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Abstract We restrict a degenerate quadratic form f over a finite field of odd

characteristic to subspaces. Thus, a quotient space related to f is introduced.

Then we get a non-degenerate quadratic form induced by f over the quotient

space. Some related results on the subspaces and quotient space are obtained.

Based on this, we solve the weight hierarchies of a family of linear codes related

to f.
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1 Introduction

Weight hierarchies of linear codes have been an interesting topic for their

important value in theory and applications to cryptography. In 1991, Wei in
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the paper [25] presented his wonderful results about weight hierarchies. It has

been shown that the weight hierarchy of a linear code completely characterizes

the performance of the code on the type II wire-tap channel. Readers can refer

to [22] for a detailed survey on the results up to 1995 about weight hierarchies.

The interest towards the knowledge of the weight hierarchy of a linear code

has been continually increasing. Many authors devoted themselves to weight

hierarchies of particular classes of codes [1,2,3,7,10,13,14,26,27]. In general,

it is hard to settle the weight hierarchy of a linear code.

Let p be an odd prime and Fpm be the finite field with pm elements. Denote

by C ⊂ F
n
p an [n, k, d] p-ary linear code with minimum Hamming distance d

[12]. Let [C, r]p be the set of all r-dimensional subspaces of C. For V ∈ [C, r]p,

define

Supp(V ) = {i : xi 6= 0 for some x = (x1, x2, . . . , xn) ∈ V }.

Then we define the r-th (1 ≤ r ≤ k) generalized Hamming weight dr(C) of

linear code C by

dr(C) = min{|Supp(V )| : V ∈ [C, r]p}.

In particular, d1(C) = d. The weight hierarchy of C is defined as the set

{di(C) : 1 ≤ i ≤ k} (see [11,12,15]).

Denote by F
∗
pm the set of nonzero elements in the finite field Fpm . A generic

construction of linear code was proposed by Ding et al.([4,6]). It is as follows.

Let Tr denote the trace function from Fpm to Fp and D = {d1, d2, . . . , dn} ⊂

F
∗
pm . Define a linear code CD with length n as follows:

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ Fpm}, (1)

andD is called the defining set. Many classes of linear codes with a few weights

were obtained by choosing properly defining sets [9,18,28,30,21].

In this paper, we discuss the generalized Hamming weights of a class of

linear codes CD, whose defining set is chosen to be

D = Da
f = {x ∈ Fpm : f(x) = a}, a ∈ F

∗
p. (2)

Here f is a degenerate quadratic form over Fpm with values in Fp.
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In the paper, we settle the weight hierarchy of CDa
f
, a ∈ F

∗
p. In our previous

work [20], the weight hierarchy of CDa
f
(a ∈ F

∗
p) relating to non-degenerate

quadratic forms was solved. In [23,24], Z. Wan and X. Wu calculated the

weight hierarchies of the projective codes from quadrics by the theory of finite

geometry. In the case a = 0, the weight hierarchy of CDa
f
can be deduced from

Theorem 18 in [24].

The weight distributions of CDa
f
have been settled. In reference [5], K. Ding

and C. Ding constructed the linear codes CDa
f
in the case a = 0 relating to the

special quadratic form Tr(X2) and determined their weight distributions. In

[8,30,29], the authors calculated the weight distributions of CDa
f
for general

quadratic forms. In these articles, it was shown that the linear codes CDa
f

have a few weights and can be used to get association schemes, authentication

codes, secret sharing schemes with interesting access structures.

Also, by these results, we know that CDa
f
is an m-dimensional linear code.

So we can employ a general formula for calculating the generalized Hamming

weights of linear codes defined in (1). It is given as follows.

Lemma 1.(Theorem 1, [19]) For each r (1 ≤ r ≤ m), if the dimension

of CD is m, then dr(CD) = n−max{|D
⋂

H | : H ∈ [Fpm ,m− r]p}.

The rest of this paper is organized as follows: in Sect. 2, we present some

basic definitions and results of quadratic forms restricted to subspaces and of

induced quadratic forms over quotient spaces of finite fields; in Sect. 3, using

the results in Sect. 2, we give all the generalized Hamming weights of linear

codes defined in (2).

2 Quadratic Form, Dual Space and Quotient Space

2.1 Restricting Quadratic Forms to Subspaces

The finite field Fpm can be viewed as an m-dimensional vector space over

Fp. Fix a basis υ1, υ2, . . . , υm ∈ Fpm and express each vector X ∈ Fpm in the

unique form X = x1υ1+x2υ2+xmυm, with x1, x2, . . . , xm ∈ Fp. We can write

X = (x1, x2, . . . , xm)T , where T represents the transpose of a matrix.
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Let f : Fpm → Fp be a quadratic form over Fpm with values in Fp [16]. Set

F (X,Y ) =
1

2
[f(X + Y )− f(X)− f(Y )].

We can write f(X) = XTAX, where A is the symmetric matrix (aij)1≤i,j≤m

and aii = f(υi), aij = F (υi, υj).

The rank Rf of quadratic form f is defined to be the rank of matrix

A. We say that f is non-degenerate if Rf = m and degenerate, otherwise.

We can find a invertible matrix M such that MTAM is a diagonal matrix

Λ = diag(λ1, λ2, . . . , λRf
, 0, . . . , 0). Let ∆f = λ1 · λ2 · · ·λRf

. When Rf = 0,

we define ∆f = 1. Let η be the quadratic character of Fp, i.e., η(a) = a
p−1
2

for a ∈ F
∗
p. In the paper, η(0) is defined to be zero. Under the congruent

transformation of A → MTAM, η(∆f ) is an invariant. We called η(∆f ),

denoted by ǫf , the sign of the quadratic form f.

For a subspace H ⊆ Fpm , define

H⊥ = {x ∈ Fpm : F (x, y) = 0 for each y ∈ H}.

Then H⊥ is called the dual space of H. And Rf can also be defined as the

codimension of F⊥
pm . Namely, Rf + dim(F⊥

pm) = m.

Let H be a d-dimensional subspace of Fpm . Restricting the quadratic form

f to H, we get a quadratic form over H in d variables. It is denoted by f |H .

Similarly, we define the dual space H⊥
f |H

of H under f |H in itself by

H⊥
f |H

= {x ∈ H : f(x+ y) = f(x) + f(y) for each y ∈ H}.

LetRH , ǫH be the rank and sign of f |H overH, respectively. Obviously,H⊥
f |H

=

H
⋂

H⊥ and RH = d− dim(H⊥
f |H

).

Example 1 Let f(X) = x2
1− 2x1x2+x2

2 with X = (x1, x2). It is a degenerate

quadratic form over F2
p. After simple calculation, we have F (X,Y ) = x1y1 −

x1y2−x2y1+x2y2, where Y = (y1, y2). Let H = {(x1, x2) ∈ F
2
p : x1 = x2}. It

is not hard to get F⊥
pm = H,Rf = 1, f |H = 0, H⊥

f |H
= H,RH = 0 and ǫH = 1.

For a ∈ Fp, the following lemma tells us the number of solutions in H of

the equation f(x) = a.
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Lemma 2.(Proposition 1, [20]) Let f be a quadratic form over Fpm ,

a ∈ Fp and H be a d-dimensional (d > 0) subspace of Fpm , then the number

of solutions of f(X) = a in H is

|H
⋂

Da
f | =

{

pd−1 + v(a)η((−1)
RH
2 )ǫHpd−

RH+2

2 , if RH ≡ 0(mod2),

pd−1 + η((−1)
RH−1

2 a)ǫHpd−
RH+1

2 , if RH ≡ 1(mod2),

where v(a) = p− 1 if a = 0, otherwise v(a) = −1.

Remark In Proposition 1 of [20], f is set to be non-degenerate. In fact,

we know from the proof that this condition is unnecessary. Namely, f can be

any quadratic form.

For later use, we need two results in the case that f is a non-degenerate

quadratic form. They are listed as follows.

Lemma 3.(Proposition 2, [20]) Let f be a non-degenerate quadratic

form over Fpm . For each r with 0 < 2r < m, there exist an r-dimensional

subspace H ⊆ Fpm (m > 2) such that H ⊆ H⊥.

For k elements β1, β2, . . . , βk ∈ Fpm , the matrix M(β1, β2, . . . , βk) of them

is defined as the k × k square matrix (F (βi, βj))1≤i,j≤k. The discriminant

∆(β1, β2, . . . , βk) of them is defined to be det(M(β1, β2, . . . , βk)). We denote

by 〈β1, β2, . . . , βk〉 the subspace spanned by β1, β2, . . . , βk.

Proposition 1. Let f be a non-degenerate quadratic form over Fpm and

H ⊂ Fpm a subspace with dim(H
⋂

H⊥) = e. Then, ǫHǫH⊥ = (−1)
e(p−1)

2 ǫf .

Proof. Suppose dim(H) = r. By hypothesis, we can set

H = 〈α1, α2, . . . , αr−e, β1, β2, . . . , βe〉,

H⊥ = 〈γ1, γ2, . . . , γm−r−e, β1, β2, . . . , βe〉,

〈α1, α2, . . . , αr−e, γ1, γ2, . . . , γm−r−e〉
⊥ = 〈η1, η2, . . . , ηe, β1, β2, . . . , βe〉.

We have ǫH = η(∆(α1, α2, . . . , αr−e)), ǫH⊥ = η(∆(γ1, γ2, . . . , γm−r−e)). And

ǫf = η(∆(α1, α2, . . . , αr−e, γ1, γ2, . . . , γm−r−e, β1, β2, . . . , βe, η1, η2, . . . , ηe))

= η(∆(α1, . . . , αr−e, γ1, . . . , γm−r−e))η(∆(β1, . . . , βe, η1, . . . , ηe))

= η(∆(α1, . . . , αr−e))η(∆(γ1, . . . , γm−r−e))η((−1)e)η(det(M2))

= ǫHǫH⊥η((−1)e)η(det(M2
e )).
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HereMe is the square matrix (F (βi, ηj))1≤i,j≤e. Then the desired result follows

and we complete the proof.

2.2 Induced Quadratic Form over a Quotient Space

From now on, we suppose f is a degenerate quadratic form. Let Fpm be

the quotient space Fpm/F⊥
pm . For α ∈ Fpm , define f(α) = f(α). It is well-

defined. We obtain a non-degenerate quadratic form f, induced by f, over

Fpm . Without confusion, we still use f to denote f. Let Rf and ǫf denote

the rank and sign of f over Fpm , respectively. It is easy to see Rf = Rf and

ǫf = ǫf .

Since f is a non-degenerate quadratic form over Fpm , the results in Lemmas

2, 3 and Proposition 1 can be applied to Fpm .

For a ∈ Fp, set

D
a

f = {x ∈ Fpm : f(x) = a}.

Obviously, |Fpm

⋂

D
a

f | = |D
a

f |. Applying Lemma 2 to Fpm ,, we have

|D
a

f | =

{

pm−1 + v(a)η((−1)
Rf
2 )ǫfp

m−
Rf+2

2 , if Rf ≡ 0(mod2),

pm−1 + η((−1)
Rf−1

2 a)ǫfp
m−

Rf+1

2 , if Rf ≡ 1(mod2),

where m = Rf = dim(Fpm) = m− dim(F⊥
pm).

Example 2 Just like Example 1, let f(X) = x2
1−2x1x2+x2

2 withX = (x1, x2),

a degenerate quadratic form over F
2
p
∼= Fp2 . Because F

⊥
p2 = {(x1, x2) ∈ F

2
p :

x1 = x2}, Fp2 is isomorphic to {(x1, x2) ∈ F
2
p : x1 = −x2}. So, f = 4x2

1 is

a non-degenerate quadratic form over Fp2 . It is not hard to get Rf = Rf =

1, ǫf = ǫf = 1, and

|D
a

f | =







1, if a = 0,
2, if η(a) = 1,
0, if η(a) = −1.

Let ϕ be the canonical map from Fpm to Fpm [17]. For a subspaceH ⊂ Fpm ,

denote by H the image of H under ϕ, i.e., H = ϕ(H). In the absence of

confusion, also we use H to represent a subspace of Fpm . Let RH and ǫH

denote the rank and sign of f over H, respectively.
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Proposition 2. Let H be a subspace of Fpm and H = ϕ(H) ⊆ Fpm , then

RH = RH , ǫH = ǫH .

Proof. Suppose dim(H) = r, dim(H
⋂

H⊥) = t. Then we set

H
⋂

H⊥ = 〈β1, β2, . . . , βt〉, H = 〈α1, α2, . . . , αr−t, β1, β2, . . . , βt〉.

So we have H = 〈α1, α2, . . . , αr−t, β1, β2, . . . , βt〉.

The matrix M(α1, α2, . . . , αr−t, β1, β2, . . . , βt) is the block matrix

(

M1 O
O O

)

,

where M1 = M(α1, α2, . . . , αr−t). Then RH = Rank(M1), ǫH = η(det(M1)).

And the matrix M(α1, α2, . . . , αr−t, β1, β2, . . . , βt) is the block matrix

(

M1 O
O O

)

,

where M1 = M(α1, α2, . . . , αr−t). Then RH = Rank(M1), ǫH = η(det(M1)).

In fact, M1 = M1, since f(x) = f(x) for each x ∈ Fpm . Hence the desired

results follow directly and we complete the proof.

Define the dual space H
⊥
of H by

H
⊥
= {x ∈ Fpm : f(x+ y) = f(x) + f(y) for each y ∈ H}.

For the dual spaces, we have an interesting conclusion as below.

Proposition 3. Let H be a subspace of Fpm , then H
⊥
= H⊥.

Proof. Let x be an element of H⊥ with x ∈ H⊥. We have f(x + y) =

f(x) + f(y) for each y ∈ H. So f(x+ y) = f(x) + f(y). Since x+ y = x +

y, f(x + y) = f(x) + f(y). By definition, x ∈ H
⊥
, which means H⊥ ⊂ H

⊥
.

On the other hand, let x be an element of H
⊥
. For each y ∈ H, we have

f(x+y) = f(x)+f(y). So f(x+ y) = f(x)+f(y) and f(x+y) = f(x)+f(y).

Thus x ∈ H⊥ and x ∈ H⊥. Therefore H⊥ ⊃ H
⊥
. In a word, H

⊥
= H⊥. The

proof is finished.
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3 Weight Hierarchies of Linear Codes Defined in (2)

By our method, we have successfully settled the weight hierarchies of CDa
f
.

In this case a = 0, the weight hierarchies can be derived from Theorem 18 in

[24]. In this section, we will just present the weight hierarchies of CDa
f
in the

case a ∈ F
∗
p.

Theorem 1. Let f be a degenerate quadratic form over Fpm with rank

Rf = 2s and a a non-zero element in F
∗
p. Suppose m = 2s+ l, l = dim(F⊥

pm),

then for the linear codes defined in (2), we have

dr(CDa
f
) =











pm−1 − pm−r−1 − ((−1)
s(p−1)

2 ǫf + 1)ps+l−1, if 1 ≤ r ≤ s,

pm−1 − 2pm−r−1 − (−1)
s(p−1)

2 ǫfp
s+l−1, if s ≤ r < m,

pm−1 − (−1)
s(p−1)

2 ǫfp
s+l−1, if r = m.

Proof. We will use Lemma 1 to compute dr(CDa
f
). To do so, we need to

know the value of max{|Da
f

⋂

H | : H ∈ [Fpm ,m− r]p}.

Case : s ≤ r < m. If Hm−r is an (m − r)-dimensional subspace of Fpm ,

then, by Lemma 2, we have

|Hm−r

⋂

Da
f | ≤ 2pm−r−1,

and |Hm−r

⋂

Da
f | may reach the upper bound 2pm−r−1 if RHm−r

= 1 or 0. We

assert that there exists an (m − r)-dimensional subspace Hm−r ⊂ Fpm satis-

fying RHm−r
= 1 and ǫHm−r

may take values −1 or 1. Applying Lemma 3 to

Fpm , there is an (s−1)-dimensional subspace Hs−1 ⊂ Fpm with Hs−1 ⊂ H
⊥

s−1.

So dim(H
⊥

s−1) = s + 1, R
H

⊥

s−1
= 2. Applying Lemma 2 to Fpm , for each

b ∈ F
∗
p, |D

b

f

⋂

H
⊥

s−1| > ps−1. We choose an element α ∈ (D
b

f

⋂

H
⊥

s−1)\Hs−1

and let Hs = 〈α〉
⊕

Hs−1. Then dim(Hs) = s,RHs
= 1 and the values of

ǫHs
= η(b) may take −1 or 1. Note that the hypothesis l = dim(F⊥

pm). There-

fore, there exists an (s + l)-dimensional subspace Hs+l ⊂ Fpm with Hs+l =

ϕ(Hs+l) = Hs. Thus the assertion is true since 1 ≤ m−r ≤ s+l. By Lemma 2,

for s ≤ r < m, we have that max{|Da
f

⋂

H | : H ∈ [Fpm ,m− r]p} = 2pm−r−1.

Case : 1 ≤ r < s. For an (m− r)-dimensional subspace Hm−r ⊂ Fpm , we

have

dim(Hm−r) = dim(Hm−r/(Hm−r

⋂

F
⊥
pm)) ≥ m− r − l = 2s− r.
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So, we have dim(Hm−r

⋂

H
⊥

m−r) ≤ r, since dim(Hm−r) + dim(H
⊥

m−r) = 2s.

Noting that RHm−r
= dim(Hm−r) − dim(Hm−r

⋂

H
⊥

m−r). By Proposition 2,

we have RHm−r
= RHm−r

≥ 2s− 2r. By Lemma 2, we have

|Hm−r

⋂

Da
f | ≤ pm−r−1 + ps+l−1,

and |Hm−r

⋂

Da
f |may reach the upper bound pm−r−1+ps+l−1 ifRHm−r

= 2s−

2r+1 or 2s−2r. We assert that there is such an (m−r)-dimensional subspace

Hm−r ⊂ Fpm with |Hm−r

⋂

Da
f | = pm−r−1 + ps+l−1. By the construction of

Hs as above, we have an r-dimensional subspaceHr ⊂ Fpm satisfying RHr
= 1

and ǫHr
may take values −1 or 1. And dim(H

⊥

r ) = 2s−r, R
H

⊥

r

= 2s−2r+1.By

Proposition 1, the values of ǫ
H

⊥

r

may take−1 or 1, too. Note that l = dim(F⊥
pm)

and m−r = 2s−r+ l. Thus we can construct an (m−r)-dimensional subspace

Hm−r ⊂ Fpm satisfying Hm−r = H
⊥

r . Notice that ǫHm−r
= ǫ

H
⊥

r

. Therefore,

|Da
f

⋂

Hm−r| = pm−r−1 ± ps+l−1. By Lemma 2, we have that max{|Da
f

⋂

H | :

H ∈ [Fpm ,m− r]p} = pm−r−1 + ps+l−1.

By Lemma 2, we have |Da
f | = pm−1−ǫf(−1)

s(p−1)
2 ps+l−1. Then the desired

results follow directly from Lemma 1. And we complete the proof.

Example 3 Let (p,m) = (3, 4) and f(x) = Tr(x12) = Tr(x3
2
+3). Then s =

1, l = 2, ǫf = 1 and the weight hierarchy of CD1
f
is d1 = 18, d2 = 30, d3 =

34, d4 = 36.

Theorem 2. Let f be a degenerate quadratic form over Fpm with rank

Rf = 2s + 1 and a a non-zero element in F
∗
p. Suppose m = 2s + 1 + l, l =

dim(F⊥
pm). If η(a) = (−1)

s(p−1)
2 ǫf , then for the linear codes defined in (2) we

have

dr(CDa
f
) =







pm−1 − pm−r−1, if 1 ≤ r ≤ s,
pm−1 + ps+l − 2pm−r−1, if s < r < m,
pm−1 + ps+l, if r = m.

Proof. Case : 1 ≤ r ≤ s. For an (m− r)-dimensional subspace Hm−r ⊂

Fpm , we have

dim(Hm−r) = dim(Hm−r/(Hm−r

⋂

F
⊥
pm)) ≥ m− r − l = 2s+ 1− r.
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We have dim(Hm−r

⋂

H
⊥

m−r) ≤ r, since dim(Hm−r) + dim(H
⊥

m−r) = 2s+ 1.

Noting that RHm−r
= dim(Hm−r) − dim(Hm−r

⋂

H
⊥

m−r). By Proposition 2,

we have RHm−r
= RHm−r

≥ 2s+ 1− 2r. By Lemma 2, we have

|Hm−r

⋂

Da
f | ≤ pm−r−1 + ps+l,

and |Hm−r

⋂

Da
f | may reach the upper bound pm−r−1 + ps+l if RHm−r

=

2s + 1 − 2r. We assert that there is such an (m − r)-dimensional subspace

Hm−r ⊂ Fpm with |Hm−r

⋂

Da
f | = pm−r−1 + ps+l, which is constructed as

follows. Applying Lemma 3 to Fpm , we know there is an r-dimensional subspace

Hr ⊂ Fpm with Hr ⊂ H
⊥

r . So dim(H
⊥

r ) = 2s + 1 − r, R
H

⊥

r

= 2s − 2r + 1.

Note that l = dim(F⊥
pm) and m− r = 2s− r+1+ l. Thus we have an (m− r)-

dimensional subspace Hm−r ⊂ Fpm satisfying Hm−r = H
⊥

r . By Proposition 1,

we have ǫHm−r
= η(−1)rǫf , since ǫHr

= 1, ǫf = ǫf and ǫHm−r
= ǫHm−r

= ǫ
H

⊥

r

.

Therefore, by hypothesis and Lemma 2, |Da
f

⋂

Hm−r| = pm−r−1 + ps+l. By

Lemma 2, we have that max{|Da
f

⋂

H | : H ∈ [Fpm ,m− r]p} = pm−r−1+ ps+l.

Case : s < r < m. The proof is similar to that of Theorem 1.

By Lemma 2, we have |Da
f | = pm−1 + ps+l. Then the desired conclusions

follow from Lemma 1. And the proof is completed.

Example 4 Let (p,m) = (3, 4) and f(x) = Tr(x2 + x3+1). Then s = 1, l =

1, ǫf = −1 and the weight hierarchy of CD1
f
is d1 = 18, d2 = 30, d3 = 34, d4 =

36.

Theorem 3. Let f be a degenerate quadratic form over Fpm with rank

Rf = 2s + 1 and a a non-zero element in F
∗
p. Suppose m = 2s + 1 + l, l =

dim(F⊥
pm). If η(a) = −(−1)

s(p−1)
2 ǫf , then for the linear codes defined in (2) we

have

dr(CDa
f
) =







pm−1 − pm−r−1 − ps+l − ps+l−1, if 1 ≤ r ≤ s,
pm−1 − ps+l − 2pm−r−1, if s < r < m,
pm−1 − ps+l, if r = m.

Proof. Case : 1 ≤ r ≤ s. for an (m− r)-dimensional subspace Hm−r ⊂

Fpm , we have RHm−r
≥ 2s− 2r+1. By the corresponding proof of Theorem 2,

we know that ǫHm−r
= η(−1)rǫf if RHm−r

= 2s− 2r + 1. By hypothesis and

Lemma 2, we have |Da
f

⋂

Hm−r| = pm−r−1 − ps+l.
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Next we will construct an (m−r)-dimensional subspace Hm−r ⊂ Fpm with

RHm−r
= 2s− 2r+2 and discuss the value of |Da

f

⋂

Hm−r|. Applying Lemma

3 to Fpm , there is an (r − 1)-dimensional subspace Hr−1 ⊂ Fpm with Hr−1 ⊂

H
⊥

r−1. So dim(H
⊥

r−1) = 2s − r + 2, R
H

⊥

r−1
= 2s − 2r + 3. Applying Lemma

2 to Fpm , we have, for each b ∈ F
∗
p, |D

b

f

⋂

H
⊥

r−1| > 1. We choose an element

α ∈ (D
b

f

⋂

H
⊥

r−1) and let Hr = 〈α〉
⊕

Hr−1. Then dim(Hr) = r, RHr
= 1 and

the values of ǫHr
= η(b) may take −1 or 1. So dim(H

⊥

r ) = 2s+ 1− r, R
H

⊥

r

=

2s+ 2 − 2r and ǫ
H

⊥

r

may take values −1 or 1, too. Therefore, there exists an

(m− r)-dimensional subspace Hm−r ⊂ Fpm with Hm−r = H
⊥

r . By Lemma 2,

we have that |Da
f

⋂

H | = pm−r−1 ± ps+l−1. Therefore, also by Lemma 2, we

have max{|Da
f

⋂

H | : H ∈ [Fpm ,m− r]p} = pm−r−1 + ps+l−1.

Case : s < r < m. The proof is similar to that of Theorem 1. We omit the

details.

By Lemma 2, we have |Da
f | = pm−1 − ps+l. Then the desired conclusions

follow from Lemma 1. And the proof is completed.

Example 5 Let (p,m) = (3, 4) and f(x) = Tr(x2 − x3+1). Then s = 1, l =

1, ǫf = 1 and the weight hierarchy of CD1
f
is d1 = 6, d2 = 12, d3 = 16, d4 = 18.

Examples 3-5 have been verified by Magma.
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