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THE CYCLIC INDEX OF ADJACENCY TENSOR OF

GENERALIZED POWER HYPERGRAPHS

YI-ZHENG FAN AND MIN LI

Abstract. Let G be a t-uniform hypergraph, and let c(G) denote the cyclic
index of the adjacency tensor of G. Let m, s, t be positive integers such that

t ≥ 2, s ≥ 2 and m = st. The generalized power Gm,s of G is obtained from G

by blowing up each vertex into an s-set and preserving the adjacency relation.
It was conjectured that c(Gm,s) = s · c(G). In this paper we show that the
conjecture is false by giving a counterexample, and give some sufficient condi-
tions for the conjecture holding. Finally we give an equivalent characterization
of the equality in the conjecture by using a matrix equation over Zm.

1. Introduction

A hypergraph G = (V (G), E(G)) consists of a set of vertices, say V (G) =
{v1, v2, · · · vn}, and a set of edges, say E(G) = {e1, e2, · · · ek}, where ej ⊆ V (G)
for j ∈ [k] := {1, 2, . . . , k}. If |ej | = m for each j ∈ [k], then G is called an
m-uniform hypergraph. A walk W in G is a sequence of alternating vertices and
edges: vi0 , ei1 , vi1 , ei2 , . . . , eil , vil , where {vij , vij+1} ⊆ eij+1 for j = 0, 1, . . . , l − 1.
The hypergraph G is connected if every two vertices of G are connected by a walk.
The adjacency tensor A(G) of the hypergraph G is defined as A(G) = (ai1i2...ik)
[4], an m-th order n-dimensional tensor, where

ai1i2...im =

{ 1
(m−1)! , if {vi1 , vi2 , . . . , vim} ∈ E(G);

0, otherwise.

In general, A tensor (also called hypermatrix ) A = (ai1i2...im) of order m and
dimension n over a field F refers to a multiarray of entries ai1i2...im ∈ F for all
ij ∈ [n] and j ∈ [m], which can be viewed to be the coordinates of the classical
tensor (as a multilinear function) under an orthonormal basis. If m = 2, then A is
a square matrix of dimension n.

In 2005, independently, Lim [13] and Qi [17] introduced eigenvalues for tensors
A. Denote by ρ(A) the spectral radius of A, and by Spec(A) the spectrum of
A. If A is further nonnegative, then by Perron-Frobenius theorem of nonnegative
tensors, ρ(A) is an eigenvalue of A. Moreover, if A is weakly irreducible and
has k eigenvalues of A with modulus ρ(A), then those k eigenvalues are equally
distributed on the spectral circle. As for nonnegative matrices, the number k is
called the cyclic index of A [2]. The cyclic index reflects the spectral symmetry of
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nonnegative weakly irreducible tensors, which was generalized and investigated in
the paper [5].

Definition 1.1 ([5]). Let A be an m-th order n-dimensional tensor, and let ℓ be a
positive integer. The tensor A is called spectral ℓ-symmetric if

(1.1) Spec(A) = ei
2π
ℓ Spec(A).

The maximum number ℓ such that (1.1) holds is called the cyclic index of A and
denoted by c(A), and A is called spectral c(A)-cyclic.

When we say a hypergraph is spectral ℓ-symmetric or spectral ℓ-cyclic, this is
always referring to its adjacency tensor. In particular, for a uniform hypergraph G,
denote c(G) := c(A(G)), called the cyclic index of G.

For a general tensor A, if it is spectral ℓ-symmetric, then ℓ|c(A) by [5, Lemma
2.7]. It was also proved that if a connected m-uniform hypergraph is spectral
ℓ-symmetric, then ℓ|m, and hence c(G)|m; see [5, Lemma 3.2, Corollary 4.3], [6,
Lemma 2.5] or [21, Theorem 2.15]. In the paper [5] the authors use the construction
of generalized power hypergraphs to show that for every positive integer m and any
positive integer ℓ such that ℓ|m, there always exists an m-uniform hypergraph G

such that G is spectral ℓ-symmetric. They posed the following conjecture.

Conjecture 1.2 ([5]). let G be a t-uniform hypergraph, and let Gm,s be the
generalized power of G, where m = st. Then

(1.2) c(Gm,s) = s · c(G).

The generalized power of a hypergraph is defined as follows.

Definition 1.3 ([10]). Let G = (V,E) be a t-uniform hypergraph. For any integers
m, s such that m > t and 1 ≤ s ≤ m

t
, the generalized power of G, denoted by Gm,s,

is defined as the m-uniform hypergraph with the vertex set (∪v∈V v)∪(∪e∈Ee), and
the edge set {u1 ∪ · · · ∪ut ∪ e : e = {u1, . . . , ut} ∈ E(G)}, where v denotes an s-set
corresponding to v and e denotes an (m− ts)-set corresponding to e, and all those
sets are pairwise disjoint.

In this paper, we only consider the power hypergraphs Gm,s with m = st, i.e.
Gm,s is obtained from G by blowing up each vertex into an s-set and preserving
the adjacency relation. The generalized power hypergraphs include some special
cases, such as the powers of simple graphs introduced by Hu, Qi and Shao [9],
the generalized powers of simple graphs introduced by Khan and Fan [11]. Peng
[16] introduced s-paths and s-cycles with uniformity m on discussing the Ramsey
number, which are exactly the generalized pows of paths and cycles (as simple
graphs) respectively if 1 ≤ s ≤ m

2 . The spectral results on generalized power
hypergraphs can be found in [9, 24, 11, 23, 12, 10].

For the conjecture 1.2, it was shown that it is true if c(G) = 1 [5]. In this
paper we show that the conjecture is false by giving a counterexample, and give
some sufficient conditions for the conjecture holding. We finally give an equivalent
characterization of Eq. (1.2) by using a matrix equation over Zm.

2. Preliminaries

2.1. Notions. Let A be a real tensor of order m and dimension n. The tensor A is
called symmetric if its entries are invariant under any permutation of their indices.
So, the adjacency tensor of a uniform hypergraph is symmetric.
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Given a vector x ∈ Cn, Axm ∈ C and Axm−1 ∈ Cn, which are defined as follows:

Axm =
∑

i1,i2,...,im∈[n]

ai1i2...imxi1xi2 · · ·xim ,

(Axm−1)i =
∑

i2,...,im∈[n]

aii2...imxi2 · · ·xim , i ∈ [n].

Let I = (ii1i2...im) be the identity tensor of order m and dimension n, that is,
ii1i2...im = 1 if and only if i1 = i2 = · · · = im ∈ [n] and ii1i2...im = 0 otherwise.

Definition 2.1 ([13, 17]). Let A be an m-th order n-dimensional real tensor. For
some λ ∈ C, if the polynomial system (λI −A)xm−1 = 0, or equivalently Axm−1 =
λx[m−1], has a solution x ∈ Cn\{0}, then λ is called an eigenvalue of A and x is an
eigenvector of A associated with λ, where x[m−1] := (xm−1

1 , xm−1
2 , . . . , xm−1

n ).

The determinant of A, denoted by detA, is defined as the resultant of the
polynomials Axm−1 [8], and the characteristic polynomial ϕA(λ) of A is defined as
det(λI − A) [17, 3]. It is known that λ is an eigenvalue of A if and only if it is a
root of ϕA(λ). The spectrum of A is the multi-set of the roots of ϕA(λ).

The spectral symmetry of a connected hypergraph is closed related to a certain
coloring of the hypergraph.

Definition 2.2 ([5]). Let m ≥ 2 and ℓ ≥ 2 be integers such that ℓ | m. An m-
uniform hypergraph G on n vertices is called (m, ℓ)-colorable if there exists a map
φ : [n] → [m] such that if {i1, . . . , im} ∈ E(G), then

(2.1) φ(i1) + · · ·+ φ(im) ≡
m

ℓ
mod m.

Such φ is called an (m, ℓ)-coloring of G.

If m is even, an m-uniform hypergraph with an (m, 2)-coloring was called odd-
colorable by Nikiforov [14].

Theorem 2.3. [5] Let G be a connected m-uniform hypergraph. Then G is spectral
ℓ-symmetric if and only if G is (m, ℓ)-colorable.

The edge-vertex incidence matrix BG = (bev) of an m-uniform hypergraph G is
defined by

bev =

{

1, if v ∈ e ∈ E(G),

0, otherwise.

We may view BG as one over Zm, where Zm is the ring of integers modulo m. Now
Eq. (2.1) is equivalent to

(2.2) BGφ =
m

ℓ
1 over Zm,

where φ = (φ(1), . . . , φ(n)) is considered as a column vector, and 1 is an all-ones
vector of dimension n. So, Theorem 2.3 can be rewritten as follows.

Corollary 2.4. Let G be a connected m-uniform hypergraph. Then G is spectral
ℓ-symmetric if and only if the equation

(2.3) BGx =
m

ℓ
1 over Zm

has a solution.
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In Corollary 2.4 and other places of the paper, the number of coordinates of 1 is
implicated from context, which is equal to the number of vertices of the hypergraph
under discussion.

3. Cyclic index of generalized power hypergraphs

Let G be a t-uniform hypergraph, and let Gm,s be a generalized power hyper-
graph of G, where 1 ≤ s ≤ m

t
. If m > st, then each edge of G contains a vertex of

degree 1, and hence G is a 1-hm bipartite hypergraph [19]. By [19, Theorem 3.2]
or [5, Theorem 4.5], c(Gm,s) = m.

So, in the following, we always assume that G is a connected t-uniform hyper-
graph, m = st, namely, Gm,s is considered to be obtained from G by blowing each
vertex v into an s-set v and preserving the adjacency relation. We also assume that
the vertex v is contained in v for each v ∈ V (G).

Lemma 3.1. If G is spectral ℓ-symmetric, then Gm,s is also spectral ℓ-symmetric.
In particular, Gm,s is spectral c(G)-symmetric and hence c(G)|c(Gm,s).

Proof. Suppose that G is spectral ℓ-symmetric. By Corollary 2.4, the equation
BGx = t

ℓ
1 has a solution φ over Zt. Now define a map Φ on Gm,s such that

Φ|v = φ(v) for each vertex v ∈ V (G). Then

BGm,sΦ = s ·BGφ =
st

ℓ
1 =

m

ℓ
1 over Zm,

which implies that Gm,s is spectral ℓ-symmetric also by Corollary 2.4. �

Lemma 3.2. Gm,s is spectral s-symmetric.

Proof. For each vertex v ∈ V (G), v is blowing into an s-set v of vertices of Gm,s,
and is assumed to be contained in v. Define a map Φ on Gm,s such that Φ(v) = 1
and Φ|v\{v} = 0 for each vertex v ∈ V (G). Then

BGm,sΦ = t1 =
m

s
1 over Zm,

which implies that Gm,s is spectral s-symmetric by Corollary 2.4. �

Lemma 3.3. If Gm,s is spectral s · ℓ′-symmetric, then G is spectral ℓ′-symmetric.

Proof. By Corollary 2.4, there exists a map Φ defined on Gm,s such that

BGm,sΦ =
m

s · ℓ′
1 =

t

ℓ′
1 over Zm.

Now define a map φ on G such that φ(v) =
∑

u∈v
Φ(u) for each v ∈ V (G). So we

have

BGφ = BGm,sΦ =
t

ℓ′
1 over Zm.

As m is a multiple of t,

BGφ =
t

ℓ′
1 over Zt,

which implies that G is spectral ℓ′-symmetric by Corollary 2.4. �

By Lemma 3.2, we may assume c(Gm,s) = s · ℓ′, where ℓ′ is a positive integer.
By Lemma 3.3, we know that G is spectral ℓ′-symmetric and hence ℓ′|c(G) by [5,
Lemma 2.7]. So we get the following result immediately.

Corollary 3.4. c(Gm,s)|s · c(G).



CYCLIC INDEX OF GENERALIZED POWER HYPERGRAPHS 5

Corollary 3.5. Gm,s is spectral s·c(G)
(s,c(G)) -symmetric. In particular, if (s, c(G)) = 1

or (s, t) = 1, then c(Gm,s) = s · c(G).

Proof. By Lemma 3.1 and Lemma 3.2, we know that c(G)|c(Gm,s) and s|c(Gm,s),

implying that s·c(G)
(s,c(G)) |c(G

m,s). So, Gm,s is spectral s·c(G)
(s,c(G)) -symmetric. As c(G)|t,

if (s, t) = 1, then (s, c(G)) = 1. If (s, c(G)) = 1, then s · c(G)|c(Gm,s). Then result
follows by Corollary 3.4. �

By Corollary 3.5, Conjecture 1.2 holds in some special cases, including the case
of c(G) = 1. However, Conjecture 1.2 does not hold in general. Now we give a
counterexample to show the negative answer to the conjecture.

Definition 3.6 ([14]). Let n ≥ 16k and let partition [n] into three sets A,B,C

such that |A| ≥ 6k, |B| ≥ 6k and |C| ≥ 4k. Define the four families of 4k-subsets
of [n].

E1 := {e : e ⊂ [n], |e ∩ A| = 2k, |e ∩ C| = 2k}.

E2 := {e : e ⊂ [n], |e ∩B| = 2k, |e ∩ C| = 2k}.

E3 := {e : e ⊂ [n], |e ∩ A| = k, |e ∩B| = 3k}.

E4 := {e : e ⊂ [n], |e ∩ A| = 3k, |e ∩B| = k}.

Now define a 4k-uniform hypergraph G by setting V (G) = [n] and E(G) = E1 ∪
E2 ∪E3 ∪ E4. We call G a Nikiforov’s hypergraph as it is introduced by Nikiforov.

Nikiforov [14] showed that Nikiforov’s hypergraphsG are odd-colorable, or (4k, 2)-
colorable in terms our definition, by defining a function φ on G such that φ|A = 1,
φ|B = 4k − 1 and φ|C = 0. By Theorem 2.3, G is spectral 2-symmetric.

By the following result, if G is a Nikiforov’s hypergraph and s is even, then

c(Gm,s) 6= s · c(G).

So we give a negative answer to Conjecture 1.2.

Theorem 3.7. Let G be a 4k-uniform Nikiforov’s hypergraph. Then the following
results hold.

(1) c(G) = 2.
(2) If s is even, then c(Gm,s) = s.

Proof. (1) We first show that c(G) = 2. Suppose that G is spectral ℓ-symmetric.
Then there exists a φ : [n] → [4k] such that BGφ = 4k

ℓ
over Z4k. It is easily seen

that φ is constant on each of A,B,C by the equation. So, let φ|A := a, φ|B := b

and φ|C := c. Then, by considering the edges in E1, we have

2ka+ 2kc =
4k

ℓ
mod 4k,

which implies that ℓ equals 1 or 2, and hence c(G) = 2 as G is spectral 2-symmetric.
(2) By Corollary 3.4, c(Gm,s)|2s, where m = 4ks. By Lemma 3.2, Gm,s is

spectral s-symmetric, and hence s|c(Gm,s). We will show that if s is even, then
Gm,s is not spectral 2s-symmetric so that c(Gm,s) = s.

Assume to the contrary that Gm,s is spectral 2s-symmetric. Then there exists a
Φ : V (Gm,s) → [4ks] such that

BGm,sΦ =
4ks

2s
= 2k over Z4ks.
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For each v ∈ V (G), define φ(v) :=
∑

u∈v
Φ(u). So we have

BGm,sΦ = BGφ = 2k over Z4ks.

It is also easily seen that φ|A := α, φ|B := β and φ|C := ι. By considering the
edges in E3 and E4 respectively, we have

α+ 3β = 2 mod 4s, 3α+ β = 2 mod 4s.

So

α− β = 0 mod 2s, α+ β = 1 mod s,

which yields a contradiction as s is an even number. �

Finally we give an equivalent characterization of Eq. (1.2) in Conjecture 1.2.

Theorem 3.8. c(Gm,s) = s · c(G) if and only if the equation

(3.1) BGx =
t

c(G)
1 over Zm

has a solution.

Proof. Suppose that c(Gm,s) = s · c(G). Then Gm,s is spectral s · c(G)-symmetric,
and by Corollary 2.4, there exists a map Φ : V (Gm,s) → [m] such that

BGm,sΦ =
m

s · c(G)
1 =

t

c(G)
1 over Zm.

For each v ∈ V (G), define φ(v) :=
∑

u∈v
Φ(u). So we have BGm,sΦ = BGφ, and

get the necessity.
On the other hand, if BGx = t

c(G)1 has a solution φ over Zm. Define a map

Ψ : V (Gm,s) → [m] such that

∑

u∈v

Φ(u) = φ(v), for each v ∈ V (G).

There are |V (G)| independent linear equations; such Φ is easily got (e.g. for each
v ∈ V (G), take Φ(v) = φ(v) and Φ(u) = 0 for each u ∈ v\{v}). So we have

BGm,sΦ = BGφ =
t

c(G)
1 =

m

s · c(G)
1 over Zm.

So Gm,s is spectral s ·c(G)-symmetric. The sufficiency follows by Corollary 3.4. �

As G is spectral c(G)-symmetric, by Corollary 2.4 the equation

(3.2) BGx =
t

c(G)
1 over Zt

has a solution. Obviously, if the equation (3.1) has a solution, then the equation
(3.2) has a solution as m is a multiple of t. However, the converse does not hold in
general; see the previous counterexample.
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4. Remark

For a nonnegative weakly irreducible tensor A, its cyclic index c(A) is exactly
the number of eigenvalues with modulus ρ(A). The is implied by Perron-Frobenius
theorem for nonnegative tensors, where an eigenvalue of A is called H+-eigenvalue
(respectively H++-eigenvalue) if it is associated with a nonnegative (respectively
positive) eigenvector. For the notion of irreducible or weakly irreducible tensors,
one can refer to [1] and [7]. It is known that the adjacency tensor of a uniform
hypergraph G is weakly irreducible if and only if G is connected [15, 22].

Theorem 4.1 (The Perron-Frobenius Theorem for nonnegative tensors).

(1) (Yang and Yang [22]) If A is a nonnegative tensor, then ρ(A) is an H+-
eigenvalue of A.

(2) (Friedland, Gaubert and Han [7]) If furthermore A is weakly irreducible,
then ρ(A) is the unique H++-eigenvalue of A, with a unique positive eigen-
vector, up to a positive scalar.

(3) (Chang, Pearson and Zhang [1]) If moreover A is irreducible, then ρ(A) is
the unique H+-eigenvalue of A, with a unique nonnegative eigenvector, up
to a positive scalar.

According to the definition of tensor product in [18], for a tensor A of order m
and dimension n, and two diagonal matrices P,Q both of dimension n, the product
PAQ has the same order and dimension as A, whose entries are defined by

(PAQ)i1i2...im = pi1i1ai1i2...imqi2i2 . . . qimim .

If P = Q−1, then A and Pm−1AQ are called diagonal similar. It is proved that
two diagonal similar tensors have the same spectrum [18].

Theorem 4.2 ([22]). Let A and B be two m-th order n-dimensional real tensors
with |B| ≤ A, namely, |bi1i2...im | ≤ ai1i2...im for each ij ∈ [n] and j ∈ [m]. Then

(1) ρ(B) ≤ ρ(A).
(2) Furthermore, if A is weakly irreducible and ρ(B) = ρ(A), where λ = ρ(A)eiθ

is an eigenvalue of B corresponding to an eigenvector y, then y contains no
zero entries, and B = e−iθD−(m−1)AD, where D = diag{ y1

|y1|
, . . . , yn

|yn|
}.

Theorem 4.3 ([22]). Let A be an m-th order n-dimensional weakly irreducible
nonnegative tensor. Suppose A has k distinct eigenvalues with modulus ρ(A) in

total. Then these eigenvalues are ρ(A)ei
2πj
k , j = 0, 1, . . . , k − 1. Furthermore,

(4.1) A = e−i
2π
k D−(m−1)AD,

and the spectrum of A remains invariant under a rotation of angle 2π
k

(but not a
smaller positive angle) of the complex plane.

Suppose A be as in Theorem 4.3. If Spec(A) is invariant under a rotation of angle
θ of the complex plane, i.e. Spec(A) = eiθSpec(A), then ρ(A)eiθ is an eigenvalue

of A by Theorem 4.1. By Theorem 4.3, θ = 2πj
k

for some j ∈ [k], and hence by

Theorem 4.2 (and taking B = A), Spec(A) = ei
2πj
k Spec(A). So, for some positive

integer ℓ, ℓ|k,

(4.2) Spec(A) = ei
2π
ℓ Spec(A).

The number k in Theorem 4.3 is exactly the cyclic index of A. In addition, if A is
spectral ℓ-symmetric, Then ℓ | c(A) by Theorem 4.3.
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Now return to a connected t-uniform hypergraph G and its power Gm,s, where
m = st. By Lemma 3.1, Gm,s is spectral c(G)-symmetric; and by Lemma 3.2, Gm,s

is also spectral s-symmetric. So Gm,s has eigenvalues

ρ(Gm,s)ei
2πi
c(G) ei

2πj
s , i ∈ [c(G)], j ∈ [s].

In particular, ρ(Gm,s)ei
2π
d is an eigenvalue of Gm,s, where d = s·c(G)

(s,c(G)) . So by

Theorem 4.2, Gm,s is spectral d-symmetric, which is consistent with Corollary 3.5.

References

[1] K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors,
Commu. Math. Sci., 6 (2008), 507-520.

[2] K. C. Chang, K. Pearson, T. Zhang, Primitivity, the convergence of the NQZ method, and the

largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. Appl., 32 (2009), 806-819.
[3] K. C. Chang, K. Pearson, T. Zhang, On eigenvalue problems of real symmetric tensors, J.

Math. Anal. Appl., 350 (2009), 416-422.
[4] J. Cooper, A. Dutle, Spectra of uniform hypergraph, Linear Algebra Appl., 436(2012), 3268-

3292.
[5] Y.-Z. Fan, T. Huang, Y.-H. Bao, C.-L. Zhuan-Sun, Y.-P, Li, The spectral symmetry of weakly

irreducible nonnegative tensors and connected hypergraphs, Trans. Amer. Math. Soc., DOI:
https://doi.org/10.1090/tran/7741.

[6] Y.-Z. Fan, Y.-H. Bao, T. Huang, Eigenvariety of nonnegative symmetric weakly irreducible

tensors associated with spectral radius and its application to hypergraphs, Linear Algebra
Appl., 564 (2019), 72-94.

[7] S. Friedland, S. Gaubert, L. Han, Perron-Frobenius theorem for nonnegative multilinear

forms and extensions, Linear Algebra Appl., 438 (2013), 738-749.
[8] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[9] S. Hu, L. Qi, J.-Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-

eigenvalues, Linear Algebra Appl., 439 (2013) 2980C2998.
[10] L. Kang, L. Liu, L. Qi, X. Yuan, Spectral radii of two kinds of uniform hypergraphs, Appl.

Math. Comput., 338 (2018) 661-668.
[11] M. Khan, Y.-Z. Fan, On the spectral radius of a class of non-odd-bipartite even uniform

hypergraphs, Linear Algebra Appl., 480 (2015) 93C106
[12] M. Khan, Y.-Z. Fan, The H-spectra of a class of generalized power hypergraphs, Discrete

Math., 339 (2016) 1682C1689.
[13] L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, in Computa-

tional Advances in Multi-Sensor Adapative Processing, 2005 1st IEEE International Work-
shop, IEEE, Piscataway, NJ, 2005, pp. 129-132.

[14] V. Nikiforov, Hypergraphs and hypermatrices with symmetric spectrum, Linear Algebra Appl.,
519 (2017), 1-18.

[15] K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Com-
bin., 30(5) (2014), 1233-1248.

[16] X. Peng, The Ramsey number of generalized loose paths in uniform hypergraphs, Discrete
Math., 339 (2016) 539C546.

[17] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-
1324.

[18] J.-Y. Shao, A general product of tensors with applications, Linear Algebra Appl., 439 (2013),
2350-2366.

[19] J.-Y. Shao, L. Qi, S. Hu, Some new trace formulas of tensors with applications in spectral

hypergraph theory, Linear Multilinear Algebra, 63(5) 2015, 971-992.
[20] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors,

SIAM J. Matrix Anal. Appl., 31(5) (2010), 2517-2530.

[21] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II,
SIAM J. Matrix Anal. Appl., 32(4) (2011), 1236-1250.

[22] Y. Yang, Q. Yang, On some properties of nonnegative weakly irreducible tensors, arXiv:
1111.0713v2.



CYCLIC INDEX OF GENERALIZED POWER HYPERGRAPHS 9

[23] X. Y. Yuan, L. Qi, J.-Y. Shao, The proof of a conjecture on largest Laplacian and signless

Laplacian H-eigenvalues of uniform hypergraphs, Linear Algebra Appl., 490 (2016), 18-30.
[24] J. Zhou, L. Sun, W. Wang, C. Bu, Some spectral properties of uniform hypergraphs, Elect.

J. Combin., 21(4) (2014), #P4.24, 14.

School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China

E-mail address: fanyz@ahu.edu.cn

School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China

E-mail address: 1736808193@qq.com


	1. Introduction
	2. Preliminaries
	2.1. Notions

	3. Cyclic index of generalized power hypergraphs
	4. Remark
	References

