Anti-Ramsey number of matchings in r-partite r-uniform hypergraphs*

Yisai Xue ${ }^{1}$, Erfang Shan ${ }^{2}$, Liying Kang ${ }^{1 \dagger}$
${ }^{1}$ Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
${ }^{2}$ School of Management, Shanghai University, Shanghai 200444, P.R. China

Abstract

An edge-colored hypergraph is rainbow if all of its edges have different colors. Given two hypergraphs \mathcal{H} and \mathcal{G}, the anti-Ramsey number $\operatorname{ar}(\mathcal{G}, \mathcal{H})$ of \mathcal{H} in \mathcal{G} is the maximum number of colors in a coloring of the edges of \mathcal{G} so that there does not exist a rainbow copy of \mathcal{H}. Li et al. determined the anti-Ramsey number of k-matchings in complete bipartite graphs. Jin and Zang showed the uniqueness of the extremal coloring. In this paper, as a generalization of these results, we determine the anti-Ramsey number $a r_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)$ of k-matchings in complete r-partite r-uniform hypergraphs and show the uniqueness of the extremal coloring. Also, we show that $\mathcal{K}_{k-1, n_{2}, \ldots, n_{r}}$ is the unique extremal hypergraph for Turán number $e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)$ and show that $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k-1}\right)+1$, which gives a multi-partite version result of Özkahya and Young's conjecture.

Keywords: anti-Ramsey number; r-partite r-uniform hypergraph
AMS (2000) subject classification: 05C35

1 Introduction

An edge-colored graph G is called rainbow if every edge of G receives a different color. Given two graphs H and $G, \operatorname{ar}(H, G)$ is defined to be the maximum number of colors in a coloring of the edges of H that has no rainbow copy of G. The number $\operatorname{ar}(H, G)$ is called the antiRamsey number of G in H. When $H=K_{n}, \operatorname{ar}\left(K_{n}, G\right)$ is the anti-Ramsey number of G. Let $e x(H, G)$ denote the maximum number of edges that a subgraph of H can have with no subgraph isomorphic to G.

[^0]The study of anti-Ramsey number began by Erdős et al. 3 in 1970s. In the original work, they conjectured that $\operatorname{ar}\left(K_{n}, C_{k}\right)=\left(\frac{k-2}{2}+\frac{1}{k-1}\right) n+O(1)$, and proved the conjecture when $k=3$. After that, Alon [1] proved the conjecture for $k=4$. Jiang, Schiermeyer and West (unpublished manuscript) proved the conjecture for $k \leq 7$. Finally, Montellano-Ballesteros and Neumann-Lara [12] completely proved the conjecture in 2005.

For matchings, Schiermeyer [14] used a counting technique to determine $\operatorname{ar}\left(K_{n}, k K_{2}\right)$ for all $k \geq 2$ and $n \geq 3 k+3$. After that, Fujita et al. [5] solved this problem for $k \geq 2$ and $n \geq 2 k+1$. In 2009, Chen et al. [2] extended Schiermeyer's result to all $k \geq 2$ and $n \geq 2 k$ by using the Gallai-Edmonds structure theorem.

Taking complete bipartite graphs as the host graphs, Li et al [9] determined $\operatorname{ar}\left(K_{n_{1}, n_{2}}, k K_{2}\right)$ for all $k \geq 1$. Denote by $B_{n, m}$ the set of all the m-regular bipartite graphs of order $2 n$. Li and Xu [10] showed that $\operatorname{ar}\left(B_{n, m}, k K_{2}\right)=m(k-2)+1$ for $k \geq 2, m \geq 3$ and $n>3 k-1$.

A hypergraph $\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))$ is a finite set $V(\mathcal{H})$ of elements, called vertices, together with a finite set $E(\mathcal{H})$ of subsets of $V(\mathcal{H})$, called hyperedges or simply edges. The union of hypergraphs \mathcal{G} and \mathcal{H} is the graph $\mathcal{G} \cup \mathcal{H}$ with vertex set $V(\mathcal{G}) \cup V(\mathcal{H})$ and edge set $E(\mathcal{G}) \cup E(\mathcal{H})$. If each edge of \mathcal{H} has exactly r vertices, \mathcal{H} is called r-uniform. For a subset V^{\prime} of $V(\mathcal{H})$, denoted by $\mathcal{H}\left[V^{\prime}\right]$ the subhypergraph of \mathcal{H} induced by V^{\prime}. For $v \in V(\mathcal{H})$, we use $\mathcal{H}-v$ to denote $\mathcal{H}[V(\mathcal{H}) \backslash\{v\}]$. For an edge e in $E(\mathcal{H})$, denoted by $\mathcal{H}-e$ the hypergraph obtained by deleting e from \mathcal{H}. For a vertex $v \in V(\mathcal{H})$, the degree $d_{\mathcal{H}}(v)$ is defined as the number of edges of \mathcal{H} containing v. A vertex of degree zero is called an isolated vertex. For $u, v \in V(\mathcal{H})$, we define $d_{\mathcal{H}}(u, v)$ to be the number of edges of \mathcal{H} containing $\{u, v\}$, and we call this number the co-degree of $\{u, v\}$. For a hypergraph \mathcal{H}, we denote the number of edges in \mathcal{H} by $e(\mathcal{H})$. A complete runiform hypergraph is a hypergraph whose edge set consists of all r-subsets of the vertex set. A matching in a hypergraph is a set of edges in which no two edges have a common vertex. We call a matching with k edges a k-matching, denoted by M_{k}. An edge-colored hypergraph is called rainbow hypergraph if the all of its edges have different colors. The representing hypergraph of a hypergraph \mathcal{H} with an edge coloring c is a spanning subhypergraph of \mathcal{H} obtained by taking one edge of each color of c. For an edge set $E \subseteq E(\mathcal{H})$, let $c(E)$ denote the set of colors of edges in E. For simplicity, when $E=\{e\}$ and $E=E(\mathcal{H})$, we use $c(e)$ and $c(\mathcal{H})$ instead of $c(\{e\})$ and $c(E(\mathcal{H}))$, respectively.

Let $n_{1}, n_{2}, \ldots, n_{r}$ be integers and $V_{1}, V_{2}, \ldots, V_{r}$ be disjoint vertex sets with $\left|V_{i}\right|=n_{i}$ for each $i=1,2, \ldots, r$. A complete r-partite r-uniform hypergraph on vertex classes $V_{1}, V_{2}, \ldots, V_{r}$, denoted by $\mathcal{K}_{n_{1}, \ldots, n_{r}}$, is defined to be the r-uniform hypergraph whose edge set consists of all the r-element subsets S of $V_{1} \cup \cdots \cup V_{r}$ such that $\left|S \cap V_{i}\right|=1$ for all $i=1,2, \ldots, r$.

Given two hypergraphs \mathcal{H} and \mathcal{G}, the anti-Ramsey number of \mathcal{H} in \mathcal{G}, denoted by $\operatorname{ar}(\mathcal{G}, \mathcal{H})$, is
the maximum number of colors in a coloring of the edges of \mathcal{G} with no rainbow copy of \mathcal{H}. When \mathcal{G} is an r-uniform complete hypergraph on n vertices, $\operatorname{ar}_{r}(\mathcal{G}, \mathcal{H})$ is the anti-Ramsey number of \mathcal{H}. The Turán number ex $\operatorname{ex}_{r}(\mathcal{G}, \mathcal{H})$ is the maximum number of edges in an \mathcal{H}-free subhypergraph of \mathcal{G}, where \mathcal{H}-free hypergraph is one which contains no \mathcal{H} as a subhypergraph.

Gu et al. [6] determined the anti-Ramsey numbers of linear paths/cycles and loose paths/cycles in hypergraphs for sufficiently large n and gave bounds on the anti-Ramsey numbers of Berge paths/cycles. For the anti-Ramsey number of matchings in hypergraphs, Özkahya and Young [13] stated a conjecture that $\operatorname{ar}_{r}\left(\mathcal{K}_{n}, M_{k}\right)=e x_{r}\left(\mathcal{K}_{n}, M_{k-1}\right)+1$ for all $n>s k$ and proved the conjecture when $k=2,3$ and n is sufficiently large. Recently, Frankl and Kupavskii [4] proved that the conjecture is true for $n \geq r k+(r-1)(k-1)$ and $k \geq 3$. Jin 7 determined the exact value of the anti-Ramsey number of a k-matching in a complete tripartite 3 -uniform hypergraph.

Take a subhypergraph $\mathcal{K}_{k-2, n_{2}, \ldots, n_{r}}$ of $\mathcal{K}_{n_{1}, n_{2}, \ldots, n_{r}}$. Color the edges of $\mathcal{K}_{k-2, n_{2}, \ldots, n_{r}}$ by distinct colors and color the remaining edges of $\mathcal{K}_{n_{1}, \ldots, n_{r}}$ by a new color. Denote by ϕ_{r} the obtained $\left((k-2) n_{2} \cdots n_{r}+1\right)$-edge-coloring of $\mathcal{K}_{n_{1}, \ldots, n_{r}} . \mathrm{Li}, \mathrm{Tu}$ and Jin 9 determined the following results in complete bipartite graphs.

Theorem 1 ([9). For $n_{2} \geq n_{1} \geq k \geq 1$,

$$
e x\left(K_{n_{1}, n_{2}}, k K_{2}\right)=(k-1) n_{2} .
$$

Moreover, $K_{k-1, n_{2}}$ is the unique such extremal graph.
Theorem 2 ([9). For $n_{2} \geq n_{1} \geq k \geq 3$,

$$
\operatorname{ar}\left(K_{n_{1}, n_{2}}, k K_{2}\right)=(k-2) n_{2}+1 .
$$

In addition to the anti-Ramsey number, another interesting problem posed by Erdős is the uniqueness of the extremal coloring. In [8], Jin and Zang obtained the following result.

Theorem 3 (团). For $n_{2} \geq n_{1} \geq k \geq 3$, every $\left((k-2) n_{2}+1\right)$-edge-coloring except for ϕ_{2} of $K_{n_{1}, n_{2}}$ contains a rainbow $k K_{2}$.

The following proposition provides a lower and upper bound for $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)$, and the proof of which is similar to that of [14].

Proposition 4. $e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k-1}\right)+1 \leq \operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right) \leq e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)$.
Proof. The upper bound is clear. For the lower bound, let \mathcal{H}_{0} be an extremal hypergraph for $e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k-1}\right)$ and color all edges of \mathcal{H}_{0} differently and all the edges in $E\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}\right) \backslash E\left(\mathcal{H}_{0}\right)$
with one extra color. The hypergraph $\mathcal{K}_{n_{1}, \ldots, n_{r}}$ with this coloring does not contain a rainbow k-matching. The result follows.

The proposition provides a lower bound for $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)$. In this paper we will show that $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k-1}\right)+1$, which gives a multi-partite version result of Özkahya and Young's conjecture.

In [11], Liu and Wang determined $e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)$.
Theorem 5 ([11]). For $n_{r} \geq n_{r-1} \geq \cdots \geq n_{1} \geq k \geq 1$,

$$
e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=(k-1) n_{2} \cdots n_{r} .
$$

We will show that $\mathcal{K}_{k-1, n_{2}, \ldots, n_{r}}$ is the unique extremal hypergraph in Theorem 5 ,
The following result is very useful for us.
Theorem 6. For $n_{r} \geq n_{r-1} \geq \cdots \geq n_{1} \geq k \geq 1$, every subhypergraph of $\mathcal{K}_{n_{1}, \ldots, n_{r}}$ with ($k-$ 1) $n_{2} \cdots n_{r}$ edges and without isolated vertices, except for $\mathcal{K}_{k-1, n_{2}, \ldots, n_{r}}$, contains a k-matching.

Motivated by Theorem 2, one may naturally ask what is the maximum number of colors in a complete r-partite r-uniform hypergraph without a rainbow k-matching, where $r \geq 3$. This paper focus on the anti-Ramsey number of k-matchings in complete r-partite r-uniform hypergraphs. The following are our main results.

Theorem 7. (i) For $n_{r} \geq n_{r-1} \geq \cdots \geq n_{1} \geq 3$,

$$
\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{2}\right)=1
$$

(ii) For $n_{1}=2$, let t be the largest integer such that $n_{t}=n_{1}=2$. Then

$$
\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{2}\right)=2^{t-1}
$$

Theorem 8. For $n_{r} \geq n_{r-1} \geq \cdots \geq n_{1} \geq 2 k-1$ and $k \geq 3$,

$$
\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=(k-2) n_{2} \cdots n_{r}+1 .
$$

Moreover, every $\left((k-2) n_{2} \cdots n_{r}+1\right)$-edge-coloring except for ϕ_{r} of $\mathcal{K}_{n_{1}, \ldots, n_{r}}$ contains a rainbow k-matching.

Combining Theorems [5] 7 and , we have the following corollary.
Corollary 9. For $n_{r} \geq n_{r-1} \geq \cdots \geq n_{1} \geq 2 k-1$ and $k \geq 2$,

$$
\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=e x_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k-1}\right)+1
$$

2 Proofs of Theorems 6 and 7

Proof of Theorem6. We use induction on r. The base case of $r=2$ is true for all $n_{2} \geq n_{1} \geq k$ by Theorem回. Suppose that the assertion holds for all $r^{\prime}<r$. Assume that \mathcal{G} is a subhypergraph of $\mathcal{K}_{n_{1}, \ldots, n_{r}}$ with $(k-1) n_{2} \cdots n_{r}$ edges and without isolated vertices, and does not contain a k-matching. Let $V_{s}=\left\{v_{s 1}, v_{s 2}, \ldots, v_{s n_{s}}\right\}$ for $s=1,2, \ldots, r$. We consider two different cases.

Case 1. $n_{1}=n_{2}$.
For $1 \leq i, j \leq n_{1}$, let $F_{i, j}=\left\{\left\{v_{1 i}, v_{2 j}, w_{3}, \ldots, w_{r}\right\} \in E(\mathcal{G}) \mid w_{s} \in V_{s}\right.$ for $\left.3 \leq s \leq r\right\}$ and $F_{i}=F_{i, 1} \cup F_{i+1,2} \cup \cdots \cup F_{i+n_{1}-1, n_{1}}$, where $F_{i, j}=F_{i-n_{1}, j}$ if $i>n_{1}$.

For each $F_{i}, i=1,2, \ldots, n_{1}$, we construct an $(r-1)$-partite $(r-1)$-uniform hypergraph \mathcal{G}_{i} on vertex classes $V_{1}, V_{3}, \ldots, V_{r}$, and $e=\left\{v_{1 l}, w_{3}, \ldots, w_{r}\right\}$ is an edge of \mathcal{G}_{i} if and only if $e^{\prime}=\left\{v_{1 l}, v_{2 l^{\prime}}, w_{3}, \ldots, w_{r}\right\}$ is an edge of F_{i}, where $l-l^{\prime} \equiv i-1\left(\bmod n_{1}\right)$. Therefore, there is a bijection between F_{i} and $E\left(\mathcal{G}_{i}\right)$. Note that if two edges e_{1} and e_{2} in \mathcal{G}_{i} are independent, then the corresponding edges e_{1}^{\prime} and e_{2}^{\prime} in F_{i} are also independent. Then we have the following fact.
Fact A. Any matching in \mathcal{G}_{i} corresponds to a matching in $F_{i} \subseteq E(\mathcal{G})$.
First, we prove the following claims.
Claim 1. For $i \neq j, F_{i} \cap F_{j}=\emptyset$.
Proof. If there exists an edge $\left\{v_{1 l}, v_{2 l^{\prime}}, w_{3}, \ldots, w_{r}\right\} \in F_{i} \cap F_{j}$, then $l-l^{\prime} \equiv i-1\left(\bmod n_{1}\right)$ and $l-l^{\prime} \equiv j-1\left(\bmod n_{1}\right)$ which implies $i=j$.

It follows from Claim 1 that $e(\mathcal{G})=\sum_{i=1}^{n_{1}}\left|F_{i}\right|=\sum_{i=1}^{n_{1}} e\left(\mathcal{G}_{i}\right)$.
Claim 2. For any $1 \leq i \leq n_{1}, e\left(\mathcal{G}_{i}\right)=(k-1) n_{3} \cdots n_{r}$.
Proof. First, we have $e\left(\mathcal{G}_{i}\right) \leq(k-1) n_{3} \cdots n_{r}$. Otherwise, \mathcal{G}_{i} contains a k-matching by Theorem [5] so does \mathcal{G} by Fact A, a contradiction. Hence,

$$
(k-1) n_{1} n_{3} \cdots n_{r}=e(\mathcal{G})=\sum_{i=1}^{n_{1}} e\left(\mathcal{G}_{i}\right) \leq n_{1}(k-1) n_{3} \cdots n_{r},
$$

which implies that $e\left(\mathcal{G}_{i}\right)=(k-1) n_{3} \cdots n_{r}$ for each $1 \leq i \leq n_{1}$.
According to Fact A and Claim 2, \mathcal{G}_{i} is a subhypergraph of $\mathcal{K}_{n_{1}, n_{3}, \ldots, n_{r}}$ with $(k-1) n_{3} \cdots n_{r}$ edges and does not contain a k-matching. By the induction hypothesis, $\mathcal{G}_{i} \cong \mathcal{K}_{k-1, n_{3}, \ldots, n_{r}} \cup$ $\left(n_{1}-k+1\right) \mathcal{K}_{1}$ for $i=1,2, \ldots, n_{1}$. Recall the construction of \mathcal{G}_{i}, we deduce that $d_{\mathcal{G}}\left(v_{1 i}, v_{2 j}\right)=0$ or $d_{\mathcal{G}}\left(v_{1 i}, v_{2 j}\right)=n_{3} \cdots n_{r}$ for $1 \leq i, j \leq n_{1}$. Construct an auxiliary bipartite graph G with bipartition $\left(V_{1}, V_{2}\right)$, where $e_{i j}=v_{1 i} v_{2 j} \in E(G)$ if and only if $d_{\mathcal{G}}\left(v_{1 i}, v_{2 j}\right)=n_{3} \cdots n_{r}$. Then $e(\mathcal{G})=(k-1) n_{2} \cdots n_{r}$ implies that $e(G)=(k-1) n_{2}=(k-1) n_{1}$. We claim that there is no k-matching in G. If there exists a k-matching $e_{i_{1}, j_{1}}, e_{i_{2}, j_{2}}, \ldots, e_{i_{k}, j_{k}}$ in G, we can find k
edges $e_{i_{1}, j_{1}}^{\prime}, e_{i_{2}, j_{2}}^{\prime}, \ldots, e_{i_{k}, j_{k}}^{\prime}$ to form a k-matching in \mathcal{G}, where $e_{i_{l}, j_{l}}^{\prime}=\left\{v_{1, i_{l}}, v_{2, j_{l}}, v_{3 l}, \ldots, v_{r l}\right\}$ for $l=1,2, \ldots, r$. This contradicts the choice of \mathcal{G}. It follows from Theorem that $G \cong K_{k-1, n_{1}} \cup$ $\left(n_{1}-k+1\right) K_{1}$. Without loss of generality, let $E(G)=\left\{v_{1 i} v_{2 j} \mid 1 \leq i \leq k-1,1 \leq j \leq n_{2}\right\}$. By the construction of G, every edge in $E\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}\right)$ containing $\left\{v_{1 i}, v_{2 j}\right\}$ is an edge in \mathcal{G} for $1 \leq i \leq k-1$ and $1 \leq j \leq n_{2}$. Hence, $\mathcal{G} \cong \mathcal{K}_{k-1, n_{2}, n_{3}, \ldots, n_{r}}$ when $n_{1}=n_{2}$.
Case 2. $n_{1}<n_{2}$.
Claim 3. For $u \in V_{2}, d_{\mathcal{G}}(u)=(k-1) n_{3} \cdots n_{r}$.
Proof. If there exists a vertex $u \in V_{2}$ such that $d_{\mathcal{G}}(u)<(k-1) n_{3} \cdots n_{r}$, then

$$
e(\mathcal{G}-u)=e(\mathcal{G})-d_{\mathcal{G}}(u)>(k-1)\left(n_{2}-1\right) n_{3} \cdots n_{r} .
$$

By Theorem 5, $\mathcal{G}-u$ contains a k-matching, so does \mathcal{G}, a contradiction. Hence, $d_{\mathcal{G}}(u) \geq$ $(k-1) n_{3} \cdots n_{r}$ for all $u \in V_{2}$. Note that

$$
(k-1) n_{2} \cdots n_{r}=e(\mathcal{G})=\sum_{u \in V_{2}} d_{\mathcal{G}}(u) \geq(k-1) n_{2} n_{3} \cdots n_{r} .
$$

We deduce that $d_{\mathcal{G}}(u)=(k-1) n_{3} \cdots n_{r}$ for all $u \in V_{2}$.
Set $V_{2}^{\prime} \subseteq V_{2}$ such that $\left|V_{2}^{\prime}\right|=n_{1}$. Let $\mathcal{G}^{\prime}=\mathcal{G}\left[V_{1}, V_{2}^{\prime}, V_{3}, \ldots, V_{r}\right]$. According to Claim 3, we have $e\left(\mathcal{G}^{\prime}\right)=\sum_{u \in V_{2}^{\prime}} d_{\mathcal{G}}(u)=(k-1) n_{1} n_{3} \cdots n_{r}$. It follows from Case 1 that

$$
\mathcal{G}^{\prime} \cong \mathcal{K}_{k-1, n_{1}, n_{3}, \ldots, n_{r}} \cup\left(n_{1}-k+1\right) \mathcal{K}_{1} .
$$

Combining this with the arbitrariness of V_{2}^{\prime}, we have $d_{\mathcal{G}}\left(v_{1 i}, v_{2 j}\right)=0$ or $d_{\mathcal{G}}\left(v_{1 i}, v_{2 j}\right)=n_{3} \cdots n_{r}$ for $1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. Construct an auxiliary bipartite graph G with bipartition $\left(V_{1}, V_{2}\right)$, where $e_{i j}=v_{1 i} v_{2 j} \in E(G)$ if and only if $d_{\mathcal{G}}\left(v_{1 i}, v_{2 j}\right)=n_{3} \cdots n_{r}$. Then $e(\mathcal{G})=(k-1) n_{2} n_{3} \cdots n_{r}$ implies that $e(G)=(k-1) n_{2}$. We claim that there is no k-matching. Otherwise, if there is a k-matching $e_{i_{1}, j_{1}}, \ldots, e_{i_{k}, j_{k}}$ in G, we can find k edges in $F_{i_{1}, j_{1}}, \ldots, F_{i_{k}, j_{k}}$ to form a k-matching in \mathcal{G}, a contradiction. By Theorem $\mathcal{1}\left\{K_{k-1, n_{2}} \cup\left(n_{1}-k+1\right) K_{1}\right.$. Without loss of generality, let $E(G)=\left\{v_{1 i} v_{2 j} \mid 1 \leq i \leq k-1,1 \leq j \leq n_{2}\right\}$. By the construction of G, every edge in $E\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}\right)$ containing $\left\{v_{1 i}, v_{2 j}\right\}$ is an edge in \mathcal{G} for $1 \leq i \leq k-1$ and $1 \leq j \leq n_{2}$. Hence, $\mathcal{G} \cong \mathcal{K}_{k-1, n_{2}, n_{3}, \ldots, n_{r}}$.

We now turn to the proofs of the main results of this paper. Theorem 7 gives the value of anti-Ramsey number of k-matching in complete r-partite r-uniform hypergraphs when $k=2$.

Proof of Theorem 7 .

(i) $n_{1} \geq 3$.

Suppose to the contrary that \mathcal{H} is a complete r-partite r-uniform hypergraph colored by more than one color, and containing no rainbow 2-matching. Set $e, f \in E(\mathcal{H})$ such that $c(e) \neq c(f)$. Clearly, $E(\mathcal{H}-e) \cap E(\mathcal{H}-f) \neq \emptyset$ as $n_{1} \geq 3$. Choose an edge $g \in E(\mathcal{H}-e) \cap E(\mathcal{H}-f)$, then $c(g)=c(e)$ as \mathcal{H} does not contain a rainbow 2-matching. Similarly, we have $c(g)=c(f)$, then $c(e)=c(f)$, contradicting the fact $c(e) \neq c(f)$. Therefore, $|c(\mathcal{H})|=1$, i.e., $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{2}\right)=$ 1.
(ii) $n_{1}=2$.

By the choice of $t, n_{1}=n_{2}=\cdots=n_{t}=2$. Let $\mathcal{H} \cong \mathcal{K}_{n_{1}, \ldots, n_{r}}$ be a complete r-partite r-uniform hypergraph. Let $R(\mathcal{H}, t)=\left\{\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \mid v_{i} \in V_{i}\right.$ and $\left.i \in[t]\right\}$. For any edge $e=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \in E(\mathcal{H})$, let $R(e, t)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$. For $\alpha=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \in R(\mathcal{H}, t)$, let $\bar{\alpha}=\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{t}\right\}$, where \bar{v}_{i} is the remaining vertex in V_{i} except v_{i}. For $\alpha=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \in$ $R(\mathcal{H}, t)$, let

$$
E_{\{\alpha, \bar{\alpha}\}}=\{e \in E(\mathcal{H}) \mid R(e, t)=\alpha \text { or } R(e, t)=\bar{\alpha}\} .
$$

Then we decompose the edge set of \mathcal{H} into $E(\mathcal{H})=\cup_{\{\alpha, \bar{\alpha}\} \in Q} E_{\{\alpha, \bar{\alpha}\}}$, where $Q=\{\{\alpha, \bar{\alpha}\} \mid \alpha \in$ $R(\mathcal{H}, t)\}$. It is easily checked that $|Q|=2^{t-1}$ and $E_{\{\alpha, \bar{\alpha}\}} \cap E_{\{\beta, \bar{\beta}\}}=\emptyset$ for any two different elements $\{\alpha, \bar{\alpha}\},\{\beta, \bar{\beta}\}$ in Q.

We consider the following coloring of \mathcal{H} : For any two edges $e, f \in E(\mathcal{H}), c(e)=c(f)$ if and only if there exists an element $\{\alpha, \bar{\alpha}\} \in Q$ such that $e, f \in E_{\{\alpha, \bar{\alpha}\}}$. By the definition of the coloring of \mathcal{H}, any two independent edges have the same color and $|c(\mathcal{H})|=|Q|=2^{t-1}$. So \mathcal{H} does not contain a rainbow 2 -matching. Therefore, $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{2}\right) \geq 2^{t-1}$.

Let $\mathcal{H}=\mathcal{K}_{n_{1}, \ldots, n_{r}}$ be an edge-colored complete r-partite r-uniform hypergraph without rainbow 2-matchings. To obtain the upper bound, we consider the following cases.

Case 1. $t=r$.
In this case, $E_{\{\alpha, \bar{\alpha}\}}=\{\alpha, \bar{\alpha}\}$. Then $E(\mathcal{H})$ can be decomposed into 2^{r-1} pairs of independent edges, and each pair of edges must be colored by the same color. Hence $|c(\mathcal{H})| \leq 2^{r-1}$, then $\operatorname{ar}_{r}\left(\mathcal{K}_{2, \ldots, 2}, M_{2}\right) \leq 2^{r-1}$, which implies that $\operatorname{ar}_{r}\left(\mathcal{K}_{2, \ldots, 2}, M_{2}\right)=2^{r-1}$.

Case 2. $t<r$.
Recall that $E(\mathcal{H})=\cup_{\{\alpha, \bar{\alpha}\} \in Q} E_{\{\alpha, \bar{\alpha}\}}$. We have the following claims.
Claim 1. For any $\{\alpha, \bar{\alpha}\} \in Q$, if $e, f \in E_{\{\alpha, \bar{\alpha}\}}$ and $R(e, t)=R(f, t)$, then $c(e)=c(f)$.
Proof. For any $\{\alpha, \bar{\alpha}\} \in Q$, since $n_{r} \geq \cdots \geq n_{t+1} \geq 3$, there exists an edge $g=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ $\in E_{\{\alpha, \bar{\alpha}\}}$, such that $R(g, t)=\overline{R(e, t)}$ and $u_{j} \in V_{j}-e \cup f$ for $j=t+1, \ldots, r$. Then $g \cap e=$ $g \cap f=\emptyset$. Therefore, $c(e)=c(g)=c(f)$. Otherwise, \mathcal{H} contains a rainbow 2-matching.
Claim 2. For any $\{\alpha, \bar{\alpha}\} \in Q$, if $e, f \in E_{\{\alpha, \bar{\alpha}\}}$ and $R(e, t)=\overline{R(f, t)}$, then $c(e)=c(f)$.

Proof. Since $n_{r} \geq \cdots \geq n_{t+1} \geq 3$, there exists an edge $g=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} \in E_{\{\alpha, \bar{\alpha}\}}$ with $R(g, t)=R(e, t)$ and $u_{j} \in V_{j}-f$ for $j=t+1, \ldots, r$. It follows from Claim 1 that $c(g)=c(e)$. Note that $g \cap f=\emptyset$, we have $c(f)=c(g)$. Then $c(e)=c(f)$.

Combining these two claims, we conclude that $c\left(E_{\{\alpha, \bar{\alpha}\}}\right)=1$ for any $\{\alpha, \bar{\alpha}\} \in Q$. Therefore, $|c(\mathcal{H})| \leq 2^{t-1}$, which implies that $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{2}\right) \leq 2^{t-1}$. Thus $a r_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{2}\right)=2^{t-1}$.

3 Proof of Theorem 8

In this section we will determine the value of the anti-Ramsey number of k-matchings in complete r-partite r-uniform hypergraphs, and also give the uniqueness of extremal coloring.

We need the following lemma.
Lemma 10. For $n_{1} \geq 2 k-1$ and $k \geq 3$,

$$
\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{1}}, M_{k}\right)=(k-2) n_{1}^{r-1}+1,
$$

and every $\left((k-2) n_{1}^{r-1}+1\right)$-edge-coloring except for ϕ_{r} of $\mathcal{K}_{n_{1}, \ldots, n_{1}}$ contains a rainbow k matching.

Proof. We use induction on r. The base case of $r=2$ is true for all $n_{1} \geq 2 k-1$ by Theorem 2 and Theorem 3. Suppose that the lemma holds for all $r^{\prime}<r$. Assume, by way of contradiction, that $\mathcal{H}=\mathcal{K}_{n_{1}, \ldots, n_{1}}$ is a hypergraph with a $\left((k-2) n_{1}^{r-1}+2\right)$-edge-coloring and does not contain a rainbow k-matching.

Let $V_{s}=\left\{v_{s 1}, v_{s 2}, \ldots, v_{s n_{1}}\right\}, s=1,2, \ldots, r$. For $1 \leq i, j \leq n_{1}$, let

$$
E_{i, j}=\left\{\left\{v_{1 i}, v_{2 j}, w_{3}, \ldots, w_{r}\right\} \in E(\mathcal{H}) \mid w_{s} \in V_{s} \text { for } 3 \leq s \leq r\right\},
$$

and $E_{i}=E_{i, 1} \cup E_{i+1,2} \cup \cdots \cup E_{i+n_{1}-1, n_{1}}$, where $E_{i, j}=E_{i-n_{1}, j}$ if $i>n_{1}$.
For each $E_{i}, i=1,2, \ldots, n_{1}$, we construct a complete ($r-1$)-partite ($r-1$)-uniform hypergraph \mathcal{H}_{i} on vertex classes $V_{1}, V_{3}, \ldots, V_{r}$ such that $e=\left\{v_{1 l}, w_{3}, \ldots, w_{r}\right\}$ is an edge of \mathcal{H}_{i} if and only if $e^{\prime}=\left\{v_{1 l}, v_{2 l^{\prime}}, w_{3}, \ldots, w_{r}\right\}$ is an edge of E_{i}, where $l-l^{\prime} \equiv i-1\left(\bmod n_{1}\right)$, and we color e by $c\left(e^{\prime}\right)$. Therefore, there is a bijection between E_{i} and $E\left(\mathcal{H}_{i}\right)$ and $c\left(E_{i}\right)=c\left(\mathcal{H}_{i}\right)$. Note that if two edges e_{1} and e_{2} in \mathcal{H}_{i} are independent, then the corresponding edges e_{1}^{\prime} and e_{2}^{\prime} in E_{i} are also independent. Then we have the following fact.

Fact B. Any rainbow matching in \mathcal{H}_{i} corresponds to a rainbow matching in $E_{i} \subseteq E(\mathcal{H})$.

Obviously, $E(\mathcal{H})=\bigcup_{i=1}^{n_{1}} E_{i}$. Then

$$
\sum_{i=1}^{n_{1}}\left|c\left(\mathcal{H}_{i}\right)\right|=\sum_{i=1}^{n_{1}}\left|c\left(E_{i}\right)\right| \geq|c(\mathcal{H})|=(k-2) n_{1}^{r-1}+2 .
$$

Without loss of generality, we assume that \mathcal{H}_{1} has the most colors in $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n_{1}}$.
Claim 1. $\left|c\left(\mathcal{H}_{1}\right)\right|=(k-2) n_{1}^{r-2}+1$.
Proof. First, we have $\left|c\left(\mathcal{H}_{i}\right)\right| \leq(k-2) n_{1}^{r-2}+1$ for $1 \leq i \leq n_{1}$. Otherwise, by induction hypothesis, \mathcal{H}_{i} contains a rainbow k-matching, so does \mathcal{H} by Fact B , a contradiction. If $\left|c\left(\mathcal{H}_{1}\right)\right| \leq(k-2) n_{1}^{r-2}$, then

$$
(k-2) n_{1}^{r-1}+2=|c(\mathcal{H})| \leq \sum_{i=1}^{n_{1}}\left|c\left(\mathcal{H}_{i}\right)\right| \leq n_{1}(k-2) n_{1}^{r-2},
$$

a contradiction. Hence, $\left|c\left(\mathcal{H}_{1}\right)\right|=(k-2) n_{1}^{r-2}+1$.
We next show that there exists an integer $2 \leq t \leq n_{1}$ such that $\left|c\left(\mathcal{H}_{t}\right)\right|=(k-2) n_{1}^{r-2}+1$ and $c\left(\mathcal{H}_{1}\right) \cap c\left(\mathcal{H}_{t}\right)=\emptyset$. Otherwise,

$$
|c(\mathcal{H})| \leq\left((k-2) n_{1}^{r-2}+1\right)+(k-2) n_{1}^{r-2} \cdot\left(n_{1}-1\right)<(k-2) n_{1}^{r-1}+2,
$$

contradicting the assumption of \mathcal{H}. Since \mathcal{H}_{1} and \mathcal{H}_{t} do not contain a rainbow k-matching and with $(k-2) n_{1}^{r-2}+1$ colors, by the induction hypothesis, they are both colored by ϕ_{r-1}. Let H_{t} be the representing hypergraph of \mathcal{H}_{t}. Then

$$
e\left(H_{t}\right)=\left|c\left(\mathcal{H}_{t}\right)\right|>(k-2) n_{1}^{r-2},
$$

so H_{t} contains a $(k-1)$-matching by Theorem [5. Hence, there is a rainbow ($k-1$)-matching in \mathcal{H}_{t}, which corresponds to a rainbow ($k-1$)-matching, denoted by M_{k-1}, in E_{t}. The $(k-1)$ matching M_{k-1} meets $k-1$ vertices in V_{1} and $k-1$ vertices in V_{2}, respectively. As $n_{1} \geq 2 k-1$, there exists an integer s, such that $v_{1 s} \in V_{1}-V\left(M_{k-1}\right)$ and $v_{2 s} \in V_{2}-V\left(M_{k-1}\right)$. Then we can find an edge $e \in E_{s, s} \subseteq E_{1}$ such that $e \cap V\left(M_{k-1}\right)=\emptyset$. Recall that $c\left(\mathcal{H}_{1}\right) \cap c\left(\mathcal{H}_{t}\right)=\emptyset$, $c\left(\mathcal{H}_{1}\right)=c\left(E_{1}\right)$ and $c\left(\mathcal{H}_{t}\right)=c\left(E_{t}\right)$, then $e \cup M_{k-1}$ is a rainbow k-matching in \mathcal{H}, a contradiction. Hence $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{1}}, M_{k}\right) \leq(k-2) n_{1}^{r-1}+1$. Combining this with Proposition 4 and Theorem 55 we have $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{1}}, M_{k}\right)=(k-2) n_{1}^{r-1}+1$.

Now we prove the uniqueness of the extremal coloring. Suppose that $|c(\mathcal{H})|=(k-2) n_{1}^{r-1}+1$ and \mathcal{H} does not contain a rainbow k-matching. Let H be the representing hypergraph of \mathcal{H}. Then $e(H)=(k-2) n_{1}^{r-1}+1$. As the discussion above, we construct $E_{i} \subseteq E(\mathcal{H})$ and
a complete $(r-1)$-partite $(r-1)$-uniform hypergraph \mathcal{H}_{i} on vertex classes $V_{1}, V_{3}, \ldots, V_{r}$ for $i=1,2, \ldots, n_{1}$. Without loss of generality, assume that \mathcal{H}_{1} has the most colors in $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n_{1}}$. Then $\left|c\left(\mathcal{H}_{1}\right)\right|=(k-2) n_{1}^{r-2}+1$.

Notice that \mathcal{H}_{1} does not contain a rainbow k-matching and $\left|c\left(\mathcal{H}_{1}\right)\right|=(k-2) n_{1}^{r-2}+1$. By the induction hypothesis, \mathcal{H}_{1} is colored by configuration ϕ_{r-1}. Without loss of generality, we assume that in $\mathcal{H}_{1}, E^{*}=\left\{\left\{v_{1 i}, w_{3}, \ldots, w_{r}\right\} \in E\left(\mathcal{H}_{1}\right) \mid k-1 \leq i \leq n_{1}\right.$ and $w_{s} \in V_{s}$ for $\left.3 \leq s \leq r\right\}$ are colored by one color and all the remaining edges of \mathcal{H}_{1} colored by distinct colors. Then, in \mathcal{H}, $c\left(E_{k-1, k-1}\right)=\cdots=c\left(E_{n_{1}, n_{1}}\right)=c\left(E^{*}\right)$, and the colors of the edges in $E_{1,1} \cup \cdots \cup E_{k-2, k-2}$ are different from each other. Let \mathcal{H}_{0} be the rainbow subhypergraph of \mathcal{H} obtained by taking one edge of each color of $c(\mathcal{H})$ except $c\left(E^{*}\right)$ and such that $E_{1,1} \cup \cdots \cup E_{k-2, k-2}$ are contained in \mathcal{H}_{0}. Then $\left|E\left(\mathcal{H}_{0}\right)\right|=(k-2) n_{1}^{r-1}$. We have the following claim.

Claim 2. $\mathcal{H}_{0} \cong \mathcal{K}_{k-2, n_{1}, \ldots, n_{1}}$.
Proof. If $\mathcal{H}_{0} \not \not \mathcal{K}_{k-2, n_{1}, \ldots, n_{1}}$, then there exists a $(k-1)$-matching, denoted by M_{k-1}^{\prime}, in \mathcal{H}_{0} by Theorem 6. Notice that M_{k-1}^{\prime} meets at most $2(k-1)$ vertices in $V_{1} \cup V_{2}$ and $n_{1} \geq 2 k-1$, we can find an edge e_{k}^{\prime} in E_{1}, such that $V\left(M_{k-1}^{\prime}\right) \cap e_{k}^{\prime}=\emptyset$. If $e_{k}^{\prime} \in E_{1} \backslash\left(E_{1,1} \cup \cdots \cup E_{k-2, k-2}\right)$, then $c\left(M_{k-1}^{\prime}\right) \cap c\left(e_{k}^{\prime}\right)=\emptyset$. If $e_{k}^{\prime} \in E_{1,1} \cup \cdots \cup E_{k-2, k-2}$, then $e_{k}^{\prime} \in E\left(\mathcal{H}_{0}\right)$. We also have $c\left(M_{k-1}^{\prime}\right) \cap c\left(e_{k}^{\prime}\right)=\emptyset$ as \mathcal{H}_{0} is a rainbow subhypergraph of \mathcal{H}. Then $e_{k}^{\prime} \cup M_{k-1}^{\prime}$ is a rainbow k-matching in \mathcal{H}, a contradiction.

By Claim 2, there is a rainbow subhypergraph $\mathcal{H}_{0} \cong \mathcal{K}_{k-2, n_{2}, \ldots, n_{r}}$ of \mathcal{H}. Combining the fact that all the edges in $E(\mathcal{H}) \backslash E\left(\mathcal{H}_{0}\right)$ are colored by $c\left(E^{*}\right)$, we deduce that \mathcal{H} is colored by configuration ϕ_{r}.

We now prove Theorem 8
Proof of Theorem 8. We first prove that $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=(k-2) n_{2} \cdots n_{r}+1$ for $n_{1} \geq$ $2 k-1$ and $k \geq 3$. Since ϕ_{r} is an edge coloring of $\mathcal{K}_{n_{1}, \ldots, n_{r}}$ such that there is no rainbow k-matching in $\mathcal{K}_{n_{1}, \ldots, n_{r}}, a r_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right) \geq(k-2) n_{2} \cdots n_{r}+1$.

The upper bound is proven by induction on the number of vertices of $\mathcal{K}_{n_{1}, \ldots, n_{r}}$. The base case of $n_{1}=n_{r}$ is true by Lemma 10, we now suppose that $n_{1}<n_{r}$. Assume the assertion holds for all $n_{1}^{\prime}, \ldots, n_{r}^{\prime}$ such that $\sum_{i=1}^{r} n_{i}^{\prime}<\sum_{i=1}^{r} n_{i}$. Suppose that $\mathcal{H}=\mathcal{K}_{n_{1}, \ldots, n_{r}}$ is a hypergraph with a $\left((k-2) n_{2} \cdots n_{r}+2\right)$-edge-coloring, and containing no rainbow k-matchings. Let H be the representing hypergraph of \mathcal{H}. Then $e(H)=(k-2) n_{2} \cdots n_{r}+2$. For any vertex $v \in V_{r}, H-v$ is a subhypergraph of some representing hypergraph of $\mathcal{H}-v$. Since $\mathcal{H}-v$ contains no rainbow k-matchings, by the induction hypothesis, we have

$$
e(H-v) \leq|c(\mathcal{H}-v)| \leq(k-2) n_{2} \cdots n_{r-1}\left(n_{r}-1\right)+1 .
$$

Then $d_{H}(v)=e(H)-e(H-v) \geq(k-2) n_{2} \cdots n_{r-1}+1$. Thus,

$$
\begin{aligned}
e(H) & =\sum_{v \in V_{r}} d_{H}(v) \geq n_{r} \cdot\left((k-2) n_{2} \cdots n_{r-1}+1\right) \\
& =(k-2) n_{2} \cdots n_{r}+n_{r}>(k-2) n_{2} \cdots n_{r}+2,
\end{aligned}
$$

which is a contradiction. Therefore, $\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r}}, M_{k}\right)=(k-2) n_{2} \cdots n_{r}+1$.
Next we prove the uniqueness of the extremal coloring. Suppose that $|c(\mathcal{H})|=(k-2) n_{2} \cdots n_{r}+$ 1 and \mathcal{H} does not contain a rainbow k-matching. Then $e(H)=(k-2) n_{2} \cdots n_{r}+1$. We have the following claim.

Claim 1. There exists a vertex $v^{*} \in V_{r}$ with $d_{H}\left(v^{*}\right)=(k-2) n_{2} \cdots n_{r-1}+1$, and $d_{H}(v)=$ $(k-2) n_{2} \cdots n_{r-1}$ for $v \in V_{r} \backslash\left\{v^{*}\right\}$.

Proof. For any vertex $v \in V_{r}, H-v$ is a subhypergraph of some representing hypergraph of $\mathcal{H}-v$. If $d_{H}(v) \leq(k-2) n_{2} \cdots n_{r-1}-1$, then

$$
|c(\mathcal{H}-v)| \geq e(H-v) \geq(k-2) n_{2} \cdots n_{r-1}\left(n_{r}-1\right)+2=\operatorname{ar}_{r}\left(\mathcal{K}_{n_{1}, \ldots, n_{r-1}, n_{r}-1}, M_{k}\right)+1 .
$$

By the induction hypothesis, $\mathcal{H}-v$ contains a rainbow k-matching, a contradiction. Thus, $d_{H}(v) \geq(k-2) n_{2} \cdots n_{r-1}$ for all $v \in V_{r}$. Note that

$$
e(H)=\sum_{v \in V_{r}} d_{H}(v)=n_{r} \cdot(k-2) n_{2} \cdots n_{r-1}+1
$$

Therefore, there is exactly one vertex, say v^{*}, with degree $(k-2) n_{2} \cdots n_{r-1}+1$, and the remaining vertices in V_{r} with degree $(k-2) n_{2} \cdots n_{r-1}$.

For $v \in V_{r} \backslash\left\{v^{*}\right\}$, we have

$$
e(H-v)=e(H)-d_{H}(v)=(k-2) n_{2} \cdots n_{r-1}\left(n_{r}-1\right)+1 .
$$

Clearly, $H-v$ is a subhypergraph of some representing hypergraph of $\mathcal{H}-v$. Thus,

$$
|c(\mathcal{H}-v)| \geq e(H-v)=(k-2) n_{2} \cdots n_{r-1}\left(n_{r}-1\right)+1 .
$$

By the induction hypothesis, $|c(\mathcal{H}-v)| \leq(k-2) n_{2} \cdots n_{r-1}\left(n_{r}-1\right)+1$. Hence, we deduce that $|c(\mathcal{H}-v)|=(k-2) n_{2} \cdots n_{r-1}\left(n_{r}-1\right)+1$. By the induction hypothesis, $\mathcal{H}-v$ is colored by ϕ_{r} since $\mathcal{H}-v$ contains no rainbow k-matchings. Due to the arbitrariness of v, for any two vertices $v_{1}, v_{2} \in V_{r} \backslash\left\{v^{*}\right\}, \mathcal{H}-v_{1}$ and $\mathcal{H}-v_{2}$ are colored by ϕ_{r}. Assume S_{1} and S_{2} are the $(k-2)$-subsets of V_{1} such that the colors of the edges intersecting S_{1} and S_{2} are all different in $\mathcal{H}-v_{1}$ and $\mathcal{H}-v_{2}$, and edges not intersecting S_{1} and S_{2} are colored with a new color in $\mathcal{H}-v_{1}$
and $\mathcal{H}-v_{2}$, respectively. Then $S_{1}=S_{2}$. So all edges intersecting S_{1} are colored with different colors in \mathcal{H} and edges not intersecting S_{1} are colored with a new color in \mathcal{H}. So \mathcal{H} is colored by ϕ_{r}. This completes the proof.

References

[1] N. Alon. On a conjecture of Erdős, Simonovits, and Sós concerning anti-Ramsey theorems. J. Graph Theory. 7(1):91-94, 1983.
[2] H. Chen, X. Li, and J. Tu. Complete solution for the rainbow numbers of matchings. Discrete Math. 309(10):3370-3380, 2009.
[3] P. Erdős, M. Simonovits, and V. T. Sós. Anti-Ramsey theorems. in: A. Hajnal, R. Rado, V.T. Sós (Eds.), Infinite and Finite Sets, Vol. II, in: Colloq. Math. Soc. János Bolvai, vol.10, 1975, pp. 633-643.
[4] P. Frankl and A. Kupavskii. Two problems on matchings in set families - In the footsteps of Erdős and Kleitman. J. Combin. Theory Ser. B 138:286-313, 2019.
[5] S. Fujita, A. Kaneko, I. Schiermeyer, and K. Suzuki. A rainbow k-matching in the complete graph with r colors. Electron. J. Combin. 16(1), 2009.
[6] R. Gu, J. Li, and Y. Shi. Anti-Ramsey numbers of paths and cycles in hypergraphs. SIAM J. Discrete Math. 34(1):271-307, 2020.
[7] Z. Jin. Anti-Ramsey number of matchings in a hypergraph, Discrete Math. 344:112594, 2021.
[8] Z. Jin and Y. Zang. Anti-Ramsey coloring for matchings in complete bipartite graphs. J. Comb. Optim. 33(1):1-12, 2017.
[9] X. Li, J. Tu, and Z. Jin. Bipartite rainbow numbers of matchings. Discrete Math. 309(8):2575-2578, 2009.
[10] X. Li and Z. Xu. The rainbow number of matchings in regular bipartite graphs. Appl. Math. Lett. 22(10):1525-1528, 2009.
[11] E. Liu and J. Wang. Turán problems for vertex-disjoint cliques in multi-partite hypergraphs. Discrete Math. 343(10):112005, 2020.
[12] J. J. Montellano-Ballesteros and V. Neumann-Lara. An anti-Ramsey theorem on cycles. Graphs and Combin. 21(3):343-354, 2005.
[13] L. Özkahya and M. Young. Anti-Ramsey number of matchings in hypergraphs. Discrete Mathd. 313(20):2359-2364, 2013.
[14] I. Schiermeyer. Rainbow numbers for matchings and complete graphs. Discrete Math. 286(1-2):157-162, 2004.

[^0]: *Research was partially supported by the National Natural Science Foundation of China (Nos. 11871329, 11971298)
 ${ }^{\dagger}$ Email address: lykang@shu.edu.cn (L. Kang), xys16720018@163.com (Y. Xue), efshan@shu.edu.cn (E. Shan)

