not contain induced subgraphs isomorphic to a graph H, then we say
that G is H-free and call H a forbidden induced subgraph for G. In case of several forbidden
induced subgraphs we list them in parentheses.

A bipartite graph is a graph whose vertices can be partitioned into two independent sets,
and a split graph is a graph whose vertices can be partitioned into an independent set and a
clique. A graph is bipartite if and only if it is free of odd cycles, and a graph is a split graph
if and only if it is (C4, 2K2, C5)-free [12].

2 Linear Ramsey numbers and related notions

As we observed in the introduction, the notion of linear Ramsey numbers has ties with
bounded co-chromatic number, and we believe that in the universe of finitely defined classes,
the two notions are equivalent. In the present section, we first show that this equivalence
is not valid for general hereditary classes, and then discuss the relationship between linear
Ramsey numbers and some other notions that appear in the literature.

In order to show that Conjecture 1 is not valid for general hereditary classes, we consider
the Kneser graph KGa,b: it has as vertices the b-subsets of a set of size a, and two vertices
are adjacent if and only if the corresponding subsets are disjoint. A well-known result due to
Lovász says that, if a ≥ 2b, then the chromatic number χ(KGa,b) is a− 2b+ 2 [16].

In the following theorem, we denote by X the hereditary closure of the family of Kneser
graphs KG3n,n, n ∈ N, i.e., X = {H : H is an induced subgraph of KG3n,n, for some n ∈ N}.

Theorem 1. The class X has linear Ramsey numbers and unbounded co-chromatic number.

Proof. First, we note that by Lovász’s result stated above, it follows that χ(KG3n,n) =
3n − 2n + 2 = n + 2. Also, it is not hard to see that the the size of the biggest clique in
KG3n,n is 3. It follows that the co-chromatic number of KG3n,n is at least n+2

3 . As a result,
the co-chromatic number is unbounded for this class.

Now consider any induced subgraph H of KG3n,n. We will show that α(H) ≥ |V (H)|
3 .

Indeed, the vertices of the Kneser graph in this case are n-element subsets of {1, 2, . . . , 3n}.
For each i ∈ {1, 2, . . . , 3n} let Vi be the set of vertices of H containing element i. Then, as
each vertex is an n-element subset, it follows that

∑3n
n=1 |Vi| = n × |V (H)|. Hence, by the

Pigeonhole Principle, there is an i such that |Vi| ≥ |V (H)|
3 . As Vi is an independent set, it

follows that α(H) ≥ |V (H)|
3 . This implies that for any H ∈ X we have |V (H)| ≤ 3α(H) ≤

3(α(H) + ω(H)), and hence the Ramsey numbers are linear in the class X.

We now turn to one more notion, which is closely related to the growth of Ramsey
numbers. This is the notion of homogeneous subgraphs that appears in the study of the
Erdős-Hajnal conjecture [11]. We will say that graphs in a class X have linear homogeneous
subgraphs if there exists a constant c = c(X) such that max{α(G), ω(G)} ≥ c · |V (G)| for
every G ∈ X.

Proposition 1. Let X be a class of graphs. Then graphs in X have linear homogeneous
subgraphs if and only if Ramsey numbers are linear in X. More generally, for any 0 < δ ≤ 1,
the following two statements are equivalent:

• There is a constant A such that max{α(G), ω(G)} ≥ A · |V (G)|δ for every G ∈ X.
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• There is a constant B such that RX(p, q) ≤ B(p+ q)
1
δ .

Proof. The second claim reduces to the first one when δ = 1, so we just prove the stronger
claim.

For the first implication, suppose there exists a constant A such that max{α(G), ω(G)} ≥
A · |V (G)|δ for all G ∈ X. Let H ∈ X, let p, q ∈ N, and suppose that |V (H)| ≥

(p+q
A

) 1
δ .

Then max{α(H), ω(H)} ≥ A · |V (H)|δ ≥ p + q, which means that H is guaranteed to have
an independent set of size p or a clique of size q, and this proves the first direction (we can

put, e.g., B = A−
1
δ ) in the statement of the proposition.

Conversely, suppose there exists a positive constant B such that for any p, q ∈ N and
G ∈ X, if |V (G)| ≥ B(p + q)

1
δ , then G has an independent set of size p or a clique of size

q. Let H be an arbitrary graph in X and let t be the largest integer such that |V (H)| ≥
2

1
δBt

1
δ = B(t+ t)

1
δ . By the above assumption, H has a clique or an independent set of size

t, i.e., max{α(H), ω(H)} ≥ t. Notice, by definition of t, we have |V (H)| ≤ 2
1
δB(t+ 1)

1
δ , i.e.,

|V (H)|δ ≤ 2Bδ(t+1). Hence if t = 0, then |V (H)|δ ≤ 2Bδ and therefore max{α(H), ω(H)} ≥
|V (H)|δ
2Bδ ≥ |V (H)|δ

4Bδ . On the other hand, if t ≥ 1, then |V (H)|δ ≤ 2Bδ(t+1) ≤ 4Bδt and therefore

max{α(H), ω(H)} ≥ |V (H)|δ
4Bδ , and putting, e.g., A = 1

4Bδ concludes the proof.

In particular, the Erdős-Hajnal conjecture can be stated in our terminology as follows:

Conjecture 3. (Erdős-Hajnal) Suppose X is a proper hereditary class (that is, not the class
of all graphs). Then there are constants A, k such that RX(p, q) ≤ A(p+q)k for every p, q ∈ N,
i.e., Ramsey numbers grow at most polynomially in X.

Finally, we point out the difference between the notion of Ramsey numbers for classes
and the notion of Ramsey numbers of graphs. Each of them leads naturally to the notion
of linear Ramsey numbers, defined differently in the present paper and, for instance, in [13].
In spite of the possible confusion, we use the terminology of Ramsey numbers, and not the
terminology of homogeneous subgraphs, because most of our results deal with the exact value
of RX(p, q).

3 Classes with non-linear Ramsey numbers

In this section, we prove the “only if” part of Conjecture 2.

Lemma 1. For every fixed k ≥ 3, the class Xk of (C3, C4, . . . , Ck)-free graphs is not of linear
Ramsey numbers.

Proof. Assume to the contrary that Ramsey numbers for the class Xk are linear. Then, since
graphs in Xk do not contain cliques of size three, there exists a constant t = t(k) such that
any n-vertex graph from the class has an independent set of size at least n/t.

It is well-known (see, e.g., [2]) that Xk contains n-vertex graphs with the independence
number of order O(n1−ε lnn), where ε > 0 depends on k, which is smaller than n/t for large
n. This contradiction shows that Xk is not of linear Ramsey numbers.
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Figure 1: All 4-vertex graphs

Theorem 2. Let X be a class of graphs defined by a finite set M of forbidden induced
subgraphs. If M does not contain a graph in at least one of the following four classes, then X
is not of linear Ramsey numbers: P3-free graphs, the complements of P3-free graphs, forests,
the complements of forests.

Proof. It is not difficult to see that a graph is P3-free if and only if it is a disjoint union
of cliques. The class of P3-free graphs contains the graph (q − 1)Kp−1 with (q − 1)(p − 1)
vertices and with no clique of size p or independent set of size q, and hence this class is
not of linear Ramsey numbers. Therefore, if M contains no P3-free graph, then X contains
all P3-free graphs and hence is not of linear Ramsey numbers. Similarly, if M contains no
P 3-free graph, then X is not of linear Ramsey numbers.

Now assume that M contains no forest. Therefore, every graph in M contains a cycle.
Since the number of graphs in M is finite, X contains the class of (C3, C4, . . . , Ck)-free graphs
for a finite value of k and hence is not of linear Ramsey numbers by Lemma 1. Applying
the same arguments to the complements of graphs in X, we conclude that if M contains no
co-forest, then X is not of linear Ramsey numbers.

4 Classes with linear Ramsey numbers

In this section, we study classes of graphs defined by forbidden induced subgraphs with 4
vertices and determine Ramsey numbers for several classes in this family that verify the “if”
part of Conjecture 2. All the eleven graphs on 4 vertices are represented in Figure 1.

Below we list which of these graphs are P3-free and which of them are forests (take the
complements for P 3-free graphs and for the complements of forests, respectively).

• P3-free graphs: K4, K4, 2K2, co-diamond, co-claw.

• Forests: K4, 2K2, P4, co-diamond, co-paw, claw.

4.1 Claw- and co-claw-free graphs

Lemma 2. If a (claw,co-claw)-free graph G contains a K4, then it is K3-free.

Proof. Assume G contains a K4 induced by A = {a1, a2, a3, a4} and suppose by contradiction
that G also contains a K3 induced by Z = {x, y, z}.
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Let first A be disjoint from Z. To avoid a co-claw, each vertex of A has a neighbour in Z
and hence one of the vertices of Z is adjacent to two vertices of A, say x is adjacent to a1 and
a2. Then, to avoid a claw, x has no other neighbours in A and y has a neighbour in {a1, a2},
say y is adjacent to a1. This implies that y is adjacent to a3 (else x, y, a1, a3 induce a co-claw)
and similarly y is adjacent to a4. But then y, a1, a3, a4 induce a claw, a contradiction.

If A and Z are not disjoint, they have at most one vertex in common, say a4 = z. Again,
to avoid a co-claw, each vertex in {a1, a2, a3} has a neighbour in {x, y} and hence, without loss
of generality, x is adjacent to a1 and a2. But then x, a1, a2, a4 induce a claw, a contradiction
again.

Lemma 3. The maximum number of vertices in a (claw,co-claw,K4,K4)-free graph is 9.

Proof. Let G be a (claw,co-claw,K4,K4)-free graph and let x be a vertex of G. Denote by A
the set of neighbours and by B the set of non-neighbours of x. Clearly, A contains neither
triangles nor anti-triangles, since otherwise either a K4 or a claw arises. Therefore, A has at
most 5 vertices, and similarly B has at most 5 vertices.

If |A| = 5, then G[A] must be a C5 induced by vertices, say, a1, a2, a3, a4, a5 (listed along
the cycle). In order to avoid a claw or K4, each vertex of A can be adjacent to at most 2
vertices of B, which gives rise to at most 10 edges between A and B. On the other hand, to
avoid a co-claw, each vertex of B must be adjacent to at least 3 vertices of A. Therefore, B
contains at most 3 vertices and hence |V (G)| ≤ 9. Similarly, if |B| = 5, then |V (G)| ≤ 9.

It remains to show that there exists a (claw,co-claw,K4,K4)-free graph with 9 vertices.
The 3 × 3 rook’s graph (also known as the Paley graph of order 9), shown in Figure 2, is a
witnessing example.

Figure 2: The 3× 3 rook’s graph.

Theorem 3. For the class A of (claw,co-claw)-free graphs and all a, b ≥ 3,

RA(a, b) = max
{
b(5a− 3)/2c , b(5b− 3)/2c

}
,

unless a = b = 4 in which case RA(a, b) = 10.

Proof. According to Lemma 2, the class of (claw,co-claw)-free graphs is the union of three
classes:

6



• the class X of (claw,K3)-free graphs,

• the class Y of (co-claw,K3)-free graphs and

• the class Z of (claw,co-claw,K4,K4)-free graphs.

Clearly, RA(a, b) = max{RX(a, b), RY (a, b), RZ(a, b)}.
Since K3 is forbidden in X, we have RX(a, b) = RX(3, b), Also, denoting by B the class

of claw-free graphs, we conclude that RX(3, b) = RB(3, b). As was shown in [5], RB(3, b) =
b(5b− 3)/2)c. Therefore, RX(a, b) = b(5b− 3)/2)c. Similarly, RY (a, b) = b(5a− 3)/2)c.

In the class Z, for all a, b ≥ 4 we have RZ(a, b) = 10 by Lemma 3. Moreover, if additionally
max{a, b} ≥ 5, then RZ(a, b) < max{RX(a, b), RY (a, b)}. For a = b = 4, we have RZ(4, 4) =
10 > 8 = max{RX(4, 4), RY (4, 4)}. Finally, it is not difficult to see that RZ(3, b) ≤ RX(3, b)
and RZ(a, 3) ≤ RY (a, 3), and hence the result follows.

4.2 Diamond- and co-diamond-free graphs

Lemma 4. If a (diamond,co-diamond)-free graph G contains a K4, then it is bipartite.

Proof. Assume G contains a K4. Let A be any maximal (with respect to inclusion) inde-
pendent set containing the K4 and let B = V (G) − A. If B is empty, then G is edgeless
(and hence bipartite). Suppose now B contains a vertex b. Then b has a neighbour a in A
(else A is not maximal) and at most one non-neighbour (else a and b together with any two
non-neighbours of b in A induce a co-diamond).

Assume B has two adjacent vertices, say b1 and b2. Since |A| ≥ 4 and each of b1 and b2
has at most one non-neighbour in A, there are at least two common neighbours of b1 and b2
in A, say a1, a2. But then a1, a2, b1, b2 induce a diamond. This contradiction shows that B
is independent and hence G is bipartite.

Lemma 5. A co-diamond-free bipartite graph containing at least one edge is either a simplex
(a bipartite graph in which every vertex has at most one non-neighbour in the opposite part)
or a Ks,t +K1 for some s and t.

Proof. Assume G = (A,B,E) is a co-diamond-free bipartite graph containing at least one
edge. Then G cannot have two isolated vertices, since otherwise an edge together with two
isolated vertices create an induced co-diamond.

Assume G has exactly one isolated vertex, say a, and let G′ = G − a Then any vertex
b ∈ V (G′) is adjacent to every vertex in the opposite part of G′. Indeed, if b has a non-
neighbour c in the opposite part, then a, b, c together with any neighbour of b (which exists
because b is not isolated) induce a co-diamond. Therefore, G′ is complete bipartite and hence
G = Ks,t +K1 for some s and t.

Finally, suppose G has no isolated vertices. Then every vertex a ∈ A has at most one
non-neighbour in B, since otherwise any two non-neighbours of a in B together with a and
any neighbour of a (which exists because a is not isolated) induce a co-diamond. Similarly,
every vertex b ∈ B has at most one non-neighbour in A. Therefore, G is a simplex.

Lemma 6. The maximum number of vertices in a (diamond,co-diamond,K4,K4)-free graph
is 9.
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Proof. Let G be a (diamond,co-diamond,K4,K4)-free graph and x be a vertex of G. Denote
by A the set of neighbours and byB the set of non-neighbours of x. ThenG[A] is (P3,K3)-free,
else G contains either a diamond or a K4. Since G[A] is P3-free, every connected component
of G[A] is a clique and since this graph is K3-free, every connected component has at most 2
vertices. If at least one of the components of G[A] has 2 vertices, the number of components
is at most 2 (since otherwise a co-diamond arises), in which case A has at most 4 vertices.
If all the components of G[A] have size 1, the number of components is at most 3 (since
otherwise a K4 arises), in which case A has at most 3 vertices. Similarly, B has at most 4
vertices and hence |V (G)| ≤ 9.

To conclude the proof, we observe that the Paley graph of order q = 32 described in the
proof of Lemma 3 is (diamond,co-diamond,K4,K4)-free.

Theorem 4. For the class A of (diamond,co-diamond)-free graphs and a, b ≥ 3,

RA(a, b) = max{2a− 1, 2b− 1},

unless a, b ∈ {4, 5}, in which case RA(a, b) = 10, and unless a = b = 3, in which case
RA(a, b) = 6.

Proof. According to Lemma 4, in order to determine the value of RA(a, b), we analyze this
number in three classes:

• the class X of co-diamond-free bipartite graphs,

• the class Y of the complements of graphs in X and

• the class Z of (diamond,co-diamond,K4,K4)-free graphs.

In the class X of co-diamond-free bipartite graphs, RX(a, b) = 2b − 1, since every graph
in this class with at least 2b − 1 contains an independent set of size b, while the graph
Kb−1,b−1 contains neither an independent set of size b nor a clique of size a ≥ 3. Similarly,
RY (a, b) = 2a− 1.

In the class Z of (diamond,co-diamond,K4,K4)-free graphs, for all a, b ≥ 4 we have
RZ(a, b) = 10 by Lemma 6. Moreover, if additionally max{a, b} ≥ 6, then RZ(a, b) <
max{RX(a, b), RY (a, b)}. For a, b ∈ {4, 5}, we have RZ(a, b) = 10 > max{RX(a, b), RY (a, b)}.
Also, RZ(3, 3) = 6 (since C5 ∈ Z) and hence RZ(3, 3) > max{RX(3, 3), RY (3, 3)}. Finally,
by direct inspection one can verify that Z contains no K3-free graphs with more than 6
vertices and hence for b ≥ 4 we have RZ(3, b) ≤ RX(3, b). Similarly, for a ≥ 4 we have
RZ(a, 3) ≤ RY (a, 3). Thus for all values of a, b ≥ 3, we have RA(a, b) = max{2a− 1, 2b− 1},
unless a, b ∈ {4, 5}, in which case RA(a, b) = 10, and unless a = b = 3, in which case
RA(a, b) = 6.

4.3 2K2- and C4-free graphs

Theorem 5. For the class A of (2K2, C4)-free graphs and all a, b ≥ 3,

RA(a, b) = a+ b.
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Proof. Let G be a (2K2, C4)-free graph with a+ b vertices. If, in addition, G is C5-free, then
the three forbidden induced subgraphs ensures that G belongs to the class of split graphs
and hence it contains either a clique of size a or an independent set of size b.

If G contains a C5, then the remaining vertices of the graph can be partitioned into a
clique U , whose vertices are complete to the cycle C5, and an independent set W , whose
vertices are anticomplete to the C5 [6]. We have |U | + |W | = a + b − 5 and hence either
|U | ≥ a− 2 or |W | ≥ b− 2. In the first case, U together with any two adjacent vertices of the
cycle C5 create a clique of size a. In the second case, W together with any two non-adjacent
vertices of the cycle create an independent set of size b. This shows that RA(a, b) ≤ a+ b.

For the inverse inequality, we construct a graph G with a + b − 1 vertices as follows: G
consists of a cycle C5, an independent set W of size b − 3 anticomplete to the cycle and a
clique U of size a− 3 complete to both W and V (C5). It is not difficult to see that the size
of a maximum clique in G is a− 1 and the size of a maximum independent set in G is b− 1.
Therefore, RA(a, b) ≥ a+ b.

4.4 2K2- and diamond-free graphs

To analyze this class, we split it into three subclasses X,Y and Z as follows:

X is the class of (2K2,diamond)-free graphs containing a K4,

Y is the class of (2K2,diamond)-free graphs that do not contain a K4 but contain a K3,

Z is the class of (2K2,diamond)-free graphs that do not contain a K3, i.e., the class of
(2K2,K3)-free graphs.

We start by characterizing graphs in the class X.

Lemma 7. If a (2K2,diamond)-free graph G contains a K4, then G is a split graph parti-
tionable into a clique C and an independent set I such that every vertex of I has at most one
neighbour in C.

Proof. Let G be a (2K2,diamond)-free graph containing a K4. We extend the K4 to any
maximal (with respect to inclusion) clique and denote it by C. Also, denote I = V (G)− C.

Assume a vertex a ∈ I has two neighbours b, c in C. It also has a non-neighbour d in C
(else C is not maximal). But then a, b, c, d induce a diamond. This contradiction shows that
any vertex of I has at most one neighbour in C.

Finally, assume two vertices a, b ∈ I are adjacent. Since each of them has at most one
neighbour in C and |C| ≥ 4, there are two vertices c, d ∈ C adjacent neither to a nor to b. But
then a, b, c, d induce a 2K2. This contradiction shows that I is independent and completes
the proof.

In order to characterize graphs in Z, let us say that G∗ is an extended G (also known as
a blow-up of G) if G∗ is obtained from G by replacing the vertices of G with independent
sets.

Lemma 8. If G is a (2K2,K3)-free graph, then it is either bipartite or an extended C5 +K1.

9



Proof. If G is C5-free, then it is bipartite, because any cycle of length at least 7 contains
an induced 2K2. Assume now that G contains a C5 induced by a set S = {v0, v1, v2, v3, v4}.
To avoid an induced 2K2 or K3, any vertex u 6∈ S must be either anticomplete to S or
have exactly two neighbours on the cycle of distance 2 from each other, i.e., N(u) ∩ S =
{vi−1, vi+1} for some i (addition is taken modulo 5). Moreover, if N(u) ∩ S = {vi−1, vi+1}
and N(w) ∩ S = {vj−1, vj+1}, then

• if i = j or |i− j| > 1, then u is not adjacent to w, since G is K3-free.

• if |i− j| = 1, then u is adjacent to w, since G is 2K2-free.

Clearly, every vertex u 6∈ S, which is anticomplete to S, is isolated, and hence G is an
extended C5 +K1.

Now we turn to graphs G in the class Y and characterize them through a series of claims.

(1) Any two triangles in G are vertex disjoint. To see this, note that two triangles inter-
secting in two vertices induce either a K4 or a diamond. If two triangles induced by say
x1, y1, z and x2, y2, z intersect in a single vertex, there must be another edge between
them, say x1x2, since otherwise we obtain an induced 2K2. But then x1, x2, y1, z induce
two triangles intersecting in two vertices.

(2) For any edge xy and a triangle T containing neither x nor y, x and y each have exactly
one neighbour in T . Indeed, x and y each have at most one neighbour, since otherwise
we obtain two triangles intersecting in two vertices. Moreover, if one of them does not
have a neighbour, an induced 2K2 appears. We note that the neighbours of x and y
must be distinct, since otherwise we obtain two triangles intersecting in one vertex. It
follows, in particular, that the edges between two triangles form a matching.

(3) If G has a triangle T , it does not contain an induced C5 vertex disjoint from T . To
see this, assume that G has a triangle x, y, z and a C5 induced by v1, v2, v3, v4, v5.
By (2), each vertex in the C5 has exactly one neighbour in the triangle, and no two
consecutive vi (modulo 5) have the same neighbour in the triangle. It follows that up
to isomorphism, the edges between the triangle and the C5 are xv1, yv2, yv4, zv3, zv5.
But then x, v1, v3, v4 induce a 2K2.

(4) If G contains 3 triangles Ti, each induced by ai, bi, ci, 1 ≤ i ≤ 3, then every other vertex
in the graph is isolated. In particular, G contains at most 3 triangles. Without loss
of generality, using Claim (1) and by symmetry, the edges between the triangles are
given by aibj , bicj , ciaj with i ≤ j. Suppose for a contradiction that x is a non-isolated
vertex not in the Ti. Then x has exactly one neighbour in each of the triangles. Indeed,
by Claim (1), it has at most one neighbour in each triangle, and if it has a neighbour
anywhere in the graph, Claim (2) applies. Without loss of generality, suppose the
neighbour of x in T2 is b2. Then x must be adjacent to exactly one of a3 and c1, since
otherwise x, b2, a3, c1 induce a 2K2. If x is adjacent to a3, then x, b2, a2, b3, a3 induce a
C5 vertex disjoint from T1, contrary to Claim (3). Similarly, if x is adjacent to c1, then
x, b2, c2, b1, c1 induce a C5 vertex disjoint from T3.
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(5) If G contains exactly 2 triangles T1 and T2 and the graph G′ = G− (T1 ∪ T2) contains
an edge, then G′ admits a bipartition X ′ ∪ Y ′ such that there exist vertices z1 ∈ T1 and
z2 ∈ T2 with the property that X ′∪{z1, z2} and Y ′∪{z1, z2} are independent sets. Note
G′ ∈ Z, and by Claim (4), it is C5-free. It follows from Lemma 8 that G′ is a 2K2-free
bipartite graph. We further split G′ into G′1 and G′0, where G′0 consists of the isolated
vertices in G′, while G′1 contains the rest of the vertices of G′.

Note that, since G is 2K2-free, G′1 is a connected graph. As this graph contains an
edge, by Claim (2), every vertex of G′1 has exactly one neighbour in each of T1 and T2.
By standard structural results on bipartite 2K2-free graphs (also known as “bipartite
chain graphs”), each part of G′1 has a dominating vertex, i.e., a vertex adjacent to all
the vertices in the opposite part. Write x and y for those dominating vertices, and call
their respective parts X ′′ and Y ′′. Let y1 and y2 be the neighbours of x in T1 and T2
respectively, and similarly let x1 and x2 be the neighbours of y in those triangles. By
Claim (1), x1 6= y1, x2 6= y2, x1 and x2 are not adjacent, and y1 and y2 are also not
adjacent. Finally, write z1, z2 for the remaining two vertices in T1 and T2, respectively,
and note that z1 and z2 are also not adjacent (otherwise z1z2 and xy induce a 2K2).

Note that any vertex in X ′′ must be adjacent to y1 and to y2: indeed, if for instance
x′ ∈ X ′′ is adjacent to y′1 6= y1 in T1, then y is adjacent to neither of y1 and y′1 (by
Claim (1)), and so x, x′, y, y1, y

′
1 induce a C5 disjoint from T2, contrary to Claim (3).

Similarly, every vertex in Y ′′ is adjacent to x1 and to x2.

It remains to deal with the vertices in G′0. Let w be a vertex in G′0. Note that w is
non-adjacent to both z1 and z2, since any such edge together with xy would induce a
2K2. Then X ′′ ∪G′0 ∪ {z1, z2} and Y ′′ ∪ {z1, z2} are independent sets as claimed.

Theorem 6. Let A be the class of (2K2,diamond)-free graphs. Then

• for a = 3, we have RA(a, b) = b2.5(b− 1)c+ 1;

• for a = 4, we have RA(a, 3) = 7, RA(a, 4) = 10 and RA(a, b) = b2.5(b − 1)c + 1 for
b ≥ 5;

• for a ≥ 5, we have RA(a, b) = max{b2.5(b−1)c+1, a+b−1}, except for RA(5, 4) = 10.

Proof. As before, we split the analysis into several subclasses of A.
For the class X of (2K2,diamond)-free graphs containing a K4 and a ≥ 5, we have

RX(a, b) = a+ b− 1. Indeed, every split graph with a+ b− 1 vertices contains either a clique
of size a or an independent set of size b and hence RX(a, b) ≤ a+ b− 1. On the other hand,
the split graph with a clique C of size a − 1 and an independent set I of size b − 1 with a
matching between C and I belongs to X and hence RX(a, b) ≥ a+ b− 1.

For the class Z0 of bipartite 2K2-free graphs, we have RZ0(a, b) = 2b − 1, which is easy
to see. For the class Z1 of graphs each of which is an extended C5 +K1, we have RZ1(a, b) =
b2.5(b− 1)c+ 1. For an odd b, an extremal graph is constructed from a C5 by replacing each
vertex with an independent set of size (b − 1)/2. This graph has b2.5(b − 1)c vertices, the
independence number b− 1 and the clique number 2 < a. For an even b, an extremal graph
is constructed from a C5 by replacing two adjacent vertices of a C5 with independent sets of
size b/2 and the remaining vertices of the cycle with independent sets of size b/2 − 1. This
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again gives in total b2.5(b− 1)c vertices, and the independence number b− 1. Therefore, in
the class Z = Z0 ∪ Z1, we have RZ(a, b) = max{RZ0(a, b), RZ1(a, b)} = b2.5(b− 1)c+ 1.

To compute RY (a, b), we partition Y into Y1, Y2 and Y3, where Ys consists of the graphs
in Y with s triangles. We then have:

• RY3(4, b) = b + 6 for b ≥ 4. Indeed, the three triangle configuration (unique up to
isomorphism) has independence number 3, and any additional vertices are isolated by
Claim (4).

• RY2(4, b) = 2b+1 for b ≥ 3. To show this, let G ∈ Y2 be a graph on 2b+1 vertices, with
triangles T1 and T2. As in Claim (5), G′ = G − (T1 ∪ T2), G′0 consists of the isolated
vertices in G′, while G′1 contains the rest of G′.

If G′1 is empty (or in other words, if G′ has no edges), then G′ = G′0 is an independent
set with 2b + 1 − 6 = 2b − 5 vertices. Provided b ≥ 5, this number is at least b. For
b = 3, the unique vertex in G′ has at most one neighbour in each of T1 and T2, so
in particular, it has two non-adjacent non-neighbours in the triangles, hence G has an
independent set of size 3. For b = 4, there are 3 vertices in G′. Like before, each of
them has at most one neighbour in each triangle; if their neighbourhoods do not cover
the triangles, then those three vertices together with a common non-neighbour give an
independent set of size 4. If their neighbourhoods do cover the triangles, then by size
constraints the neighbourhoods are disjoint, and each of them is an independent set by
Claim (1). In this case, any two of the vertices together with the neighbourhood of the
third form an independent set of size 4.

Now assume that G′ has an edge. Then by Claim (5) G′ admits a bipartition X ′ ∪ Y ′
such that there exist vertices z1 ∈ T1 and z2 ∈ T2 with the property that X ′ ∪ {z1, z2}
and Y ′∪{z1, z2} are independent sets. Given such a bipartition, it immediately follows
that G has an independent set of size at least

⌈
2b−5
2

⌉
+ 2 = b.

Extremal counterexamples, i.e., graphs without clique of size 4 and without independent
sets of size b, can be easily constructed, by making for instance G′ complete bipartite
with b−3 vertices in each part and connecting each part to the triangles appropriately.

• RY1(4, b) ≤ 2b + 1 for b ≥ 3. To see why, let G ∈ Y1 be a graph on 2b + 1 vertices,
write T for the triangle, and put G′ = G − T . Like before, G′ is a 2K2-free bipartite
graph; if it has isolated vertices, one can find a bipartition of G′ where one of the parts
has size at least b. Otherwise, there are vertices x and y dominating each part. Those
have neighbours y′ and x′ in T respectively; but then by Claim (1), y′ is a common
non-neighbour of the part containing y, and x′ is a common non-neighbour of the part
containing x. Since G′ has one part with size at least b− 1, this means G contains an
independent set of size b.

Putting these together, we have RY (4, b) = 2b+ 1 for b ≥ 3, except RY (4, 4) = 10.
Combining the results for the three classes X, Y and Z, we obtain the desired conclusion

of the theorem.
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4.5 The class of (P4, C4,co-claw)-free graphs

We start with a lemma characterizing the structure of graphs in this class, where we use the
following well-known fact (see, e.g., [10]): every P4-free graph with at least two vertices is
either disconnected or the complement to a disconnected graph.

Lemma 9. Every disconnected (P4, C4,co-claw)-free graph is a bipartite graph and every
connected (P4, C4,co-claw)-free graph consists of a bipartite graph plus a number of dominating
vertices, i.e., vertices adjacent to all other vertices of the graph.

Proof. Let G be a disconnected (P4, C4,co-claw)-free graph. Then every connected compo-
nent of G is K3-free, since a triangle in one of them together with a vertex from any other
component create an induced co-claw. Therefore, every connected component of G, and hence
G itself, is a bipartite graph (since forbidding P4 forbids every cycle of length at least 5).

Now let G be a connected graph. Since G is P4-free, G is disconnected. Let C1, . . . , Ck

(k ≥ 2) be co-components of G, i.e., components in the complement of G. If at least two
of them have more than 1 vertex, then an induced C4 arises. Therefore, all co-components,
except possibly one, have size 1, i.e., they are dominating vertices in G. If, say, C1 is a co-
component of size more than 1, then the subgraph of G induced by C1 must be disconnected
and hence it is a bipartite graph.

Theorem 7. For the class A of (P4, C4,co-claw)-free graphs and all a, b ≥ 3,

RA(a, b) = a+ 2b− 4.

Proof. Let G be a graph in A with a+2b−5 vertices, 2b−2 of which induce a matching (a 1-
regular graph with b−1 edges) and the remaining a−3 vertices are dominating in G. Then G
has neither a clique of size a nor an independent set of size b. Therefore, RA(a, b) ≥ a+2b−4.

Conversely, let G be a graph in A with a+ 2b− 4 vertices. If G is disconnected, then, by
Lemma 9, it is bipartite and hence at least one part in a bipartition of G has size at least
b, i.e., G contains an independent set of size b. If G is connected, denote by C the set of
dominating vertices in G. If |C| ≥ a− 1, then either C itself (if |C| ≥ a) or C together with
a vertex not in C (if |C| = a− 1) create a clique of size a. So, assume |C| ≤ a− 2. Then the
graph G− C has at least 2b− 2 vertices and, by Lemma 9, it is bipartite. If this graph has
no independent set of size b, then in any bipartition of this graph each part contains exactly
b−1 vertices, and each vertex has a neighbour in the opposite part. But then |C| = a−2 and
therefore C together with any two adjacent vertices in G− C create a clique of size a.

4.6 The class of (co-diamond,paw,claw)-free graphs

Lemma 10. Let G be a (co-diamond,paw,claw)-free graph.

• If G is connected, then it is either a path with at most 5 vertices or a cycle with at most
6 vertices or the complement of a graph of vertex degree at most 1.

• If G has two connected components, then either both components are complete graphs
or one of the components is a single vertex and the other is the complement of a graph
of vertex degree at most 1.

• If G has at least 3 connected components, then G is edgeless.
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Proof. Assume first that G is connected. It is known (see, e.g., [19]) that every connected
paw-free graphs is either K3-free or complete multipartite. i.e., P 3-free. If G is K3-free, then
together with the claw-freeness of G this implies that G has no vertices of degree more than 2,
i.e., G is either a path or a cycle. To avoid an induced co-diamond, a path cannot have more
than 5 vertices and a cycle cannot have more than 6 vertices. If G is complete multipartite,
then each part has size at most 2, since otherwise an induced claw arises. In other words,
the complement of G is a graph of vertex degree at most 1.

Assume now that G has two connected components. If each of them contains an edge,
then both components are cliques, since otherwise two non-adjacent vertices in one of the
components with two adjacent vertices in the other component create an induced co-diamond.
If one of the components is a single vertex, then the other is P 3-free (to avoid an induced
co-diamond) and hence is the complement of a graph of vertex degree at most 1 (according
to the previous paragraph).

Finally, let G have at least 3 connected components. If one of them contains an edge, then
this edge together with two vertices from two other components form an induced co-diamond.
Therefore, every component of G consists of a single vertex, i.e., G is edgeless.

Theorem 8. For the class A of (co-diamond,paw,claw)-free graphs and for all a, b ≥ 3,

RA(a, 3) = 2a− 1,

RA(a, b) = max{2a, b} for b ≥ 4,

except for the following four numbers RA(3, 3) = 6, RA(3, 4) = RA(3, 5) = RA(3, 6) = 7.

Proof. We start with the case b = 3. Since C5 belongs to A, RA(3, 3) = 6, which covers the
first of the four exceptional cases.

Let a ≥ 4. The graph 2Ka−1 with 2a − 2 vertices has neither cliques of size a nor
independent sets of size 3, and hence RA(a, 3) ≥ 2a − 1. Conversely, let G ∈ A be a
graph with 2a − 1 ≥ 7 vertices. If G is connected, then according to Lemma 10 G is the
complement of a graph of vertex degree at most 1, and hence G has a clique of size a. If
G has two connected components both of which are cliques, then one of them has size at
least a. If G has two connected components one of which is a single vertex, then either the
second component has a couple of non-adjacent vertices, in which case an independent set
of size 3 arises, or the second component is a clique of size more than a. If G has at least 3
connected components, then it contains an independent set of size more than 3. Therefore,
RA(a, 3) ≤ 2a− 1 and hence RA(a, 3) = 2a− 1 for a ≥ 4.

From now on, b ≥ 4. Consider the last three exceptional cases, i.e., let a = 3 and
4 ≤ b ≤ 6. The graph C6 that belongs to our class has neither a clique of size 3 nor an
independent set of size b ≥ 4 and hence RA(a, b) ≥ 7 in these cases. Conversely, let G ∈ A
be a graph with at least 7 vertices. If G is connected, then it is the complement of a graph
of vertex degree at most 1 and hence contains a clique of size 3. If G has two connected
components each of which is a clique, then one of them has size at least 3. If G has two
components one of which is a single vertex, then the other component has at least 6 vertices
and also contains a clique of size 3. If G has at least 3 connected components, then G has an
independent set of size 4 ≤ b ≤ 6. Therefore, RA(a, b) = 7 for a = 3 and 4 ≤ b ≤ 6.

In the rest of the proof we assume that either a ≥ 4 or b ≥ 7. Denote m = max{2a, b}.
If m = 2a, then the graph (a− 1)K2 + K1 with 2a − 1 vertices has neither cliques of size a
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nor independent sets of size b ≥ 7. If m = b, then the edgeless graph with b− 1 vertices has
neither cliques of size a nor independent sets of size b. Therefore, RA(a, b) ≥ m.

Conversely, let G be a graph with at least m ≥ 7 vertices. If G is connected, then it is
the complement of a graph of vertex degree at most 1 and hence contains a clique of size a.
If G has two connected components each of which is a clique, then one of them has size at
least a. If G has two components one of which is a single vertex, then the other component
has at least 2a− 1 vertices and also contains a clique of size a. If G has at least 3 connected
components, then G has an independent set of size b. Therefore, RA(a, b) = m.

5 Bipartite Ramsey numbers

Let G = (A,B,E) be a bipartite graph given together with a bipartition A ∪B of its vertex
set into two independent sets. We call A and B the parts of G. The graph G is complete
bipartite, also known as a biclique, if every vertex of A is adjacent to every vertex of B. A
biclique with parts of size n and m is denoted by Kn,m. By b(G) we denote the biclique
number of G, i.e., the maximum p such that G contains Kp,p as an induced subgraph.

Given a bipartite graph G = (A,B,E), we denote by G̃ the bipartite complement of G,
i.e., the bipartite graph on the same vertex set in which two vertices a ∈ A and b ∈ B are
adjacent if and only if they are not adjacent in G. We refer to the bipartite complement of a
biclique as co-biclique and denote by a(G) the maximum q such that G̃ contains Kq,q as an
induced subgraph.

The notion of bipartite Ramsey numbers is an adaptation of the notion of Ramsey numbers
to bipartite graphs and it can be defined as follows.

Definition 1. The bipartite Ramsey number Rb(p, q) is the minimum number n such that
for every bipartite graph G with at least n vertices in each of the parts, G contains Kp,p, or

G̃ contains Kq,q.

It is known (see, e.g., [9]) that Rb(p, p) ≥ 2p/2, and hence bipartite Ramsey numbers
are generally non-linear. However, similarly to the non-bipartite case, they may become
linear when restricted to a specific class X of bipartite graphs. We denote bipartite Ramsey
numbers restricted to a class X by RbX(p, q) and say that RbX(p, q) are linear in X if there is
a constant k such that RbX(p, q) ≤ k(p+ q) for all p, q.

Similarly to the non-bipartite case, we will say that graphs in a class X of bipartite graphs
have linear bipartite homogeneous subgraphs if there exists a constant c = c(X) such that
max{a(G), b(G)} ≥ c · |V (G)| for every G ∈ X. The following proposition can be proved by
analogy with Proposition 1.

Proposition 2. Let X be a class of bipartite graphs. Then graphs in X have linear bipartite
homogeneous subgraphs if and only if bipartite Ramsey numbers are linear in X.

Some classes of bipartite graphs with linear bipartite homogeneous subgraphs have been
revealed recently in [4], where the authors consider bipartite graphs that do not contain a
fixed bipartite graph as an induced subgraph respecting the parts. The subgraph containment
relation respecting the parts can be thought of as the containment of colored bipartite graphs,
where a colored bipartite graph is a bipartite graph given with a fixed bipartition of its vertices
into two independent sets of black and white vertices. A colored bipartite graph H is said to
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be an induced subgraph of a colored bipartite graph G if there exists an isomorphism between
H and an induced subgraph of G that preserves colors.

A number of related results appeared also in [15], where the authors study zero-one
matrices that do not contain a fixed matrix as a submatrix. Primarily, they are interested in
forbidden submatrices P that guarantee the existence of a square homogeneous submatrix of
linear size in matrices avoiding P , where homogeneous means a submatrix with all its entries
being equal. The problems studied in [15] can be interpreted as questions about homogeneous
bipartite subgraphs in colored and (vertex -)ordered bipartite graphs which do not contain
a fixed forbidden colored and ordered bipartite subgraph. In this case, the notion of graph
containment must preserve not only colors but also vertex order.

In the next sections, we extend some of the results obtained in [4] using the language of
Ramsey numbers.

5.1 Classes with non-linear bipartite Ramsey numbers

According to Lemma 1, classes of graphs without short cycles have non-linear Ramsey num-
bers. A similar result holds for bipartite graphs, which can be shown via standard proba-
bilistic arguments. For the sake of completeness, we provide formal proofs below. We start
with a result, which is an adaptation to the bipartite setting of the classical proof by Erdős
of the existence of high chromatic number graphs without short cycles.

Lemma 11. Let k ≥ 4 and ε > 0. Then for any sufficiently large n, there exists a bipartite
graph G = (A,B,E) with n vertices in each of the parts such that G contains no cycles of
length at most k, and G̃ contains no Ks,s with s ≥ εn.

Proof. Let n be a natural number and let N = 2n. We set δ = 1
2k , p = (2N)δ−1, and consider

the random bipartite graph G(2N, p) (i.e., the probability space of bipartite graphs with two
parts A and B each of size N such that every pair of vertices a ∈ A, b ∈ B is connected by
an edge independently with probability p).

Let Y be a random variable equal to the number of cycles of length at most k in G(2N, p).
The number of potential cycles of length i is at most 1

2(i−1)!
(
2N
i

)
≤ (2N)i, and each of them

is present with probability pi. Hence

E[Y ] ≤
k∑
i=4

(2N)ipi =

k∑
i=4

(2N)δi.

Since (2N)δi = o(N) for all i ≤ k, we conclude E[Y ] = o(N). Hence, for every sufficiently
large N , we have E[Y ] < N

2 , and therefore, by Markov’s inequality,

P [Y ≥ N ] <
1

2
.

Now we estimate the maximum size of a co-biclique in G(2N, p), i.e., a(G(2N, p)). Let us
set s = d3p lnNe. Then again from Markov’s inequality, we have

P [a(G(2N, p)) ≥ s] ≤
(
N

s

)(
N

s

)
(1− p)s2 ≤ N2se−ps

2
= es(2 lnN−ps),
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which tends to zero as N goes to infinity. Thus again, for N sufficiently large, we have

P [a(G(2N, p)) ≥ s] < 1

2
.

The above conclusions imply that there exists a graph G = (A,B,E) with Y < N and
a(G) < s. Now we want to destroy all of the Y short cycles by removing one vertex from each
of them. In order to guarantee that the resulting bipartite graph has many vertices in each
of the parts we destroy half of the cycles by removing vertices from A, and the other half by
removing vertices from B. In this way we remove at most N

2 vertices from each of A and B,
and hence we obtain a graph G′ = (A′, B′, E′) with at least N

2 = n vertices in each of the
parts such that G′ contains neither cycles of length at most k, nor the bipartite complement
of Ks,s with s = d3p lnNe = d3(2N)1−δ lnNe = o(N). By removing some of the vertices from

G′ we can obtain a bipartite graph with the same properties, but with exactly n vertices in
each of the parts.

From this lemma and Proposition 2 we derive the following conclusion.

Corollary 1. For every k ≥ 4, bipartite Ramsey numbers are not linear in the class of
bipartite graphs without cycles of length at most k.

Theorem 9. Let X be a class of bipartite graphs defined by a finite set M of bipartite
forbidden induced subgraphs. If M does not contain a forest or the bipartite complement of a
forest, then bipartite Ramsey numbers are not linear in X.

Proof. If M does not contain a forest, then every graph in M contains a cycle. Let k be the
size of a largest induced cycle in graphs in M , which is a finite number, since M is finite.
Then X contains all bipartite graphs without cycles of length at most k, and hence bipartite
Ramsey numbers are not linear in X by Corollary 1.

If M does not contain the bipartite complement of a forest, then bipartite Ramsey num-
bers are not linear in X, since they are linear in X if and only if they are linear in the class
of bipartite complements of graphs in X.

This result is half analogous to Theorem 2. Unfortunately, there is no obvious analog
for the second half. In the non-bipartite case, the second half deals with P3-free graphs and
their complements. Every P3-free graph consists of disjoint union of cliques, and the most
natural analog of this class in the bipartite case is the class of P4-free bipartite graphs, which
are disjoint union of bicliques. However, bipartite Ramsey numbers are linear in this class,
which is not difficult to see. In the absence of any other natural obstacles for linearity in the
bipartite case, we propose the following conjecture.

Conjecture 4. Let X be a class of bipartite graphs defined by a finite set M of bipartite
forbidden induced subgraphs. Then bipartite Ramsey numbers in X are linear if and only if
M contains a forest and the bipartite complement of a forest.1

We note that an analogous conjecture, in the context of homogeneous submatrices, was
proposed in [15]. In the next section, we consider some classes of bipartite graphs excluding
a forest and the bipartite complement of a forest, and show that bipartite Ramsey numbers
are linear for them.

1As pointed out by the referees, this conjecture has been solved since we first submitted this article [22].
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5.2 Some classes with linear bipartite Ramsey numbers

First, we look at some classes defined by a single bipartite forbidden induced subgraph H,
which is simultaneously a forest and the bipartite complement of a forest. The following
theorem characterizes all graphs H of this form, where Fp,q denotes the graph represented in
Figure 3 and S1,2,3 is a tree obtained from the claw by subdividing one of its edges ones and
another edge twice (also shown in Figure 3). Implicitly, without a proof, this characterization
was given in [1]. It also appeared recently in [4].

t t t t
d
p p p
�
�
�
�

�
�
�
�

A
A
A
A

C
C
C
C tt t t

d
p p p
�
�
�
�

�
�
�
�

A
A
A
A

C
C
C
C

x1 . . . xp y1 . . . yq
t t t t

ddd
�
�
�
��

A
A
A
AA

�
�
�
��

A
A
A
AA

�
�
�
��

Figure 3: The graphs Fp,q (left) and S1,2,3 (right)

Theorem 10. A bipartite graph H is a forest and the bipartite complement of a forest if and
only if H is an induced subgraph of a P7 or of an S1,2,3 or of a graph Fp,q.

The results in [4] and [15] imply that for any natural numbers p and q, Fp,q-free bipartite
graphs have linear bipartite homogeneous subgraphs. Hence, by Proposition 2, bipartite
Ramsey numbers are linear in the class of Fp,q-free bipartite graphs. In the next section, we
prove that bipartite Ramsey numbers are linear in the class of S1,2,3-free bipartite graphs.
This leaves an intriguing open question of whether P7-free bipartite graphs have linear Ramsey
numbers or not. The structural characterization of the latter graph class from [18] may be
helpful in answering this question.

We note that P6 is symmetric with respect to bipartition and it is an induced subgraph of
S1,2,3. Therefore our result from the next section implies that colored P6-free bipartite graphs
have linear bipartite homogeneous subgraphs, which resolves one of the four open cases from
[4].

5.2.1 S1,2,3-free bipartite graphs

We start with some definitions.

• The disjoint union is the operation that creates out of G1 and G2 the bipartite graph
G = (A1 ∪A2, B1 ∪B2, E1 ∪ E2).

• The join is the operation that creates out of G1 and G2 the bipartite graph which is
the bipartite complement of the disjoint union of G̃1 and G̃2

• The skew join is the operation that creates out of G1 and G2 the bipartite graph
G = G1�G2 = (A1 ∪A2, B1 ∪B2, E1 ∪E2 ∪{ab : a ∈ A1, b ∈ B2}). We say G is a skew
join of G1 and G2, if either G = G1 �G2 or G = G2 �G1.

The three operations define a decomposition scheme, known as canonical decomposition
which takes a bipartite graph G and partitions it into graphs G1 and G2 if G is a disjoint
union, join, or skew-join of G1 and G2, and then the scheme applies to G1 and G2, recursively.
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Graphs that cannot be decomposed into smaller graphs under this scheme will be called
canonically indecomposable.

The following lemma from [17] characterizes S1,2,3-free bipartite graphs containing a P7.
In the paper, the author calls a graph prime if for any two distinct vertices the neighbourhoods
are also distinct.

Lemma 12. A prime canonically indecomposable bipartite S1,2,3-free graph G that contains
a P7 must be either a path or a cycle or the bipartite complement of either a path or a cycle.

Theorem 11. Let G be a canonically indecomposable S1,2,3-free bipartite graph that contains
a P7. If G has at least 4n vertices in each part of the bipartition, then G contains a Kn,n or

a K̃n,n

Proof. From Lemma 12 it follows that either G or its bipartite complement must be either
a path or a cycle with some vertices duplicated (as we now no longer assume that G is
prime). Hence, G = (A,B,E) or its bipartite complement must admit a partition A =
A1 ∪A2 ∪ . . . ∪As, B = B1 ∪B2 ∪ . . . ∪Bs such that:

• Ai, Bi are non-empty for all i ≤ s− 1, and at most one of As and Bs is empty

• For any i ≤ s− 1, Ai joined with Bj if j ∈ {i, i+ 1} and co-joined to Bj otherwise

• As joined to Bs and B1 and co-joined with Bj for j /∈ {1, s}

Consider first the case when there exists some i such that |Ai| ≥ n. In this case, if
|Bi ∪ Bi+1| ≥ n, we obtain a biclique Kn,n induced by subsets of Ai and Bi ∪ Bi+1. On

the other hand, if |Bi ∪ Bi+1| < n, then we obtain a K̃n,n induced by subsets of Ai and
B\(Bi ∪ Bi+1). Hence, if there exists some i such that |Ai| ≥ n, then G contains either a
Kn,n or a K̃n,n. The argument when there exists some i such that |Bi| ≥ n is analogous.

So assume now that |Ai| < n and |Bi| < n for all i. Consider the smallest k such that
|A1 ∪ A2 ∪ . . . ∪ Ak| ≥ n. If |Bk+2 ∪ Bk+3 ∪ . . . ∪ Bs| ≥ n then we have a K̃n,n induced by
subsets of A1 ∪A2 ∪ . . . ∪Ak and Bk+2 ∪Bk+3 ∪ . . . ∪Bs. Otherwise, |B2 ∪B3 ∪ . . . ∪Bk| =
|B|−|B1|−|Bk+1|−|Bk+2∪ . . .∪Bs| > 4n−n−n−n = n and also |Ak+1∪Ak+2∪ . . .∪As| =
|A| − |Ak| − |A1 ∪ A2 ∪ . . . ∪ Ak−1| > 4n − n − n = 2n. Hence, we obtain a K̃n,n between
subsets of Ak+1 ∪Ak+2 ∪ . . . ∪As and B2 ∪B3 ∪ . . . ∪Bk.

Theorem 12. Let X be the class of S1,2,3-free bipartite graphs. Then RbX(p, q) ≤ 6(p+ q).

Proof. Let G = (A,B,E) be a bipartite graph in X that has 6n vertices in each part. If
G′0 = G is canonically indecomposable, then by the previous lemma we can find Kn,n or K̃n,n

in G. So assume G′0 is a disjoint a union, a join, or a skew-join of two non-empty graphs
G1 = (A1, B1, E1) and G′1 = (A′1, B

′
1, E

′
1). Without loss of generality we may assume that

|A1| ≤ |A′1|. Inductively, if G′k for some k ∈ N is not cannonically indecomposable, then G′k is
a disjoint union, a join, or a skew join of two non-empty graphs Gk+1 = (Ak+1, Bk+1, Ek+1)
and G′k+1 = (A′k+1, B

′
k+1, E

′
k+1). Again, without loss of generality we may assume that

|Ak+1| ≤ |A′k+1|.
Consider first the case when the procedure stops with canonically indecomposable graph

G′k such that |A′k| ≥ 4n. If |B′k| ≥ 4n, then by the previous lemma, G contains Kn,n or K̃n,n.
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On the other hand, if |B′k| < 4n, then we have |B1 ∪ B2 ∪ . . . ∪ Bk| ≥ 2n and each vertex in
B1 ∪ B2 ∪ . . . ∪ Bk is either joined or co-joined to the set A′k. Hence we can find a Kn,n or

K̃n,n induced by subsets of B1 ∪B2 ∪ . . . ∪Bk and A′k.
Now consider the case when the procedure stops with a canonically indecomposable graph

G′k such that |A′k| < 4n. As A = A1 ∪ A2 ∪ . . . ∪ Ak ∪ A′k and |A| = 6n it follows that
|A1 ∪ A2 ∪ . . . ∪ Ak| > 2n. Hence, in this case we can pick the smallest p such that |A1| +
|A2|+ . . .+ |Ap| ≥ 2n. From the fact that |A1|+ |A2|+ . . .+ |Ap|+ |A′p| = 6n and the definition
of p it follows that |Ap|+ |A′p| ≥ 4n. By construction |A′p| ≥ |Ap|, hence |A′p| ≥ 2n.

First, let us consider the case when |B′p| ≥ n. Then each vertex of A1 ∪A2 ∪ . . . ∪Ap by
construction is either joined of co-joined to B′p. Since |A1 ∪ A2 ∪ . . . ∪ Ap| ≥ 2n, it is clear

that we will find either a Kn,n or K̃n,n in the bipartite graph induced by A1 ∪A2 ∪ . . . ∪Ap
and B′p.

Now, let us consider the case when |B′p| < n. Then each vertex of B1 ∪ B2 ∪ . . . Bp is
either joined or co-joined to A′p. Since |A′p| ≥ 2n and |B1 ∪ B2 ∪ . . . Bp| > 5n, we can find

either a Kn,n or K̃n,n in the bipartite graph induced by B1 ∪B2 ∪ . . . ∪Bp and A′p.

Hence we have shown that RbX(n, n) ≤ 6n for all n ∈ N. It now follows easily that for any
p, q ∈ N, we have RbX(p, q) ≤ RbX (max{p, q},max{p, q}) ≤ 6 ·max{p, q} ≤ 6(p+ q).

5.2.2 Exact values of bipartite Ramsey numbers for P2+P3-free bipartite graphs

Finding exact values of Ramsey numbers is much harder than providing bounds. Similarly,
finding tight bounds on the size of homogeneous subgraphs is a very difficult task. In [4],
such bounds have been given only for classes where the only forbidden induced subgraph has
two vertices in each part of the bipartition.

In this section, we consider the class of bipartite graphs where the only forbidden induced
subgraph P2 + P3 has two vertices in one of the parts and three in the other. This class is
a subclass of S1,2,3-free bipartite graphs, and hence the bipartite Ramsey numbers are linear
in this class. Now we refine this conclusion by deriving exact values of the bipartite Ramsey
numbers for the class of P2 + P3-free bipartite graphs. For this, we will use a structural
characterisation of this class provided in [8].

In [8], a bipartite P2 + P3-free bipartite graph G = (A,B,E) has been shown to admit
a half-graph expansion, which means that there exists a partition A = A1 ∪ A2 ∪ . . . ∪ An,
B = B1 ∪ B2 ∪ . . . ∪ Bn (where some of A1, . . . , An, B1, . . . , Bn may be empty) with the
following properties:

• for 1 ≤ i < j ≤ n, Ai is complete to Bj and Bi is anticomplete to Aj ;

• for 1 ≤ i ≤ n, either |Ai ∪ Bi| = 1 or G[Ai, Bi, E ∩ (Ai × Bi)] is an induced matching
or the bipartite complement of an induced matching.

Theorem 13. For the class X of P2+P3-free bipartite graphs and for all p, q ≥ 2, RbX(p, q) =
max{p, q}+ p+ q − 2.

Proof. To prove that RbX(p, q) ≥ max{p, q}+p+q−2, assume, without loss of generality, that
q = max{p, q} (if p = max{p, q}, the proof is similar). Let G = (A,B,E) be a P2 + P3-free
bipartite graph with |A| = |B| = 2q + p − 3 such that A = A1 ∪ A2, B = B2 ∪ B3, where
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|A1| = |B3| = p−2, A2∪B2 is an induced matching of size 2q−1, A1 is complete to B, while
B3 is complete to A.

Assume G contains a biclique Kp,p. Then this biclique contains at least 2 vertices in
A2 and at least two vertices in B2. But then A2 ∪ B2 is not an induced matching. This
contradiction shows that G is Kp,p-free.

Assume G contains a co-biclique K̃q,q. This co-biclique cannot contain vertices of A1 or
B3 (since these vertices dominate the opposite part of the graph). But then we obtain a
contradiction to the assumption that the size of the matching A2 ∪ B2 is 2q − 1. Therefore,
G is K̃q,q-free. This proves the inequality RbX(p, q) ≥ max{p, q}+ p+ q − 2.

To prove the reverse inequality, consider an arbitrary P2 + P3-free bipartite graph G =
(A,B,E) with |A| = |B| = max{p, q}+p+q−2. Consider a half-graph expansion of the graph
G with A = A1 ∪ . . .∪An, B = B1 ∪ . . .∪Bn, where the partition satisfies the two half-graph
expansion conditions as stated above. Fix a vertex ordering of the parts A = {a1, a2, . . . , ar}
and B = {b1, b2, . . . , br} (with r = |A| = |B|), which respects the half-graph expansion
ordering of vertex subsets, i.e. such that the functions f and g defined by ai ∈ Af(i) and
bi ∈ Bg(i) are both increasing. Further, we can also assume that the ordering is consistent
with matching/co-matching ordering within parts of the half-graph expansion, i.e. for each
i, for which G[Ai, Bi, E ∩ (Ai × Bi)] is a matching/co-matching, the bijective function h
which maps each ak ∈ Ai to its corresponding matched/co-matched vertex bh(k) ∈ Bi is an
increasing function. Following this ordering, we define the following subsets:

• A[p] = {a1, a2, . . . , ap} the set of the first p vertices of A,

• Ā[q] = {ar−q+1, ar−q+2, . . . , ar} the set of the last q vertices of A,

• B[q] = {b1, b2, . . . , bq} the set of the first q vertices of B,

• B̄[p] = {br−p+1, br−p+2, . . . , br} the set of the last p vertices of B.

Since p, q ≥ 2, we have that |A[p]|+|Ā[q]| = |B[q]|+|B̄[p]| = p+q ≤ p+q+max{p, q}−2 = r,
which implies that A[p] and Ā[q] are disjoint and so are B[q] and B̄[p].

If A[p] is complete to B̄[p] or B[q] is anti-complete to Ā[q], then G contains Kp,p or K̃q,q,
respectively. Therefore, we assume there is a pair a ∈ A[p], b̄ ∈ B̄[p] of non-adjacent vertices
and a pair b ∈ B[q], ā ∈ Ā[q] of adjacent vertices.

Let i and j be such that a ∈ Ai and b̄ ∈ Bj . Since the two vertices are non-adjacent
in G, it follows that j ≤ i. Similarly, let x and y be such that ā ∈ Ax and b ∈ By. As
these two vertices are adjacent in G, it follows that x ≤ y. Moreover, since a appears before
ā in our fixed ordering, we have i ≤ x and for a similar reason y ≤ j. Hence, we have
i ≤ x ≤ y ≤ j ≤ i and so the equality must hold throughout. In other words, all the four
vertices a, b, ā, b̄ belong to the same “block” G[Ai, Bi, E ∩ (Ai ×Bi)] =: Gi for some i, which
by definition of the half-graph expansion must be either a matching or a co-matching.

In what follows we assume that Gi is an induced matching (the case when Gi is a co-
matching is symmetric). We consider one particular edge bā belonging to this matching. Let
s, k ≤ q be such that b = bs and ā = ar−k+1. Since our vertex ordering is consistent with
the bijection of the matching, any vertex al with l < r − k + 1 that belongs to the matching
Gi has to be matched with one of the vertices bt with t < s. Thus there are at most s − 1
possible values l < r − k + 1 for which al ∈ Gi. Since the vertices that appear in Ai are
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consecutive, in order, we conclude that the smallest value l such that al is contained in Ai is
at least

r − k + 1− (s− 1) = r − k − s+ 2 ≥ r − 2q + 2 = max{p, q}+ p− q ≥ p.

In particular, none of {a1, a2, . . . , ap−1} =: A[p−1] belongs to Ai, but instead belongs to
A1 ∪ A2 ∪ . . . ∪ Ai−1. By a similar argument, one can deduce that none of the vertices
{br−p+2, . . . , br−1, br} =: B̄[p−1] belongs to Bi, but instead belongs to Bi+1 ∪Bi+2 ∪ . . .∪Bn.
Hence, A[p−1] and B̄[p−1] induce a biclique Kp−1,p−1 and these sets are also complete to Bi and
Ai, respectively. Hence, A[p−1] and B̄[p−1] together with any extra edge of Gi, for example,
bā, induces a Kp,p. This finishes the proof.
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