THE CYCLIC INDEX OF ADJACENCY TENSOR OF GENERALIZED POWER HYPERGRAPHS

YI-ZHENG FAN AND MIN LI

ABSTRACT. Let G be a t-uniform hypergraph, and let c(G) denote the cyclic index of the adjacency tensor of G. Let m, s, t be positive integers such that $t \ge 2$, $s \ge 2$ and m = st. The generalized power $G^{m,s}$ of G is obtained from G by blowing up each vertex into an s-set and preserving the adjacency relation. It was conjectured that $c(G^{m,s}) = s \cdot c(G)$. In this paper we show that the conjecture is false by giving a counterexample, and give some sufficient conditions for the conjecture holding. Finally we give an equivalent characterization of the equality in the conjecture by using a matrix equation over \mathbb{Z}_m .

1. INTRODUCTION

A hypergraph G = (V(G), E(G)) consists of a set of vertices, say $V(G) = \{v_1, v_2, \dots v_n\}$, and a set of edges, say $E(G) = \{e_1, e_2, \dots e_k\}$, where $e_j \subseteq V(G)$ for $j \in [k] := \{1, 2, \dots, k\}$. If $|e_j| = m$ for each $j \in [k]$, then G is called an m-uniform hypergraph. A walk W in G is a sequence of alternating vertices and edges: $v_{i_0}, e_{i_1}, v_{i_1}, e_{i_2}, \dots, e_{i_l}, v_{i_l}$, where $\{v_{i_j}, v_{i_{j+1}}\} \subseteq e_{i_{j+1}}$ for $j = 0, 1, \dots, l-1$. The hypergraph G is connected if every two vertices of G are connected by a walk. The adjacency tensor $\mathcal{A}(G)$ of the hypergraph G is defined as $\mathcal{A}(G) = (a_{i_1i_2\dots i_k})$ [4], an m-th order n-dimensional tensor, where

$$a_{i_1 i_2 \dots i_m} = \begin{cases} \frac{1}{(m-1)!}, & \text{if } \{v_{i_1}, v_{i_2}, \dots, v_{i_m}\} \in E(G); \\ 0, & \text{otherwise.} \end{cases}$$

In general, A *tensor* (also called *hypermatrix*) $\mathcal{A} = (a_{i_1 i_2 \dots i_m})$ of order m and dimension n over a field \mathbb{F} refers to a multiarray of entries $a_{i_1 i_2 \dots i_m} \in \mathbb{F}$ for all $i_j \in [n]$ and $j \in [m]$, which can be viewed to be the coordinates of the classical tensor (as a multilinear function) under an orthonormal basis. If m = 2, then \mathcal{A} is a square matrix of dimension n.

In 2005, independently, Lim [13] and Qi [17] introduced eigenvalues for tensors \mathcal{A} . Denote by $\rho(\mathcal{A})$ the spectral radius of \mathcal{A} , and by Spec(\mathcal{A}) the spectrum of \mathcal{A} . If \mathcal{A} is further nonnegative, then by Perron-Frobenius theorem of nonnegative tensors, $\rho(\mathcal{A})$ is an eigenvalue of \mathcal{A} . Moreover, if \mathcal{A} is weakly irreducible and has k eigenvalues of \mathcal{A} with modulus $\rho(\mathcal{A})$, then those k eigenvalues are equally distributed on the spectral circle. As for nonnegative matrices, the number k is called the cyclic index of \mathcal{A} [2]. The cyclic index reflects the spectral symmetry of

²⁰⁰⁰ Mathematics Subject Classification. Primary 15A18, 05C65; Secondary 13P15, 05C15.

 $Key\ words\ and\ phrases.$ Generalized power hypergraph, adjacency tensor, spectral symmetry, cyclic index.

The first author is the corresponding author, and was supported by National Natural Science Foundation of China #11871073.

nonnegative weakly irreducible tensors, which was generalized and investigated in the paper [5].

Definition 1.1 ([5]). Let \mathcal{A} be an *m*-th order *n*-dimensional tensor, and let ℓ be a positive integer. The tensor \mathcal{A} is called *spectral* ℓ -symmetric if

(1.1)
$$\operatorname{Spec}(\mathcal{A}) = e^{i\frac{2\pi}{\ell}}\operatorname{Spec}(\mathcal{A})$$

The maximum number ℓ such that (1.1) holds is called the *cyclic index* of \mathcal{A} and denoted by $c(\mathcal{A})$, and \mathcal{A} is called *spectral* $c(\mathcal{A})$ -*cyclic*.

When we say a hypergraph is spectral ℓ -symmetric or spectral ℓ -cyclic, this is always referring to its adjacency tensor. In particular, for a uniform hypergraph G, denote $c(G) := c(\mathcal{A}(G))$, called the cyclic index of G.

For a general tensor \mathcal{A} , if it is spectral ℓ -symmetric, then $\ell|c(\mathcal{A})$ by [5, Lemma 2.7]. It was also proved that if a connected *m*-uniform hypergraph is spectral ℓ -symmetric, then $\ell|m$, and hence c(G)|m; see [5, Lemma 3.2, Corollary 4.3], [6, Lemma 2.5] or [21, Theorem 2.15]. In the paper [5] the authors use the construction of generalized power hypergraphs to show that for every positive integer *m* and any positive integer ℓ such that $\ell|m$, there always exists an *m*-uniform hypergraph *G* such that *G* is spectral ℓ -symmetric. They posed the following conjecture.

Conjecture 1.2 ([5]). let G be a t-uniform hypergraph, and let $G^{m,s}$ be the generalized power of G, where m = st. Then

(1.2)
$$c(G^{m,s}) = s \cdot c(G).$$

The generalized power of a hypergraph is defined as follows.

Definition 1.3 ([10]). Let G = (V, E) be a *t*-uniform hypergraph. For any integers m, s such that m > t and $1 \le s \le \frac{m}{t}$, the generalized power of G, denoted by $G^{m,s}$, is defined as the *m*-uniform hypergraph with the vertex set $(\bigcup_{v \in V} \mathbf{v}) \cup (\bigcup_{e \in E} \mathbf{e})$, and the edge set $\{\mathbf{u}_1 \cup \cdots \cup \mathbf{u}_t \cup \mathbf{e} : e = \{u_1, \ldots, u_t\} \in E(G)\}$, where \mathbf{v} denotes an *s*-set corresponding to v and \mathbf{e} denotes an (m - ts)-set corresponding to e, and all those sets are pairwise disjoint.

In this paper, we only consider the power hypergraphs $G^{m,s}$ with m = st, i.e. $G^{m,s}$ is obtained from G by blowing up each vertex into an *s*-set and preserving the adjacency relation. The generalized power hypergraphs include some special cases, such as the powers of simple graphs introduced by Hu, Qi and Shao [9], the generalized powers of simple graphs introduced by Khan and Fan [11]. Peng [16] introduced *s*-paths and *s*-cycles with uniformity m on discussing the Ramsey number, which are exactly the generalized pows of paths and cycles (as simple graphs) respectively if $1 \le s \le \frac{m}{2}$. The spectral results on generalized power hypergraphs can be found in [9, 24, 11, 23, 12, 10].

For the conjecture 1.2, it was shown that it is true if c(G) = 1 [5]. In this paper we show that the conjecture is false by giving a counterexample, and give some sufficient conditions for the conjecture holding. We finally give an equivalent characterization of Eq. (1.2) by using a matrix equation over \mathbb{Z}_m .

2. Preliminaries

2.1. Notions. Let \mathcal{A} be a real tensor of order m and dimension n. The tensor \mathcal{A} is called *symmetric* if its entries are invariant under any permutation of their indices. So, the adjacency tensor of a uniform hypergraph is symmetric.

Given a vector $x \in \mathbb{C}^n$, $\mathcal{A}x^m \in \mathbb{C}$ and $\mathcal{A}x^{m-1} \in \mathbb{C}^n$, which are defined as follows:

$$\mathcal{A}x^{m} = \sum_{i_{1}, i_{2}, \dots, i_{m} \in [n]} a_{i_{1}i_{2}\dots i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}},$$
$$(\mathcal{A}x^{m-1})_{i} = \sum_{i_{2}, \dots, i_{m} \in [n]} a_{ii_{2}\dots i_{m}} x_{i_{2}} \cdots x_{i_{m}}, i \in [n].$$

Let $\mathcal{I} = (i_{i_1i_2...i_m})$ be the *identity tensor* of order m and dimension n, that is, $i_{i_1i_2...i_m} = 1$ if and only if $i_1 = i_2 = \cdots = i_m \in [n]$ and $i_{i_1i_2...i_m} = 0$ otherwise.

Definition 2.1 ([13, 17]). Let \mathcal{A} be an *m*-th order *n*-dimensional real tensor. For some $\lambda \in \mathbb{C}$, if the polynomial system $(\lambda \mathcal{I} - \mathcal{A})x^{m-1} = 0$, or equivalently $\mathcal{A}x^{m-1} = \lambda x^{[m-1]}$, has a solution $x \in \mathbb{C}^n \setminus \{0\}$, then λ is called an eigenvalue of \mathcal{A} and x is an eigenvector of \mathcal{A} associated with λ , where $x^{[m-1]} := (x_1^{m-1}, x_2^{m-1}, \dots, x_n^{m-1})$.

The determinant of \mathcal{A} , denoted by det \mathcal{A} , is defined as the resultant of the polynomials $\mathcal{A}\mathbf{x}^{m-1}$ [8], and the *characteristic polynomial* $\varphi_{\mathcal{A}}(\lambda)$ of \mathcal{A} is defined as det $(\lambda \mathcal{I} - \mathcal{A})$ [17, 3]. It is known that λ is an eigenvalue of \mathcal{A} if and only if it is a root of $\varphi_{\mathcal{A}}(\lambda)$. The spectrum of \mathcal{A} is the multi-set of the roots of $\varphi_{\mathcal{A}}(\lambda)$.

The spectral symmetry of a connected hypergraph is closed related to a certain coloring of the hypergraph.

Definition 2.2 ([5]). Let $m \ge 2$ and $\ell \ge 2$ be integers such that $\ell \mid m$. An *m*-uniform hypergraph *G* on *n* vertices is called (m, ℓ) -colorable if there exists a map $\phi : [n] \to [m]$ such that if $\{i_1, \ldots, i_m\} \in E(G)$, then

(2.1)
$$\phi(i_1) + \dots + \phi(i_m) \equiv \frac{m}{\ell} \mod m.$$

Such ϕ is called an (m, ℓ) -coloring of G.

If m is even, an m-uniform hypergraph with an (m, 2)-coloring was called *odd-colorable* by Nikiforov [14].

Theorem 2.3. [5] Let G be a connected m-uniform hypergraph. Then G is spectral ℓ -symmetric if and only if G is (m, ℓ) -colorable.

The edge-vertex incidence matrix $B_G = (b_{ev})$ of an *m*-uniform hypergraph G is defined by

$$b_{ev} = \begin{cases} 1, & \text{if } v \in e \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

We may view B_G as one over \mathbb{Z}_m , where \mathbb{Z}_m is the ring of integers modulo m. Now Eq. (2.1) is equivalent to

(2.2)
$$B_G \phi = \frac{m}{\ell} \mathbf{1} \text{ over } \mathbb{Z}_m,$$

where $\phi = (\phi(1), \dots, \phi(n))$ is considered as a column vector, and **1** is an all-ones vector of dimension n. So, Theorem 2.3 can be rewritten as follows.

Corollary 2.4. Let G be a connected m-uniform hypergraph. Then G is spectral ℓ -symmetric if and only if the equation

(2.3)
$$B_G x = \frac{m}{\ell} \mathbf{1} \text{ over } \mathbb{Z}_m$$

has a solution.

In Corollary 2.4 and other places of the paper, the number of coordinates of **1** is implicated from context, which is equal to the number of vertices of the hypergraph under discussion.

3. Cyclic index of generalized power hypergraphs

Let G be a t-uniform hypergraph, and let $G^{m,s}$ be a generalized power hypergraph of G, where $1 \le s \le \frac{m}{t}$. If m > st, then each edge of G contains a vertex of degree 1, and hence G is a 1-hm bipartite hypergraph [19]. By [19, Theorem 3.2] or [5, Theorem 4.5], $c(G^{m,s}) = m$.

So, in the following, we always assume that G is a connected *t*-uniform hypergraph, m = st, namely, $G^{m,s}$ is considered to be obtained from G by blowing each vertex v into an *s*-set **v** and preserving the adjacency relation. We also assume that the vertex v is contained in **v** for each $v \in V(G)$.

Lemma 3.1. If G is spectral ℓ -symmetric, then $G^{m,s}$ is also spectral ℓ -symmetric. In particular, $G^{m,s}$ is spectral c(G)-symmetric and hence $c(G)|c(G^{m,s})$.

Proof. Suppose that G is spectral ℓ -symmetric. By Corollary 2.4, the equation $B_G x = \frac{t}{\ell} \mathbf{1}$ has a solution ϕ over \mathbb{Z}_t . Now define a map Φ on $G^{m,s}$ such that $\Phi|_{\mathbf{v}} = \phi(v)$ for each vertex $v \in V(G)$. Then

$$B_{G^{m,s}}\Phi = s \cdot B_G\phi = \frac{st}{\ell}\mathbf{1} = \frac{m}{\ell}\mathbf{1} \text{ over } \mathbb{Z}_m,$$

which implies that $G^{m,s}$ is spectral ℓ -symmetric also by Corollary 2.4.

Lemma 3.2. $G^{m,s}$ is spectral s-symmetric.

Proof. For each vertex $v \in V(G)$, v is blowing into an *s*-set **v** of vertices of $G^{m,s}$, and is assumed to be contained in **v**. Define a map Φ on $G^{m,s}$ such that $\Phi(v) = 1$ and $\Phi|_{\mathbf{v}\setminus\{v\}} = 0$ for each vertex $v \in V(G)$. Then

$$B_{G^{m,s}}\Phi = t\mathbf{1} = \frac{m}{s}\mathbf{1}$$
 over \mathbb{Z}_m ,

which implies that $G^{m,s}$ is spectral s-symmetric by Corollary 2.4.

Lemma 3.3. If $G^{m,s}$ is spectral $s \cdot \ell'$ -symmetric, then G is spectral ℓ' -symmetric.

Proof. By Corollary 2.4, there exists a map Φ defined on $G^{m,s}$ such that

$$B_{G^{m,s}}\Phi = \frac{m}{s \cdot \ell'}\mathbf{1} = \frac{t}{\ell'}\mathbf{1} \text{ over } \mathbb{Z}_m$$

Now define a map ϕ on G such that $\phi(v) = \sum_{u \in \mathbf{v}} \Phi(u)$ for each $v \in V(G)$. So we have

$$B_G \phi = B_{G^{m,s}} \Phi = \frac{t}{\ell'} \mathbf{1} \text{ over } \mathbb{Z}_m.$$

As m is a multiple of t,

$$B_G \phi = \frac{t}{\ell'} \mathbf{1} \text{ over } \mathbb{Z}_t,$$

which implies that G is spectral ℓ' -symmetric by Corollary 2.4.

By Lemma 3.2, we may assume $c(G^{m,s}) = s \cdot \ell'$, where ℓ' is a positive integer. By Lemma 3.3, we know that G is spectral ℓ' -symmetric and hence $\ell'|c(G)$ by [5, Lemma 2.7]. So we get the following result immediately.

Corollary 3.4. $c(G^{m,s})|s \cdot c(G)$.

Corollary 3.5. $G^{m,s}$ is spectral $\frac{s \cdot c(G)}{(s, c(G))}$ -symmetric. In particular, if (s, c(G)) = 1 or (s, t) = 1, then $c(G^{m,s}) = s \cdot c(G)$.

Proof. By Lemma 3.1 and Lemma 3.2, we know that $c(G)|c(G^{m,s})$ and $s|c(G^{m,s})$, implying that $\frac{s \cdot c(G)}{(s,c(G))}|c(G^{m,s})$. So, $G^{m,s}$ is spectral $\frac{s \cdot c(G)}{(s,c(G))}$ -symmetric. As c(G)|t, if (s,t) = 1, then (s,c(G)) = 1. If (s,c(G)) = 1, then $s \cdot c(G)|c(G^{m,s})$. Then result follows by Corollary 3.4.

By Corollary 3.5, Conjecture 1.2 holds in some special cases, including the case of c(G) = 1. However, Conjecture 1.2 does not hold in general. Now we give a counterexample to show the negative answer to the conjecture.

Definition 3.6 ([14]). Let $n \ge 16k$ and let partition [n] into three sets A, B, C such that $|A| \ge 6k$, $|B| \ge 6k$ and $|C| \ge 4k$. Define the four families of 4k-subsets of [n].

$$\begin{split} E_1 &:= \{e : e \subset [n], |e \cap A| = 2k, |e \cap C| = 2k\}.\\ E_2 &:= \{e : e \subset [n], |e \cap B| = 2k, |e \cap C| = 2k\}.\\ E_3 &:= \{e : e \subset [n], |e \cap A| = k, |e \cap B| = 3k\}.\\ E_4 &:= \{e : e \subset [n], |e \cap A| = 3k, |e \cap B| = k\}. \end{split}$$

Now define a 4k-uniform hypergraph G by setting V(G) = [n] and $E(G) = E_1 \cup E_2 \cup E_3 \cup E_4$. We call G a Nikiforov's hypergraph as it is introduced by Nikiforov.

Nikiforov [14] showed that Nikiforov's hypergraphs G are odd-colorable, or (4k, 2)colorable in terms our definition, by defining a function ϕ on G such that $\phi|_A = 1$, $\phi|_B = 4k - 1$ and $\phi|_C = 0$. By Theorem 2.3, G is spectral 2-symmetric.

By the following result, if G is a Nikiforov's hypergraph and s is even, then

$$c(G^{m,s}) \neq s \cdot c(G).$$

So we give a negative answer to Conjecture 1.2.

Theorem 3.7. Let G be a 4k-uniform Nikiforov's hypergraph. Then the following results hold.

- (1) c(G) = 2.
- (2) If s is even, then $c(G^{m,s}) = s$.

Proof. (1) We first show that c(G) = 2. Suppose that G is spectral ℓ -symmetric. Then there exists a $\phi : [n] \to [4k]$ such that $B_G \phi = \frac{4k}{\ell}$ over \mathbb{Z}_{4k} . It is easily seen that ϕ is constant on each of A, B, C by the equation. So, let $\phi|_A := a, \phi|_B := b$ and $\phi|_C := c$. Then, by considering the edges in E_1 , we have

$$2ka + 2kc = \frac{4k}{\ell} \mod 4k,$$

which implies that ℓ equals 1 or 2, and hence c(G) = 2 as G is spectral 2-symmetric.

(2) By Corollary 3.4, $c(G^{m,s})|2s$, where m = 4ks. By Lemma 3.2, $G^{m,s}$ is spectral s-symmetric, and hence $s|c(G^{m,s})$. We will show that if s is even, then $G^{m,s}$ is not spectral 2s-symmetric so that $c(G^{m,s}) = s$.

Assume to the contrary that $G^{m,s}$ is spectral 2*s*-symmetric. Then there exists a $\Phi: V(G^{m,s}) \to [4ks]$ such that

$$B_{G^{m,s}}\Phi = \frac{4ks}{2s} = 2k \text{ over } \mathbb{Z}_{4ks}.$$

For each $v \in V(G)$, define $\phi(v) := \sum_{u \in \mathbf{v}} \Phi(u)$. So we have

$$B_{G^{m,s}}\Phi = B_G\phi = 2k$$
 over \mathbb{Z}_{4ks} .

It is also easily seen that $\phi|_A := \alpha$, $\phi|_B := \beta$ and $\phi|_C := \iota$. By considering the edges in E_3 and E_4 respectively, we have

$$\alpha + 3\beta = 2 \mod 4s, \ 3\alpha + \beta = 2 \mod 4s.$$

 So

$$\alpha - \beta = 0 \mod 2s, \ \alpha + \beta = 1 \mod s,$$

which yields a contradiction as s is an even number.

Finally we give an equivalent characterization of Eq. (1.2) in Conjecture 1.2.

Theorem 3.8. $c(G^{m,s}) = s \cdot c(G)$ if and only if the equation

(3.1)
$$B_G x = \frac{t}{c(G)} \mathbf{1} \text{ over } \mathbb{Z}_m$$

has a solution.

Proof. Suppose that $c(G^{m,s}) = s \cdot c(G)$. Then $G^{m,s}$ is spectral $s \cdot c(G)$ -symmetric, and by Corollary 2.4, there exists a map $\Phi : V(G^{m,s}) \to [m]$ such that

$$B_{G^{m,s}}\Phi = \frac{m}{s \cdot c(G)}\mathbf{1} = \frac{t}{c(G)}\mathbf{1} \text{ over } \mathbb{Z}_m.$$

For each $v \in V(G)$, define $\phi(v) := \sum_{u \in \mathbf{v}} \Phi(u)$. So we have $B_{G^{m,s}} \Phi = B_G \phi$, and get the necessity.

On the other hand, if $B_G x = \frac{t}{c(G)} \mathbf{1}$ has a solution ϕ over \mathbb{Z}_m . Define a map $\Psi: V(G^{m,s}) \to [m]$ such that

$$\sum_{u \in \mathbf{v}} \Phi(u) = \phi(v), \text{ for each } v \in V(G).$$

There are |V(G)| independent linear equations; such Φ is easily got (e.g. for each $v \in V(G)$, take $\Phi(v) = \phi(v)$ and $\Phi(u) = 0$ for each $u \in \mathbf{v} \setminus \{v\}$). So we have

$$B_{G^{m,s}}\Phi = B_G\phi = \frac{t}{c(G)}\mathbf{1} = \frac{m}{s \cdot c(G)}\mathbf{1} \text{ over } \mathbb{Z}_m.$$

So $G^{m,s}$ is spectral $s \cdot c(G)$ -symmetric. The sufficiency follows by Corollary 3.4. \Box

As G is spectral c(G)-symmetric, by Corollary 2.4 the equation

(3.2)
$$B_G x = \frac{t}{c(G)} \mathbf{1} \text{ over } \mathbb{Z}_t$$

has a solution. Obviously, if the equation (3.1) has a solution, then the equation (3.2) has a solution as m is a multiple of t. However, the converse does not hold in general; see the previous counterexample.

4. Remark

For a nonnegative weakly irreducible tensor \mathcal{A} , its cyclic index $c(\mathcal{A})$ is exactly the number of eigenvalues with modulus $\rho(\mathcal{A})$. The is implied by Perron-Frobenius theorem for nonnegative tensors, where an eigenvalue of \mathcal{A} is called H^+ -eigenvalue (respectively H^{++} -eigenvalue) if it is associated with a nonnegative (respectively positive) eigenvector. For the notion of irreducible or weakly irreducible tensors, one can refer to [1] and [7]. It is known that the adjacency tensor of a uniform hypergraph G is weakly irreducible if and only if G is connected [15, 22].

Theorem 4.1 (The Perron-Frobenius Theorem for nonnegative tensors).

- (1) (Yang and Yang [22]) If \mathcal{A} is a nonnegative tensor, then $\rho(\mathcal{A})$ is an H^+ -eigenvalue of \mathcal{A} .
- (2) (Friedland, Gaubert and Han [7]) If furthermore \mathcal{A} is weakly irreducible, then $\rho(\mathcal{A})$ is the unique H^{++} -eigenvalue of \mathcal{A} , with a unique positive eigenvector, up to a positive scalar.
- (3) (Chang, Pearson and Zhang [1]) If moreover \mathcal{A} is irreducible, then $\rho(\mathcal{A})$ is the unique H^+ -eigenvalue of \mathcal{A} , with a unique nonnegative eigenvector, up to a positive scalar.

According to the definition of tensor product in [18], for a tensor \mathcal{A} of order m and dimension n, and two diagonal matrices P, Q both of dimension n, the product $P\mathcal{A}Q$ has the same order and dimension as \mathcal{A} , whose entries are defined by

$$(PAQ)_{i_1i_2...i_m} = p_{i_1i_1}a_{i_1i_2...i_m}q_{i_2i_2}\dots q_{i_mi_m}$$

If $P = Q^{-1}$, then \mathcal{A} and $P^{m-1}\mathcal{A}Q$ are called *diagonal similar*. It is proved that two diagonal similar tensors have the same spectrum [18].

Theorem 4.2 ([22]). Let \mathcal{A} and \mathcal{B} be two *m*-th order *n*-dimensional real tensors with $|\mathcal{B}| \leq \mathcal{A}$, namely, $|b_{i_1i_2...i_m}| \leq a_{i_1i_2...i_m}$ for each $i_j \in [n]$ and $j \in [m]$. Then

- (1) $\rho(\mathcal{B}) \leq \rho(\mathcal{A}).$
- (2) Furthermore, if \mathcal{A} is weakly irreducible and $\rho(\mathcal{B}) = \rho(\mathcal{A})$, where $\lambda = \rho(\mathcal{A})e^{i\theta}$ is an eigenvalue of \mathcal{B} corresponding to an eigenvector y, then y contains no zero entries, and $\mathcal{B} = e^{-i\theta}D^{-(m-1)}\mathcal{A}D$, where $D = diag\{\frac{y_1}{|y_1|}, \ldots, \frac{y_n}{|y_n|}\}$.

Theorem 4.3 ([22]). Let \mathcal{A} be an m-th order n-dimensional weakly irreducible nonnegative tensor. Suppose \mathcal{A} has k distinct eigenvalues with modulus $\rho(\mathcal{A})$ in total. Then these eigenvalues are $\rho(\mathcal{A})e^{i\frac{2\pi j}{k}}$, $j = 0, 1, \ldots, k-1$. Furthermore,

(4.1)
$$\mathcal{A} = e^{-\mathbf{i}\frac{2\pi}{k}}D^{-(m-1)}\mathcal{A}D,$$

and the spectrum of \mathcal{A} remains invariant under a rotation of angle $\frac{2\pi}{k}$ (but not a smaller positive angle) of the complex plane.

Suppose \mathcal{A} be as in Theorem 4.3. If $\operatorname{Spec}(\mathcal{A})$ is invariant under a rotation of angle θ of the complex plane, i.e. $\operatorname{Spec}(\mathcal{A}) = e^{\mathbf{i}\theta}\operatorname{Spec}(\mathcal{A})$, then $\rho(\mathcal{A})e^{\mathbf{i}\theta}$ is an eigenvalue of \mathcal{A} by Theorem 4.1. By Theorem 4.3, $\theta = \frac{2\pi j}{k}$ for some $j \in [k]$, and hence by Theorem 4.2 (and taking $\mathcal{B} = \mathcal{A}$), $\operatorname{Spec}(\mathcal{A}) = e^{\mathbf{i}\frac{2\pi j}{k}}\operatorname{Spec}(\mathcal{A})$. So, for some positive integer ℓ , $\ell|k$,

(4.2)
$$\operatorname{Spec}(\mathcal{A}) = e^{i\frac{2\pi}{\ell}}\operatorname{Spec}(\mathcal{A}).$$

The number k in Theorem 4.3 is exactly the cyclic index of \mathcal{A} . In addition, if \mathcal{A} is spectral ℓ -symmetric, Then $\ell \mid c(\mathcal{A})$ by Theorem 4.3.

Now return to a connected *t*-uniform hypergraph G and its power $G^{m,s}$, where m = st. By Lemma 3.1, $G^{m,s}$ is spectral c(G)-symmetric; and by Lemma 3.2, $G^{m,s}$ is also spectral *s*-symmetric. So $G^{m,s}$ has eigenvalues

$$\rho(G^{m,s})e^{\mathbf{i}\frac{2\pi i}{c(G)}}e^{\mathbf{i}\frac{2\pi j}{s}}, \ i \in [c(G)], j \in [s].$$

In particular, $\rho(G^{m,s})e^{i\frac{2\pi}{d}}$ is an eigenvalue of $G^{m,s}$, where $d = \frac{s \cdot c(G)}{(s,c(G))}$. So by Theorem 4.2, $G^{m,s}$ is spectral *d*-symmetric, which is consistent with Corollary 3.5.

References

- K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commu. Math. Sci., 6 (2008), 507-520.
- [2] K. C. Chang, K. Pearson, T. Zhang, Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. Appl., 32 (2009), 806-819.
- [3] K. C. Chang, K. Pearson, T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422.
- [4] J. Cooper, A. Dutle, Spectra of uniform hypergraph, Linear Algebra Appl., 436(2012), 3268-3292.
- [5] Y.-Z. Fan, T. Huang, Y.-H. Bao, C.-L. Zhuan-Sun, Y.-P. Li, The spectral symmetry of weakly irreducible nonnegative tensors and connected hypergraphs, Trans. Amer. Math. Soc., DOI: https://doi.org/10.1090/tran/7741.
- [6] Y.-Z. Fan, Y.-H. Bao, T. Huang, Eigenvariety of nonnegative symmetric weakly irreducible tensors associated with spectral radius and its application to hypergraphs, Linear Algebra Appl., 564 (2019), 72-94.
- [7] S. Friedland, S. Gaubert, L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738-749.
- [8] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
- [9] S. Hu, L. Qi, J.-Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian Heigenvalues, Linear Algebra Appl., 439 (2013) 2980C2998.
- [10] L. Kang, L. Liu, L. Qi, X. Yuan, Spectral radii of two kinds of uniform hypergraphs, Appl. Math. Comput., 338 (2018) 661-668.
- [11] M. Khan, Y.-Z. Fan, On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, Linear Algebra Appl., 480 (2015) 93C106
- [12] M. Khan, Y.-Z. Fan, The H-spectra of a class of generalized power hypergraphs, Discrete Math., 339 (2016) 1682C1689.
- [13] L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, in Computational Advances in Multi-Sensor Adapative Processing, 2005 1st IEEE International Workshop, IEEE, Piscataway, NJ, 2005, pp. 129-132.
- [14] V. Nikiforov, Hypergraphs and hypermatrices with symmetric spectrum, Linear Algebra Appl., 519 (2017), 1-18.
- [15] K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30(5) (2014), 1233-1248.
- [16] X. Peng, The Ramsey number of generalized loose paths in uniform hypergraphs, Discrete Math., 339 (2016) 539C546.
- [17] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
- [18] J.-Y. Shao, A general product of tensors with applications, Linear Algebra Appl., 439 (2013), 2350-2366.
- [19] J.-Y. Shao, L. Qi, S. Hu, Some new trace formulas of tensors with applications in spectral hypergraph theory, Linear Multilinear Algebra, 63(5) 2015, 971-992.
- [20] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31(5) (2010), 2517-2530.
- [21] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32(4) (2011), 1236-1250.
- [22] Y. Yang, Q. Yang, On some properties of nonnegative weakly irreducible tensors, arXiv: 1111.0713v2.

- [23] X. Y. Yuan, L. Qi, J.-Y. Shao, The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs, Linear Algebra Appl., 490 (2016), 18-30.
- [24] J. Zhou, L. Sun, W. Wang, C. Bu, Some spectral properties of uniform hypergraphs, Elect. J. Combin., 21(4) (2014), #P4.24, 14.

SCHOOL OF MATHEMATICAL SCIENCES, ANHUI UNIVERSITY, HEFEI 230601, P. R. CHINA *E-mail address*: fanyz@ahu.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, ANHUI UNIVERSITY, HEFEI 230601, P. R. CHINA $E\text{-}mail\ address:\ 17368081930qq.com$