
ar
X

iv
:1

90
5.

10
50

8v
1 

 [
cs

.I
T

] 
 2

5 
M

ay
 2

01
9

Constructing vectorial bent functions via second-order derivatives

Lijing Zheng ⋄, Jie Peng ∗, Haibin Kan ⋄, Yanjun Li ∗

Abstract

Let n be an even positive integer, and m < n be one of its positive divisors. In this paper,
inspired by a nice work of Tang et al. on constructing large classes of bent functions from known
bent functions [27, IEEE TIT, 63(10): 6149-6157, 2017], we consider the construction of vectorial bent
and vectorial plateaued (n,m)-functions of the form H(x) = G(x) + g(x), where G(x) is a vectorial
bent (n,m)-function, and g(x) is a Boolean function over F2n . We find an efficient generic method to
construct vectorial bent and vectorial plateaued functions of this form by establishing a link between
the condition on the second-order derivatives and the key condition given by [27]. This allows us to
provide (at least) three new infinite families of vectorial bent functions with high algebraic degrees.
New vectorial plateaued (n,m + t)-functions are also obtained (t ≥ 0 depending on n can be taken
as a very large number), two classes of which have the maximal number of bent components.

Index Terms: Bent functions, vectorial bent, algebraic degree, Walsh spectrum.

1 Introduction

Throughout this paper, we often identify the finite field F2n with F
n
2 , the n-dimensional vector space over

F2. Any function F : F2n → F2m is called an (n,m)-function, which is also called a Boolean function when
m = 1. Bent functions have been introduced by Rothaus in 1976 [25]. They are Boolean functions in even
number of variables which are maximally nonlinear in the sense that their Hamming distance to all affine
Boolean functions is optimal. It corresponds to the fact that the Walsh transform of a bent function in
n variables takes precisely the values ±2

n
2 . Over the last four decades, bent functions have attracted a

lot of research interest because of their applications in coding theory, combinatorics and cryptography.
A survey on bent functions can be found in [9], as well as the book [18].

The bent property of Boolean functions has been extended to general (n,m)-functions F by requesting
that all the nonzero linear combinations of its coordinate functions are bent functions. Such vectorial
functions are called vectorial bent. They exist if and only if n is even and m ≤ n/2. In the literature,
methods to construct new vectorial bent (plateaued) functions are divided into two classes: those building
functions from scratch are called primary; those using known vectorial bent functions are called secondary.
For primary constructions, Nyberg firstly presented the constructions of vectorial bent functions based on
some special classes of bent functions such as the Maiorana-McFarland class (MM), the Dillon’s partial
spread class (PS) and class H [21] (this class has been generalized to class H by Carlet and Mesnager, see
[6]). Satoh et al. modified the first method in [21] such that the constructed functions achieve the largest
algebraic degree. Pasalic and Zhang studied vectorial bent functions of the form F (x) = Trnm(λxd) [22].
Dong et al. constructed three classes of vectorial bent (2k, k)-functions based on monomial bent functions
and PS bent functions, see [11]. Muratović-Ribić et al. studied the vectorial bentness and hyperbentness

of the trace functions Tr2kk (
2k∑
i=0

αix
i(2k−1)), αi ∈ F2n , see [19, 20, 23]. Mesnager presented a generic
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construction of bent vectorial (2k, k)-functions of the form xG(yx2k−2), where G is an oval polynomial
on F2k [17]. Xu et al. gave a classification of vectorial bent monomials and some constructions of bent
multinomials in [29].

Compared with primary constructions, the results on secondary constructions of vectorial bent func-
tions seem to be much fewer. Carlet and Mesnager proposed some new secondary constructions of
vectorial bent functions with larger numbers of variables [5]. In [2], Budaghyan and Carlet showed that
two CCZ-equivalent vectorial bent functions must be EA-equivalent, and hence have the same algebraic
degree. Further, the authors gave a method to produce non-quadratic vectorial bent functions by applying
CCZ-equivalence to non-bent vectorial functions which have some components of bent functions. Very
recently, Pott et al. proved that an (n, n)-function can have at most 2n−2

n
2 bent components, and those

possess the maximum number of components can produce new vectorial bent functions [24]. More pre-
cisely, let n = 2k, for any (n, n)-function G, if Trn1 (αG(x)) is bent for any α ∈ F2n \F2k , then Trnk (αG(x))
is vectorial bent for any α ∈ F2n \F2k . Based on this observation, they find an infinite class of (quadratic)

bent (n, n
2 )-functions of the form Trnk (αx

2i (x+ x2k)), where α ∈ F2n \ F2k . In [30], the authors show
that for an (n,m)-function G with m ≥ n

2 , the maximal possible number of bent components is equal to
2m − 2m−n

2 , and those with maximum number of bent components can also produce optimal vectorial

bent functions. They found a generic class of bent (n, n
2 )-functions of the form Trnk (αx

2iπ(x + x2k)),
where π is a permutation over F2k , and α ∈ F2n \ F2k . This is why in this article we concern not only
vectorial bent functions but also vectorial functions with maximal number of bent components.

In this paper, however, we mainly focus on the secondary constructions of vectorial bent functions
without increasing the number of variables and then try to utilize those resulting vectorial bent functions
to generate vectorial (plateaued) functions with maximal number of bent components. Explicitly, for an
even integer n = 2k, and its positive divisor m such that m ≤ n/2, we consider vectorial (n,m)-functions
of the form

H(x) = G(x) + g(x), (1)

where G(x) is a vectorial bent (n,m)-function, and g(x) is a Boolean function over F2n .
At first glace, it would appear that finding such functions G(x), and g(x) might be quite difficult.

However, this is in fact not the case. By observing recent nice works of Mesnager [16], and Tang et al. [27]
on constructing of bent Boolean functions, in this paper we firstly introduce a property (Pτ ) concerning
Boolean functions and then establish a link between this property and the condition of Construction 7
presented by Tang et al [27]. This powerful tool makes us efficiently find more bent functions and then we
find (at least) three new infinite families of vectorial bent functions by choosing some specific classes of
vectorial (bent) functions. It turns out that for each class of the selected vectorial (bent) functions, there
are many g′s satisfying the required conditions. This also makes it possible for us to further construct
vectorial (plateaued) (n,m + t)-functions which have the maximal number of bent components in the
sense of [30], see also [24] for the special case of (n, n)-functions, where t is a nonnegative integer.

The rest of the paper is organized as follows. In Section 2 some basic definitions are given. In Section
3, based on the works of Carlet and Mesnager, we introduce the definition of property (Pτ ), and establish
a link between property (Pτ ) and the condition of Construction 7 of [27]. In Section 4, we specify how
to produce new vectorial bent (plateaued) functions of the form (1). In Section 5, we show that the
results obtained in Section 4 give rise to (at least) three new infinite families of vectorial bent functions,
and vectorial plateaued functions which have the maximal bent number of bent components. Finally, we
concludes this paper in Section 6.

2 Preliminaries

Let F2n be the finite field consisting of 2n elements, then its multiplicative group, denoted by F
∗
2n , is a

cyclic group of order 2n − 1. Throughout this paper, we always identify F2n with the vector space F
n
2

over F2. Any function F : F2n → F2m is called an (n,m)-function. Usually (n, 1)-functions are called
Boolean functions in n variables, the set of which is denoted by Bn.
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The trace function Trnm : F2n → F2m , where m | n, is defined as

Trnm(x)=x+x2m+x22m+· · ·+x2(n/m−1)m

, ∀ x ∈ F2n .

When m = 1, it is also called the absolute trace. In this paper, 〈, 〉 denotes the usual inner product in
a vector space over F2. For any α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ F

n
2 , one has 〈α, β〉 =

∑n
i=1 αiβi.

While in the finite field F2n , we take 〈α, β〉 = Trn1 (αβ) for any α, β ∈ F2n .
For any (n,m)-function F = (f1, . . . , fm), where f1, . . . , fm ∈ Bn, all the nonzero linear combinations

of fi, 1 ≤ i ≤ m, are called the components of F . When F is viewed as a mapping from the finite field
F2n to F2m , the components of F can be represented as Fλ(x) = Trm1 (λF (x)), λ ∈ F

∗
2m .

A Boolean function f ∈ Bn can be uniquely represented by a multivariate polynomial as

f(X1, . . . , Xn)=
∑

I⊆{1,2,...,n}

aI
∏

i∈I

Xi, aI ∈ F2. (2)

A polynomial in F2[X1, . . . , Xn] of the form (2) is called a reduced polynomial. The number of variables
in the highest order term with nonzero coefficient of this polynomial is called the algebraic degree of f .
While for a general (n,m)-function F , the highest algebraic degree of its coordinate functions is called
the algebraic degree of F . The function F is called quadratic if its algebraic degree is no more than 2.

The Walsh transform of a Boolean function f ∈ Bn at a point a ∈ F2n is defined by

Wf (a)=
∑

x∈F2n

(−1)f(x)+Tr
n
1 (ax).

The function f is called bent if |Wf (a)| = 2
n
2 for all a ∈ F2n . It is well known that bent functions exist

if and only if n is even. When f ∈ Bn is bent, the Boolean function f∗ such that Wf (α) = 2
n
2 (−1)f

∗(α)

for any α ∈ F2n , is also bent and is called the dual of f .
A Boolean function f is called plateaued ifWf takes three values {0,±2s} for some integer n/2 ≤ s ≤ n.

For the case of n even, the function f is called semi-bent if Wf takes three values {0,±2
n
2 +1}.

The nonlinearity of an (n,m)-function F and hereby its resistance to linear cryptanalysis [15] is
measured through the extended Walsh spectrum

{∗|WF (a, γ)| : γ ∈ F
m
2 \{0}, a ∈ F2n∗},

where
WF (a, γ)=

∑

x∈F
n
2

(−1)〈γ,F (x)〉+〈a,x〉.

The function F is said to be a vectorial bent function of dimension m if all the components of F are
bent. In other words, F is vectorial bent if and only if |WF (a, γ)| = 2n/2, for any γ ∈ F

m
2 \{0} and for

any a ∈ F
n
2 . F is said to be a plateaued vectorial function if all the components are plateaued Boolean

functions.
Two (n,m)-functions F and G are called extended affine equivalent (EA-equivalent) if there exist some

affine permutation L1 over F2n and some affine permutation L2 over F2m , and some affine function A
such that F = L2 ◦ G ◦ L1 + A. They are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent)
if there exists some affine automorphism L = (L1, L2) of F2n × F2m , where L1 : F2n × F2m → F2n and
L2 : F2n × F2m → F2m are affine functions, such that y = G(x) if and only if L2(x, y) = F ◦ L1(x, y).
It is well known that EA-equivalence is a special kind of CCZ-equivalence, and that CCZ-equivalence
preserves the extended Walsh spectrum and the differential spectrum (but not for algebraic degree) [8].

3 The introduction of property (Pτ)

Throughout this section, let n, τ be two positive integers. To produce vectorial bent functions of the form
(1) is to find suitable functions G(x) and g(x). To this end, in this section we introduce the property
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(Pτ ) and establish a link between this property and the condition of Construction 7 presented by Tang
et al. in [27]. This tool will make us effectively find new infinite families of vectorial bent functions which
will be presented in the following two sections.

A. Carlet-Mesnager’s criterion

In this subsection, we firstly recall some known results which are the motivation for introducing
property (Pτ ) and present some new results concerning bent functions. The following construction is
due to Carlet which can generate new bent functions [4, Theorem 3] and new plateaued functions [7,
Proposition 2].

Lemma 3.1. ([4, Lemma 1]) Let n be a positive integer. Let f1, f2, f3, f4 ∈ Bn be Boolean functions such
that f1 + f2 + f3 + f4 = 0. Let σ : F2n → F2 be defined as σ(x) = f1(x)f2(x) + f1(x)f3(x) + f2(x)f3(x).
Then for each a ∈ F2n ,

Wσ(a) =
1
2 (Wf1(a) +Wf2 (a) +Wf3(a)−Wf4(a)).

Let n be an even integer. With the notations as above, based on a work of Carlet ([4, Theorem 3]),
Mesnager has shown that if fi is bent for i = 1, 2, 3, 4, then σ is bent if and only if f∗

1 + f∗
2 + f∗

3 + f∗
4 = 0;

and if σ is bent, then σ∗ = f∗
1 f

∗
2 +f∗

1 f
∗
3 +f∗

2 f
∗
3 , see [16, Theorem 4]. Under the assumptions as in Lemma

3.1, we call this method of estimating whether σ is bent or not Carlet-Mesnager’s criterion. We need the
proof of this theorem and let us recall it as follows (there are some improvements).

Theorem 3.2. (Carlet-Mesnager’s criterion) Let n = 2k be a positive integer. Let f1, f2, f3 ∈ Bn be
three pairwise distinct bent functions such that f4 = f1 + f2 + f3 is also a bent function. Let σ =
f1f2 + f1f3 + f2f3. Then σ is bent if and only if f∗

1 + f∗
2 + f∗

3 + f∗
4 = 0. Moreover, if σ is bent, then

σ∗ = f∗
1 f

∗
2 + f∗

1 f
∗
3 + f∗

2 f
∗
3 .

Proof. By Lemma 3.1, for each a ∈ F2n , we have

Wσ(a) = 2k−1((−1)f
∗

1 (a) + (−1)f
∗

2 (a) + (−1)f
∗

3 (a) − (−1)f
∗

4 (a))

= 2k(f∗
1 (a) + f∗

2 (a) + f∗
3 (a) + f∗

4 (a) + 1) (mod 2k+1).

Recall that for a Boolean function g, Wg(a) = ±2k if and only if Wg(a) = 2k (mod 2k+1). Then

Wσ(a) = ±2k if and only if f∗
1 (a) + f∗

2 (a) + f∗
3 (a) + f∗

4 (a) ≡ 0 (mod 2), (3)

and one has σ is bent if and only if f∗
1 + f∗

2 + f∗
3 + f∗

4 = 0; and the second assertion follows from Theorem
3 of [4].

In fact, using some arguments of the proof discussed above, we can obtain the following result.

Theorem 3.3. With the same notations as in Theorem 3.2. Then the following three assertions hold:
1) σ is bent if and only if f∗

1 + f∗
2 + f∗

3 + f∗
4 = 0; and if σ is bent, then σ∗ = f∗

1 f
∗
2 + f∗

1 f
∗
3 + f∗

2 f
∗
3 ;

2) σ is semi-bent if and only if f∗
1 + f∗

2 + f∗
3 + f∗

4 = 1;
3) Otherwise, σ is a Boolean function satisfying {|Wσ(λ)| | λ ∈ F2n} = {0, 2k, 2k+1}.

Proof. One has seen that the first assertion holds true. Now if there exists an elment b ∈ F2n such that
f∗
1 (b) + f∗

2 (b) + f∗
3 (b) + f∗

4 (b) = 1 (addition modulo 2), set tb := f∗
1 (b) + f∗

2 (b) + f∗
3 (b) + f∗

4 (b), then
tb ∈ {1, 3} (recall here that these sums are calculated in Z). We have

Wσ(b) = 2k−1((−1)f
∗

1 (b) + (−1)f
∗

2 (b) + (−1)f
∗

3 (b) − (−1)f
∗

4 (b))

= 2k(1− (f∗
1 (b) + f∗

2 (b) + f∗
3 (b)− f∗

4 (b)))

= 2k(2f∗
4 (b) + 1− tb).
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Then

Wσ(b) =

{
2k+1f∗

4 (b), if tb = 1,

2k+1(f∗
4 (b)− 1), if tb = 3,

which means that Wσ(b) ∈ {0,±2k+1}. Then we have that if f∗
1 + f∗

2 + f∗
3 + f∗

4 = 1, then σ is semi-bent.
It needs to show that the converse also holds true. To the contrary, if there exists an element a ∈ F2n

such that f∗
1 (a)+ f∗

2 (a)+ f∗
3 (a)+ f∗

4 (a) = 0, then by (3), one has Wσ(a) = ±2k, a contradiction with the
assumption that σ is semi-bent ! Thus the assertion 2) holds true.

We in fact have proved that for any a ∈ F2n ,

Wσ(a) ∈ {0,±2k+1} if and only if f∗
1 (a) + f∗

2 (a) + f∗
3 (a) + f∗

4 (a) ≡ 1 (mod 2). (4)

Now by Parseval’s relation and (3), (4), one can obtain the assertion 3). We complete the proof.

Recall that the first-order derivative of an (n,m)-function F is defined as DaF (x) := F (x)+F (x+a),
and the second-order derivative of F with respect to (a, b) is defined as DaDbF (x) := F (x) +F (x+ a) +
F (x + b) + F (x + a + b), where a, b ∈ F2n . Let f(x) ∈ Bn be any bent function, and a1, a2, a3 be any
three elements in F2n . Let fi(x) = f(x) + Trn1 (aix), then

fi is bent with the dual function f∗
i (x) = f∗(x+ ai), (5)

for i = 1, 2, 3, see [3]. Mesnager has showed in [16] that f∗
1 + f∗

2 + f∗
3 + f∗

4 = Da1+a2Da1+a3f
∗, and

σ = f1f2 + f1f3 + f2f3

= f(x)+Trn1 (a1x)Tr
n
1 (a2x)+Trn1 (a1x)Tr

n
1 (a3x)+Trn1 (a2x)Tr

n
1 (a3x).

Thus, by Theorem 3.3, we have σ is bent if and only if Da1+a2Da1+a3f
∗ = 0; σ is semi-bent if and only

if Da1+a2Da1+a3f
∗ = 1.

Proposition 3.4. Let n = 2k be a positive integer. Let f(x) ∈ Bn be any bent function, and a1, a2, a3
be any three elements in F2n . Let fi(x) = f(x) + Trn1 (aix), i = 1, 2, 3. Then σ = f1f2 + f1f3 + f2f3=
f(x)+Trn1 (a1x)Tr

n
1 (a2x)+Tr

n
1 (a1x)Tr

n
1 (a3x)+Tr

n
1 (a2x)Tr

n
1 (a3x) is bent if and only if Da1+a2Da1+a3f

∗ = 0;
σ is semi-bent if and only if Da1+a2Da1+a3f

∗ = 1. If σ is bent, then

σ∗(x) = f∗(x+ a1)f
∗(x + a2) + f∗(x+ a1)f

∗(x+ a3) + f∗(x + a2)f
∗(x+ a3). (6)

Proof. We need only to show the last assertion. However, this can be seen directly from that if σ is bent,
then by Theorem 3.3, σ∗ = f∗

1 f
∗
2 + f∗

1 f
∗
3 + f∗

2 f
∗
3 and the fact (5).

With the notations as in the proposition above, let a = a1 + a2, b = a1 + a3. Then σ is reduced to
f(x) + Trn1 (ax)Tr

n
1 (bx) + Trn1 (a1x). Let h(x) = f(x) + Trn1 (ax)Tr

n
1 (bx). Then by Proposition 3.4, h(x) is

bent if and only if DaDbf
∗ = 0; In this case, h∗(x) = f∗(x)f∗(x+a)+f∗(x)f∗(x+b)+f∗(x+a)f∗(x+b),

see also [16, Corollary 5]. And h(x) is semi-bent if and only if DaDbf
∗ = 1. In fact, we have proved the

following corollary.

Corollary 3.5. Let n = 2k be a positive integer. Let f(x) ∈ Bn be any bent function, and a, b be any
two elements in F2n with a 6= b. Then h(x) = f(x) + Trn1 (ax)Tr

n
1 (bx) is bent if and only if DaDbf

∗ = 0;
h(x) is semi-bent if and only if DaDbf

∗ = 1. If h(x) is bent, then h∗(x) = f∗(x)f∗(x+ a) + f∗(x)f∗(x+
b) + f∗(x+ a)f∗(x+ b).

Now, we want to see what will happen if there exist three pairwise distinct elements a, b, c ∈ F2n

such that DaDbf
∗(x) = 0, DaDcf

∗(x) = 0, and DbDcf
∗(x) = 0. Let f1(x) = f(x) + Trn1 (ax)Tr

n
1 (bx),

f2(x) = f(x) + Trn1 (ax)Tr
n
1 (cx), f3(x) = f(x) + Trn1 (bx)Tr

n
1 (cx). Then f4(x) = f1(x) + f2(x) + f3(x) =

f(x)+Trn1 (ax)Tr
n
1 (bx)+Trn1 (ax)Tr

n
1 (cx)+Trn1 (ax)Tr

n
1 (bx). By Proposition 3.4, f4(x) is bent if and only

5



if Da+bDa+cf
∗(x) = 0. However, this is indeed the case by the assumptions and Lemma 3.9 below. It

means that fi is a bent function for i = 1, 2, 3, 4. Thus by Theorem 3.3, σ(x) = f1f2 + f1f3 + f2f3 =
f(x)+Trn1 (ax)Tr

n
1 (bx)Tr

n
1 (cx) is bent if and only if f∗

1 + f∗
2 + f∗

3 + f∗
4 = 0. We have to calculate the dual

functions f∗
i (x), i = 1, 2, 3, 4. According to Corollary 3.5, we have





f∗
1 (x) = f∗(x)f∗(x+ a) + f∗(x)f∗(x+ b) + f∗(x+ a)f∗(x+ b),

f∗
2 (x) = f∗(x)f∗(x+ a) + f∗(x)f∗(x+ c) + f∗(x+ a)f∗(x+ c),

f∗
3 (x) = f∗(x)f∗(x+ b) + f∗(x)f∗(x+ c) + f∗(x+ b)f∗(x + c),

and hence

f∗
1 (x) + f∗

2 (x) + f∗
3 (x) = f∗(x+ a)f∗(x+ b) + f∗(x+ a)f∗(x + c) + f∗(x+ b)f∗(x+ c).

On the other hand, by (6), we have f∗
4 (x) = f∗(x+ a)f∗(x+ b)+ f∗(x+ a)f∗(x+ c)+ f∗(x+ b)f∗(x+ c),

that is, f∗
1 + f∗

2 + f∗
3 + f∗

4 = 0. Then σ(x) = f(x) + Trn1 (ax)Tr
n
1 (bx)Tr

n
1 (cx) is bent, and

σ∗(x) = f∗
1 (x)f

∗
2 (x) + f∗

1 (x)f
∗
3 (x) + f∗

2 (x)f
∗
3 (x)

= f∗(x) + g1(x)g2(x)g3(x),

where g1(x) = Daf
∗(x), g2(x) = Dbf

∗(x), g3(x) = Dcf
∗(x). By the arguments above and Corollary 3.5,

we have the following results which can infer the main results of [28].

Corollary 3.6. Let n = 2k be a positive integer. Let f(x) ∈ Bn be any bent function, and a, b, c be three
pairwise distinct elements in F2n .

1) If DaDbf
∗(x) = DaDcf

∗(x) = DbDcf
∗(x) = 0, then σ(x) = f(x) + Trn1 (ax)Tr

n
1 (bx)Tr

n
1 (cx)

is a bent function with its dual f∗(x) + g1(x)g2(x)g3(x), where g1(x) = Daf
∗(x), g2(x) = Dbf

∗(x),
g3(x) = Dcf

∗(x).
2) If DaDbf

∗(x) = 0, then h(x) = f(x) + Trn1 (ax)Tr
n
1 (bx) is bent; if DaDbf

∗(x) = 1, then h(x) is
semi-bent; Otherwise, h(x) is a function such that {|Wh(ν)| | ν ∈ F2n} = {0, 2k, 2k+1}.

Remark 3.7. With the same assumptions and notations as in the first assertion of corollary above and
using Carlet-Mesnager’s criterion, one can obtain the following interesting facts by selecting suitable bent
functions f1, f2, f3. Let F (X1, X2, X3) be any reduced polynomials in F2[X1, X2, X3] (we send the readers
to Section 2 concerning the definition of reduced polynomials), then f(x) + F (Trn1 (ax),Tr

n
1 (bx),Tr

n
1 (cx))

is bent with its dual f∗(x) + F (g1(x), g2(x), g3(x)).

B. Property (Pτ ) and equivalent conditions

In this subsection, we introduce property (Pτ ) concerning Boolean functions. Inspired by the ob-
servations made by Corollary 3.6 and Remark 3.7, we want to consider more general cases. Explicitly,
for a given Boolean function g(x) ∈ Bn, we wonder to know what will happen if there exist τ (τ ≥ 2)
pairwise distinct elements ui such that DuiDujg(x) = 0, ∀ 1 ≤ i < j ≤ τ . To this end, we introduce the
property (Pτ ). We will deduce new vectorial bent and plateaued functions starting from the observations
on (bent) Boolean functions satisfying this property in next section, and we believe that this property
has its own value.

Definition 3.8. Let n, τ be two positive integers. Let g(x) ∈ Bn, and g is said to satisfy property (Pτ ) if
there exist τ pairwise distinct elements u1, . . . , uτ ∈ F2n such that DuiDujg(x) = 0 for any 1 ≤ i < j ≤ τ .
In this case, the set {u1, . . . , uτ} ⊆ F2n is called the defining set of g(x) satisfying property (Pτ ).

In the following, we give some observations on functions g(x) satisfying property (Pτ ). We will not
specify the subfix τ in case there is no danger of confusion. We need the following lemma.

Lemma 3.9. For any a, b, c ∈ F2n, if DaDbg(x) = DaDcg(x) = 0 for all x ∈ F2n , then DaDb+cg(x) = 0
for all x ∈ F2n . Furthermore, if there exists {u1, . . . , uτ} ⊆ F2n such that DuiDujg(x) = 0 for any
1 ≤ i < j ≤ τ , then for any a, b ∈ L(u1, . . . , uτ ), we have DaDbg(x) = 0, where L(u1, . . . , uτ ) is the
subspace of F2n spanned by {u1, . . . , uτ} over F2.
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Proof. By assumption, we have

{
g(x)+g(x+a) + g(x+b) + g(x+a+b)=0,

g(x)+g(x+a) + g(x+c) + g(x+a+c)=0,

for all x ∈ F2n . Then g(x+ b) + g(x+ c) + g(x+ a+ b) + g(x+ a+ c) = 0 for all x ∈ F2n . We have by
replacing x+ b by x that g(x) + g(x+ b+ c) + g(x+ a) + g(x+ b+ a+ c) = 0, i.e., DaDb+cg(x) = 0 for
all x ∈ F2n . The last assertion follows from the first assertion and the fact that for any a ∈ F2n , x ∈ F2n ,
DaDag(x) = 0.

Remark 3.10. From a given Boolean function g(x) satisfying property (Pτ ), one can obtain a lot of
other functions satisfying this property with the same defining set as g(x). Indeed, let g(x) ∈ Bn be any
Boolean function satisfying property (Pτ ) with defining set {u1, . . . , uτ} ⊆ F2n. For any b ∈ L(u1, . . . , uτ ),
set h(x) := g(x)g(x + b), then h(x) is also a Boolean function satisfying Property (Pτ ) with the same
defining set. To see this, it needs only to show DuiDujh(x) = 0 for any 1 ≤ i < j ≤ τ . Note that for any
̺ ∈ L(u1, . . . , uτ), by Lemma 3.9, we have g(x+ ̺)g(x+ ̺+ b) = g(x+ ̺)(g(x) + g(x+ ̺) + g(x+ b)) =
g(x)g(x+ ̺) + g(x+ ̺) + g(x+ ̺)g(x+ b). Then one has

DuiDujh(x) = g(x)g(x+b)+g(x+ui)g(x+ui+b)+g(x+ uj)g(x+uj+b) + g(x+ui+uj)g(x+ui+uj+b)

= g(x)g(x+b)+g(x+ui)+g(x+uj)+g(x+ui+uj)

+g(x)(g(x+ui)+g(x+uj)+g(x+ui+uj))+g(x+b)(g(x+ui)+g(x+uj)+g(x+ui+uj))

= g(x)g(x+b)+g(x)+g(x)+g(x+b)g(x)=0.

The following observation is vital to our constructions of new vectorial bent functions. In fact, this
observation establishes a link between property (Pτ ) and the condition of Construction 7 in [27] which
we will recall in the following section.

Lemma 3.11. Let g(x) ∈ Bn be any Boolean function. The following two assertions are equivalent:
1) g(x) satisfies property (Pτ ) with the defining set {u1, . . . , uτ} ⊆ F2n .

2) there exist u1, . . . , uτ ∈ F2n , and g1, . . . , gτ ∈ Bn such that g(x+
τ∑

i=1

wiui) = g(x) +
τ∑

i=1

wigi(x) for

any w = (w1, . . . , wτ ) ∈ F
τ
2 .

Furthermore, if g(x) satisfies property (Pτ ) with the defining set {u1, . . . , uτ} ⊆ F2n, then the gi(x)
in 2) is exactly Duig(x), i = 1, . . . , τ .

Proof. 1) ⇒ 2): By assumption, there exist u1, . . . , uτ ∈ F2n such that DuiDujg(x) = 0 for any 1 ≤
i < j ≤ τ , and all x ∈ F2n . Set gi(x) := Duig(x), i = 1, . . . , τ . We will give our proof by induction on
s = wt(w). For s = 1, we have g(x + ui) = g(x) + gi(x) by the definition of gi(x), for any i = 1, . . . , τ .
Consider the case of s = 2: for any 1 ≤ i < j ≤ τ , one has

g(x+ ui + uj) = g(x) + g(x+ ui) + g(x+ uj) = g(x) +Duig(x) +Dujg(x) = g(x) + gi(x) + gj(x),

where the first identity is due to the assumption that DuiDujg(x) = 0. Now assume that the assertion
holds for any 1 ≤ s ≤ τ − 1, that is,

g(x+ ui1 + · · ·+ uis) = g(x) + gi1(x) + · · ·+ gis(x),where {i1, . . . , is} ⊆ {1, . . . , τ}.

Then for any w ∈ F
τ
2 with wt(w) = s+ 1, we have

g(x+ui1+· · ·+ uis+uis+1) = g((x+ ui1) + ui2 + · · ·+ uis + uis+1),

= g(x+ ui1) + gi2(x+ ui1) + · · ·+ gis+1(x+ ui1),

= g(x) + gi1(x) + gi2(x) + · · ·+ gis+1(x),
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where the second equality is from the induction on s, and the last equality is deduced by the definition of
gi, i = 1, 2, . . . , τ , and the induction on s of the cases s = 1, 2: git(x+ui1) = g(x+ui1)+g(x+ui1+uit) =
g(x) + gi1(x) + g(x) + gi1(x) + git(x) = git(x).

2) ⇒ 1): Let ε1 = (1, 0, . . . , 0), ε2 = (0, 1, . . . , 0), . . . , ετ = (0, 0, . . . , 1) be the basis of Fτ
2 . Let w = εi.

Then by assumption we have gi(x) = Duig(x), i = 1, . . . , τ . For any 1 ≤ i < j ≤ τ , let w = εi + εj,
we have g(x + ui + uj) = g(x) + gi(x) + gj(x), that is, g(x + ui + uj) = g(x) + Duig(x) + Dujg(x) =
g(x)+ g(x+ui)+ g(x+uj). Then g(x)+ g(x+ui)+ g(x+uj)+ g(x+ui +uj) = 0, i.e., DuiDujg(x) = 0
for any 1 ≤ i < j ≤ τ . We are done.

4 Generic constructions of vectorial bent and plateaued func-

tions

In this section, we will construct new vectorial bent functions of the form (1) from known vectorial bent
functions. At first we give the following theorem.

Theorem 4.1. Let n be an even positive integer and m be a positive divisor of n. Let G(x) be a vectorial
bent (n,m)-function, and let g(x) ∈ Bn. Then H(x) = G(x)+g(x) is a vectorial bent (plateaued) function
if and only if for any λ ∈ F

∗
2m such that Trm1 (λ) = 1, Gλ(x)+g(x) is a bent (plateaued) Boolean function.

Proof. For any λ ∈ F
∗
2m , we have Hλ(x) = Trm1 (λH(x)) = Trm1 (λG(x)) + Trm1 (λ)g(x), and thus

Hλ(x) =

{
Gλ(x), if Trm1 (λ) = 0,

Gλ(x) + g(x), if Trm1 (λ) = 1.

Therefore, by definition H(x) is a vectorial bent (plateaued) (n,m)-function if and only if for all λ ∈ F
∗
2m

with Trm1 (λ) = 1, Gλ(x) + g(x) is bent (plateaued), since G(x) is vectorial bent.

At a first glance, it would appear that finding such functions G(x) and g(x) satisfying the conditions
of Theorem 4.1 might be quite difficult. However, our Corollary 4.4 below shows that, out of reckoning,
there are quite a lot of such functions after we obtain Lemma 3.11, in which we establish a link between
property (Pτ ) and the condition of Construction 7 in [27]. In what follows, let us recall the Construction
7 of [27], in which the authors have a very nice observation on generating new bent functions from known
ones.

Let n = 2k, and u1, . . . , uτ be distinct elements of F2n , where τ is an integer with 1 ≤ τ ≤ k. Let

g(x) ∈ Bn be a bent function whose dual g∗(x) satisfies that g∗(x +
τ∑

i=1

wiui) = g∗(x) +
τ∑

i=1

wigi(x)

for any x ∈ F2n and for any w = (w1, . . . , wτ ) ∈ F
τ
2 , where gi(x) ∈ Bn for any 1 ≤ i ≤ τ . Let

F (X1, . . . , Xτ ) be any reduced polynomial in F2[X1, . . . , Xτ ]. Then by [27, Theorem 8], f(x) := g(x) +
F (Trn1 (u1x),Tr

n
1 (u2x)), . . . ,Tr

n
1 (uτx)) is bent, with its dual f∗(x) = g∗(x)+F (g1(x), . . . , gτ (x)). In other

words, using Lemma 3.11, the function g(x) described in [27, Construction 7] is a bent function such that
its dual g∗(x) satisfies property (Pτ ) with the defining set {u1, . . . , uτ}. In fact, we have proved the
following theorem.

Theorem 4.2. Let n = 2k. Let g(x) ∈ Bn be a bent function such that its dual function g∗(x) satis-
fies property (Pτ ) with the defining set {u1, . . . , uτ}. Let F (X1, . . . , Xτ ) be any reduced polynomial in
F2[X1, . . . , Xτ ]. Then the Boolean function g(x)+F (Trn1 (u1x),Tr

n
1 (u2x)), . . . ,Tr

n
1 (uτx)) is bent, with its

dual g∗(x) + F (Du1g
∗(x), . . . , Duτ g

∗(x)).

Remark 4.3. We have to point out that though the authors in [27] give a nice secondary construction
of bent functions from bent functions g(x) whose dual g∗(x) satisfies the condition of the Construction 7
in [27], they do not give any additional insights on this condition. We believe our property (Pτ ) gives a
quick and effective way to judge whether a given bent function satisfies this condition.
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By Theorem 4.1, and Theorem 4.2, we can give a new secondary construction of vectorial bent
functions.

Corollary 4.4. Let n = 2k be an even positive integer, and m be a positive divisor of n. Let u1, . . . , uτ ∈
F2n be distinct, where 1 ≤ τ ≤ k. Let F (X1, . . . , Xτ ) be a reduced polynomial in F2[X1, . . . , Xτ ].
Assume that G(x) is a vectorial bent (n,m)-function such that for any λ ∈ F2k with Trk1(λ) = 1,
the function G∗

λ(x) satisfies property (Pτ ) with the defining set {u1, . . . , uτ}, then H(x) := G(x) +
F (Trn1 (u1x),Tr

n
1 (u2x)), . . . ,Tr

n
1 (uτx)) is a vectorial bent (n,m)-function.

Proof. By Theorem 4.1, it need only to show that for each λ ∈ F
∗
2m with Trm1 (λ) = 1,

Gλ(x) + F (Trn1 (u1x),Tr
n
1 (u2x)), . . . ,Tr

n
1 (uτx))

is bent. Since G∗
λ(x) satisfies property (Pτ ) with the defining set {u1, . . . , uτ}, say DuiDujG

∗
λ(x) = 0 for

any 1 ≤ i < j ≤ τ . By Theorem 4.2, Gλ(x) + F (Trn1 (u1x),Tr
n
1 (u2x)), . . . ,Tr

n
1 (uτx)) is bent.

Thanks to Corollary 4.4, we can give a secondary construction of vectorial plateaued functions.

Corollary 4.5. Assuming conditions of Corollary 4.4. Let t be a positive integer. Let Fi(X1, . . . , Xτ ),
i = 1, . . . , t, be any reduced polynomials in F2[X1, . . . , Xτ ]. Denote Fi(Tr

n
1 (u1x), . . . ,Tr

n
1 (uτx)) by fi(x)

for each i = 1, . . . , t. Then Ĥ(x) = (G(x), f1(x), . . . , ft(x)) is a vectorial plateaued (n,m+ t)-function if
and only if the (n, t)-function (f1(x), . . . , ft(x)) is vectorial plateaued.

Proof. For (λ, v) ∈ F
∗
2m×F

t
2, according to Theorem 4.2 and Corollary 4.4, 〈(λ, v), Ĥ〉=Gλ+〈v, (f1, . . . , ft)〉

is bent, since 〈v, (F1, . . . , Ft)〉 is also a reduced polynomial in F2[X1, . . . , Xτ ]. Then Ĥ is vectorial

plateaued if and only if all the components functions 〈(0, v), Ĥ〉 = 〈v, (f1, . . . , ft)〉 is plateaued. It means
that the (n, t)-function (f1(x), . . . , ft(x)) is vectorial plateaued. This completes the proof.

5 New infinite families of vectorial bent and plateaued functions

In this section, using the results from the previous section, we will obtain (at least) three classes of
new primary constructions of vectorial bent and vectorial plateaued functions. Amongst those vectorial
plateaued functions, there are two classes of functions having the maximal number of bent components.

A. New infinite families of vectorial bent functions via Kasami function

Let n = 2k be an even positive integer throughout this subsection. Let G(x) = x2k+1. It is well
known that G is a vectorial bent (n, k)-function. The dual of its component Gλ(x) = Trk1(λG(x)), for

some λ ∈ F
∗
2k , is G

∗
λ(x) = Trk1(λ

−1x2k+1) + 1 (see [16]).
Now, in order to apply Corollary 4.4, one has to find a set {u1, . . . , uτ} ⊆ F2n such that for all λ ∈ F

∗
2k

with Trk1(λ) = 1, DuiDujG
∗
λ(x) = Trn1 (λ

−1uiuj) = 0 for any 1 ≤ i < j ≤ τ , where uj := u2k

j . Note that for

any λ ∈ F
∗
2k with Trk1(λ) = 1, the element λ−1 can be represented by v+v for a unique set {v, v | v ∈ U},

here U = {x ∈ F2n | xx = 1}. Then DuiDujG
∗
λ(x) = Trn1 ((v + v)uiuj) = Trn1 (v(uiuj + uiuj)). Hence

DuiDujG
∗
λ(x) = 0 for all λ ∈ F

∗
2k with Trk1(λ) = 1 if and only if Trn1 (v(uiuj+uiuj) = 0 for all v ∈ U . It is

easily seen that if uiuj + uiuj = 0, i.e., uiuj ∈ F2k , then the conditions of Corollary 4.4 is automatically
satisfied. In particular, let {̺1, . . . , ̺k} be a basis of F2k over F2, and v 6= 1 be an element of U , set
ui := ̺iv, i = 1, . . . , k, then we have uiuj ∈ F2k for any 1 ≤ i < j ≤ k.

Theorem 5.1. Let n = 2k and τ be positive integers with 1 ≤ τ ≤ k. Let u1, . . . , uk be any k pairwise

distinct elements in F2n such that uiu
2k

j ∈ F
∗
2k for any 1 ≤ i < j ≤ k. Let F (X1, X2, . . . , Xτ ) be any

reduced polynomial in F2[X1, X2, . . . , Xτ ] with algebraic degree d, where d is a nonnegative integer. Then

H(x) = x2k+1 + F (Trn1 (ui1x),Tr
n
1 (ui2x), . . . ,Tr

n
1 (uiτx)) is a vectorial bent function, where {i1, . . . , iτ} ⊆

{1, . . . , k}. Furthermore, if ui1 , . . . , uiτ are linearly independent over F2 and d ≥ 2, then the algebraic
degree of H(x) is equal to d.
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Proof. It need only to show the last assertion. By assumption ui1 , . . . , uiτ are linearly independent over
F2, then according to Lemma 2 of [27], the algebraic degree of F (Trn1 (ui1x),Tr

n
1 (ui2x), . . . ,Tr

n
1 (uiτx)) is

equal to d.

Corollary 5.2. Conditions are the same with Theorem 5.1. Let Fi(X1, . . . , Xk), i = 1, . . . , t, be any re-
duced polynomials in F2[X1, . . . , Xk], for some positive integer t. Set fi(x) := Fi(Tr

n
1 (u1x)), . . . ,Tr

n
1 (ukx))

for each i = 1, . . . , t. Then Ĥ(x) = (x2k+1, f1(x), . . . , ft(x)) is a vectorial plateaued (n, k + t)-function if
and only if the (n, t)-function (f1(x), . . . , ft(x)) is vectorial plateaued.

Proof. This can be seen directly from Corollary 4.5 and Theorem 5.1.

It is important and interesting to estimate the number of the bent components of Ĥ(x). Note that

for any (u, v) ∈ F
∗
2k × F

m
2 , 〈(u, v), Ĥ(x)〉 = Trk1(ux

2k+1) + 〈v, (f1(x), . . . , ft(x))〉. Therefore, by the fact
that 〈v, (F1, . . . , Ft)〉 is also a polynomial over F2 with the variables X1, . . . , Xk, we have by Theorem

5.1, 〈(u, v), Ĥ〉 is bent for any u 6= 0. It means that Ĥ(x) has at least 2t+k − 2t bent components. It
is not hard to prove that (or see [30, Theorem 3.2]), the maximal number of bent components for a

(2k, k + t)-function is 2t+k − 2t. Therefore, Ĥ(x) has 2t+k − 2t bent components, and 〈(u, v), Ĥ(x)〉 is
bent if and only if u 6= 0. We in fact have proved the following corollary.

Corollary 5.3. With the same notations in Corollary 5.2. For any (u, v) ∈ F
∗
2k × F

t
2, 〈(u, v), Ĥ(x)〉 is

bent if and only if u 6= 0. In particular, Ĥ(x) is an (n, t+ k)-function with the maximal number of bent
components, and for any v ∈ F

t
2, 〈v, (f1(x), . . . , ft(x))〉 is not a bent function.

Remark 5.4. With the same notations in Corollary 5.2. Let Ĥ(x) = (x2k+1,Trn1 (u1x),Tr
n
1 (u1x)Tr

n
1 (u2x),

. . . ,
k∏

i=1

Trn1 (uix)). If u1, . . . , uk are linearly independent over F2, then Ĥ(x) is an (n, n)-function of al-

gebraic degree k, and has the maximal number of bent components in the sense of [30, Theorem 3.2], see
also [24, Theorem 2]. It is interesting to investigate its cryptographic properties such as APN-ness etc.
This will be the topic of our future work.

B. New infinite families of vectorial bent functions from Niho exponents

Throughout this subsection, n = 2k is an even integer, and τ is a positive integer such that 1 ≤ τ ≤ k.

For any a in F2n , denote a2
k

by a. Consider now the (n, n)-function

G(x) =
2r−1∑

i=1

x(i2k−r+1)(2k−1)+1

with 1 < r < k and gcd(r, k) = 1, then by [14, Theorem 2], for any a ∈ F2n , Ga(x) = Trn1 (aG(x)) is bent
if a + a 6= 0. In the following, we first show that G(x) is actually a vectorial bent (n, k)-function, and
then use it to generate new vectorial bent (n, k)-functions of the form (1).

Proposition 5.5. Let n = 2k, r be positive integers such that gcd(r, k) = 1. Then the (n, k)-function

G(x) =
2r−1∑
i=1

x(i2k−r+1)(2k−1)+1 is vectorial bent.

Proof. By [14, Theorem 2], Trn1 (aG(x)) is bent if a + a 6= 0, that is, a 6∈ F2k . Then according to [24,
Proposition 3], Trnk (aG(x)) is a vectorial bent (n, k)-function for any a 6∈ F2k . Thus the assertion will
become true if we can show that G(x) ∈ F2k for all x ∈ F2n . Since if this is the case, let a ∈ F2n such
that a+ a = 1, then Trnk (aG(x)) = G(x)Trnk (a) = G(x) is a vectorial bent (n, k)-function.
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Indeed, let di = (2k− 1)si+1 with si = i2k−r +1 for i = 1, . . . , 2r− 1, then for any 1 ≤ i < j ≤ 2r− 1
such that i+ j = 2r, it holds dj ≡ di · 2

k (mod 2n − 1), and hence

G(x) = x(2k+1)2k−1

+

2r−1∑

i=1,i6=2r−1

x(i2k−r+1)(2k−1)+1

= (x(2k+1)2k−1

+
2r−1−1∑

i=1

(xdi + xdi·2
k

)) (mod x2n + x).

Now it is easy to see that G is an (n, k)-function, since x(2k+1)2k−1

, xdi +xdi·2
k

= Trnk (x
di) ∈ F2k for any

x ∈ F2n and 1 ≤ i ≤ 2r−1 − 1.

Considering the vectorial bent (n, k)-function G(x) described above, for any λ ∈ F
∗
2k , we have Gλ(x) =

Trk1(λG(x)) = Trk1(λx
(2k+1)2k−1

) + Trn1 (λ
2r−1−1∑

i=1

x(i2k−r+1)(2k−1)+1). In order to construct new vectorial

bent functions of the form (1), one has to calculate the dual G∗
λ(x) for each λ ∈ F

∗
2k .

Let λ = 1, then Gλ(x) = Trk1(x
(2k+1)2k−1

) + Trn1 (
2r−1−1∑

i=1

x(i2k−r+1)(2k−1)+1) which is exactly the

Leander-Kholosha’s class of bent functions (see [13]). Take any u ∈ F2n with u+u = 1. Then it has been
shown the dual function G∗

1(x) of G1(x) is given by

G∗
1(x) = Trk1((u(1 + x+ x2k) + u2n−r

+ x2k)(1 + x+ x2k)1/(2
r−1)),

where 1/(2r − 1) is interpreted modulo 2k − 1, say it is a positive integer s such that (2r − 1) · s ≡
1 (mod 2k − 1) (see [1, Theorem 1]). Let t = 2r−1 − 1, dt = (2k − 1)(t2k−r + 1) + 1. In [14, Proposition
3], the authors have shown that gcd(dt, 2

n − 1) = 1, and for each λ ∈ F
∗
2k , there exists a unique element

δ ∈ F2n such that λ = δdt , and Gλ(x) = G1(δx). Here, one can see that δ ∈ F2k .
Now we are in position to give the dual G∗

λ(x) of Gλ(x) for each λ ∈ F
∗
2k .

Proposition 5.6. Let G(x) be the vectorial bent (n, k)-function described above. Then G∗
λ(x) = G∗

1(δ
−1x)

for each λ ∈ F
∗
2k , where δ is the unique element in F2n such that λ = δdt , dt = 2r−1 − 1. In particular,

for any a, b ∈ F
∗
2k , DaDbG

∗
λ(x) = 0.

Proof. We begin our proof from two bent functions g, h ∈ Bn satisfying that g(x) = h(δx) for some
δ ∈ F

∗
2n . We will obtain that h∗(x) = g∗(δx), and then the first assertion holds true when we take

g(x) = Gλ(x), h(x) = G1(x). Let a ∈ F2n , we have

Wh(a) =
∑

y∈F2n

(−1)h(y)+Trn1 (ay)

=
∑

x∈F2n

(−1)h(δx)+Trn1 (aδx)

=
∑

x∈F2n

(−1)g(x)+Trn1 (aδx)

= Wg(aδ).

It follows that 2k(−1)h
∗(a) = 2k(−1)g

∗(δa) for any a ∈ F2n , and hence h∗(a) = g∗(δa). Note that by
the proof of Theorem 11 in [16], one has DaDbG

∗
1(x) = 0 for any a, b ∈ F

∗
2k . Then DaDbG

∗
λ(x) =

DaDbG
∗
1(δ

−1x) = Dδ−1aDδ−1bG
∗
1(y) = 0 with y = δ−1x, since δ ∈ F

∗
2k by the fact λ ∈ F

∗
2k , λ = δdt ,

gcd(dt, 2
n − 1) = 1.

Theorem 5.7. Let {u1, . . . , uk} be a basis of F2k over F2, and G(x) =
2r−1∑
i=1

x(i2k−r+1)(2k−1)+1 with

r > 1, gcd(r, k) = 1. Let F (X1, X2, . . . , Xτ ) be any reduced polynomial in F2[X1, X2, . . . , Xτ ] with
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algebraic degree d. Then H(x) = G(x)+F (Trn1 (ui1x),Tr
n
1 (ui2x), . . . ,Tr

n
1 (uiτx)) is a vectorial bent (n, k)-

function, where {i1, . . . , iτ} ⊆ {1, . . . , k}. Furthermore, if d = k, and the algebraic degree of G is not
equal to k, then H(x) has algebraic degree k.

Proof. To show the first assertion, it needs only to show that DuiDujG
∗
λ(x) = 0 for all λ ∈ F

∗
2k satisfying

Trk1(λ) = 1 and any 1 ≤ i < j ≤ k. However, this can be seen from Proposition 5.6. Noting that
ui1 , . . . , uiτ are linearly independent over F2, we have that the algebraic degree of the univariate function
F (Trn1 (ui1x),Tr

n
1 (ui2x), . . . ,Tr

n
1 (uiτx)) is equal to d by Lemma 2 of [27]. However, for any vectorial bent

function, its algebraic degree is at most k, hence the last assertion follows from the fact that the algebraic
degree d(H) of H is equal to max(d(G), d) = k.

Corollary 5.8. With the same conditions of Theorem 5.7. Let t be a positive integer. Let Fi(X1, . . . , Xk),
i = 1, . . . , t, be any reduced polynomials in F2[X1, . . . , Xk]. Set fi(x) := Fi(Tr

n
1 (u1x)), . . . ,Tr

n
1 (ukx)) for

each i = 1, . . . , t. Then Ĥ(x) = (
2r−1∑
i=1

x(i2k−r+1)(2k−1)+1, f1(x), . . . , ft(x)) is a vectorial plateaued (n, k+t)-

function if and only if the (n, t)-function (f1(x), . . . , ft(x)) is vectorial plateaued. In particular, if k > 2

and fi is a quadratic function for each i = 1, . . . , t, then Ĥ(x) is a non-quadratic vectorial plateaued
function.

Proof. The first assertion can be seen from Corollary 4.5 and Theorem 5.7. We need only to show the
last assertion. It is well known that quadratic vectorial functions are plateaued, for instance see [7]. Since

r > 1 and k > 2, the algebraic degree of H is greater than 2. Now, one can conclude that Ĥ(x) is a
non-quadratic vectorial plateaued function.

Remark 5.9. With similar arguments as in Corollary 5.3, one can prove that the function Ĥ(x) described
above is a vectorial function with maximal number of bent components.

C. New infinite families of vectorial bent functions from Gold-Like monomial functions

Throughout this subsection, n = 4k is a positive integer with k ≥ 2. Mesnager [16] pointed out that

the monomial function Trn1 (λx
2k+1) is self-dual bent for any λ ∈ F2n satisfying λ + λ23k = 1. Inspired

by this work, we consider in this subsection the (n, n)-function x 7→ x2k+1. Note that in [29, Theorem

3] the authors have shown that for a ∈ F
∗
2n , Tr

n
k (ax

2k+1) is a vectorial bent (n, k)-function if and only

if a 6∈ 〈̺2
k+1〉, where ̺ is a primitive element of F2n , 〈a〉 is the cyclic subgroup of F∗

2n generated by a.

Denote U = {x ∈ F22k | x2k+1 = 1}. Let ω = ̺(2
k−1)(22k+1). Then it can be seen that ω ∈ U\{1} ⊆ F22k ,

ω 6∈ 〈̺2
k+1〉, and ω + ω2k 6= 0. Let G(x) = Tr4kk (ωx2k+1). Thus, G is a vectorial bent (n, k)-function by

Theorem 3 of [29].
Now, in order to construct vectorial bent functions of the form (1), firstly one has to determine the

dual G∗
λ(x) of Gλ(x) = Trk1(λTr

4k
k (ωx2k+1)) = Trn1 (λωx

2k+1) for all λ ∈ F
∗
2k such that Trk1(λ) = 1. We

need the following lemma which gives the dual G∗
λ(x) for all λ ∈ F

∗
2k .

Lemma 5.10. With the same notations above. Let λ0 = (w + w2k )−1. Then λ0 ∈ F
∗
2k , Tr

k
1(λ0) = 1,

and Gλ0 (x) is a self-dual bent function. For any λ ∈ F
∗
2k , let δ be the unique element in F

∗
2k such that

δ2
k+1 = λλ−1

0 . Then G∗
λ(x) = Gλ0(δ

−1x). In particular, for any a, b ∈ F
∗
22k satisfying ab2

k

∈ F2k ,

DaDbG
∗
λ(x) = 0 for all λ ∈ F

∗
2k such that Trk1(λ) = 1.

Proof. Since ω ∈ U\{1} ⊆ F22k\F2k , we have w + w2k 6= 0, λ0 = (w + w2k)−1 ∈ F
∗
2k , and Trk1(λ0) = 1.

Note that for λ ∈ F2n , λ + λ23k = 1 is equivalent to λ2k + λ = 1. For those λ, Mesnager has showed

that Trn1 (λx
2k+1) is a self-dual bent function [16, Lemma 23]. Now, λ0ω + (λ0ω)

2k = λ0(ω + ω2k) = 1.

Therefore, Gλ0(x) = Trn1 (λ0ωx
2k+1) is a self-dual bent function. Note that gcd(2k + 1, 2k − 1)=1,

for a given λ ∈ F
∗
2k , there exists a unique element δ ∈ F

∗
2k such that δ2

k+1 = λλ−1
0 . Then we have

Gλ(x) = Trn1 (λωx
2k+1) = Trn1 (λλ

−1
0 λ0ωx

2k+1) = Trn1 (λ0ω(δx)
2k+1) = Gλ0(δx). By similar arguments as
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in Proposition 5.6 and the fact that G∗
λ0
(x) is self-dual, we have G∗

λ(x) = G∗
λ0
(δ−1x) = Gλ0(δ

−1x). Note

that for any a, b ∈ F2n , DaDbG
∗
λ(x) = DaDbGλ0(δ

−1x) = Trn1 (λ
2
0λ

−1ω(a2
k

b+ab2
k

)). Thus, if ab2
k

∈ F2k ,
then DaDbG

∗
λ(x) = 0. We are done.

Theorem 5.11. Let n = 4k with k ≥ 2 and τ be an integer such that 1 ≤ τ ≤ k. Let {u1, . . . , uk} ⊆ F
∗
22k

such that uiu
2k

j ∈ F
∗
2k for any 1 ≤ i < j ≤ k. Let F (X1, X2, . . . , Xτ ) be any reduced polynomial in

F2[X1, X2, . . . , Xτ ] with algebraic degree d. Then H(x) = Trnk (ωx
2k+1) + F (Trn1 (ui1x), . . . ,Tr

n
1 (uiτx)) is

a vectorial bent (n, k)-function, where ω is a generator of the cyclic group U = {x ∈ F22k | x2k+1 = 1},
and {i1, . . . , iτ} ⊆ {1, . . . , k}. Furthermore, if u1, . . . , uk are linearly independent over F2 and d ≥ 2,
then H(x) has algebraic degree d.

Remark 5.12. Let the notations be defined in Theorem 5.11. Let {v1, . . . , vk} be a basis of F2k over

F2 and ς be any element in U\{1}. Set ui := viς, i = 1, . . . k, it is clear that uiu
2k

j ∈ F2k for any
1 ≤ i < j ≤ k. This means that we have many choices of u′

is in Theorem 5.11 to get the desired vectorial
bent function.

Corollary 5.13. Assuming conditions of Theorem 5.11, and t a positive integer. Let Fi(X1, . . . , Xk),
i = 1, . . . , t, be any reduced polynomials in F2[X1, . . . , Xk]. Set fi(x) := Fi(Tr

n
1 (u1x)), . . . ,Tr

n
1 (ukx)) for

each 1 ≤ i ≤ t. Then Ĥ(x) = (x2k+1, f1(x), . . . , ft(x)) is a vectorial plateaued (n, k + t)-function if and
only if the (n, t)-function (f1(x), . . . , ft(x)) is vectorial plateaued.

Proof. This can be seen from Corollary 4.5 and Theorem 5.11.

Remark 5.14. With similar arguments as in Corollary 5.13, one has that the function Ĥ(x) described
above is a vectorial function with maximal number of bent components.

6 Concluding Remarks

In this paper, we proposed a generic method to construct vectorial bent (plateaued) functions via the
second-order derivatives, and obtained (at least) three infinite families of vectorial bent (plateaued) from

the following three classes of (n, n)-functions: G1(x) = x2k+1 with n = 2k; G2(x) =
2r−1∑
i=1

x(i2k−r+1)(2k−1)+1

with n = 2k, 1 < r < k and gcd(r, k) = 1; G3(x) = x2k+1 with n = 4k. In particular, the generic construc-
tion can produce vectorial bent functions with high algebraic degrees and vectorial plateaued functions
having the maximal number of bent components.
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