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Abstract

A graph G is (d1, d2, d3)-colorable if the vertex set V (G) can be partitioned into three subsets V1, V2

and V3 such that for i ∈ {1, 2, 3}, the induced graph G[Vi] has maximum vertex-degree at most di. So,

(0, 0, 0)-colorability is exactly 3-colorability.

The well-known Steinberg’s conjecture states that every planar graph without cycles of length 4 or 5 is

3-colorable. As this conjecture being disproved by Cohen-Addad etc. in 2017, a similar question, whether

every planar graph without cycles of length 4 or i is 3-colorable for a given i ∈ {6, . . . , 9}, is gaining more

and more interest. In this paper, we consider this question for the case i = 6 from the viewpoint of improper

colorings. More precisely, we prove that every planar graph without cycles of length 4 or 6 is (1,0,0)-colorable,

which improves on earlier results that they are (2,0,0)-colorable and also (1,1,0)-colorable, and on the result

that planar graphs without cycles of length from 4 to 6 are (1,0,0)-colorable.

Keywords: planar graphs, (1,0,0)-colorings, cycles, discharging, super-extension

1 Introduction

The graphs considered in this paper are finite and simple. A graph is planar if it is embeddable into the

Euclidean plane. A plane graph (G,Σ) is a planar graph G together with an embedding Σ of G into the

Euclidean plane, that is, (G,Σ) is a particular drawing of G in the Euclidean plane. In what follows, we will

always say a plane graph G instead of (G,Σ), which causes no confusion since in this paper no two embeddings

of the same graph G will be involved in.

In the field of 3-colorings of planar graphs, one of the most active topics is about a conjecture proposed by

Steinberg in 1976: every planar graph without cycles of length 4 or 5 is 3-colorable. There had been no progress

on this conjecture for a long time, until Erdös [16] suggested a relaxation of it: does there exist a constant k

such that every planar graph without cycles of length from 4 to k is 3-colorable? Abbott and Zhou [1] confirmed

that such k exists and k ≤ 11. This result was later on improved to k ≤ 9 by Borodin [2] and, independently,

by Sanders and Zhao [15], and to k ≤ 7 by Borodin etc. [3]. Steinberg’s conjecture was recently disproved by

Cohen-Addad etc. [6]. Hence, associated to Erdös’ relaxation, only one question remains unsettled.

Problem 1.1. Is it true that planar graphs without cycles of length from 4 to 6 are 3-colorable?

A more general problem than Steinberg’s Conjecture was formulated in [14]:
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Problem 1.2. What is the maximal subset A of {5, 6, · · · , 9} such that for i ∈ A, every planar graph with

cycles of length neither 4 nor i is 3-colorable?

The refutal of Steinberg’s Conjecture shows that 5 /∈ A. For any other i, the question whether i ∈ A is still

unsettled. In this paper, we consider such question for the case i = 6, i.e., the question whether every planar

graph without cycles of length 4 or 6 is 3-colorable.

Let d1, d2 and d3 be non-negative integers. A graph G is (d1, d2, d3)-colorable if the vertex set V (G) can be

partitioned into three subsets V1, V2 and V3 such that for i ∈ {1, 2, 3}, the induced graph G[Vi] has maximum

vertex-degree at most di. The associated coloring, assigning the vertices of Vi with the color i for i ∈ {1, 2, 3},
is an improper coloring, a concept which allows adjacent vertices to receive the same color. Clearly, (0, 0, 0)-

colorability is exactly 3-colorability. Improper coloring is a relaxation of proper coloring, providing us a way to

approach the solution to some hard conjectures. It has been combined with many different kinds of colorings

of graphs, such as improper k-colorings, improper list colorings, improper acyclic colorings and so on.

The coloring of planar graphs gain particular attention. There are a serial of known results on the

(d1, d2, d3)-colorability of planar graphs, motivated by Steinberg’s conjecture. For example, Cowen etc. [7]

proved that planar graphs are (2, 2, 2)-colorable. Xu [19] showed that planar graphs with neither adjacent tri-

angles nor cycles of length 5 are (1, 1, 1)-colorable. So far, the best known results for planar graphs having no

cycles of length 4 or 5 are that, they are (1,1,0)-colorable [10, 21] and also (2,0,0)-colorable [5], improving on

some results in [9, 19]. Because of the refutal of Steinberg’s conjecture, the following question is the only one

in this direction that remains open.

Problem 1.3. Is it true that planar graphs having no cycles of length 4 or 5 are (1, 0, 0)-colorable?

Analogously, for planar graphs having no cycles of length 4 or 6, it is known that they are (1,1,0)-colorable

[17, 20] and also (2,0,0)-colorable [18]. In this paper, we prove that they are further (1,0,0)-colorable, which

improves on these two results.

Theorem 1.4. Planar graphs with neither 4-cycles nor 6-cycles are (1,0,0)-colorable.

Towards Problem 1.1, Wang etc. [17] shown that planar graphs having no cycles of length from 4 to 6 are

(1, 0, 0)-colorable. Theorem 1.4 improves on this result as well. To our best knowledge, Theorem 1.4 is the first

result on (1, 0, 0)-colorability of planar graphs with neither 4-cycles nor i-cycles for i ∈ {5, 6, 7, 8, 9}, motivated

by Problem 1.2.

The proof of this main result uses discharging method for improper colorings. In Section 2, we formulate a

proposition that is stronger than Theorem 1.4, namely super-extended theorem. Section 3 addresses the proof

of the super-extended theorem, which consists of two parts: reducible configurations and discharging procedure.

For more information on discharging method, we refer to [8, 11, 12].

2 Super-extended theorem

Let G be a plane graph. For a set S such that S ⊆ V (G) or S ⊆ E(G), let G[S] denote the subgraph of G

induced by S. Let C be a cycle of G. Denote by int(C) (resp. ext(C)) the set of vertices lying inside (resp.

outside) C. Let H be a subgraph of G whose edges lie inside C (ends on C allowed) and let H0 = H − V (C),

such that dH(v) = 3 for each v ∈ V (H0). Call H a claw of C if H0 is a vertex, an edge-claw if H0 is an edge, a

path-claw if H0 is a path of length 2, and a pentagon-claw if H0 is a pentagon.
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Let G denote all the connected plane graphs without cycles of length 4 or 6. For a cycle C, whose length

is at most 11, of a graph from G, C is good if it contains no claws, edge-claws, path-claws or pentagon-claws;

bad otherwise.

Let G be a graph, H a subgraph of G, and φ a (1, 0, 0)-coloring of H. We say that φ can be super-extended

to G if G has a (1, 0, 0)-coloring c such c(u) = φ(u) for each u ∈ V (H) and that c(v) 6= c(w) whenever v ∈ V (H),

w ∈ V (G) \ V (H) and vw ∈ E(G).

We shall prove the following theorem, called super-extended theorem, that is stronger than Theorem 1.4.

Theorem 2.1. (Super-extended theorem) Let G ∈ G. If the boundary D of the unbounded face of G is a good

cycle, then every (1,0,0)-coloring of G[V (D)] can be super-extended to G.

By assuming the truth of Theorem 2.1, we can easily derive Theorem 1.4 as follows. We may assume that G

is connected since otherwise, we argue on each component. If G has no triangles, then by Three Color Theorem,

G is 3-colorable. Hence, we may assume that G has a triangle, say T . By Theorem 2.1, we can super-extend

any given (1,0,0)-coloring of T respectively to its interior and exterior.

The rest of this section contributes to some necessary notations.

Let C be a cycle of a plane graph and T be a claw, or an edge-claw, or a path-claw, or a pentagon-claw of

C. We call the graph H consisting of C and T a bad partition of C. Every facial cycle (except C) of H is called

a cell of H.

The length of a path is the number of edges it contains. Denote by |P | the length of a path P , by |C| the

length of a cycle C and by d(f) the size of a face f . A k-vertex (resp. k+-vertex and k−-vertex) is a vertex

v with d(v) = k (resp. d(v) ≥ k and d(v) ≤ k). Similar notations are applied for paths, cycles and faces by

constitute d(v) for |P |, |C| and d(f), respectively.

Consider a plane graph. A vertex is external if it lies on the exterior face; internal otherwise. A 3+-vertex

is light if it is internal and of degree 3; heavy otherwise. Let d1, d2, d3 be three integers greater than 2. A

(d1, d2, d3)-face is a 3-face whose vertices are all internal and have degree d1, d2 and d3, respectively. A k-cycle

with vertices v1, . . . , vk in cyclic order is denoted by [v1 . . . vk]. Let f = [uxy] be a 3-face and v be a neighbor of

u other than x and y. If u is an internal 3-vertex, then we call v an outer neighbor of u (or of f), u a pendent

vertex of v, and f a pendent 3-face of v. A 3-face is weak if it has at least one outer neighbor that is light. A

path is a splitting path of a cycle C if its two end-vertices lie on C and all other vertices lie inside C. A cycle

C is separating if neither int(C) nor ext(C) is empty.

3 The proof of Theorem 2.1

Suppose to the contrary that Theorem 2.1 is false. From now on, let G = (V,E) be a counterexample to

Theorem 2.1 with the smallest |V |+ |E|. Thus, we may assume that the boundary D of the exterior face of G

is a good cycle, and that there exists a (1,0,0)-coloring φ of G[V (D)] which cannot be super-extended to G. By

the minimality of G, we deduce that D has no chord.

Denote by {1, 2, 3} the color set for φ where the color 1 might be assigned to two adjacent vertices. We

define that, to 3-color a vertex v means to assign v with a color from {1, 2, 3} when this color has not been

used by its neighbors yet; and to (1,0,0)-color v means either to 3-color v or to assign v with the color 1 when

precisely one neighbor of v is of color 1.
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3.1 Structural properties of the minimal counterexample G

Lemma 3.1. Every internal vertex of G has degree at least 3.

Proof. Suppose to the contrary that G has an internal vertex v of degree at most 2. We can super-extend φ to

G− v by the minimality of G, and then to G by 3-coloring v.

Lemma 3.2. G has no separating good cycle.

Proof. Suppose to the contrary that G has a separating good cycle C. We super-extend φ to G − int(C).

Furthermore, since C is a good cycle, the restriction of φ on C can be super-extended to its interior, yielding a

super-extension of φ to G.

Lemma 3.3. G is 2-connected. Particularly, the boundary of each face of G is a cycle.

Proof. Otherwise, let B a pendant block of G of minimum order, and let v be a cut vertex of G associated with

B. By the minimality of G, we can super-extend φ to G− (B− v). If we can 3-color B, then permute the color

classes of B so that the colors assigned to v coincide, which completes a super-extension of φ to G. By the

minimality of B, B is 2-connected. If B has no triangles, then Grötsch’s Theorem yields that B is 3-colorable.

So, let T be a triangle of B. By Lemma 3.2, T is a 3-face. Assign distinct colors to its three vertices, and by the

minimality of G, we can super-extend the coloring of T , as an exterior face of B, to B. This gives a 3-coloring

of B.

By the definition of a bad cycle, one can easily conclude the following lemma.

Lemma 3.4. If C is a bad cycle of a plane graph of G, then C has a bad partition isomorphic to one of the

eight graphs shown in Figure 1. In particular, C has length 9 or 10 or 11. If |C| = 9 then C has a (5,5,5)-claw;

if |C| = 10 then C has a (3,7,3,7)- or (5,5,5,5)-edge-claw, or a (5,5,5,5,5)-pentagon-claw; if |C| = 11 then C

has a (3,7,7)- or (5,5,7)-claw, or a (3,7,3,8)-edge-claw, or a (5,5,5,5,5)-path-claw.

From Lemmas 3.2 and 3.4, one can deduce the following remark.

Remark 3.5. Let C be a bad cycle of G. The following statements hold true.

(1) Every cell of C is facial except that an 8-cell may have a (3,7)-chord connecting two vertices of C.

(2) Every vertex inside C has degree 3 in G.

(3) Every vertex on C has at most one neighbor inside C.

(4) Every vertex on C is incident with at most two edges that locate inside C, where the exact case happens if

and only if C has a (3,7,3,8)-edge-claw.

(5) For any set S of four consecutive vertices on C, G has at most two edges connecting a vertex from S to a

vertex inside C.

Lemma 3.6. G has no light vertex with neighbors all light.

Proof. Otherwise, let v be such a light vertex. Remove v and its three neighbors, obtaining a smaller graph G′.

By the minimality of G, φ can be super-extended to G′. We further extend φ to being a (1,0,0)-coloring of G

in such way: 3-color all the neighbors of v and consequently, v can be (1,0,0)-colored.
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(5,5,5)-claw (3,7,3,7)-edge-claw (5,5,5,5)-edge-claw
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(5,5,5,5,5)-pantagon-claw

Figure 1: bad partitions of a cycle in a plane graph from G, where the numbers indicate the length of each cell.

A further name for the claw, edge-claw, path-claw or pantagon claw, which corresponds to each bad partition,

is given below each drawing.

Lemma 3.7. Every (3, 3, 4)-face of G has no light outer neighbors.

Proof. Suppose to the contrary that f = [uvw] is a (3, 3, 4)-face of G having a light outer neighbor x. W.l.o.g.,

Let u be adjacent to x and let d(w) = 4. Remove u, v, w and x from G, obtaining a smaller graph G′. By the

minimality of G, φ can be super-extended to G′ and further to G in such way: 3-color w, v and x in turn, and

then (1,0,0)-color u.

Lemma 3.8. Let P be a splitting path of D which divides D into two cycles, say D′ and D′′. The following

four statements hold true.

(1) If |P | = 2, then there is a triangle between D′ and D′′.

(2) If |P | = 3, then there is a 5-cycle between D′ and D′′.

(3) If |P | = 4, then there is a 5- or 7-cycle between D′ and D′′.

(4) If |P | = 5, then there is a 7- or 8- or 9-cycle between D′ and D′′.

Proof. Since D has length at most 11, we have |D′|+ |D′′| = |D|+ 2|P | ≤ 11 + 2|P |.
(1) Let P = xyz. Suppose to the contrary that |D′|, |D′′| ≥ 5. It follows that |D′|, |D′′| ≤ 10. By Lemma

3.1, y has a neighbor other than x and z, say y′. The vertex y′ is internal since otherwise, D is a bad cycle with

a claw. W.l.o.g., let y′ lie inside D′. Now D′ is a separating cycle. By Lemma 3.2, D′ is not good. Recall that

|D′| ≤ 10. So D′ is a bad 9- or 10-cycle and D′′ is a 5-cycle. By Lemma 3.4, D′ has a (5,5,5)-claw or a (5,5,5,5)-

edge-claw or a (3,7,3,7)-edge-claw or a (5,5,5,5,5)-pentagon-claw, which would lead to a (5,5,5,5)-edge-claw or

a (5,5,5,5,5)-path-claw of D for the first two cases, to a 6-cycle for the third case, and to y′ being a light vertex

with three light neighbors for the last case, a contradiction.

(2) Let P = wxyz. Suppose to the contrary that |D′|, |D′′| ≥ 7. It follows that |D′|, |D′′| ≤ 10. Let x′

and y′ be neighbors of x and y not on P , respectively. If both x′ and y′ are external, then D has an edge-claw.

Hence, we may assume that x′ lies inside D′. By Lemmas 3.2 and 3.4, we deduce that D′ is a bad 9- or 10-cycle.
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So, D′′ is a 7- or 8-cycle, which is good. Since every cell of D′ is facial, y′ must lie on D′′. The application

of this lemma to the splitting 2-path y′yz yields that yy′ a (3,7)-chord of D′′. So, D′ is a 9-cycle, which has a

(5,5,5)-claw. Now the triangle [yy′z] is adjacent to some 5-cell of D′, a contradiction.

(3) Let P = vwxyz. Suppose to the contrary that |D′|, |D′′| ≥ 8. It follows that |D′|, |D′′| ≤ 11. If

wy ∈ E(G), then by applying this lemma to the splitting 3-path vwyz of D, either D′ or D′′ has length 6, a

contradiction. Hence, wy /∈ E(G). Similarly, vx, xz /∈ E(G). Since G has no 4-cyles and D has no chord, we

can further conclude that G has no edges connecting two nonconsecutive vertices on P , i.e., G[V (P )] is P .

By Lemma 3.1, x has a neighbor x′ besides w and y. We claim that x′ lies inside D. Suppose to the contrary

that x′ ∈ V (D′). By applying this lemma to the splitting 3-paths vwxx′ and x′xyz, xx′ is a (5,5)-chord of D′.

Since d(w) ≥ 3, let w′ be a neighbor of w other than v and x. Clearly, w′ lies either on D′′ or inside it. Recall

that w′ is not on P . If w′ lies on D′′ \V (P ), then vww′ is splitting 2-path of D, which forms a triangle adjacent

to a 5-cell of D′, a contradiction. Hence, w′ lies inside D′′. Similarly, y′ lies inside D′′ as well. Clearly, w′ and y′

are distinct vertices. Notice that w and y have distance 2 along D′′. So, as a bad cycle, whose possible interior

is given by Lemma 3.4, D′′ has a (5,5,5,5)-edge-claw or a (5,5,5,5,5)-path-claw or a (5,5,5,5,5)-pentagon-claw,

which implies a pentagon-claw of D for the first case, and w′ being a light vertex with three light neighbors for

the last two cases, a contradiction.

W.l.o.g., let x′ lies inside D′. So D′ is a bad cycle. By Remark 3.5(2), d(x′) = 3. Denote by I the set

of edges connecting a vertex from {w, x, y} to a vertex not on P . Recall that G[V (P )] is P . So, Lemma 3.1

implies that |I| ≥ 3. By applying Lemma 3.6 to x, we further have |I| ≥ 4.

Suppose that D′′ is also a bad cycle, then one of D′ and D′′ has length 9 and the other has length 9 or 10,

which implies that one contains at most one edge from I inside and the other contains at most two edges from

I inside, contradicting the fact that |I| ≥ 4. Hence, we may assume that D′′ is a good cycle.

We conclude that d(x) = 3. This is because x has no neighbors on D by the same argument as for x′, no

neighbors inside D′′ since D′′ is a good cycle, and no neighbors besides x′ inside D′ by Remark 3.5(4).

Recall that D′′ is a good cycle, so w (as well as y) has no neighbors inside D′′. Moreover, since D has no

claws, w (as well as y) has at most one neighbor on D \ {v, z}. It follows with |I| ≥ 4 that, inside D′ there

exists a vertex t adjacent to w or y. By Remark 3.5(3) and (5), such t is unique. W.o.l.g, let tw ∈ E(G). This

implies that |I| = 4 and each of w and y have a neighbor on D − V (P ). If t = x′, then [wxx′] is a pendent

(3, 3, 4)-face of y, contradicting Lemma 3.7. So, t and x′ are distinct. Moreover, t and x′ are not adjacent since

otherwise G has a 4-cycle. Hence, we can conclude that D′ has a path-claw or a pentagon-claw, making all cells

of length 5. This yields that y mush have no neighbors other than z on D, a contradiction.

(4) Let P = uvwxyz. Suppose to the contrary that |D′|, |D′′| ≥ 10. Since |D′| + |D′′| ≤ 21, we have

|D′|, |D′′| ≤ 11. We claim that G has no edges connecting two nonconsecutive vertices on P , i.e., G[V (P )] is

P . Otherwise, let e = t1t2 be such an edge. Let P ′ be obtained from P by constituting e for the subpath of

P between t1 and t2. Clearly, P ′ is a splitting 4−-path of D. Applying this lemma to P ′ yields that either D′

or D′′ has length at most 8, a contradiction. By this claim and Lemma 3.1, we may let v′, w′, x′ and y′ be a

neighbor of v, w, x and y not on P , respectively.

We claim that both w and x have no neighbors on D. Otherwise, w.l.o.g., let w′ be on D′. By applying this

lemma to the splitting 3-path uvww′ and the splitting 4-path w′wxyz of D, we deduce that ww′ is a (5, 7)-chord

of D′. Hence, the interior of D′ contains no edges incident with v, x or y. If x′ lies on D′′ then similarly, xx′

is a (5, 7)-chord of D′′, resulting in no positions for u′ and y′, a contradiction. Hence, x′ must lie inside D′′.

So, D′′ is a bad cycle. Since a bad cycle has at most one chord, Remark 3.5(5) implies that the interior of D′′
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contains at most three edges incident with v, w, x or y. It follows that d(v) = d(w) = d(x) = d(y) = 3. By

Remark 3.5(2), d(x′) = 3. Now x is a light vertex with three light neighbors, contradicting Lemma 3.6.

Suppose that one of D′ and D′′, say D′, is a good cycle. In this case, both w′ and x′ lie inside D′. Remark

3.5(3) implies that such w′ and x′ are unique. So, d(w) = d(x) = 3. By Remark 3.5(5), both v′ and y′ are on D.

Clearly, such v′ and y′ are also unique since otherwise, D has a claw. So, d(v) = d(y) = 3. By Remark 3.5(2),

d(w′) = d(x′) = 3. Now x is a light vertex having three light neighbors, contradicting Lemma 3.6. Therefore,

both D′ and D′′ are bad.

Denote by I the set of edges not on P and incident with a vertex from {v, w, x, y}. Notice that a bad cycle

has a chord only if it is of length 11, but not both D′ and D′′ have length 11. So, I has at most one edge taking

a vertex on D as an end. Moreover, Remark 3.5(5) implies that I has at most four edges taking a vertex inside

D′ or D′′ as an end. Therefore, |I| ≤ 5. This leads to the only case that d(v) = d(y) = 3 and between w and x,

one has degree 3 and the other 4 since otherwise, at least one of w and x would be a light vertex with three light

neighbors. W.l.o.g., let d(x) = 4. Since Remark 3.5(3), we may assume that w′ and x′ lie inside D′. Lemma

3.7 implies that w′ and x′ can not coincide. Notice that w and x are consecutive on D′. By the specific interior

of a bad cycle, we can deduce that D′ is a 11-cycle having a (5,5,5,5,5)-path-claw. This implies that both D′

and D′′ have no chords, a contradiction.

Loops and multiple edges are regarded as 1-cycles and 2-cycles, respectively.

Lemma 3.9. Let G′ be a connected plane graph obtained from G by deleting vertices, inserting edges, identifying

vertices, or any combination of them. If G′ is smaller than G and the following holds:

(i) identify no pair of vertices of D and insert no edges connecting two vertices of D, and

(ii) create no k-cycles for any k ∈ {1, 2, 4, 6}, and

(iii) D is good in G′,

then φ can be super-extended to G′.

Proof. By Term (ii), the graph G′ is simple and G′ ∈ G. The term (i) guarantees that the new graph G′ has

the same D as the boundary of its exterior face, and that φ is a (1,0,0)-coloring of G′[V (D)]. Since D is good

in G′ and G′ is smaller than G, the lemma holds true by the minimality of G.

Lemma 3.10. Let G′ be a connected plane graph obtained from G by deleting a set of internal vertices together

with either identifying two vertices or inserting an edge between two vertices. If the following holds true for this

graph operation:

(a) identify no pair of vertices of D, insert no edges connecting two vertices of D, and

(b) create no 6−-cycles or triangular 7-cycles,

then φ can be super-extended to G′.

Proof. Lemma 3.9 shows that, to complete the proof, it suffices to showing that D is a good cycle of G′. Suppose

to the contrary that D has a bad partition H in G′. We distinguish two cases on the graph operation.

Case 1: assume that the graph operation includes identifying two vertices. Denote by v1 and v2 the two

vertices we identify and by v the resulting vertex. Lemma 3.4 lists all the possible structure for H. Recall that

D stays the same during the operation. If either v /∈ V (H) or v ∈ V (H) such that dH(v) = 2, then H stays

7



the same during the operation, contradicting the fact that D is a good cycle in G. Hence, v lies on H and

dH(v) = 3. If all the three neighbors of v in H are adjacent in G to a common vertex from {v1, v2}, then again

H stays the same during the operation, a contradiction. Hence, one neighbor is adjacent to v1 and the other

two adjacent to v2. This implies that there are two cells around v that are created by our graph operation. It

follows by the possible structure of H that, we create either a 6−-cycle or a triangular 7-cycle, contradicting

the assumption (b).

Case 2: assume that the graph operation includes inserting an edge, say e. Recall that D stays the same

during the operation. If e /∈ E(H) \E(D), then H is a bad partition of D also in G, a contradiction; otherwise,

the two cells of H containing e are created by our operation, contradicting the assumption (b).

Lemma 3.11. G contains no internal 4-vertices having a pendent (3, 3, 3)-face and another pendent (3, 3, 4−)-

face.

Proof. Suppose to the contrary that G has such a vertex x. Denote by [u1u2u3] a (3, 3, 3)-face and by [v1v2v3]

a (3, 3, 4−)-face, with u1 and v1 as pendent vertices of x and with v3 as the 4−-vertex. Denote by x1 and x2

the remaining neighbors of x. We distinguish two cases.

Case 1: assume that x1 and x2 lie on different sides of the path u1xv1, i.e., x1 and x2 are not consecutive

in the cyclic order around x. Remove x, u1, u2, u3, v1, v2, v3 from G and identify x1 with x2, obtaining a smaller

graph G′ than G. If this operation satisfies both terms in Lemma 3.10, then the pre-coloring φ of D can be

super-extended to G′ by the minimality of G, and further to G in such way: 3-color v3, v2, v1, x, u2, u3 in turn

and consequently, we can (1,0,0)-color u1.

(Term a) If our operation identifies two vertices of D, or creates an edge that connects two vertices of D,

then the path x1xx2 is contained in a splitting 2- or 3-path of D. By Lemma 3.8, this splitting path divides D

into two parts, one of which is a 3- or 5-cycle. So this cycle is a good cycle but now it separates v1 from u1,

contradicting Lemma 3.2.

(Term b) If our operation creates a new 7−-cycle, then this cycle corresponds to a 7−-path of G between

x1 and x2, which together with the path x1xx2 forms a 9−-cycle of G, say C. Clearly, C separates u1 from v1.

So, C is a bad 9-cycle having a (5, 5, 5)-claw. But now C contains a 3-face inside, either [u1u2u3] or [v1v2v3], a

contradiction.

Case 2: assume that x1 and x2 lie on the same side of the path u1xv1. W.l.o.g., let u1, x1, x2, v1 locate in

clockwise order around x and so do u1, u2, u3 along the cycle [u1u2u3]. Denote by y the remaining neighbor

of u2. Delete x,u1,u2,u3,v1,v2, v3 and identify x2 with y, obtaining a smaller graph G′ than G. If our graph

operation satisfies both terms of Lemma 3.10, then φ can be super-extended to G′ by the minimality of G and

further to G in such way: 3-color x and u3; since x and y receive different colors, we can 3-color u1 and u2;

3-color v3 and v2 in turn and finally, we can (1, 0, 0)-color v1.

Let us show that both terms of Lemma 3.10 do hold:

(Term a) Otherwise, the path yu2u1xx2 is contained in a splitting 4- or 5-path of D. By Lemma 3.8, this

splitting path divides D into two parts, one of which is a 9−-cycle, say C. Now C separates v1 from u3. Hence,

C is a bad 9-cycle with a (5,5,5)-claw. But C has to contain a 3-face inside, either [u1u2u3] or [v1v2v3], a

contradiction.

(Term b) Suppose our operation creates a new 7−-cycle, then it corresponds to a 7−-path of G between y

and x2, which together with the path yu2u1xx2 forms a 11−-cycle of G, say C. Clearly, C separates v3 from u3.

So C is a bad cycle containing either u3 or v3 inside. For the former case, because of the existence of [u1u2u3]
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and xx1, Remark 3.5(4) implies that xx1 is a chord of C, which thereby has a (3, 7, 3, 8)-edge-claw. Now u3 is

a light vertex with three light neighbors, a contradiction to Lemma 3.6. For the latter case, the interior of C,

as a bad cycle, contains the triangle [v1v2v3], which is impossible.

Lemma 3.12. G contains no internal 4-vertice incident with a (3, 4−, 4)-face and having a pendent (3, 3, 4−)-

face.

Proof. Suppose to the contrary that such vertex exists, say u. Denote by u1, . . . , u4 the neighbors of u locating

in clockwise order around u. W.l.o.g., let [uu1u2] be a (3, 4−, 4)-face and [u3u
′
3u
′′
3 ] be a pendent (3, 3, 4−)-face

of u. Delete u1, u, u3, u
′
3, u
′′
3 from G and identify u2 with u4, obtaining a new smaller graph G′. Similarly, to

complete the proof, it suffices to doing two things.

Firstly, we shall show that both terms in Lemma 3.10 hold.

(Term a) If our operation identifies two vertices of D, or creates an edge that connects two vertices of D,

then the path u2uu4 is contained in a splitting 2- or 3-path of D. By Lemma 3.8, this splitting path divides D

into two parts, one of which is a 3- or 5-cycle, say C. Now C separates u1 from u3, a contradiction.

(Term b) If our operation creates a new 7−-cycle, then G has a 9−-cycle C that contains the path u2uu4.

Since C separates u1 from u3, C is a bad 9-cycle with a (5,5,5)-claw, contradicting that C contains a triangle

either [uu1u2] or [u3u
′
3u
′′
3 ] inside.

Secondly, we shall show that any (1, 0, 0)-coloring of G′ can be super-extended to G. This can be done in

the following way. Since one of u′3 and u′′3 has degree 3 and the other degree at most 4, we can 3-color them.

Notice that u1 has degree either 3 or 4. Since u2 and u4 receive the same color, if we can 3-color u1, then

consequently we can 3-color u and (1,0,0)-color u3 in turn, we are done. Hence, we may assume that u1 has

degree 4 and its neighbors except u are colored pairwise distinct. In this case, give the color of u2 to u1. Since

u2 has degree 3, we can recolor it properly. Since u1 and u4 are colored the same, we can 3-color u and then

(1,0,0)-color u3.

Lemma 3.13. G has no 4-vertices incident with two (3, 4−, 4)-faces.

Proof. Suppose to the contrary that G has such a 4-vertex v, incident with two (3, 4−, 4)-faces T1 = [vv1v2] and

T2 = [vv3v4]. W.l.o.g., let v1, v2, v3, v4 locate in clockwise order around v.

Case 1: assume that at least one of T1 and T2 is a (3, 3, 4)-face, w.l.o.g, say T1. Delete v, v1, · · · , v4,

obtaining a smaller graph G′ than G. Since we only remove vertices, both terms in Lemma 3.10 hold. Hence,

φ can be super-extended to G′ by the minimality of G, and further to G in such way: 3-color the vertices of

T2. Denote by v′1 and v′2 the remaining neighbors of v1 and v2, respectively. We can always 3-color v1 and v2

except the case φ(v′1) = φ(v′2) 6= φ(v), for which we distinguish three subcases: if 1 /∈ {φ(v′1), φ(v)}, then give

the color 1 to both v1 and v2, completing the super-extension; if φ(v) = 1, then assign v1 with the color 1 and

consequently, we can 3-color v2; if φ(v′1) = 1, then recolor v by the color 1, and then 3-color both v1 and v2.

Case 2: assume that both T1 and T2 are (3, 4, 4)-faces. W.l.o.g., let d(v1) = 4. We distinguish two cases.

Case 2.1: assume that d(v3) = 4. Denote by v′2 and v′4 the outer neighbors of v2 and v4, respectively. We

delete all vertices of T1 and T2, and identify v′2 with v′4, obtaining a new graph G′. We will show that both

terms in Lemma 3.10 do hold:

(Term a) If our operation identifies two vertices of D, or creates an edge that connects two vertices of D,

then the path v′2v2vv4v
′
4 is contained in a splitting 4- or 5-path of D. By Lemma 3.8, this splitting path divides
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D into two parts, one of which is a 9−-cycle, say C. Now C separates v1 from v3 and contains a triangle inside,

a contradiction.

(Term b) If our operation creates a new 7−-cycle, then G has a 11−-cycle C that contains the path v′2v2vv4v
′
4.

Now C separates v1 from v3, both has degree 4, contradicting Remark 3.5(2).

We will show that any (1, 0, 0)-coloring of G′ can be super-extended to G: 3-color v1 and v3. Denote by α

the color v′2 and v′4 received. If α has not been used by both v1 and v3, then give α to v and consequently, we

can 3-color v2 and v4. W.l.o.g., we may next assume that v3 has color α. 3-color v2 and then (1,0,0)-color v.

Since v3 and v′4 received the same color, we can 3-color v4.

Case 2.2: assume that d(v4) = 4. Denote by v′i the neighbor of vi for i ∈ {2, 3}, and by v′i and v′′i the

remaining neighbors of vi locating in clockwise order around vi for i ∈ {1, 4}. Delete all vertices of T1 and T2

and identify v′1 with v′3. Denote by z the resulting vertex and G′ the resulting graph. Notice that our operation

may create some new 7+-cycles.

Firstly, by the same argument as in Case 2.1, Term (a) does hold.

Secondly, we claim that the operation creates no 6−-cycles. Otherwise, G has a 10−-cycle C that contains

the path v′1v1vv3v
′
3. So, C is a bad cycle containing either v2 or v4 inside. For the former case, since a bad

10−-cycle has no chords, v1 has two neighbors inside C, contradicting Remark 3.5(3). For the latter case,

d(v4) = 4 contradicts Remark 3.5(2).

Finally, we do not make D bad. Otherwise, since we create no 6−-cycles, by the argument for the proof of

Lemma 3.10, we can deduce that the new vertex z is incident with two cells of D in G′ that are created by our

operation, where one cell has length 7 and the other length 7 or 8. These two cells correspond to two cycles

of G containing the path v′1v1vv3v
′
3, one cycle (say C ′) contains v2 inside and the other (say C ′′) contains v4

inside. Clearly, one of C ′ and C ′′ has length 11 and the other length 11 or 12. Since d(v4) = 4, we can deduce

that |C ′′| = 12 by Remark 3.5 (2). So, |C ′| = 11. Hence, the way we make D bad is that our operation make D

have a (3, 7, 3, 8)-edge-claw in G′ where the 7-cell and 8-cell are created. Let e denote the common edge of these

two cells. Since v1 is incident with two edges v1v
′′
1 and v1v2 inside C ′, we can deduce that v1v

′′
1 is a chord of C ′,

which has a (3, 7, 3, 8)-edge-claw in G by Remark 3.5 (3). Let C ′ = [v′3v3vv1v
′
1v
′′
1 y1 · · · y5]. Racall that v′1 and

v′3 are the two vertices we identified. So, e corresponds to either v′3y5 or v′1v
′′
1 . For the former case, the vertices

v′′1 , y1, · · · , y4 lie on D. A contradiction follows by applying Lemma 3.8 to the splitting 4-path v′′1 v1v2v
′
2y4 of D

in G. For the latter case, by substituting v1v
′′
1 for v1v

′
1v
′′
1 from C ′′, we obtain a 11-cycle of G that contains v4

inside, a contradiction.

Because of the conclusions in the previous three paragraphs, by the minimality of G, we can super-extend

φ from D to G′. We complete a (1,0,0)-coloring of G as follows: 3-color v4 and v1. Since v1 and v′3 receive

different colors, we can 3-color v3 and v. Finally, we can (1,0,0)-color v2 except the case that v′2 has the color 1

and between v and v1, one has the color 2 and the other 3. Notice that the colors of v4, v3 and v are pairwise

distinct. Recolor v by 1 and finally, we can 3-color v2.

Lemma 3.14. G has no internal 5-vertices incident with two faces, one is a weak (3, 3, 5)-face and the other

is a (3, 4−, 5)-face.

Proof. Suppose to the contrary that G has such a vertex v. Denote by v1, . . . , v5 the neighbors of v locating in

clockwise order around v with [vv1v2] being a weak (3, 3, 5)-face and [vv3v4] being a (3, 4−, 5)-face. Let x′ be

a light outer neighbor of [vv1v2]. Between v1 and v2, denote by x the one adjacent to x′ and by y the other.

Clearly, v4 is of degree 3 or 4. We distinguish two cases.
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Case 1: assume d(v4) = 3. Delete v, v1, v2, x
′, v4 and identify v3 with v5, obtaining a smaller graph G′ than

G. We shall show that both terms in Lemma 3.10 hold.

(Term a) If our operation identifies two vertices of D, or creates an edge that connects two vertices of D,

then the path v3vv5 is contained in a splitting 2- or 3-path of D. By Lemma 3.8, this splitting path divides D

into two parts, one of which is a 3- or 5-cycle, say C. Now C separates v2 from v4, a contradiction.

(Term b) If our operation creates a new 7−-cycle, then G has a 9−-cycle C that contains the path v3vv5.

Since C separates v2 from v4, C is a bad 9-cycle with a (5,5,5)-claw, contradicting that C contains a triangle

either [vv1v2] or [vv3v4] inside.

Hence, the coloring φ of D can be super-extended to G′ by Lemma 3.10 and further to G as follows: 3-color

v4, v, x
′, y in turn and consequently, we can (1,0,0)-color x. This is a contradiction.

Case 2: assume d(v4) = 4. It follows that d(v3) = 3. Let v′3 be the remaining neighbor of v3. Delete

v, v1, v2, v3, v4, x
′ and insert an edge between v′3 and v5, obtaining a smaller graph G′ than G.

(Term a) Notice that our operation identifies no vertices. Suppose to the contrary that it creates an edge

that connects two vertices of D, then the path v′3v3vv5 is contained in a splitting 3-path of D. By Lemma 3.8,

this splitting path divides D into two parts, one of which is a 5-cycle. Now this cycle separates v2 from v4, a

contradiction.

(Term b) If our operation creates a new 7−-cycle, then G has a 9−-cycle C containing path v′3v3vv5. Clearly,

C separates v2 from v4. Hence, C is a bad 9-cycle that contains a triangle either [vv1v2] or [vv3v4] inside, a

contradiction.

Hence, φ can be super-extended to G′ by Lemma 3.10 and further to G as follows: 3-color v4. If φ(v′3) 6=
φ(v5) or φ(v′3) = φ(v5) = φ(v4), then we can first 3-color v and v3, next 3-color x′ and y in turn and consequently,

we can (1,0,0)-color x, we are done. Hence, we may assume that φ(v′3) = φ(v5) 6= φ(v4). Since v′3 and v5 are

adjacent in G′, both v′3 and v5 have color 1 and have no other neighbors colored 1. So we can give the color 1

to v3 and then 3-color v. By the same way as above, we color v2, v1 and v, we are done as well.

Lemma 3.15. If v is an internal 5-vertex of G incident with two 3-faces, one is a weak (3, 3, 5)-face and the

other is a weak (3, 5, 5+)-face, then v has no pendent (3, 3, 3)-faces.

Proof. Denote by v1, . . . , v5 the neighbors of v, whose order around v has not been given yet. Suppose to the

contrary that v has a pendent (3, 3, 3)-face, say [v1w1w2]. Let [vv2v3] be a weak (3, 3, 5)-face with v′3 being

a light outer neighbor of v3. Let [vv4v5] be a weak (3, 5, 5+)-face with v′4 being a light outer neighbor of v4.

Delete v, v1, . . . , v4, w1, w2, v
′
3, v
′
4 from G, obtaining a graph G′. By the minimality of G, the pre-coloring φ of

D can be super-extended to G′, and further to G in such way: 3-color v′4, v4 and v in turn. If v has color 1,

then exchange the colors of v and v4. Hence, w.l.o.g., we may assume that v has color 2. 3-color v′3, v2, w1, w2

in turn. Consequently, we can (1, 0, 0)-color v3 and v1.

Lemma 3.16. If v is an internal 6-vertex of G incident with two weak (3, 3, 6)-faces, then v is incident with

no other (3, 4−, 6)-faces,

Proof. Denote by v1, . . . , v6 the neighbors of v locating around v in clockwise order. Let [vv3v4] and [vv5v6]

be two weak (3, 3, 6)-faces. Suppose to the contrary that [vv1v2] is a (3, 4−, 6)-face. W.l.o.g., let d(v2) = 3.

Denote by v′i the remaining neighbor of vi for i ∈ {2, . . . , 6}. Since [vv3v4] is weak, denote by x′ a light outer

neighbor of [vv3v4]. Between v3 and v4, denote by x the one adjacent to x′ and by y the other. Delete vertices

11



v, v1, . . . , v6, x
′ from G and identify v′2 with v′5, obtaining a new graph G′. We will show that both terms in

Lemma 3.10 do hold:

(Term a) Otherwise, the path v′2v2vv5v
′
5 is contained in a splitting 4- or 5-path of D. By Lemma 3.8, this

splitting path divides D into two parts, one of which is a 9−-cycle, say C. Now C separates v4 from v6 and

contains a triangle either [vv3v4] or [vv5v6] inside, a contradiction.

(Term b) If our operation creates a new 7−-cycle, then G has a 11−-cycle C that contains the path v′2v2vv5v
′
5.

Since C separates v4 from v5, C is a bad cycle. Now v is a vertex on C which has two neighbors either v3, v4

or v1, v6 inside C, contradicting Remark 3.5(3).

By Lemma 3.10, φ can be super-extended to G′. We will further super-extend φ to G in the following way.

Let α be the color v′2 and v′5 receive. 3-color v1, v2 and v in turn. If v has color α, then we can 3-color v6

and v5 in turn and seperately, 3-color x′ and y in turn and then (1,0,0)-color x, we are done. Hence, we may

assume that the color of v is not α. Since the colors of v, v1 and v2 are pairwise distinct, v1 has color α. We

may assume that the color of v is not 1 since otherwise, we exchange the colors of v and v2. 3-color x′ and y in

turn and consequently, we can (1,0,0)-color x. Remove the color of an outer neighbor (say z) of [vv5v6] and in

the same way, we color z, v5, v6, as desired.

LetW be a subgraph ofG consisting of a (4, 4, 4)-face [uvw] and three 3-faces [uu1u2], [vv1v2] and [ww1w2] of

G that share precisely one vertex (respectively, u, v and w) with [uvw]. Let u, v, w as well as u1, u2, v1, v2, w1, w2

be in clockwise order around [uvw]. Call W a wheel, written as (uvw, u1u2v1v2w1w2)W , if d(u1) = d(v1) =

d(w1) = 3 and d(u2) = d(v2) = d(w2) = 4. Call W an antiwheel, written as (uvw, u1u2v1v2w1w2)AW , if

d(u1) = d(v1) = d(w2) = 3 and d(u2) = d(v2) = d(w1) = 4.

Lemma 3.17. G has no wheels.

Proof. Suppose to the contrary that G has a wheel, say W = (uvw, u1u2v1v2w1w2)W . Let u′1, v
′
1 and w′1 be

the remaining neighbors of u1, v1 and w1, respectively. Delete all vertices of W and insert three edges making

[u′1v
′
1w
′
1] a triangle. We thereby obtain a graph G′ smaller than G. We shall use Lemma 3.9.

Suppose that our operation connects two vertices of D. W.l.o.g., let u′1 and v′1 locate on D. Then as a

splitting 5-path of D, u′1u1uvv1v
′
1 divides D into two parts, one of which is a 9−-cycle. Now this cycle separates

u2 from w and contains a triangle either [uu1u2] or [uvw] inside, a contradiction. Hence, Term (i) holds true.

Suppose that our operation creates a new 7−-cycle C ′ other than [u′1v
′
1w
′
1]. Since C ′ is new, C ′ must share

edges with [u′1v
′
1w
′
1]. If they have precisely two common edges (w.l.o.g., say u′1v

′
1 and v′1w

′
1), then the cycle

obtained from C ′ by constituting the edge u′1w
′
1 for the path u′1v

′
1w
′
1 is also created and has smaller length than

C ′. Take this cycle as the choice for C ′. Hence, we may assume that C ′ and [u′1v
′
1w
′
1] have one edge in common,

say u′1v
′
1. So, C ′ corresponds to a 11−-cycle C of G that contains the path u′1u1uvv1v

′
1. Since C separates u2

from w, C is a bad cycle containing either u2 or w inside, both of which have degree 4. This contradicts Remark

3.5 (2). Therefore, our operation creates no 7−-cycles C ′ other than [u′1v
′
1w
′
1]. In particular, Term (ii) holds

true.

Suppose that our operation makes D bad. So, D has a bad partition H in G′. If H and [u′1v
′
1w
′
1] have no

edges in common, then H is a bad partition of D in G as well, a contradiction. Hence, let e be a common edge

of H and [u′1v
′
1w
′
1]. Recall that among the vertices of [u′1v

′
1w
′
1], at most one lies on D. So, e is not an edge of

D. This implies that e is incident with two cells of H, both of which are new. That is to say, we created a

7−-cycle other than [u′1v
′
1w
′
1], a contradiction. Therefore, Term (iii) holds true.
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By Lemma 3.9, φ can be super-extended to G′. We will further super-extend φ to G. Since [u′1v
′
1w
′
1] is a

triangle of G′, we distinguish two cases as follows.

Case 1: assume that the colors of u′1, v
′
1 and w′1 are pairwise distinct. W.l.o.g., let φ(u′1) = 3, φ(v′1) = 2 and

φ(w′1) = 1. 3-color u2, v2 and w2. If φ(u2) 6= 3 and φ(v2) 6= 2, then assign u, v, w with colors 3, 2, 1, respectively.

Consequently, we can 3-color u1, v1 and w1, we are done. W.l.o.g., we may next assume that φ(u2) = 3. Assign

u1 with color 2 and u with color 1. Since u and v′1 have different colors, we can 3-color v and v1. If w2 has color

1, then we can 3-color w and w1 in turn; otherwise, assign w with the color 1 and then 3-color w1.

Case 2: assume that the colors of u′1, v
′
1 and w′1 are not pairwise distinct. Since the extension of φ in G′

is a (1, 0, 0)-coloring, precisely two of u′1, v
′
1 and w′1 have the color 1, say u′1 and v′1. 3-color u2, v2, w2, w1, w in

turn. We may assume that the color of w is not 1 since otherwise, we can exchange the colors of w and w1.

W.l.o.g., let w be of color 3. Since both u′1 and v′1 have color 1 that is different from the color of w, regardless

of the edge uv, we can 3-color u, u1 and v, v1. The resulting coloring gives a (1,0,0)-coloring of G unless both u

and v have color 2. For this remaining case, we can deduce that u1 has color 3 and u2 has color 1. Reassign u

with the color 1, we are done.

Lemma 3.18. G has no antiwheel whose outer neighbors are all light.

Proof. Suppose to the contrary that G has such an antiwheel, say W = (uvw, u1u2v1v2w1w2)AW . Denote by

u′1, v
′
1 and w′2 outer neighbors of u1, v1 and w2, respectively. Delete all the vertices of W except v2, identify v2

with w′2, and insert an edge between u′1 and v′1, obtaining a new graph G′ from G. We shall use Lemma 3.9.

Suppose that our operation identifies two vertices of D, or inserts an edge that connects two vertices of

D. So, D has a splitting 4- or 5-path in G containing either v2vww2w
′
2 or u′1u1uvv1v

′
1. By Lemma 3.8, this

splitting path divides D into two parts, one of which is a 9−-cycle, say C. Now C separates u2 from w1 and

contains a triangle either [uu1u2] or [ww1w2] inside, a contradiction. Hence, Term (i) holds true.

Suppose that our operation creates a new 7−-cycle, say C ′. C ′ corresponds to a subgraph (say P ) of G

that can be distinguished in four cases: (1) a 6−-path between u′1 and v′1; (2) a 7−-path between w′2 and v2; (3)

the union of two vertex-disjoint paths, one between u′1 and w′2 and the other between v′1 and v2; (4) the union

of two vertex-disjoint paths, one between u′1 and v2 and the other between v′1 and w′2. For the first case, P and

the path u′1u1uvv1v
′
1 together form a 11−-cycle which contains a 4-vertex either u2 or w1 inside, a contradiction

to Remark 3.5 (2). For the case (2), P and the path w′2w2wvv2 together form a 11−-cycle which contains a

4-vertex either u2 or w1 inside, again a contradiction to Remark 3.5 (2). For the case (3), since G has no

6−-cycles adjacent to a triangle, we can deduce that G has no 4−-paths between v′1 and v2 by the existence of

[vv1v2] and no edges between u′1 and w′2 by the existence of [uvw]. It follows that P has length at least 8, a

contradiction. Case (4) is impossible by the planarity of G. Therefore, our operation creates no 7−-cycles. In

particular, Term (ii) holds true.

Suppose that our operation makes D bad. Let H be a bad partition of D in G′. Since both terms of Lemma

3.10 holds, if u′1v
′
1 /∈ E(H), then the proof of Lemma 3.10 shows that identifying w′2 with v2 can not make D

bad. So, u′1v
′
1 belongs to H. Since Term (i) holds true, u′1v

′
1 is incident with two cells of H. Clearly, these two

cells are created and at least one of them is a 7−-cycle, contradicting the conclusion above that our operation

creates no 7−-cycles. Therefore, Term (iii) holds.

By Lemma 3.9, φ can be super-extended to G′. Denote by α the color v2 and w′2 receive and by β the color

u′1 receives. 3-color u2 and w1. We distinguish two cases according to the colors of u2 and w1.
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Case 1: suppose that not both u2 and w1 have color α. So, we can 3-color u, v and w. Since both u′1 and

w′2 have degree 3, we can 3-recolor them. Consequently, we can (1, 0, 0)-color u1 and w2. If not all the colors

occur on the neighbors of v2, then we can 3-recolor v2 and eventually, 3-recolor v′1 and (1, 0, 0)-color v1 in turn,

we are done. So, we may next assume that v2 has all the colors around. It follows that v2 is of color 1 and v

not. W.l.o.g., Let v be of color 3. We may assume that v′1 is of color 2 since otherwise, we can 3-color v1. Since

G′ has an edge between u′1 and v′1, β 6= 2. Now we recolor some vertices as follows. Assign v1 with 1, reassign

v2 with 3 and v with 2, remove the colors of u1, u, w,w2, and give the color 1 back to w′2 and β back to u′1.

Since now u′1 and v have different colors, we can 3-color u and u1. Clearly, w′2 has no neighbors of color 2 since

v2 already has one. If w1 has color 2, then we can 3-color w and (1,0,0)-color w2 in turn; otherwise, assign w2

with 2 and we can (1,0,0)-color w.

Case 2: suppose that both u2 and w1 have color α. If α = 1, then assign u with α and we can 3-color

u1, v1, v, w,w2 in turn, we are done. W.l.o.g., we may next assume that α = 2. If β 6= 3, then we can 3-color

v1, v, w,w2 in turn, assign u with the color 1, and 3-color u1 at last; otherwise, since v′1 is of color different from

β, we assign u,w2 and v1 with 3, and u1, w and v with 1. We are done in both situations.

Lemma 3.19. G has no 5-faces whose vertices are all light.

Proof. Suppose G has such a 5-face, say f = [u1u2 . . . u5]. For i ∈ {1, 2, . . . , 5}, let u′i denote the remaining

neighbor of ui. If both u′1 and u′3 belong to D, then as being a splitting 4-path of D, u′1u1u2u3u
′
3 divides D into

two parts, one of which is a 5- or 7-cycle. This cycle is actually a face but now contains an edge either u2u
′
2

or u3u4 inside, a contradiction. Therefore, at least one of u′1 and u′3 is internal. For the same reason, this is

even true for ui and ui+2 for each i ∈ {1, 2, . . . , 5}, where the index is added in modulo 5. Hence, we can alway

get three internal vertices u′i, u
′
i+1 and u′i+2 for some i ∈ {1, 2, . . . , 5}. W.l.o.g., let u′5, u′1 and u′2 be internal.

Remove all the vertices of f from G and insert an edge between u′2 and u′5, obtaining a new graph G′. We shall

use Lemma 3.9. Clearly, Term (i) holds true.

Suppose the graph operation creates a k-cycle with k ∈ {1, 2, 4, 6}. So, G has a k-path between u′2 and

u′5. This path together with u′5u5u1u2u
′
2 form a (k + 3)-cycle, say C. By Lemma 3.6, d(u′1) ≥ 4. So, C can

not contain u′1 inside since otherwise, a contradiction to Remark 3.5 (2). Moreover, as a 9−-cycle, C can not

contain both u3 and u4 inside. Therefore, by planarity of G, u′1 must locate on C. Now the cycle, obtained from

C by constituting u2u3u4u5 for u2u1u5, is a bad 10-cycle but it has a claw and a 5-cell, which is impossible.

Therefore, Term (ii) holds true.

Suppose that our operation makes D bad. Let H be a bad partition of D in G′. So, u′2u
′
5 belongs to

H − E(D) since otherwise, H is a bad partition of D in G. Now, u′2u
′
5 is incident with two cells of H, say

h′ and h′′. Denote by C ′ and C ′′ cycles obtained from h′ and h′′ by constituting the edge u′2u
′
5 for the path

u′2u2u1u5u
′
5. Clearly, one of C ′ and C ′′ (w.l.o.g., say C ′) contains u′1 inside or on C, and the other contains u′3

and u′4 inside. Since a cell has length at most 8, both C ′ and C ′′ have length at most 11. So, C ′′ is a bad cycle.

Lemma 3.6 implies that both u′3 and u′4 are not light. So, C ′′ can not contains them inside by Remark 3.5(2).

Instead, u′3 and u′4 are on C ′′. Now C ′′ has an edge-claw, more precisely, an (5,5,5,5)-edge-claw. So, h′′ is a

non-triangular 7-cell of H, which implies that H must have a (5, 5, 7)-claw in G′. This gives a contradiction

since both u′2 and u′5 are internal vertices on H. Therefore, Term (iii) holds true.

By Lemma 3.9, φ can be super-extended to G′ and further to G as follows. If there is a vertex from {u′2, u′5}
of color different from 1, w.l.o.g., say u′5, then 3-color u1, . . . , u4 in turn and finally, we can (1, 0, 0)-color u5. So
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we may assume that both u′2 and u′5 are of color 1. Again, 3-color u1, . . . , u4 in turn. Since u′2 has no neighbors

of color 1 in G, we can (1, 0, 0)-color u5.

Lemma 3.20. G has no 5-faces, four of whose vertices are light and the remaining one is an internal 4-vertex.

Proof. Suppose to the contrary the G has such a 5-face [u1 . . . u5]. W.l.o.g., let u1 be of degree 4. Denote by u′1

and u′′1 the remaining neighbor of u1 and for i ∈ {2, . . . , 5}, denote by u′i the remaining neighbor of ui. Remove

all the vertices of [u1 . . . u5] and insert an edge between u′2 and u′5, obtaining a new graph G′. We will show

that both terms in Lemma 3.10 do hold:

(Term a) Otherwise, both u′2 and u′5 belong to D. So, u′2u2u1u5u
′
5 is a splitting 4-path of D, which divides

D into two parts so that one part is a 5- or 7-cycle C, by Lemma 3.8. Notice that C is actually a face but now

has to contain an edge either u1u
′
1 or u2u3 inside, a contradiction.

(Term b) Otherwise, G has a 9−-cycle or a triangular 10-cycle C containing the path u′2u2u1u5u
′
5. By the

planarity of G, either C contains the edges u1u
′
1 and u1u

′′
1 inside or C contains the vertices u3 and u4 inside.

For the former case, since C has length at most 10, Remark 3.5(4) implies that C is not a bad cycle. So, u′1 and

u′′1 locate on C, yields the length of C at least 11, a contradiction. For the latter case, by Lemma 3.6, neither

u′3 nor u′4 is light. So, they both locate on C ′′, implied by Remark 3.5(2). Now C has a (5, 5, 5, 5)-edge-claw,

which gives a new triangular 7-cycle in G′, a contradiction.

By Lemma 3.10, φ can be super-extended to G′ and further to G in the same way as in the proof of Lemma

3.19.

Lemma 3.21. G has no two 5-faces f and g sharing precisely one edge, say uv, such that u is an internal

5-vertex and all other vertices on f or g are light.

Proof. Suppose to the contrary that such f and g exist. By the minimality of G, we can super-extend φ to

G − V (f) ∪ V (g) and further to G as follows: 3-color the vertices of f and g except v beginning with u along

seperately the boundary of f and one of g. Eventually, we can (1,0,0)-color v.

3.2 Discharging in G

Let u be a vertex of a (4, 4, 4)-face. u is abnormal if it is incident with a (3, 4, 4)-face; otherwise, u is normal.

A 5-face is small if it contains precisely four light vertices. Let P be the common part of D and a face f . f is

sticking if P is a vertex, i-ceiling if P is a path of length i for i ≥ 1.

Let V,E and F be the set of vertices, edges and faces of G, respectively. Denote by f0 the exterior face of

G. Give initial charge ch(x) to each element x of V ∪ F defined as ch(f0) = d(f0) + 24, ch(x) = 5d(x)− 14 for

x ∈ V , and ch(x) = 2d(x)− 14 for x ∈ F \ {f0}. Move charges among elements of V ∪F based on the following

rules (called discharging rules):

R1. Every internal 3-vertex sends to each incident face f charge 1 if d(f) = 3, and charge 1
3 otherwise.

R2. Every internal 4-vertex sends to each incident 3-face f charge 7
2 if f is a (3, 4, 4)-face, charge 3 if f is a

(3, 3, 4)-face, charge 8
3 if f is a (4, 4, 4)-face, charge 5

2 otherwise.

R3. Every internal 5-vertex sends to each incident 3-face f charge 6 if f is weak (3, 3, 5)-face, charge 9
2 if f is

(3, 4, 5)-face, charge 7
2 if f is either a weak (3, 5, 5)-face or a strong (3, 3, 5)-face, charge 3 otherwise.
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R4. Every internal 6-vertex sends to each incident 3-face f charge 6 if f is weak (3, 3, 6)-face, charge 5 if f is

(3, 4, 6)-face, charge 4 otherwise.

R5. Every internal 7+-vertex sends to each incident 3-face charge 6.

R6. Every internal 4+-vertex sends to each pendent 3-face f charge 5
3 if f is (3, 3, 3)-face, charge 3

2 if f is a

(3, 3, 4)-face, and charge 5
4 otherwise.

R7. Every internal 4+-vertex u sends to each incident 5-face f charge 8
3 if d(u) ≥ 5 and f is small, and charge

3
2 otherwise.

R8. Within a (4, 4, 4)-face, every normal vertex send to each abnormal vertex charge 1
6 .

R9. Within an antiwheel, every strong (3, 4, 4)-face sends to each vertex of the (4, 4, 4)-face charge 1
6 .

R10. The exterior face f0 sends charge 3 to each incident vertex.

R11. Every 2-vertex receives charge 1 from its incident face other than f0.

R12. Every exterior 3+-vertex sends to each sticking 3-face charge 6, to each ceiling 3-face charge 7
2 , to each

sticking 5-face charge 8
3 , to each 2-ceiling 5-face charge 13

6 , to each pendent 3-faces charge 5
3 , to each

1-ceiling 5-face charge 3
2 , to each 3-ceiling 7-face charge 1, to each 2-ceiling 7-face charge 1

2 .

Let ch∗(x) denote the final charge of an element x of V ∪ F after discharging. On one hand, from Euler’s

formula |V | + |E| − |F | = 2, we deduce
∑

x∈V ∪F
ch(x) = 0. Since the sum of charges over all elements of V ∪ F

is unchanged during the discharging precedure, it follows that
∑

x∈V ∪F
ch∗(x) = 0. On the other hand, we will

show that ch∗(x) ≥ 0 for x ∈ V ∪ F \ {f0} and ch∗(f0) > 0. So, this obvious contradiction completes the proof

of Theorem 2.1.

Claim 3.21.1. ch∗(f0) > 0.

Proof. Notice that R10 is the only rule making f0 move charges out, charge 3 to each incident vertex. Recall

that ch(f0) = d(f0) + 24 and d(f0) ≤ 11. So, ch∗(f0) ≥ ch(f0)− 3d(f0) = 24− 2d(f) > 0.

Claim 3.21.2. ch∗(v) ≥ 0 for v ∈ V .

Proof. Denote by m3(v) the number of pendent 3-faces of v, and by ni(v) the number of i-faces containing v

for i ∈ {3, 5}, where these countings excludes f0. Since G has no cycles of length 4 or 6, we have

2n3(v) + n5(v) +m3(v) ≤ d(v). (1)

Furthermore, if n5(v) /∈ {0, d(v)}, then

2n3(v) + n5(v) +m3(v) ≤ d(v)− 1. (2)

Case 1: first assume that v is external. By R10, v always receives charge 3 from f0. Since D is a cycle,

d(v) ≥ 2. If d(v) = 2, then v receives charge 1 from the other incident face by R11, giving ch∗(v) = ch(v)+3+1 =

0. Hence, we may next assume that d(v) ≥ 3. Denote by f1 and f2 the two ceiling faces containing v. W.l.o.g.,

let d(f1) ≤ d(f2).

Case 1.1: suppose d(v) = 3. In this case, ch(v) = 1, and v sends charge to f1 and f2 when R12 is applicable

to v. If d(f1) = 3, then on one hand, d(f2) ≥ 7, since G has neither 4-cycles nor 6-cycles; on the other hand, f2 is

16



not a 3-ceiling 7-face by using Lemma 3.8. So v sends to f2 charge at most 1
2 , giving ch∗(v) ≥ ch(v)+3− 7

2−
1
2 = 0.

We may next assume that d(f1) ≥ 5. Lemma 3.8 also implies that not both f1 and f2 are 2-ceiling 5-faces. So,

v sends to f1 and f2 a total charge at most 13
6 + 3

2 , giving ch∗(v) ≥ ch(v) + 3− 13
6 −

3
2 = 1

3 > 0.

Case 1.2: suppose d(v) ≥ 4. v sends charge out, only by R12, possibly to ceiling 3- or 5- or 7-faces, sticking

3- or 5-faces and pendent 3-faces. So,

ch∗(v) ≥



ch(v) + 3− 7
2 −

7
2 − 6(n3(v)− 2)− 8

3n5(v)− 5
3m3(v) = ch(v)− η(v) + 8, when d(f1) = d(f2) = 3;

ch(v) + 3− 7
2 −

13
6 − 6(n3(v)− 1)− 8

3 (n5(v)− 1)− 5
3m3(v) = ch(v)− η(v) + 7, when d(f1) = 3 and d(f2) = 5;

ch(v) + 3− 7
2 − 1− 6(n3(v)− 1)− 8

3n5(v)− 5
3m3(v) = ch(v)− η(v) + 9

2 , when d(f1) = 3 and d(f2) ≥ 7;

ch(v) + 3− 13
6 −

13
6 − 6n3(v)− 8

3 (n5(v)− 2)− 5
3m3(v) = ch(v)− η(v) + 4, when d(f1) = d(f2) = 5;

ch(v) + 3− 13
6 − 1− 6n3(v)− 8

3 (n5(v)− 1)− 5
3m3(v) = ch(v)− η(v) + 5

2 , when d(f1) = 5 and d(f2) ≥ 7;

ch(v) + 3− 1− 1− 6n3(v)− 8
3n5(v)− 5

3m3(v) = ch(v)− η(v) + 1, when d(f1) ≥ 7,

(3)

where η(v) = 6n3(v)+ 8
3n5(v)+ 5

3m3(v). Moreover, since f0 is a face containing v, Equation (1) can be strengthen

as:

ζ(v) = 2n3(v)+n5(v)+m3(v) ≤


d(v), when d(f1) = d(f2) = 3;

d(v)− 1, when either d(f1) = 3 and d(f2) ≥ 5 or d(f1) = d(f2) = 5;

d(v)− 2, when d(f1) ≥ 5 and d(f2) ≥ 7.

(4)

Since η(v) ≤ 3ζ(v), combining Equations (3) and (4) gives ch∗(v) ≥ ch(v)− 3d(v) + 7 = 2d(v)− 7 > 0.

Case 2: it remains to assume that v is internal. By Lemma 3.1, d(v) ≥ 3.

Case 2.1: suppose that d(v) = 3. In this case, ch(v) = 1 and n3(v) ≤ 1. Notice that only the rule R1

makes v send charge out. So, if v is triangular, ch∗(v) = ch(v)− 1 = 0; otherwise, ch∗(v) = ch(v)− 1
3 × 3 = 0.

Case 2.2: suppose that d(v) = 4. In this case, ch(v) = 6. Notice that, if v is incident with no (4, 4, 4)-faces,

then exactly three rules R2, R6 and R7 make v send charge out, to incident 3-faces, pendent 3-faces and incident

5-faces, respectively; otherwise, an additional rule R8 is applied to v. Clearly, n3(v) ≤ 2. We distinguish three

cases.

Case 2.2.1: assume that n3(v) = 0. So, m3(v) + n5(v) ≤ 4. If v has no pendent (3, 3, 3)-faces, then v sends

to each pendent 3-face or incident 5-face charge at most 3
2 , giving ch∗(v) ≥ ch(v)− 3

2 (m3(v) + n5(v)) ≥ 0. So,

we may assume that v has a pendent (3, 3, 3)-face. It follows that n5(v) ≤ 2. By Lemma 3.11, v has no other

pendent (3, 3, 3)- or (3, 3, 4)-faces, which implies that v sends to any other pendent 3-face charge at most 5
4 . So,

ch∗(v) ≥ ch(v)− 5
3 −

3
2 × 2− 5

4 = 1
12 > 0.

Case 2.2.2: assume that n3(v) = 1. In this case, either n5(v) = 1 and m3(v) = 0, or n5(v) = 0 and

m3(v) ≤ 2. For the former case, we have ch∗(v) ≥ ch(v) − 7
2 −

3
2 = 1 > 0. For the latter case, we argue as

follows. Denote by f the 3-face containing v. If f is a (3, 4−, 4)-face, then v has no pendent (3, 3, 4−)-faces by

Lemma 3.12, giving ch∗(v) ≥ ch(v)− 7
2 −

5
4 × 2 = 0. So, let us assume f is not a (3, 4−, 4)-face. By R2, v sends

to f charge at most 8
3 , and to abnormal vertices on f a total charge at most 1

6 × 2 when R8 is applicable for

v. Moreover, Combining Lemma 3.11 and the rule R6 yields that v sends to possible pendent 3-faces a total

charge at most max{ 53 + 5
4 ,

3
2 × 2}, equal to 3. Therefore, ch∗(v) ≥ ch(v)− 8

3 −
1
6 × 2− 3 = 0.

Case 2.2.3: assume that n3(v) = 2. So, m3(v) = n5(v) = 0. Denote by f1 and f2 two 3-faces incident with

v. If both f1 and f2 are not (3, 4, 4)-faces, then no matter fi has abnormal vertices or not, v sends to fi and
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possiblely abnormal vertices on fi a total charge at most 3, giving ch∗(v) ≥ ch(v)− 3× 2 = 0. So, we may next

assume that f1 is a (3, 4, 4)-face. By R2, v sends charge 8
3 to f1. By Lemma 3.13, f2 is not a (3, 4−, 4)-face. If

f2 is further not a (4, 4, 4)-face, then v sends to f2 charge at most 5
2 , giving ch∗(v) ≥ ch(v) − 7

2 −
5
2 = 0. So,

we may further assume that f2 is a (4, 4, 4)-face, that is, v is abnormal. If f2 contains a normal vertex, then

from it v receives charge 1
6 by R8, giving ch∗(v) ≥ ch(v) − 7

2 −
8
3 + 1

6 = 0. So, we may assume that all the

vertices on f are abnormal. That is to say, f2 together with three 3-faces intersecting with f2 forms a wheel

or an antiwheel, say W . Since G has no wheels by Lemma 3.17, W is an antiwheel. By Lemma 3.18, W has a

heavy outer neighbor, that is, W has a strong (3, 4, 4)-face. By the rule R9, v receives charge 1
6 from this face,

giving ch∗(v) = ch(v)− 7
2 −

8
3 + 1

6 = 0.

Case 2.3: suppose that d(v) = 5. In this case, ch(v) = 11 and n3(v) ≤ 2. Notice that only rules R3,

R6 and R7 make v send charge out, to incident 3-faces, pendent 3-faces and incident 5-faces, respectively. We

distinguish three cases.

Case 2.3.1: assume that n3(v) = 2. So, n5(v) = 0 and m3(v) ≤ 1. Denote by f1 and f2 the two 3-faces

containing v and by f the pendent 3-face of v if it exists. If both f1 and f2 are not weak (3, 3, 5)-faces, then v

sends to each of them charge at most 9
2 , giving ch∗(v) = ch(v)− 9

2 × 2− 5
3 = 1

3 > 0. So, we may assume that v

is incident with a weak (3, 3, 5)-face, say f1. By Lemma 3.14, f2 is neither a (3, 3, 5)-face nor a (3, 4, 5)-face. If

f2 is further not a weak (3, 5, 5)-face, then v sends to f2 charge 10
3 , giving ch∗(v) = ch(v)− 6− 10

3 −
5
3 = 0. So,

let f2 be a weak (3, 5, 5)-face. By Lemma 3.15, f is neither a (3, 3, 3)-face nor a (3, 3, 4)-face. So, v sends to f

charge 5
4 , giving ch∗(v) = ch(v)− 6− 7

2 −
5
4 = 1

4 > 0.

Case 2.3.2: assume that n3(v) = 1. We can deduce that, n5(v) = 2 and m3(v) = 0, or n5(v) = 1 and

m3(v) ≤ 1, or n5(v) = 0 and m3(v) ≤ 3. For the first case, Lemma 3.21 implies that not both 5-faces incident

with v are small. So v sends to at least one of them charge 3
2 , giving ch∗(v) ≥ ch(v)−6− 8

3−
3
2 = 5

6 > 0. For the

latter two cases, a direct calculation gives ch∗(v) ≥ ch(v)−6− 8
3−

5
3 = 2

3 > 0 and ch∗(v) ≥ ch(v)−6− 5
3×3 = 0,

respectively.

Case 2.3.3: assume that n3(v) = 0. Lemma 3.21 implies that v has at most two small 5-faces around.

For any other incident 5-face or any pendent 3-face, v sends to it charge no greater than 5
3 , giving ch∗(v) ≥

ch(v)− 8
3 × 2− 5

3 (n5(v) +m3(v)− 2) ≥ 2
3 > 0, where Equation (1) has been used for the second inequality.

Case 2.4: suppose that d(v) = 6. In this case, ch(v) = 16 and only rules R4, R6 and R7 make v

send charge out, to incident 3-faces, pendent 3-faces and incident 5-faces, respectively. If n5(v) = 6, then

ch∗(v) ≥ ch(v)− 8
3×6 = 0, we are done. Moreover, if n5(v) ∈ {1, 2, . . . , 5}, then we have ch∗(v) ≥ ch(v)−6n3(v)−

8
3n5(v)− 5

3m3(v) ≥ ch(v)− 2
3n3(v)− 8

3 (2n3(v) +n5(v) +m3(v)) ≥ 16− 2
3n3(v)− 8

3 (d(v)− 1) = 8
3 −

2
3n3(v) > 0,

where the third inequality follows from Equation (2). Hence, we may next assume that n5(v) = 0. Analogously,

by using Equation (1) instead of Equation (2), we can deduce that ch∗(v) ≥ ch(v)− 6n3(v)− 5
3m3(v) ≥ ch(v)−

8
3n3(v)− 5

3 (2n3(v)+m3(v)) ≥ 16− 8
3n3(v)− 5

3d(v) = 6− 8
3n3(v) > 0, provided by n3(v) ≤ 2. Hence, we may next

assume that n3(v) = 3. If v is incident with at most one weak (3, 3, 6)-face, then ch∗(v) ≥ ch(v)− 6− 5× 2 = 0;

otherwise, Lemma 3.16 implies that v is incident with a 3-face f that is neither (3, 3, 6)-face nor (3, 4, 6)-face.

So, v sends to f charge 4, giving ch∗(v) ≥ ch(v)− 6× 2− 4 = 0.

Case 2.5: suppose that d(v) ≥ 7. In this case, v sends to any incident 3-face charge 6 by R5, to any

incident 5-face charge at most 8
3 by R7, and to any pendent 3-face charge at most 5

3 by R6. So, ch∗(v) ≥
ch(v)− 6n3(v)− 8

3n5(v)− 5
3m3(v) ≥ ch(v)− 3(2n3(v) + n5(v) +m3(v)) ≥ (5d(v)− 14)− 3d(v) ≥ 0, where the

last two inequalities follow from Equation (1) and the assumption d(v) ≥ 7, respectively.

18



Claim 3.21.3. ch∗(f) ≥ 0 for f ∈ F \ {f0}.

Proof. Since G has neither 4-cycles nor 6-cycles, d(f) /∈ {4, 6}.
Case 1: assume that f contains vertices of D. Denote by n2(f) the number of 2-vertices on f . Lemma 3.8

implies that, if d(f) ∈ {3, 5, 7} then the common part of f and D must be a path of length at most d(f)−1
2 , say

the path P . Here, a path of length 0 or 1 means a vertex or an edge, respectively. So, n2(f) ≤ d(f)−1
2 − 1. We

distinguish four cases.

Case 1.1: let d(f) = 3. In this case, ch(f) = −8 and P is either a vertex or an edge. Notice that f

receives charge at least 1 from each incident internal vertex by rules from R1 to R5. If P is a vertex, then f is

a sticking 3-face, which receives charge 6 from P by R12, giving ch∗(f) = ch(f) + 6 + 1× 2 = 0, we are done.

If P is an edge, then f is a 1-ceiling 3-face, which receives charge 7
2 from both vertices of P by R12, giving

ch∗(f) = ch(f) + 7
2 × 2 + 1 = 0, we are done as well.

Case 1.2: let d(f) = 5. By R1 and R7, f receives from each exterior vertex of f charge at least 1
3 . Clearly,

ch(f) = −4 and P is a vertex or an edge or a 2-path. If P is a vertex, then f receives charge 8
3 from this vertex

by R12, giving ch∗(f) = ch(f) + 1
3 × 4 + 8

3 = 0. If P is an edge, then f receives charge 3
2 from both vertices of

P by R12, giving ch∗(f) = ch(f) + 1
3 × 3 + 3

2 × 2 = 0. If P is a 2-path, then f receives charge 13
6 from each end

vertex of P by R12 and sends charge 1 to the unique 2-vertex of P , giving ch∗(f) = ch(f)+ 1
3×2+ 13

6 ×2−1 = 0.

We are done in all the three situations above.

Case 1.3: let d(f) = 7. In this case, f sends charge to incident 2-vertices by R11 and receives charge from

incident exterior 3+-vertices by R12, no other charges moving about f . Recall that ch(f) = 2d(f)− 14 = 0 and

n2(f) ≤ d(f)−1
2 − 1 = 2. If n2(f) = 2, i.e., f is a 3-ceiling face, then f receives charge 1 from each end vertex of

P , giving ch∗(f) = ch(f) + 1× 2− 1× n2(f) = 0. If n2(f) = 1, i.e., f is a 2-ceiling face, then f receives charge
1
2 from each end vertex of P , giving ch∗(f) = ch(f) + 1

2 × 2− 1×n2(f) = 0. If n2(f) = 0, then f has no charges

moving in or out, giving ch∗(f) = ch(f) = 0. We are done in all the three situations above.

Case 1.4: let d(f) ≥ 8. Since f is not f0, f contains an internal vertex. That is to say, f contains a splitting

2+-path of D, say Q. By Lemma 3.8, if |Q| ≤ 4, then Q divides D into two parts, one of which together with

Q forms a face. Now Q contains internal 2-vertices, contradicting Lemma 3.1. So, |Q| ≥ 5. It follows that

n2(f) ≤ d(f) − 6. By our discharging rules, 8+-faces send charge only to incident 2-vertices, charge 1 to each

by R11. So, ch∗(f) = ch(f)− 1× n2(f) ≥ (2d(f)− 14)− (d(f)− 6) = d(f)− 8 ≥ 0.

Case 2: assume that f is vertex-disjoint with D. We distinguish three cases.

Case 2.1: let d(f) ≥ 7. By our discharging rules, f has no charges moved in or out in this case. So,

ch∗(f) = ch(f) = 2d(f)− 14 ≥ 0.

Case 2.2: let d(f) = 5. In this case, ch(f) = −4. By our discharging rules, f sends no charges out and

receives from each incident 4+-vertex charge at least 1
3 by R1 or R7. By Lemma 3.19, f contains a 4+-vertex,

say u. If u is the only 4+-vertex on f , i.e., f is small, then Lemma 3.20 implies that u is further a 5+-vertex,

which sends to f charge 8
3 by R7, giving ch∗(f) ≥ ch(f)+ 8

3 + 1
3×4 = 0; otherwise, f has at least two 4+-vertices,

from each f receives charge 3
2 , giving ch∗(f) ≥ ch(f) + 3

2 × 2 + 1
3 × 3 = 0.

Case 2.3: let d(f) = 3. In this case, ch(f) = −8 and f receives charge from all the incident vertices and

from all heavy outer neighbors, and sends charge out only when R9 applied. In particular, f receives charge 1

from each incident 3-vertex by R1.

If f is a (3, 3, 3)-face, then Lemma 3.7 implies that f has three heavy outer neighbors, each sends charge
5
3 to f by R6 or R12. So, ch∗(f) = ch(f) + 5

3 × 3 + 1× 3 = 0.
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If f is a (3, 3, 4)-face, then f has precisely two heavy outer neighbors by Lemma 3.7, each sends charge

at least 3
2 to f by R6 or R12. Moreover, f receives charge 3 from the 4-vertex of f by R2. So, ch∗(f) =

ch(f) + 3
2 × 2 + 3 + 1× 2 = 0.

If f is a weak (3, 3, 5)-face or a weak (3, 3, 6)-face or a (3, 3, 7+)-face, then f receives charge 6 from the

5+-vertex of f by R3 or R4 or R5, respectively. So, ch∗(f) = ch(f) + 6 + 1× 2 = 0.

If f is a strong (3, 3, 5)-face or a strong (3, 3, 6)-face, then f receives charge at least 7
2 from the 5+-vertex

of f by R3 or R4, respectively. Moreover, f receives charge at least 5
4 from both heavy outer neighbors of f by

R6 or R12. So, ch∗(f) ≥ ch(f) + 7
2 + 5

4 × 2 + 1× 2 = 0.

If f is a weak (3, 4, 4)-face or a weak (3, 5, 5)-face, then f receives charge 7
2 from both 4-vertices or 5-vertices

of f by R2 or R3, respectively. So, ch∗(f) = ch(f) + 7
2 × 2 + 1 = 0.

If f is a strong (3, 4, 4)-face, then f might send charge out by R9. Notice that f is contained in at

most two antiwheels, that is, f sends charge to at most six abnormal vertices, charge 1
6 to each. Moreover,

since f is strong, f has a heavy outer neighbor, from which f receives charge at least 5
4 by R6 or R12. So,

ch∗(f) ≥ ch(f)− 1
6 × 6 + 5

4 + 7
2 × 2 + 1 = 1

4 > 0.

If f is a (3, 4, 5+)-face, then f receives charge 5
2 from the 4-vertex of f by R2 and charge at least 9

2 from

the 5+-vertex of f by R3 or R4 or R5. So, ch∗(f) ≥ ch(f) + 5
2 + 9

2 + 1 = 0.

If f is a strong (3, 5, 5)-face, then f receives charge at least 5
4 from the heavy outer neighbor by R6 or R12

and charge 7
2 from both 5-vertices of f by R3. So, ch∗(f) ≥ ch(f) + 5

4 + 7
2 × 2 + 1 = 1

4 > 0.

If f is a (3, 5+, 6+)-face, then f receives charge 3 and charge at least 4 from the 5+-vertex and the 6+-vertex

on f , respectively. So, ch∗(f) ≥ ch(f) + 3 + 4 + 1 = 0.

If f is a (4, 4, 4)-face, then f receives charge 8
3 from each incident vertex by R2, giving ch∗(f) = ch(f) +

8
3 × 3 = 0.

If f is a (4, 4+, 5+)-face, then f receives charge 5
2 , charge at least 5

2 and charge at least 3 from the 4-vertex,

the 4+-vertex and the 5+-vertex, respectively. So, ch∗(f) ≥ ch(f) + 5
2 + 5

2 + 3 = 0.

By the previous three claims, the proof of Theorem 2.1 is completed.
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