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Abstract. We present the structure theorem for the positive support of the cube of the Grover

transition matrix of the discrete-time quantum walk (the Grover walk) on a general graph G under

same condition. Thus, we introduce a zeta function on the positive support of the cube of the

Grover transition matrix of G, and present its Euler product and its determinant expression. As a

corollary, we give the characteristic polynomial for the positive support of the cube of the Grover

transition matrix of a regular graph, and so obtain its spectra. Finally, we present the poles and

the radius of the convergence of this zeta function.

1 Introduction

As a quantum counterpart of the classical random walk, the quantum walk (QW) has recently
attracted much attention for various fields. There are two types of QWs. One is the discrete-
time walk and the other is the continuous-time one. The discrete-time QW in one dimension
(1D) was intensively studied by Ambainis et al. [1]. One of the most striking properties of
the 1D QW is the spreading property of the walker. The standard deviation of the position
grows linearly in time, quadratically faster than classical random walk. The review and book
on QWs are Kempe [15], Konno [16], for examples.

Recently, quantum walks of graphs were applied in graph isomorphism problems(see
[21],[6], [7],[5]). Emms et al. [5] treated spectra of the transition matrix(Grover transition
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matrix), its positive support and the positive support of its square of the discrete-time Grover
walk on a graph, and showed that the third power of the transition matrix outperforms the
graph spectra methods in distinguishing strongly regular graphs. Godsil and Guo [9] gave
new proofs of the results of Emms et al. [5]. Higuchi, Konno, Sato and Segwa [12] introduced
a generalized Szegedy transition matrix as a generalization of the transition matrix of the
Szegedy walk on a graph, and obtained the results of Emms et al. [5] from the characteristic
polynomial of the generalized Szegedy transition matrix. Furthermore, they [12] decided the
structure of the positive support of the cube of the Grover transition matrix of a regular
graph under some condition.

It is turned out that the zeta function of a graph is closely related to the discrete-time
quantum walk on a graph. Already, the Ihara zeta function of a graph obtained various
success related to graph spectra(see [14], [23],[24],[11],[2],[18]). Ihara zeta functions of graphs
started from Ihara zeta functions of regular graphs by Ihara [14]. Hashimoto [11] and Bass
[2] generalized Ihara’s result on the zeta function of a regular graph to an irregular graph,
and showed that its reciprocal is again a polynomial. Kotani and Sunada [18] presented the
distribution of poles and the radius of the convergence of the Ihara zeta function.

Ren et al. [20] found a interesting relationship between the Ihara zeta function and
the discrete-time quantum walks on a graph, and showed that the positive support of the
transition matrix of the discrete-time quantum walk is equal to the Perron-Frobenius op-
erator(the edge matrix) related to the Ihara zeta function. Konno and Sato [17] presented
the characteristic polynomials of the Grover transition matrix and its positive support of a
graph by using the determinant expressions of the second weighted zeta function and the
Ihara zeta function of a graph, and so decided spectra of the Grover transition matrix and its
positive support from them. Higuch, Konno, Sato and Segawa [13] introduced we introduce
a zeta function of a graph with respect to the positive support of the square of the Grover
transition matrix, and present its Euler product, its determinant expression, its poles and
its radius of the convergence.

The rest of the paper is organized as follows. Section 2 give a short survey about the
positive support of Grover transition matrix etc, and their spectra. Section 3 present a short
survey on the Ihara zeta function of a graph. In Sect. 4, we present the structure theorem for
the positive support of the cube of the Grover transition matrix of a general graph G under
same condition to that of Higuch, Konno, Sato and Segawa [13]. In Sect. 5, we introduce
a zeta function on the positive support of the cube of the Grover transition matrix of G,
and present its Euler product and its determinant expression. As a corollary, we give the
characteristic polynomial for the positive support of the cube of the Grover transition matrix
of a regular graph, and so obtain its spectra. In Sect. 6, we present the poles and the radius
of the convergence of the above zeta function.

2 The transition matrix of a quantum walk on a graph

Graphs treated here are finite. Let G = (V (G), E(G)) be a connected graph (possibly
multiple edges and loops) with the set V (G) of vertices and the set E(G) of unoriented
edges uv joining two vertices u and v. For uv ∈ E(G), an arc (u, v) is the oriented edge
from u to v. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For e = (u, v) ∈ D(G), set u = o(e)
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and v = t(e). Furthermore, let e−1 = (v, u) be the inverse of e = (u, v). The degree
deg v = deg G v of a vertex v of G is the number of edges incident to v. For a natural
number k, a graph G is called k-regular if deg G v = k for each vertex v of G.

A discrete-time quantum walk is a quantum process on a graph whose state vector is
governed by a matrix called the transition matrix. Let G be a connected graph with n
vertices and m edges, V (G) = {v1, . . . , vn} and D(G) = {e1, . . . , em, e

−1
1 , . . . , e−1

m }. Set
dj = duj

= deg vj for i = 1, . . . , n. The the transition matrix U = U(G) = (Uef )e,f∈D(G) of
G is defined by

Uef =







2/dt(f)(= 2/do(e)) if t(f) = o(e) and f 6= e−1,
2/dt(f) − 1 if f = e−1,
0 otherwise

We introduce the positive support F+ = (F+
ij ) of a real square matrix F = (Fij) as follows:

F+
ij =

{

1 if Fij > 0,
0 otherwise

Emms et al [5] expressed the spectra of the positive support U+ of the Grover transition
matrix of a regular graph G by means of those of the adjacency matrix A(G) of G.

Theorem 2.1 (Emms, Hancock, Severini and Wilson [5]) Let G be a connected k-
regular graph with n vertices and m edges, and δ(G) ≥ 2. The positive support U+ has 2n
eigenvalues of the form

λ =
λA

2
± i

√

k − 1− λ2
A/4,

where λA is an eigenvalue of the matrix A(G). The remaining 2(m− n) eigenvalues of U+

are ±1 with equal multiplicities.

Furthermore, Emms et al [5] expressed the spectra of the positive support U+ of the
square of the transition matrix of a regular graph G by means of those of the adjacency
matrix A(G) of G.

Theorem 2.2 (Emms, Hancock, Severini and Wilson [5]) Let G be a connected k-
regular graph with n vertices and m edges. Suppose that k > 2. The positive support (U2)+

has 2n eigenvalues of the form

λ =
λ2
A − 2k + 4

2
± i

λA

√

4k − 4− λ2
A

2
,

where λA is an eigenvalue of the matrix A(G). The remaining 2(m− n) eigenvalues of U+

are 2.

Next, we state the structure of (U+, (U2)+ and (U3)+.
If the degree of each vertex of G is not less than 2, i.e., δ(G) ≥ 2, then G is called a md2

graph. The transition matrix of a discrete-time quantum walk in a graph is closely related
to the Ihara zeta function of a graph. We stare a relationship between the discrete-time
quantum walk and the Ihara zeta function of a graph by Ren et al. [20].
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Theorem 2.3 (Ren, Aleksic, Emms, Wilson and Hancock) Let B−J0 be the Perron-
Frobenius operator (or the edge matrix) of a simple graph subject to the md2 constraint, where
the edge matrix is defined in Section 3. Let U be the transition matrix of the discrete-time
quantum walk on G. Then the B− J0 is the positive support of the transpose of U, i.e.,

B− J0 = (tU)+.

The structure theorem of the positive support of the square of the Grover matrix of a
regular graph was obtained by Godsil and Guo [9].

Theorem 2.4 (Godsil and Guo) Let G be a connected k-regular graph with m edges.
Suppose that k > 2. Then

(U2)+ = (U+)2 + I2m.

Let G be a connected graph and U the Grover transition matrix of G. A cycle C =
(v0, e1, v1, · · · , vn−1, en, vn) (v0 = vn) is called essential if all vertices of C except v0, vn are
distinct and n ≥ 2. An essential cycle is the same as a dicycle in standard books on graph
theory. Note that any essential cycle is a prime, reduced cycle, and any prime, reduced cycle
is a union of disjoint essential cycles. The girth g(G) of a graph G is the minimum length of
essential cycles in G.

Higuchi, Konno, Sato, and Segawa [12] expressed (U3)+ by using U+.

Theorem 2.5 (Higuchi, Konno, Sato, and Segawa) Let G be a k-regular graph. Sup-
pose that k > 2 and the girth g(G) > 4. Then

(U3)+ = (U+)3 + TU+.

3 The Ihara zeta function and the modified zeta func-

tion of a graph

Let G be a connected graph. Then a path P of length n in G is a sequence P = (e1, . . . , en) of
n arcs such that ei ∈ D(G), t(ei) = o(ei+1)(1 ≤ i ≤ n−1), where indices are treatedmod n. If
o(ei) = vi−1 and t(ei) = vi for i = 1, . . . , n, then we write P = (v0, e1, v1, · · · , vn−1, en, vn). Set
|P | = n, o(P ) = o(e1) and t(P ) = t(en). Also, P is called an (o(P ), t(P ))-path. Furthermore,
P is called an (e1, en)-path. We say that a path P = (e1, . . . , en) has a backtracking if e

−1
i+1 = ei

for some i(1 ≤ i ≤ n− 1). A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The
inverse cycle of a cycle C = (e1, . . . , en) is the cycle C−1 = (e−1

n , . . . , e−1
1 ).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, · · · , em) and
C2 = (f1, · · · , fm) are called equivalent if there exists k such that fj = ej+k for all j. The
inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which
contains a cycle C. Let Br be the cycle obtained by going r times around a cycle B. Such
a cycle is called a power of B. A cycle C is reduced if C has no backtracking. Furthermore,
a cycle C is prime if it is not a power of a strictly smaller cycle. Note that each equivalence
class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the
fundamental group π1(G, v) of G at a vertex v of G.
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The Ihara zeta function of a graph G is a function of u ∈ C with | u | sufficiently small,
defined by

Z(G, u) = ZG(u) =
∏

[C]

(1− u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Let G be a connected graph with n vertices and m unoriented edges. Two 2m × 2m

matrices B = B(G) = (Bef)e,f∈D(G) and J0 = J0(G) = (Jef)e,f∈D(G) are defined as follows:

Bef =

{

1 if t(e) = o(f),
0 otherwise

,Jef =

{

1 if f = e−1,
0 otherwise.

Then the matrix B− J0 is called the edge matrix of G.

Theorem 3.1 (Hashimoto; Bass) Let G be a connected graph. Then the reciprocal of
the zeta function of G is given by

Z(G, u)−1 = det(I− u(B− J0))

= (1− u2)r−1 det(I− uA(G) + u2(D− I)) = exp(
∑

k≥1
Nk

k
uk),

where r and A(G) are the Betti number and the adjacency matrix of G, respectively, and D =
D(G) = G(dij) is the diagonal matrix with dii = deg vi, V (G) = {v1, · · · , vn}. Furthermore
Nk is the number of reduced cycles of length k in G.

Next, we state a zeta function on the positive support of the Grover transition matrix
of a graph. Let G be a connected graph with n vertices and m edges and U = U(G) the
Grover transition matrix of G. By Theorems 2.3 and 3.1, we obtain the following result.

Proposition 3.2 Let G be a connected graph with m edges. Then

Z(G, u)−1 = det(I2m − uU+).

Proof.

det(I2m − uU+)−1 = det(I− u(tB− tJ0)) = det(I− u(B− J0))
−1 = Z(G, u).

Q.E.D.
The Ihara zeta function of a graph is just a zeta function on the positive support of the

Grover transition matrix of a graph.
A zeta function of a graph related to the positive support of the square of the Grover

transition matrix was defined by Higuch, Konno, Sato and Segawa [13]. Let G be a connected
graph with n vertices and m edges, δ(G) > 2 and U = U(G) the Grover transition matrix
of G. Then the modified zeta function of G is defined by

Z̃(G, u) = det(I2m − u(U2)+)−1.

Higuch, Konno, Sato and Segawa [13] presented the Euler product, the exponential ex-
pression and another determinant expression for the modified zeta function of a graph.
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Theorem 3.3 (Higuch, Konno, Sato and Segawa) Let G be a connected graph with
n vertices and m edges, let U = U(G) be the Grover transition matrix of G. Suppose that
δ(G) > 2. Then the modified zeta function of G is given by

Z̃(G, u) =
∏

[C]

(1− u|C|)−1 = exp(
∑

r≥1

Nr

r
ur)

= (1− 2u)2(m−n) det(I−
√

u(1− u)A(G) + u(D− I)) det(I+
√

u(1− u)A(G) + u(D− I)).

where [C] runs over all equivalence classes of prime 2-cycles in G, and Nr is the number of
2-cycles of length r.

Thus, we propose the following problem:

Problem 3.4 Let G be a connected graph with m edges. Then, is there a zeta function
Z̃(G, u) of G satisfying

Z3(G, u)−1 = det(I2m − u(U3)+) ?

Now, we consider a zeta function on the positive support of the cube of the Grover
transition matrix of a graph.

4 The structure theorem for the positive support of

the cube of the Grover transition matrix of a general

graph

Now, we generalize Theorem 2.5 to a general graph.

Theorem 4.1 Let G be a connected graph. Suppose that δ(G) > 2 and g(G) > 4. The
positive support (U3)+ is of the form

(U3)+ = (U+)3 + TU+.

Proof. Now, let G be a connected graph with δ(G) > 2 and g(G) > 4. Then we consider
the structure of the positive support (U3)+ of the cube of the transition matrix U. Since all
nonzero elements of B and TU are in the same place, all nonzero elements of B3 and TU3

are in the same place. We treat B3 and TU3 in parallel.
Let T = B− J0 and P = J0. By Theorem 2.3, Then we have

B = T+P and TU+ = B−P.

Thus, we have

B3 = (T+P)3 = T3 +T2P+TPT+PT2 +TP2 +P2T+PTP+P3.

But, the relation of arcs e and f of the nonzero (e, f)-array of (TU)3 are divided into the
eight cases in Figure 1. In fact, the cases I, II, III, IV, V, VI, VII and VIII correspond to
the matrices T3, T2P, TPT, PT2, TP2, P2T, PTP and P3, respectively. In the case I, an
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(e, f)-path has no backtracking. For the cases II, III and IV, an (e, f)-path has exactly one
backtracking. For the cases V, VI and VII, an (e, f)-path has exactly two backtrackings.
In the case VIII, an (e, f)-path has exactly three backtrackings. The elements of TU3

corresponding to nonzero elements of T2P, TPT, PT2 and P3 are negative. Furthermore,
the elements of TU3 corresponding to nonzero elements of T3, TP2, P2T and PTP are
positive.

If t(e) = o(f), then nonzero (e, f)-arrays of TPT, TP2 and P2T are overlapped. Then
we have

(U3)ef = ( 2
dt(e)

)2
∑

o(g)=t(e),g 6=e,f (
2

dt(e)
− 1) + 2

dt(e)
( 2
dt(f)

− 1)( 2
dt(e)

− 1)

+ 2
dt(e)

( 2
dt(e)

− 1)( 2
do(e)

− 1).

Since δ(G) ≥ 3, we have

dt(e) ≥ 3, i.e.,
1

dt(e)
≤

1

3

for any e ∈ D(G). Thus,

(U3)ef ≤ (2
3
)2(dt(e) − 2)(2

3
− 1) + 2

3
(2
3
− 1)2 · 2

= −2
9
(2
3
dt(e) − 2) ≤ 0.

Therefore, all positive elements of (TU)3 and T3 +PTP are in the same place. Therefore,

(TU3)+ = (T3 +PTP)+.

Since g(G) > 4, nonzero element of T3 and PTP are not overlapped. If a nonzero (e, f)-
arrays of T3 and PTP are overlapped, then there exists an essential cycle of length four
from e to f in G, contradiction to g(G) > 4.

Furthermore, all nonzero elements of two matrices T and PTP are 1. In the case of
g(G) > 4, then all nonzero elements of the matrix T3 are 1. If an (e, f)-array of T3 is not
less than 2, then there exist two distinct (e, f)-paths P = (e, g, h, f) and Q = (e, g1, h1, f) in
G. Then the cycle (g, h, h−1

1 , g−1
1 ) is an essential cycle of length four in G. This contradicts

to the condition g(G) > 4.
Therefore, it follows that

(U3)+ = (TT)3 +PTTP.

Since TT = TB−P = U+, we have

(U3)+ = (U+)3 +PU+P.

But, by (5.3),

PU+P = P(TB−P)P = P(TLK−P)P

= PTLKP−P3 = TKL−P = TU+.

Hence,
(U3)+ = (U+)3 + TU+.

Q.E.D.
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✲
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❣
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✛
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❣
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❣
✛

❣
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✲

VII

f

❣
✲

❣
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❣
e

✛

VIII
e

❣
✲

❣
✛

f

Figure 1 The nonzero (e, f)-array of (TU)3.

5 The zeta functions with respect to the positive sup-

port of the cube of the Grover transition matrix of

a graph

In this section, we give a solution for Problem 3.4. We define zeta function with respect to
the positive support of the cube of the Grover matrix of a graph.

At first, we introduce the notion of a new path and cycle in a graph. Let G be a
connected graph. A 3-path P of length n in G is a sequence P = (e1, · · · , en) of n arcs
such that ei ∈ D(G), and (ei, f, g, ei+1), f, g ∈ D(G) is a reduced path of length three or
(ei+1, ei) ∈ D(G) for i = 1, . . . , n − 1. Here, [ei, ei+1] = (ei, f, g, ei+1) is called a 3-arc, and
[ei, ei+1] = (ei+1, ei)is called 3-backtracking. Set | P |= n, o(P ) = o(e1) and t(P ) = t(en).
Also, P is called an (o(P ), t(P ))-3-path or a (e1, en)-3-path. A (v, w)-path is called a v-3-
cycle (or v-3-closed path) if v = w. The inverse cycle of a 3-cycle C = (e1, · · · , en) is the
broad cycle C−1 = (e−1

n , · · · , e−1
1 ).

We introduce an equivalence relation between 3-cycles. Two 3-cycles C1 = (e1, · · · , em)
and C2 = (f1, · · · , fm) are called equivalent if fj = ej+k for all j. The inverse 3-cycle of C
is in general not equivalent to C. Let [C] be the equivalence class which contains a 3-cycle
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C. Let Br be the 3-cycle obtained by going r times around a broad cycle B. A 3-cycle C is
prime if it is not a multiple of a strictly smaller 3-cycle.

Next, we define a zeta function of a graph related to the positive support of the cube
of the Grover transition matrix. Let G be a connected graph with n vertices and m edges,
δ(G) > 2 and U = U(G) the Grover transition matrix of G. Suppose that g(G) > 4. Then
the 3-modified zeta function of G is defined by

Z3(G, u) = det(I2m − u(U3)+)−1.

We present the Euler product, the exponential expression and another determinant ex-
pression for the 3-modified zeta function of a graph.

Theorem 5.1 Let G be a connected graph with n vertices and m edges, let U = U(G) be the
Grover transition matrix of G. Suppose that δ(G) > 2 and g(G) > 4. Then the 3-modified
zeta function of G is given by

Z3(G, u)−1 =
∏

[C](1− u|C|) = exp(−
∑

r≥1
Nr

r
ur)

= (1− 4u2)m−2n det(In + u(D− 2In)A− 2u2(A2 − 2D+ 2In)

+ u2((D− In)A
2 −D2 + 2D− 2u(A3 − (D− 2In)A−AD))

× (In − u(A3 − (D− 2In)A−AD) + 2u2((D− In)A
2 −D2 + 2D− 2In))

−1

× (A2 − 2u(D− 2In)A− 2D))

× det(In − u(A3 − (D− 2In)A−AD) + 2u2((D− In)A
2 −D2 + 2D− 2In)),

where [C] runs over all equivalence classes of prime 3-cycles in G, and Nr is the number of
3-cycles of length r.

Proof. We use the method of Smilansky [22]. By Theorem 4.1, we have

Z3(G, u)−1 = det(I2m − u((U+)3 + TU+)) = det(I2m − u((U+)3 + TU+)).

At first,

log det(I2m−u((U+)3+TU+)) = Tr log(I2m−u((U+)3+TU+)) = −

∞
∑

n=1

1

n
Tr[(U+)3+TU+)n)un].

But, we have
Tr[(U+)3 + TU+)nun]

= un|{Cn = (e1, · · · , en, e1) | [ei, ei+1] : 3− arc or 3− backtracking}|.

For a 3-cycle Cn with length n, the exists a prime 3-cycle C̃p such that Cn = C̃p and n = pk.
Thus, we have

Tr[((U+)3 + TU+)nun] =
∑

[C̃p]

pupk,

9



where [C̃p] runs over all equivalence classes of prime 3-cycles in G, Therefore, it follows that

log det(I2m − u((U+)3 + TU+)) = −
∑

[C̃p]

∞
∑

k=1

1

kp
pupk =

∑

[C̃p]

log(1− u|C̃p|).

Hence,

Z3(G, u) =
∏

C̃p

(1− u|C̃p|)−1.

Next, we give the exponential expression of the 3-modified zeta function. By the definition
of Nk, we have

Nk = Tr[(U+)3 + TU+)k].

Then we have

logZ3(G, u)−1 = −
∞
∑

k=1

Nk

k
uk.

Thus,

Z3(G, u) = exp(
∑

k≥1

Nk

k
uk).

Let V (G) = {v1, . . . , vn} and D(G) = {e1, . . . , em, e
−1
1 , . . . , e−1

m }. Arrange arcs of G as
follows: e1, e

−1
1 , . . . , em, e

−1
m . Furthermore, arrange vertices of G as follows: v1, . . . , vn.

Now, we define two n× 2m matrices K = (Kve)e∈D(G);v∈V (G) and L = (Lve)e∈D(G);v∈V (G)

as follows:

Kve :=

{

1 if t(e) = v,
0 otherwise.

,Lve :=

{

1 if o(e) = v,
0 otherwise.

Here we consider two matrices K and L under the above order. Then we have

LtK = KtL = A(G), (5.1)

LtL = KtK = D, (5.2)

tKL = B(G) and tLK = TB(G). (5.3)

Furthermore,
L = KJ0 and K = LJ0, (5.4)

TL = J0
TK and TK = J0

TL. (5.5)

Note that, if δ(G) ≥ 2, then
U+ = TB− J0. (5.6)

Now, set
F = TB(G) = tLK and J = J0.

10



Then we have

(U+)3 = (TB− J0)
3 = (F− J)3

= F3 − FJF− JF2 + 2F− F2J + JFJ− J

= tLKtLKtLK− tLKJtLK− JtLKtLK+ 2tLK − tLKtLKJ+ JtLKJ− J

= tLA2K− tLKtKK− tKAK+ 2tLK− tLAL + tKL− J

= tLA2K− ktLK− tKAK+ 2tLK− tLAL + tKL− J.

Furthermore, ewe have
tU+ = TKL− J.

Thus,
(U+)3 + TU+ = tL(A2 − (k − 2)In)K− tKAK− tLAL+ 2tKL− 2J.

Therefore, it follows that

det(I2m − u(U3)+)

= det(I2m − u(tL(A2 − (k − 2)In)K− tKAK− tLAJ+ 2tKL− 2J))

= det(I2m + 2uJ− u(tL(A2 − (k − 2)In)K− tKAK− tLAL+ 2tKL))

= det(I2m − u(tL(A2 − (k − 2)In)K− tKAK− tLAL+ 2tKL)

× (I2m + 2uJ)−1) det(I2m + 2uJ).

(5.7)

But, we have
det(I2m + 2uJ) = (1− 4u2)m.

Furthermore, we have

(I2m + 2uJ)−1 =
1

1− 4u2







1 −2u 0
−2u 1

0
. . .






=

1

1− 4u2
(I2m − 2uJ).

Thus,

((tL(A2 − (k − 2)In)K− tKAK− tLAL + 2tKL)(I2m + 2uJ)−1

= 1
1−4u2 (

tL(A2 − (k − 2)In)K− tKAK− tLAL + 2tKL)

− 2u(tL(A2 − (k − 2)In)KJ− tKAKJ− tLALJ− 2tKLJ))

= 1
1−4u2 ({

tL(A2 − (k − 2)In)−
tKA}(K− 2uL)− (tLA− 2tK)(L− 2uK)).
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Next, let

x =
u

1− 4u2
, P = tL(A2 − (k − 2)In)−

tKA,

Q = K− 2uL,R = tLA− 2tK,T = L− 2uK.

Then we have

det(I2m − u(U3)+)

= det(I2m − x(PQ−RT))(1− 4u2)m

= det(I2m − xPQ+ xRT))(1− 4u2)m

= det(I2m + xRT(I2m − xPQ)−1) det(I2m − xPQ)(1− 4u2)m.

Furthermore, if A and B are a m× n and n×m matrices, respectively, then we have

det(Im −AB) = det(In −BA).

Thus, we have

det(I2m − u(U3)+)

= det(In + xT(I2m − xPQ)−1R) det(In − xQP)(1− 4u2)m

= det(In + xT(I2m + xPQ+ x2PQPQ+ x3PQPQPQ+ · · · )R)

× det(In − xQP)(1− 4u2)m

= det(In + xTR+ x2TPQR+ x3TPQPQR+ x4TPQPQPQR+ · · · )

× det(In − xQP)(1− 4u2)m

= det(In + xTR+ x2TP(In + xQP + x2(QP)2 + · · · )QR)

× det(In − xQP)(1− 4u2)m

= det(In + xTR+ x2TP(In − xQP)−1QR) det(In − xQP)(1− 4u2)m.

12



Since x = u
1−4u2 . Then we have

det(I2m − u(U3)+)

= det(In + xTR+ x2TP(In − xQP)−1QR) det(In − xQP)(1− 4u2)m

= det(In +
u

1−4u2TR+ ( u
1−4u2 )

2TP(In −
u

1−4u2QP)−1QR)

× det(In −
u

1−u2QP)(1− 4u2)m

= det((1− 4u2)In + uTR+ u2TP((1− 4u2)In − uQP)−1QR)

× det((1− 4u2)In − uQP)(1− 4u2)m−2n.

But, we have

TR = (L− 2uK)(tLA− 2tK)

= LtLA − 2LTK− 2uKtLA+ 4uKtK

= DA− 2A− 2uA2 + 4uD = −2uA2 + (D− 2In)A+ 4uD,

(5.8)

TP = (L− 2uK)(tL(A2 − (k − 2)In)−
tKA)

= LtL(A2 −D+ 2In)− LtKA− 2uKtL(A2 −D+ 2In) + 2uKTKA

= DA2 −D2 + 2D−A2 − 2uA3 + 2uAD− 4uA+ 2uDA

= −2uA3 + (D− In)A
2 + 2u(D− 2In)A−D2 + 2(In + uA)D,

(5.9)

QP = (K− 2uL)(tL(A2 −D+ 2In)−
tKA)

= KtL(A2 −D+ 2In)−KtKA− 2uLtL(A2 −D+ 2In) + 2uLTKA

= A3 −AD+ 2A−DA− 2uDA2 + 2uD2 − 4uD+ 2uA2

= A3 − 2u(D− In)A
2 − (D− 2In)A+ 2uD2 − (A+ 4uIn)D,

(5.10)

QR = (K− 2uL)(tLA− 2tK)

= KtLA− 2KTK− 2uLtLA+ 4uLtK

= A2 − 2D− 2uDA+ 4uA = A2 − 2u(D− 2In)A− 2D.

(5.11)
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Therefore, it follows that

det(I2m − u(U3)+)

= det((1− 4u2)In + u(−2uA2 + (D− 2In)A+ 4uD)

+ u2(−2uA3 + (D− In)A
2 + 2u(D− 2In)A−D2 + 2(In + uA)D)

× ((1− 4u2)In − u(A3 − 2u(D− In)A
2 − (D− 2In)A+ 2uD2 − (A+ 4uIn)D))−1

× (A2 − 2u(D− 2In)A− 2D))

× det((1− 4u2)In − u(A3 − 2u(D− In)A
2 − (D− 2In)A+ 2uD2 − (A+ 4uIn)D))

× (1− 4u2)m−2n

= det(In + u(D− 2In)A− 2u2(A2 − 2D+ 2In)

+ u2((D− In)A
2 −D2 + 2D− 2u(A3 − (D− 2In)A−AD))

× (In − u(A3 − (D− 2In)A−AD) + 2u2((D− In)A
2 −D2 + 2D− 2In))

−1

× (A2 − 2u(D− 2In)A− 2D))

× det(In − u(A3 − (D− 2In)A−AD) + 2u2((D− In)A
2 −D2 + 2D− 2In))

× (1− 4u2)m−2n.

Q.E.D.
In the case that G is regular, we obtain the following result from Theorem 5.1.

Theorem 5.2 Let G be a connected k-regular graph with n vertices and m unoriented edges,
k > 2 and g(G) > 4. Then

Z3(G, u)−1 = (1− 4u2)m−n det(In − u(A3 − (3k − 4)A)

+ u2(A4 − k2A2 + 2(k − 1)(k2 − 2k + 2)In)).

Proof. Let G be k-regular. Then we have

D = kIn.
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Thus,

det(I2m − u(U3)+)

= det(In + u(k − 2)A− 2u2(A2 − 2(k − 1)In)

+ u2((k − 1)A2 − k(k − 2)In − 2u(A3 − (k − 2)A− kA))

× (In − u(A3 − (k − 2)A− kA) + 2u2((k − 1)A2 − (k2 − 2k + 2)In))
−1

× (A2 − 2u(k − 2)A− 2kIn))

× det(In − u(A3 − (k − 2)A− kA) + 2u2((k − 1)A2 − (k2 − 2k + 2)In))

× (1− 4u2)m−2n.

Since the polynomials of A are commutative, we have

det(I2m − u(U3)+)

= det(In + u(k − 2)A− 2u2(A2 − 2(k − 1)In))

× (In − u(A3 − (k − 2)A− kA) + 2u2((k − 1)A2 − (k2 − 2k + 2)In))

+ u2((k − 1)A2 − k(k − 2)In − 2u(A3 − (k − 2)A− kA))

× (A2 − 2u(k − 2)A− 2kIn))(1− 4u2)m−2n

= det(In − u(A3 − (3k − 4)A) + u2(A4 − k2A2 + (2k3 − 6k2 + 8k − 8)In)

+ 4u3(A3 − (3k − 4)A) + 4u4(−A4 + k2A2) + 2(k − 1)(k2 − 2k + 2)In))

× (1− 4u2)m−2n

= det((1− 4u2)(In − u(A3 − (3k − 4)A) + u2(A4 − k2A2 + 2(k − 1)(k2 − 2k + 2)In))

× (1− 4u2)m−2n

= det(In − u(A3 − (3k − 4)A) + u2(A4 − k2A2 + 2(k − 1)(k2 − 2k + 2)In)))

× (1− 4u2)m−n.

Q.E.D.
Thus,

Corollary 5.3 Let G be a connected k-regular graph with n vertices and m unoriented
edges, k > 2 and g(G) > 4. Then the characteristic polynomial of (U3)+ is

det(λI2m−(U3)+) = (λ2−4)m−n det(λ2In−λ(A3−(3k−4)A)+(A4−k2A2+2(k−1)(k2−2k+2)In)).
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Furthermore, we obtain the spectra for (U3)+.

Corollary 5.4 Let G be a connected k-regular graph with n vertices and m unoriented
edges, k > 2 and g(G) > 4. Then (U3)+ has 2n eigenvalues λ3 of the form :

λ3 =
1

2
{λA(λ

2
A−3k+4)±

√

λ6
A − 2(3k − 2)λ4

A + (13k2 − 24k + 16)λA − 8(k − 1)(k2 − 2k + 2)},

where λA is an eigenvalues of A(G). The remaining 2(m− n) eigenvalues of (U3)+ are ±2
with multiplicities m− n.

Proof. By Corollary 5.3, we have

det(λI2m−(U3)+) = (λ2−4)m−n
∏

λA∈Spec(A(G))

(λ2−λ(λ3
A−(3k−4)λA)+λ4

A−k2λ2
A+2(k−1)(k2−2k+2)).

Thus, solving the following equation

λ2 − λ(λ3
A − (3k − 4)λA) + λ4

A − k2λ2
A + 2(k − 1)(k2 − 2k + 2) = 0

the result follows. Q.E.D.

6 The poles and the radius of convergence of the 3-

modified zeta function of a graph

At first, we present the poles the 3-modified zeta function of a regular graph G by means of
spectra of the adjacency matrix A(G) of G.

Theorem 6.1 Let G be a connected k-regular graph with n vertices and m unoriented edges,
k > 2 and g(G) > 4. Then the 3-modified zeta function Z3(G, u) of G has 2n poles ρ3 of the
form :

ρ3 =
λA(λ

2
A − 3k + 4)±

√

λ6
A − 2(3k − 2)λ4

A + (13k2 − 24k + 16)λA − 8(k − 1)(k2 − 2k + 2)

2(λ4
A − k2λ2

A + 2(k − 1)(k2 − 2k + 2))
,

where λA is an eigenvalues of A(G). The remaining 2(m − n) poles of Z3(G, u) are ±1/2
with multiplicities m− n.

Proof. At first, we have

Z3(G, u) = det(I2m − u(U3)+) =
∏

λ3∈Spec((U3)+)

(1− uλ3)
−1.

Thus, the poles of the 3-modified zeta function Z3(G, u) of G is given by

1/λ3, λ3 ∈ Spec((U3)+).

By Corollary 5.4, the (U3)+ has 2n eigenvalues λ3 of the form :

λ3 =
1

2
{λA(λ

2
A−3k+4)±

√

λ6
A − 2(3k − 2)λ4

A + (13k2 − 24k + 16)λA − 8(k − 1)(k2 − 2k + 2)},
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where λA is an eigenvalues of A(G). The remaining 2(m − n) eigenvalues of (U3)+ are ±2
with multiplicities m−n. Thus, ±1

2
are poles of Z̃(G, u) with multiplicity m−n, respectively.

Furthermore, we have

(
1

2
{λA(λ

2
A−3k+4)±

√

λ6
A − 2(3k − 2)λ4

A + (13k2 − 24k + 16)λA − 8(k − 1)(k2 − 2k + 2)})−1@

=
λA(λ

2
A − 3k + 4)±

√

λ6
A − 2(3k − 2)λ4

A + (13k2 − 24k + 16)λA − 8(k − 1)(k2 − 2k + 2)

2(λ4
A − k2λ2

A + 2(k − 1)(k2 − 2k + 2))
.

Q.E.D.
Next, we treat the radius of convergence of the 3-modified zeta function of a graph. We

state Perron-Frobenius Theorem on irreducible nonnegative matrices(see [8],[10]).
Let A = (aij) be a real square matrix. Then A is called nonnegative if all entries of A

are nonnegative. Furthermore, the underlying digraph DA of A has vertex set {1, 2, . . . , n},
with an arc vertex i to vertex j if and only if aij 6= 0. Then a nonnegative square matrix A

is called irreducible if its underlying digraph is strongly connected. A digraph D is strongly
connected if there exists a (x, y)-path in D for any vertices x, y ∈ V (D).

Theorem 6.2 (Perron-Frobenius Theorem) Let A be an irreducible nonnegative n×n
matrix whose underlying digraph is strongly connected. Furthermore, let u = A1, where 1

is the vector with all one. Set u = t(u1, . . . , un). Then

1. A has at least one positive eigenvalue. The maximal positive eigenvalue α is simple.

2. |λ| ≤ α for any eigenvalue λ of A.

3.
min1≤i≤nui ≤ α ≤ max1≤i≤nui.

In Theorem 6.2, α is called the spectral radius of A.
Now, we consider the strongly connectivity of the underlying digraph D(U3)+ of (U3)+.

Let G be a connected graph with n vertices and m edges. For a path P = (e1, . . . , er), we
say that P is called an (e1, er)-path.

Proposition 6.3 Let G be a connected k-regular graph with n vertices and m edges, and
X = D(U3)+ the underlying digraph of (U3)+. Suppose that k > 2 and g(G) > 4. Then X is
strongly connected.

Proof. Let e, f ∈ D(G). By the definition of 3-paths, there exists an (e, f)-3-path in G
if and only if there exists an (e, f)-path in X .

Now, let e, f ∈ D(G) and P = (e1, e2, . . . , er) an (e, f)-path in G, where e = e1 and
f = er. Suppose that P is reduced. If |P | = 4k, then P is an (e, f)-3-path without 3-
backtracking, and so there exists an (e, f)-path in X .

Next, let P | = 4k+j(j = 1, 2, 3). Since k > 2, there exists a cycle C = (e1, e2, . . . , er, er+1, . . . , eq)
in G such that P ⊂ C. Without of generality, we may assume that C has no backtracking.
Let

Q = (e1, e2, . . . , er, . . . , er+1, . . . , er+4−j) ⊂ C.
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Then |Q| = 4k + 4.
Let

R = (e1, e4, e8, . . . , er+4−j , er+3−j, . . . , er),

where (er+4−j , er+3−j, . . . , er) is a sequence of 3-backtrackings. Then R is an (e, f)-3-path in
G. Thus, there exists an (e, f)-path in X . Therefore, X is strongly connected. Q.E.D.

Thus, we obtain the following result.

Corollary 6.4 Let G be a connected k-regular graph with n vertices and m edges, k > 2
and g(G) > 4. Furthermore, let ρ be the radius of convergence of the 3-modified zeta function
Z3(G, u) of G. Then the following holds for

ρ =
1

k3 + k − 1
.

Proof. By Proposition 4.1, we have

(U3)+ = (U+)3 + TU+.

Let e ∈ D(G). Then we consider the sum re of the e-row of (U3)+. By the definition of
3-arcs and 3-backtrackings, re is equal to the number of 3-arcs [e, f ] and 3-backtrackings
[f, e]. Thus,

re = k3 + k − 1.

By Theorem 6.2, it follows that

ρ =
1

k3 + k − 1
.

Q.E.D.
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