
ar
X

iv
:2

00
1.

03
12

4v
2 

 [
m

at
h.

C
O

] 
 4

 O
ct

 2
02

1

COPS AND ROBBERS ON 2K2-FREE GRAPHS

JÉRÉMIE TURCOTTE

Abstract. We prove that the cop number of any 2K2-free graph is at most 2, proving a conjecture
of Sivaraman and Testa. We also show that the upper bound of 3 on the cop number of 2K1+K2-free
(co-diamond–free) graphs is best possible.

1. Introduction

Cops and robbers [14, 16, 2] is a turn-based game opposing a group of cops to a robber on some
connected graph G. The cops’ objective is to capture the robber, whereas the latter attempts to
escape indefinitely. The possible positions during the game are the vertices of G. On the first turn of
the game, starting with the cops, each player picks the vertex where it will start the game from, and
then alternate moving. When a cop or the robber is on some vertex u, its possible moves are staying
on u or moving to a vertex adjacent to u (moving along an edge). The cop number c(G) [2] is the
number of cops which is both sufficient and necessary for their victory. We say that G is k-cop-win if
c(G) = k and that G is k-cop-lose if c(G) > k.

We define the graphs Pt, Ct, Kt, and Kt,r as, respectively, the path on t vertices, the cycle on t
vertices, the complete graph on t vertices, and the complete bipartite graph with parts (colour classes)
of size t and r. If G1 and G2 are graphs, then G1 + G2 is the disjoint union of G1 and G2. For any
graph G, we define mG as the graph composed of m disjoint copies of G, that is G+ · · ·+G︸ ︷︷ ︸

m times

, and we

define G as the complement of G. Finally, we say N = {1, 2, . . .}.
It is frequent in graph theory to consider excluding, or forbidding, some substructures in graphs,

most notably induced subgraphs, subgraphs or minors. We will say that say a graph G is H-free,
H-subgraph-free or H-minor free if G does not contain, respectively, any induced subgraph, subgraph,
or minor which is isomorphic to H . One may similarly define graphs which exclude multiple graphs
as subgraphs or minors.

There has been a fair amount of research relating the cop number with forbidden subgraphs or
minors. In particular, the interest has mostly been on finding constant upper bounds on the cop
number (in other words, which do not vary with the order of the graph we are playing on). The first
major general result of this type is the following.

Theorem 1.1. [3] If H is a graph, then there exists MH ∈ N such that for any H-minor-free connected
graph G we have c(G) ≤ MH .

We assume that MH is as small as possible; we note that this value is denoted by α(H) in [3].
With the existence of such a bound proved, one might also be interested in optimizing this value MH

for specific choices of H . For instance, it was shown in [3] that MH < |E(H)| if H has no isolated
vertices and one of its components has at least 2 edges. It is also proved in [3] that MK5

= 3 and
that MK3,3

= 3, improving on the result from [2] that planar graphs have cop number at most 3;
Wagner’s theorem [21] states that the class of planar graphs and the class of {K5,K3,3}-minor-free
graphs coincide.

Results of this type for H-subgraph-free and H-free graphs were found in [9].
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Theorem 1.2. [9] If H is a graph and SH ∈ N ∪ {∞} is smallest possible such that for any H-
subgraph-free connected graph G we have c(G) ≤ SH , then SH < ∞ if and only if every connected
component of H is a tree with at most 3 vertices of degree at most 1.

Theorem 1.3. [9] If H is a graph and IH ∈ N ∪ {∞} is smallest possible such that for any H-free
connected graph G we have c(G) ≤ IH , then IH < ∞ if and only if every connected component of H
is a path.

Some families with multiple excluded induced subgraphs are discussed, for instance, in [9, 10, 11, 18].
In this paper, we will consider specifically the problem of excluding one graph from being an induced
subgraph, as in Theorem 1.3. We want to find to bound (and if possible find the exact value of) IH
from Theorem 1.3. The simplest case is that of a single forbidden path as induced subgraph, for which
the following bound has been proved.

Theorem 1.4. [9] If G is a connected Pt-free graph (t ≥ 3), then c(G) ≤ t− 2.

In other words, we know that IPt
≤ t−2. It has been conjectured that this bound can be improved

by using one fewer cops when t ≥ 5.

Conjecture 1.5. [17] If G is a connected Pt-free graph (t ≥ 5), then c(G) ≤ t− 3.

An argument proving this statement for the class of P5-free graphs might generalize to the whole
conjecture. It has been suggested by Seamone and Hosseini in private communication that one possible
approach towards this conjecture is first proving it for 2K2-free (2P2-free) graphs, which is a proper
subclass of P5-free graphs. This conjecture first appears in [19].

Conjecture 1.6. [19] If G is a connected 2K2-free graph, then c(G) ≤ 2.

The main objective of this paper is to prove this conjecture, in other words to prove that I2K2
= 2.

Some partial results are obtained in [10, 19]. In particular, hypothetical 2K2-free 2-cop-lose graphs
have diameter 2 and contain induced cycles of length 3, 4 and 5, as well as an induced subgraph
isomorphic to P 5 (also called the house graph). However, we will not be using these results in our
proof.

In Section 5, we consider the class of 2K1 +K2-free graphs, also known as 2P1 +P2-free graphs, or
co-diamond–free graphs (the diamond graph being the graph K4 with one edge removed). It is easy
to see that these graphs have cop number at most 3. We will show that this bound is best possible
by presenting an infinite family of 2K1 +K2-free graphs.

2. Traps

We begin with some basic notation. Let G be a graph and x ∈ V (G). We denote by N(x) the
neighbourhood of x and by N [x] = N(x) ∪ {x} the closed neighbourhood of u. If S ⊆ V (G), then
G − S denotes the subgraph of G induced by V (G) \ S; if S = {x}, we write G − x for G − S. We
write that graphs G1, G2 are isomorphic by G1 ≃ G2.

We can now introduce an important concept which will be central in our proof.

Definition 2.1. Let G be a graph. A vertex u ∈ V (G) is a trap if there exists x1, x2 ∈ V (G) (not
necessarily distinct) such that x1, x2 6= u and N [u] ⊆ N [x1] ∪N [x2]. We say u is trapped by x1, x2,
or that x1, x2 trap u.

In other words, a trap gives a winning position for the cops: if the robber is on a trap u and the
cops are on the vertices trapping u, then the robber cannot escape and will lose at the next turn.
A trap is a generalization of the classical definition of a corner (also called an irreducible vertex) in
the game with one cop, see [14]. We note that this concept coïncides with the concept of a 2-trap in
[22] from which the terminology is inspired. The idea is also implicit in [7], in which one would write
u �1 (x1, x2) to say that u is trapped by x1, x2. We now define different types of traps.

Definition 2.2. Let G be a graph, u ∈ V (G) be a trap and x1, x2 ∈ V (G) be a choice of vertices
trapping u. We say
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(1) u is a type-I trap if exactly one of x1, x2 is adjacent to u (in particular they are distinct);
(2) u is a type-II trap if both x1 and x2 are adjacent to u (x1, x2 are not necessarily distinct); and
(3) u is a connected trap if x1, x2 are adjacent vertices (in particular they are distinct).

To lighten the proofs, we will say that u is c-trapped by x1 and x2 in the case of a connected trap.

Note that a trap can simultaneously be any combination of type-I, type-II, connected and not
connected, as a vertex may be trapped in multiple ways. On the other hand, every trap must be at
least one of type-I or type-II.

3. Finding connected traps

The structural properties of 2K2-free graphs have been studied in various papers, for example in
[6]. In this section, we prove the existence of connected traps in such graphs. We start with some
well-known remarks about 2K2-free graphs, for which we omit the obvious proofs.

Lemma 3.1. If G is a 2K2-free graph, then

(a) only one connected component of G can contain edges;
(b) the diameter of any connected 2K2-free graph is at most 3; and
(c) any induced subgraph of G is 2K2-free.

The following reformulation of the 2K2-free property will be used later to simplify some arguments.

Lemma 3.2. If G is a 2K2-free graph, u ∈ V (G), vw ∈ E (G−N [u]), then every neighbour of u is
adjacent to v or w (or both).

Proof. Suppose to the contrary that there exists a neighbour x of u, but not of v, w. Then, the edges
ux, vw form a 2K2. �

This lemma also yields a direct proof that 3 cops can catch the robber on connected 2K2-free
graphs, as noted in [19]. Choose an edge and place a cop on each end of this edge. By the lemma, the
robber (who must choose a starting vertex not adjacent to the cops) cannot move, and a third cop
can go catch the robber.

Lemma 3.3. If G is a connected 2K2-free graph, u ∈ V (G) and G −N [u] ≃ C5, then G contains a
connected trap.

Proof. Denote a1, . . . , a5 the vertices of G − N [u], such that aiai+1 ∈ E(G) for 1 ≤ i ≤ 5, working
modulo 5.

It is easily seen that any vertex x ∈ N(u) must be adjacent to at least 3 vertices of the 5-cycle
G−N [u] by applying Lemma 3.2 for each edge aiai+1.

If x is adjacent to 3 or more consecutive vertices of G−N [u], say ai−1, ai, ai+1 for some 1 ≤ i ≤ 5,
then ai is c-trapped by u and x: all vertices in G are dominated by u or x, except possibly for
ai+2, ai+3, to which ai is not adjacent.

Thus, we may now consider that every vertex of N(u) is adjacent to exactly 3 vertices of the 5-cycle
G−N [u], only two of which are adjacent: if x ∈ N(u), then N(x) \N [u] = {ai, ai+2, ai+3} for some
1 ≤ i ≤ 5.

If distinct vertices x1, x2 ∈ N(u) have the same neighbours in G − N [u], then x1 is c-trapped by
x2 and u. Hence, we may now consider that every vertex of N(u) has a distinct neighbourhood in
G −N [u]. We will denote the possible vertices of N(u) as follows: N(u) ⊆ {b1, . . . , b5}, such that bi
is adjacent to exactly ai, ai+2 and ai+3 in G − N [u]. If bi, bi+1 ∈ N(u), then bibi+1 is an edge, as
otherwise biai+2, bi+1a(i+1)+3 would form an induced 2K2. This does not exclude that there may be
other edges between the bi’s.

Choose a vertex bi ∈ N(u) (at least one must exist in order for G to be connected). Then, u is
c-trapped by bi and ai. Indeed, bi is adjacent to bi+1 and bi−1 (if they are in the graph), ai is adjacent
to bi+2 and bi+3 (if they are in the graph), and ai and bi are adjacent. This concludes the proof. �

We are now ready to prove the desired result.
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Proposition 3.4. If G is a connected 2K2-free graph, then either

(1) G ≃ K1;
(2) G ≃ K2;
(3) G ≃ C5; or
(4) G contains a connected trap.

Proof. We proceed by induction. If |V (G)| ∈ {1, 2}, this is trivially true. Suppose that |V (G)| ≥ 3
and the statement is true by induction for connected 2K2-free graphs G′ such that |V (G′)| < |V (G)|.
Let u be any vertex of G. Recall that G−N [u] is 2K2-free, by Lemma 3.1(c).

If G −N [u] is empty, then u dominates G. As |V (G)| ≥ 3, the vertex u has at least two distinct
neighbours x1, x2. Then, x1 is c-trapped by u and x2.

If G−N [u] contains a connected component which is a single vertex y, then y is c-trapped by u and
any neighbour of y (which is necessarily in N(u)). Otherwise, G − N [u] contains no isolated vertex
and by Lemma 3.1(a), G−N [u] is connected. Also, G−N [u] contains more than one vertex.

If G−N [u] is an edge v1v2: If v1 and v2 have a common neighbour t in N(u), then v1 is c-trapped
by t and u. Otherwise, v1 and v2 have no common neighbour. Denote by A the neighbours of v1 in
N(u) and by B the neighbours of v2 in N(u). By Lemma 3.2, N(u) = A ∪ B. At least one of A,B
must be non-empty in order for G to be connected. Without loss of generality, |A| ≥ |B|. If |A| = 1
and |B| = 0, then G is path of length 4, which contains a connected trap. If |A| = |B| = 1, then
we either have that G ≃ C5 (if the vertex in A and the vertex in B are not adjacent) or G contains
a connected trap (if the vertex in A and the vertex in B are adjacent, u is a connected trap). Now
consider that |A| > 1 and let a1, a2 ∈ A be distinct vertices. As a1 and a2 are both adjacent to v1
but not v2, we have that a1 is c-trapped by a2 and u.

The remaining case is that G−N [u] contains at least 3 vertices (and is connected). By the inductive
hypothesis, G − N [u] is either a C5 or contains a connected trap. If G − N [u] ≃ C5, then Lemma
3.3 yields that G contains a connected trap. Otherwise, denote by v the vertex of G − N [u] which
is a connected trap, and w1, w2 the vertices trapping v in G − N [u]. We know that w1, w2 together
dominate v and all neighbours of v in G−N [u]. As w1w2 ∈ E(G), they also dominate all vertices in
N(u) by Lemma 3.2. Hence, v is also a connected trap in G. �

4. A winning strategy

In this section, we improve the upper bound on the cop number of 2K2-free graphs by using the
traps found in the previous section.

In general, the fact that a graph contains traps does not necessarily imply that the cops can bring
the game to that position. For example, it is shown in [15] that all planar graphs of order at most
19 contain a trap, but it is still open as to whether 2 cops can win on all planar graphs of order at
most 19. Another example is that it is shown in [22] that all diameter 2 graphs of order n contain
a set of vertices of size at most

√
n which dominates the neighbourhood of some other vertex (called

a
√
n-trap), but it is unknown whether the cop number of these graphs is upper bounded by

√
n (it

is proved to be bounded by
√
2n). In our case however, we will show that containing a trap will

give us meaningful information. This is somewhat similar to the equivalence between cop-win and
dismantlable graphs, see [14].

For the remainder of this section, we will denote by Ĝ a minimal (meaning smallest relative to the
number of vertices) connected 2K2-free 2-cop-lose graph. Our objective is to find a contradiction in
order to show that such a graph cannot exist. We first need the following lemma.

Lemma 4.1. For any u ∈ V (Ĝ), the induced subgraph Ĝ− u is connected, and the induced subgraph

Ĝ−N [u] is non-empty, connected and contains no isolated vertex.

Proof. Recall that any induced subgraph of Ĝ is 2K2-free, by Lemma 3.1(c). If Ĝ−u is disconnected,

then by Lemma 3.1(a), there is a vertex x isolated in Ĝ−u. This implies that in Ĝ, the only neighbour
of x is u. It is easily seen that removing a vertex of degree 1 does not change the cop number of a
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graph nor make it disconnected. This contradicts the minimality of Ĝ, as Ĝ−x would be a connected
2K2-free 2-cop-lose graph on fewer vertices.

It is clear Ĝ − N [u] is non-empty, otherwise a single cop on u would catch the robber in 1 turn,

contradicting that Ĝ−N [u] is 2-cop-lose. Suppose there exists a vertex v which is isolated in Ĝ−N [u].

Then, v is such that all of its neighbours in Ĝ are in N(u). As Ĝ − v is a connected 2K2-free graph

on fewer vertices than Ĝ, there exists a winning strategy for 2 cops on Ĝ− v.

We can then define a winning strategy for 2 cops on Ĝ using the strategy on Ĝ − v. We say the
robber’s shadow is on u whenever the robber is actually on v, and for all other positions the robber’s
shadow is on the same vertex as the robber. Now, as N(v) ⊆ N(u), any move the robber makes yields

a valid move for the robber’s shadow on Ĝ − v. The cops apply the strategy on Ĝ − v to catch the
robber’s shadow. At the end of this strategy, if the robber is not caught, then necessarily the robber
is on v and a cop is on u. This cop stays on u, and the robber on v cannot move. The other cop may

then go capture the robber, contradicting that Ĝ is 2-cop-lose. This is a well known argument, see
[14, Theorem 1] and [5, Theorems 3.1 and 3.2] for more general versions.

Since Ĝ−N [u] contains no isolated vertex, it is connected by Lemma 3.1(a). �

Even if 2 cops cannot win on Ĝ, we now show that the cops have great power as to making the
robber move to a given position. To some extent we will be able to assume that we can place both
the cops and the robber.

Lemma 4.2. If u ∈ V (Ĝ) and vw ∈ E(Ĝ −N [u]), then there exists a strategy, playing with 2 cops,
ensuring that the cops are on v, w and the robber is on u and cannot move.

Proof. We first wish to force the robber to move to u. By Lemma 4.1, Ĝ − u is connected, and by

Lemma 3.1(c) it is 2K2-free. Hence, by the minimality of Ĝ, we know that Ĝ − u has cop number

at most 2. As long as the robber is not on u, the cops copy the strategy for Ĝ − u on Ĝ. If the
robber never moves to u, the robber will eventually be caught, hence the robber has no choice but
to eventually move to u. Denote z1 and z2 the positions of the cops at that point, we know that

z1, z2 /∈ N [u], as otherwise the cops could capture the robber one turn later, a contradiction as Ĝ is
2-cop-lose.

We now wish to bring the two cops to the ends of any edge in Ĝ−N [u], while keeping the robber

on u. If z1 = z2, one of the cops moves to a neighbour of z1 in Ĝ−N [u], which must exist as Ĝ−N [u]

is not a unique vertex by Lemma 4.1. If z1z2 ∈ E(Ĝ), then they are already in the desired position.

If z1 and z2 have a common neighbour z in Ĝ−N [u], we move the cop on z2 to z. If not, by Lemma

4.1, Ĝ − N [u] is connected and, by Lemma 3.1(b), z1 and z2 are at distance 3 in Ĝ − N [u]: there

exists z′1, z
′

2 such that z1z
′

1z
′

2z2 is a path contained in Ĝ−N [u]. We move the cop on z1 to z′1 and the
cop on z2 to z′2. Now that the cops are on adjacent vertices, both not in N [u], then by Lemma 3.2,
the robber cannot move.

We now wish to bring the cops to the ends of the edge vw, while keeping the robber on u. We will

do so by never leaving Ĝ−N [u] and always keeping the cops on adjacent vertices, which guarantees
that the robber will never be able to move. Suppose the cops are now on the edge ab. Let P be a

path completely contained in Ĝ−N [u] starting with the edge ab and ending with the edge vw, which

exists as Ĝ − N [u] is connected. The cops move along P one behind the other. This concludes the
proof. �

In Section 2, we defined type-I and type-II traps. Using the strategy we developed in the last

lemma, we will be able to exclude these from Ĝ.

Lemma 4.3. Ĝ does not contain a type-I trap.

Proof. Suppose to the contrary that there exists a type-I trap u. We will use this trap to construct a

winning strategy for 2 cops on Ĝ.
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Let x, v be the vertices trapping u, with x adjacent to u and v in Ĝ−N [u]. Let w be any neighbour

of v in Ĝ−N [u], which exists as Ĝ−N [u] contains no isolated vertex by Lemma 4.1. Using Lemma
4.2, place the cops on v and w, and the robber on u.

If wx is an edge, then move the cop on w to x and keep the other cop on v. If wx is not an edge,
then xv is an edge by Lemma 3.2. Move the cop on v to x and the cop on w to v.

In both cases, the robber is now on u with the cops on x, v: the robber is caught at the next move.

This is a contradiction as Ĝ is 2-cop-lose. �

Before considering the case of type-II traps, we need the following proposition from [6]. We prove
it here in order for this paper to be self-contained.

Proposition 4.4. [6] If G is a connected bipartite 2K2-free graph, then each colour class of G contains
a vertex adjacent to all vertices of the other colour class of G.

Proof. Denote A,B the colour classes of G. Choose m ∈ A of highest degree. Suppose there exists
b ∈ B such that mb is not an edge. As G is connected, there exists a ∈ A such that ab in an edge.
Now, for every neighbour x ∈ N(m) (necessarily, x ∈ B), we compare edges ab and mx: the 2K2-free
property yields that ax is an edge. Thus, |N(a)| > |N(m)|, since N(m) ⊆ N(a) and b ∈ N(a)\N(m),
which contradicts that m has highest degree in A. �

Lemma 4.5. If Ĝ contains a type-II trap, then Ĝ contains a type-I trap.

Proof. Let x1,x2 be the vertices trapping a vertex u such that x1 and x2 are both adjacent to u. We
can suppose x1 and x2 are distinct, as if N [u] ⊆ N [x1], then simply pick x2 to be any other neighbour

of u (which must exist as otherwise Ĝ− x1 is disconnected, contradicting Lemma 4.1).

Suppose w is a neighbour of x1 in Ĝ−N [u], we wish to prove w is adjacent to x2. Suppose w is not

adjacent to x2, then denote by v any neighbour of w in Ĝ−N [u], which exists as Ĝ−N [u] contains
no isolated vertex by Lemma 4.1. Then, v must adjacent to x2 by Lemma 3.2. Playing with 2 cops,
place the cops on w and v and the robber on u using Lemma 4.2. Then, move the cop on w to x1

and the cop on v to x2. The robber will be caught one turn later, which is a contradiction as Ĝ is
2-cop-lose. Thus, w must be adjacent to x2.

By applying this reasoning for every neighbour of x1 and of x2 in Ĝ−N [u], we find that every vertex

of Ĝ − N [u] is either adjacent to both x1 and x2, or to neither. We can thus partition V (Ĝ) \ N [u]

into the sets A = {v ∈ V (Ĝ) \N [u] : zx1, zx2 ∈ E(Ĝ)} and B = {v ∈ V (Ĝ) \N [u] : zx1, zx2 /∈ E(Ĝ)}.
If there is an edge between 2 vertices in B, comparing this edge with ux1 yields an induced 2K2,

and thus B is a stable set. If there is an edge between two vertices in A, then, playing with 2 cops,
place the cops on the ends of this edge and the robber on u, using Lemma 4.2, and then move the

cops to x1 and x2, yielding a contradiction as Ĝ is 2-cop-lose. Thus, Ĝ − N [u] is a (connected, by

Lemma 4.1) bipartite graph. Note that B is non-empty as A is a stable set and Ĝ−N [u] contains no
isolated vertex.

By Proposition 4.4, there exists a vertex b in B adjacent to every vertex of A. Every neighbour

of x1 in N [u] is (by definition) either u or adjacent to u, and every neighbour of x1 in Ĝ − N [u] is

adjacent to b. Furthermore, x1b /∈ E(Ĝ). Thus, x1 is a type-I trap, trapped by u and b. �

We are now ready to prove Conjecture 1.5.

Theorem 4.6. If G is a connected 2K2-free graph, then c(G) ≤ 2.

Proof. Let Ĝ be a minimal counter-example. Lemmas 4.3 and 4.5 imply that Ĝ does not contain any

trap, hence does not contain any connected trap. Thus, by Proposition 3.4, Ĝ is isomorphic to either
K1, K2 or C5, all of which have cop number at most 2. Hence, no minimal counter-example to the
statement exists, which proves the statement. �

We note that this result is best possible (in other words I2K2
= 2), as there are an infinite number

of 2K2-free graphs with cop number 2. It is easily seen that complete multipartite graphs are 2K2-free,
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and that such graphs have cop number 2 if each colour class (each independent set) has size at least
2.

The more general question of the cop number of mK2-free graphs (m ≥ 2) is raised in [19]. One
easily notices that 2m − 1 cops can win, as noted in [19]: place 2 cops on the ends of an edge uv
and apply induction to the (m− 1)K2-free graph G−N [u]∪N [v], with the base case being 2K2-free
graphs. Having improved by 1 the bound on the cop number of 2K2-free graphs, we can also improve
by 1 the bound on the cop number of mK2-free graphs.

Corollary 4.7. If G is a connected mK2-free graph (m ≥ 2), then c(G) ≤ 2m− 2.

Applying the same type of argument with base case Theorem 1.4 yields the following general result
as formulated in [10].

Theorem 4.8. [10] If G is a Pi1 + · · · + Pik -free graph (k, i1, . . . , ik ∈ N) and there is at least one
index ij ≥ 3 (1 ≤ j ≤ k), then c(G) ≤ i1 + · · ·+ ik − 2.

Using Theorem 4.6, we can then loosen the restriction on the indices as follows.

Corollary 4.9. If G is a Pi1 + · · ·+ Pik -free graph (k, i1, . . . , ik ∈ N) and there is either

(1) at least one index ij ≥ 3 (1 ≤ j ≤ k), or
(2) there are two indices ij , ij′ = 2 (1 ≤ j < j′ ≤ k),

then c(G) ≤ i1 + · · ·+ ik − 2.

5. Co-diamond–free graphs

The statement of Corollary 4.9 naturally leads us to asking whether the restriction on the indices
can be further loosened by only requiring one of the indices to be at least 2. We are thus interested
in the case of mP1 + P2-free (or mK1 +K2-free) graphs.

The statement does not generalize for the case m = 1. It is well-known [8] and easy to see that
the P1 + P2-free graphs (or P 3-free graphs) are exactly the complete multipartite graphs. As noted
earlier, the cop number of such graphs is 2 when each colour class has size at least 2.

In this section, we will consider the case m = 2: 2K1 +K2-free (or co-diamond–free graphs).

Proposition 5.1. If G is a connected 2K1 +K2-free graph, then c(G) ≤ 3.

Proof. The proof is completely analogous to the one for 2K2-free graphs. If G is complete, then
c(G) = 1. Otherwise, there exists non-adjacent vertices v, w; place one cop on each of these vertices.
The robber must choose a vertex u adjacent to neither v nor w. Since G is 2K1+K2-free, all neighbours
or u are adjacent to v or w, hence the robber cannot move. A third cop can then go capture the
robber. �

It would be natural to attempt proving that the cop number of these graphs is at most 2 using
a proof similar to the one for 2K2-free graphs, but replacing connected traps by disconnected trap,
that is a trap for which the trapping vertices are not adjacent (and distinct). Although Lemmas 4.3
and 4.5 appear to have analogues for 2K1 +K2-free graphs (we note this is using some ideas from [4,
Lemma 4.4]), no inductive strategy to find traps similar to Lemma 3.4 can work. Indeed, if u is a
vertex of a 2K1 +K2-free graph G, then G −N [u] is a K1 +K2-free graph, so necessarily complete
multipartite graph. If each colour class has size at least 3, it does not contain any disconnected trap.
Graphs for which this holds for every vertex u (if such graphs exist) are good candidates to have cop
number 3. A computer search using the geng program from the nauty Traces package [12] (using
the PRUNE feature to generate 2K1 +K2-free graphs), Mathematica [26] and two implementations
of a cop number algorithm [1, 20], we were able to find a 2K1+K2-free graph requiring 3 cops, shown
in Figure 1.

We can in fact generalize this example to an infinite and well-known class of graphs. We will need
some definitions. We write [n] = {1, . . . , n}. Let G1, G2 be graphs. We define their categorical product
(or tensor product) as the graph with vertex set V (G1) × V (G2) and for which (u1, u2), (v1, v2) ∈
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Figure 1. K4×K4: All pairs of vertices are adjacent except when aligned vertically
or horizontally. Some edges overlap in the drawing.

V (G1) × V (G2) are adjacent if u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The cop number of products of
graphs (categorical product as well as cartesian and strong products) is in particular studied in [13].

We are interested in graphs of the form Ka ×Kb, which are known as the complement of Rook’s
graphs (see [23, 24, 25], for instance). These graphs are easily visualized in R

2 as the points (vertices)
[a] × [b] where all vertices are pairwise adjacent except when they lie on a line parallel to one of the
axes (in other words, they differ in both coordinates). It can also be seen as the Cayley graph of the
group (Z/aZ× Z/bZ,+) with the generating set

S = {(z1, z2) ∈ Z/aZ× Z/bZ : z1, z2 6= 0}.
Let us note that for every vertex u of G ≃ Ka ×Kb, we have that G − N [u] is a bipartite graph

with colour classes of sizes a− 1 and b− 1.

Theorem 5.2. If G ≃ Ka ×Kb for some a, b ∈ N, then

(1) G is 2K1 +K2-free; and
(2) [13, Theorem 3.2] if a, b ≥ 4, then c(G) = 3.

Proof.
(1) We work using the embedding of the graph in R

2 discussed above. Suppose the contrary, say
that x1, x2, x3, x4 are distinct vertices all pairwise non-adjacent except for the edge x3x4. As
x1 and x2 are not adjacent, there exists a line L containing x1 and x2 which is parallel to
one of the axes. Similarly, let L′ be the line containing x1 and x3. If L 6= L′, then L and L′

are perpendicular, one being horizontal and one vertical. Then, the line between x2 and x3

is diagonal (formally, it has non-zero and non-infinite slope), which is a contradiction since
these vertices are not adjacent. Hence, L contains x3. Analogously, L contains x4. This would
imply that x3 and x4 are non-adjacent, which is a contradiction.

(2) We prove this well-known statement here in order for this paper to be self-contained. The fact
that c(G) ≤ 3 follows from Proposition 5.1 and part (1) of the statement. We show that if
there are only 2 cops the robber always has an escape from the cops (and by a same argument,
that there is a safe starting position for the robber), hence that c(G) ≥ 3.

Without loss of generality, suppose G = G1 ×G2, where G1 ≃ Ka, G2 ≃ Kb. Suppose the
cops are on vertices v = (v1, v2), w = (w1, w2) and the robber is on u = (u1, u2). If neither v
nor w are adjacent to u, the robber can stay still. Otherwise, without loss of generality v is
adjacent to u.

Suppose v, w differ in at most 1 coordinate, without loss of generality in the first coordinate
(in other words v2 = w2). Let x ∈ V (G1) \ {u1, v1, w1}, which exists since |V (G1)| = n1 ≥ 4.
The robber can move to r = (x, v2) as r and u differ in both coordinates: for the first
coordinate by our choice of x, and in the second coordinate since u is adjacent to either v or
w. Since r differs only in one coordinate from v and w, the robber is now safe.
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Suppose v, w differ in both coordinates. We would like to move the robber to either (v1, w2)
or (w1, v2), which are the (only) vertices not adjacent to either v or w. If u is not adjacent to
(v1, w2) nor (w1, v2), then u1 = v1 or u2 = w2, and u1 = w1 or u2 = v2. In other words, the
only vertices adjacent to neither (v1, w2) or (w1, v2) (apart from themselves) are exactly v, w,
and so the robber can move safely to one of these vertices.

In all cases, the robber can win against 2 cops, which completes the proof.
�

6. Further directions

Containing a winning position (in our case, a trap), is a necessary condition for the cops’ victory,
but it is in general not sufficient. It was however crucial in the proof of our main result to first show
that this necessary condition held. We believe that this approach could be useful to bound the cop
number of other graph classes, at least when they are very structured. The following is a list of open
problems in this direction, more specifically for graphs with forbidden induced subgraphs.

(1) It would be interesting to see if the approach used to prove Theorem 4.6 can be used to improve
the bound on the cop number of P5-free graphs, and even possibly to prove Conjecture 1.5,
which was our initial motivation.

(2) Can we further improve the bound on the cop number of mK2-free graphs (m ≥ 2) or is
Corollary 4.7 best possible?

(3) Can the cop number of mK1 +K2-free graphs (m ≥ 3) be as large as m+ 1 (as in the cases
m = 1, 2)?

(4) Denote by γ(G) the domination number of G (the size of the smallest dominating set in G)
and by α(G) the independence number of G (the size of the largest stable set in G). It is easily
seen and well known that c(G) ≤ γ(G) ≤ α(G). What can we say about the cop number of
mK1-free graphs (m ≥ 4), in other words graphs such that α(G) ≤ m− 1? Can we improve
the upper bound to c(G) ≤ m − 2 in order to further generalize Corollary 4.9? If not, what
can we say about graphs for which c(G) = γ(G) = α(G)?

We note that improving these upper bounds also has a practical application. Computing the cop
number of a graph is quite costly in computation time; currently the best algorithm [7] to determine
whether an n-vertex graph has cop number at most k has complexity O

(
n2k+2

)
. It may then be useful

to first verify if there is some easy to compute parameter which directly yields a bound on the cop
number. Verifying whether the graph is H-free, for small graphs H such as 2K2, can be one of these
tests. There is some interest in the community for improving practical computation of the cop number
(even without improving the worst case complexity of the algorithm); the author has discussed the
topic with various people in the past and this application was also suggested by one of the anonymous
reviewers.
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