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Abstract

An edge-colored hypergraph is rainbow if all of its edges have different colors. Given two

hypergraphs H and G, the anti-Ramsey number ar(G,H) of H in G is the maximum number

of colors in a coloring of the edges of G so that there does not exist a rainbow copy of H. Li

et al. determined the anti-Ramsey number of k-matchings in complete bipartite graphs. Jin

and Zang showed the uniqueness of the extremal coloring. In this paper, as a generalization

of these results, we determine the anti-Ramsey number arr(Kn1,...,nr
,Mk) of k-matchings in

complete r-partite r-uniform hypergraphs and show the uniqueness of the extremal coloring.

Also, we show that Kk−1,n2,...,nr
is the unique extremal hypergraph for Turán number

exr(Kn1,...,nr
,Mk) and show that arr(Kn1,...,nr

, Mk) = exr(Kn1,...,nr
,Mk−1) + 1, which

gives a multi-partite version result of Özkahya and Young’s conjecture.
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1 Introduction

An edge-colored graph G is called rainbow if every edge of G receives a different color. Given

two graphs H and G, ar(H,G) is defined to be the maximum number of colors in a coloring

of the edges of H that has no rainbow copy of G. The number ar(H,G) is called the anti-

Ramsey number of G in H. When H = Kn, ar(Kn, G) is the anti-Ramsey number of G.

Let ex(H,G) denote the maximum number of edges that a subgraph of H can have with no

subgraph isomorphic to G.
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11971298)
†Email address: lykang@shu.edu.cn (L. Kang), xys16720018@163.com (Y. Xue), efshan@shu.edu.cn (E. Shan)
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The study of anti-Ramsey number began by Erdős et al. [3] in 1970s. In the original work,

they conjectured that ar (Kn, Ck) =
(

k−2

2
+ 1

k−1

)

n + O(1), and proved the conjecture when

k = 3. After that, Alon [1] proved the conjecture for k = 4. Jiang, Schiermeyer and West

(unpublished manuscript) proved the conjecture for k ≤ 7. Finally, Montellano-Ballesteros and

Neumann-Lara [12] completely proved the conjecture in 2005.

For matchings, Schiermeyer [14] used a counting technique to determine ar(Kn, kK2) for all

k ≥ 2 and n ≥ 3k+3. After that, Fujita et al. [5] solved this problem for k ≥ 2 and n ≥ 2k+1.

In 2009, Chen et al. [2] extended Schiermeyer’s result to all k ≥ 2 and n ≥ 2k by using the

Gallai-Edmonds structure theorem.

Taking complete bipartite graphs as the host graphs, Li et al [9] determined ar(Kn1,n2
, kK2)

for all k ≥ 1. Denote by Bn,m the set of all the m-regular bipartite graphs of order 2n. Li and

Xu [10] showed that ar(Bn,m, kK2) = m(k − 2) + 1 for k ≥ 2, m ≥ 3 and n > 3k − 1.

A hypergraph H = (V (H), E(H)) is a finite set V (H) of elements, called vertices, together

with a finite set E(H) of subsets of V (H), called hyperedges or simply edges. The union of

hypergraphs G andH is the graph G∪H with vertex set V (G)∪V (H) and edge set E(G)∪E(H). If

each edge of H has exactly r vertices, H is called r-uniform. For a subset V ′ of V (H), denoted

by H[V ′] the subhypergraph of H induced by V ′. For v ∈ V (H), we use H − v to denote

H[V (H)\{v}]. For an edge e in E(H), denoted by H − e the hypergraph obtained by deleting

e from H. For a vertex v ∈ V (H), the degree dH(v) is defined as the number of edges of H

containing v. A vertex of degree zero is called an isolated vertex. For u, v ∈ V (H), we define

dH(u, v) to be the number of edges of H containing {u, v}, and we call this number the co-degree

of {u, v}. For a hypergraph H, we denote the number of edges in H by e(H). A complete r-

uniform hypergraph is a hypergraph whose edge set consists of all r-subsets of the vertex set. A

matching in a hypergraph is a set of edges in which no two edges have a common vertex. We call

a matching with k edges a k-matching, denoted by Mk. An edge-colored hypergraph is called

rainbow hypergraph if the all of its edges have different colors. The representing hypergraph of

a hypergraph H with an edge coloring c is a spanning subhypergraph of H obtained by taking

one edge of each color of c. For an edge set E ⊆ E(H), let c(E) denote the set of colors of edges

in E. For simplicity, when E = {e} and E = E(H), we use c(e) and c(H) instead of c({e}) and

c(E(H)), respectively.

Let n1, n2, . . . , nr be integers and V1, V2, . . . , Vr be disjoint vertex sets with |Vi| = ni for

each i = 1, 2, . . . , r. A complete r-partite r-uniform hypergraph on vertex classes V1, V2, . . . , Vr,

denoted by Kn1,...,nr
, is defined to be the r-uniform hypergraph whose edge set consists of all

the r-element subsets S of V1 ∪ · · · ∪ Vr such that |S ∩ Vi| = 1 for all i = 1, 2, . . . , r.

Given two hypergraphs H and G, the anti-Ramsey number of H in G, denoted by ar(G,H), is
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the maximum number of colors in a coloring of the edges of G with no rainbow copy of H. When

G is an r-uniform complete hypergraph on n vertices, arr(G,H) is the anti-Ramsey number of

H. The Turán number exr(G,H) is the maximum number of edges in an H-free subhypergraph

of G, where H-free hypergraph is one which contains no H as a subhypergraph.

Gu et al. [6] determined the anti-Ramsey numbers of linear paths/cycles and loose paths/cycles

in hypergraphs for sufficiently large n and gave bounds on the anti-Ramsey numbers of Berge

paths/cycles. For the anti-Ramsey number of matchings in hypergraphs, Özkahya and Young

[13] stated a conjecture that arr(Kn,Mk) = exr(Kn,Mk−1) + 1 for all n > sk and proved

the conjecture when k = 2, 3 and n is sufficiently large. Recently, Frankl and Kupavskii [4]

proved that the conjecture is true for n ≥ rk + (r − 1)(k − 1) and k ≥ 3. Jin [7] determined

the exact value of the anti-Ramsey number of a k-matching in a complete tripartite 3-uniform

hypergraph.

Take a subhypergraph Kk−2,n2,...,nr
of Kn1,n2,...,nr

. Color the edges of Kk−2,n2,...,nr
by distinct

colors and color the remaining edges of Kn1,...,nr
by a new color. Denote by φr the obtained

((k − 2)n2 · · · nr + 1)-edge-coloring of Kn1,...,nr
. Li, Tu and Jin [9] determined the following

results in complete bipartite graphs.

Theorem 1 ([9]). For n2 ≥ n1 ≥ k ≥ 1,

ex(Kn1,n2
, kK2) = (k − 1)n2.

Moreover, Kk−1,n2
is the unique such extremal graph.

Theorem 2 ([9]). For n2 ≥ n1 ≥ k ≥ 3,

ar(Kn1,n2
, kK2) = (k − 2)n2 + 1.

In addition to the anti-Ramsey number, another interesting problem posed by Erdős is the

uniqueness of the extremal coloring. In [8], Jin and Zang obtained the following result.

Theorem 3 ([8]). For n2 ≥ n1 ≥ k ≥ 3, every ((k − 2)n2 + 1)-edge-coloring except for φ2 of

Kn1,n2
contains a rainbow kK2.

The following proposition provides a lower and upper bound for arr(Kn1,...,nr
,Mk), and the

proof of which is similar to that of [14].

Proposition 4. exr(Kn1,...,nr
,Mk−1) + 1 ≤ arr(Kn1,...,nr

,Mk) ≤ exr(Kn1,...,nr
,Mk).

Proof. The upper bound is clear. For the lower bound, let H0 be an extremal hypergraph for

exr(Kn1,...,nr
,Mk−1) and color all edges ofH0 differently and all the edges in E (Kn1,...,nr

) \E (H0)
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with one extra color. The hypergraph Kn1,...,nr
with this coloring does not contain a rainbow

k-matching. The result follows.

The proposition provides a lower bound for arr(Kn1,...,nr
,Mk). In this paper we will show

that arr(Kn1,...,nr
, Mk) = exr(Kn1,...,nr

,Mk−1) + 1, which gives a multi-partite version result of

Özkahya and Young’s conjecture.

In [11], Liu and Wang determined exr(Kn1,...,nr
,Mk).

Theorem 5 ([11]). For nr ≥ nr−1 ≥ · · · ≥ n1 ≥ k ≥ 1,

exr(Kn1,...,nr
,Mk) = (k − 1)n2 · · ·nr.

We will show that Kk−1,n2,...,nr
is the unique extremal hypergraph in Theorem 5.

The following result is very useful for us.

Theorem 6. For nr ≥ nr−1 ≥ · · · ≥ n1 ≥ k ≥ 1, every subhypergraph of Kn1,...,nr
with (k −

1)n2 · · ·nr edges and without isolated vertices, except for Kk−1,n2,...,nr
, contains a k-matching.

Motivated by Theorem 2, one may naturally ask what is the maximum number of colors

in a complete r-partite r-uniform hypergraph without a rainbow k-matching, where r ≥ 3.

This paper focus on the anti-Ramsey number of k-matchings in complete r-partite r-uniform

hypergraphs. The following are our main results.

Theorem 7. (i) For nr ≥ nr−1 ≥ · · · ≥ n1 ≥ 3,

arr(Kn1,...,nr
,M2) = 1.

(ii) For n1 = 2, let t be the largest integer such that nt = n1 = 2. Then

arr(Kn1,...,nr
,M2) = 2t−1.

Theorem 8. For nr ≥ nr−1 ≥ · · · ≥ n1 ≥ 2k − 1 and k ≥ 3,

arr(Kn1,...,nr
,Mk) = (k − 2)n2 · · ·nr + 1.

Moreover, every ((k−2)n2 · · ·nr+1)-edge-coloring except for φr of Kn1,...,nr
contains a rainbow

k-matching.

Combining Theorems 5, 7 and 8, we have the following corollary.

Corollary 9. For nr ≥ nr−1 ≥ · · · ≥ n1 ≥ 2k − 1 and k ≥ 2,

arr(Kn1,...,nr
,Mk) = exr(Kn1,...,nr

,Mk−1) + 1.
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2 Proofs of Theorems 6 and 7

Proof of Theorem 6. We use induction on r. The base case of r = 2 is true for all n2 ≥ n1 ≥ k

by Theorem 1. Suppose that the assertion holds for all r′ < r. Assume that G is a subhypergraph

of Kn1,...,nr
with (k − 1)n2 · · · nr edges and without isolated vertices, and does not contain a

k-matching. Let Vs = {vs1, vs2, . . . , vsns
} for s = 1, 2, . . . , r. We consider two different cases.

Case 1. n1 = n2.

For 1 ≤ i, j ≤ n1, let Fi,j =
{

{v1i, v2j , w3, . . . , wr} ∈ E(G)| ws ∈ Vs for 3 ≤ s ≤ r
}

and

Fi = Fi,1 ∪ Fi+1,2 ∪ · · · ∪ Fi+n1−1,n1
, where Fi,j = Fi−n1,j if i > n1.

For each Fi, i = 1, 2, . . . , n1, we construct an (r − 1)-partite (r − 1)-uniform hypergraph

Gi on vertex classes V1, V3, . . . , Vr, and e = {v1l, w3, . . . , wr} is an edge of Gi if and only if

e′ = {v1l, v2l′ , w3, . . . , wr} is an edge of Fi, where l − l′ ≡ i− 1 (mod n1). Therefore, there is a

bijection between Fi and E(Gi). Note that if two edges e1 and e2 in Gi are independent, then

the corresponding edges e′1 and e′2 in Fi are also independent. Then we have the following fact.

Fact A. Any matching in Gi corresponds to a matching in Fi ⊆ E(G).

First, we prove the following claims.

Claim 1. For i 6= j, Fi ∩ Fj = ∅.

Proof. If there exists an edge {v1l, v2l′ , w3, . . . , wr} ∈ Fi ∩Fj , then l− l′ ≡ i− 1 (mod n1) and

l − l′ ≡ j − 1 (mod n1) which implies i = j.

It follows from Claim 1 that e(G) =
n1
∑

i=1

|Fi| =
n1
∑

i=1

e(Gi).

Claim 2. For any 1 ≤ i ≤ n1, e(Gi) = (k − 1)n3 · · ·nr.

Proof. First, we have e(Gi) ≤ (k−1)n3 · · ·nr. Otherwise, Gi contains a k-matching by Theorem

5, so does G by Fact A, a contradiction. Hence,

(k − 1)n1n3 · · ·nr = e(G) =
n1
∑

i=1

e(Gi) ≤ n1(k − 1)n3 · · ·nr,

which implies that e(Gi) = (k − 1)n3 · · ·nr for each 1 ≤ i ≤ n1.

According to Fact A and Claim 2, Gi is a subhypergraph of Kn1,n3,...,nr
with (k − 1)n3 · · ·nr

edges and does not contain a k-matching. By the induction hypothesis, Gi
∼= Kk−1,n3,...,nr

∪

(n1−k+1)K1 for i = 1, 2, . . . , n1. Recall the construction of Gi, we deduce that dG(v1i, v2j) = 0

or dG(v1i, v2j) = n3 · · ·nr for 1 ≤ i, j ≤ n1. Construct an auxiliary bipartite graph G with

bipartition (V1, V2), where eij = v1iv2j ∈ E(G) if and only if dG(v1i, v2j) = n3 · · · nr. Then

e(G) = (k − 1)n2 · · ·nr implies that e(G) = (k − 1)n2 = (k − 1)n1. We claim that there is

no k-matching in G. If there exists a k-matching ei1,j1 , ei2,j2 , . . ., eik ,jk in G, we can find k
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edges e′i1,j1 , e
′
i2,j2

, . . ., e′ik ,jk to form a k-matching in G, where e′il,jl = {v1,il , v2,jl , v3l, . . . , vrl} for

l = 1, 2, . . . , r. This contradicts the choice of G. It follows from Theorem 1 that G ∼= Kk−1,n1
∪

(n1 − k + 1)K1. Without loss of generality, let E(G) = {v1iv2j | 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n2}.

By the construction of G, every edge in E(Kn1,...,nr
) containing {v1i, v2j} is an edge in G for

1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n2. Hence, G ∼= Kk−1,n2,n3,...,nr
when n1 = n2.

Case 2. n1 < n2.

Claim 3. For u ∈ V2, dG(u) = (k − 1)n3 · · ·nr.

Proof. If there exists a vertex u ∈ V2 such that dG(u) < (k − 1)n3 · · ·nr, then

e(G − u) = e(G) − dG(u) > (k − 1)(n2 − 1)n3 · · ·nr.

By Theorem 5, G − u contains a k-matching, so does G, a contradiction. Hence, dG(u) ≥

(k − 1)n3 · · ·nr for all u ∈ V2. Note that

(k − 1)n2 · · ·nr = e(G) =
∑

u∈V2

dG(u) ≥ (k − 1)n2n3 · · ·nr.

We deduce that dG(u) = (k − 1)n3 · · · nr for all u ∈ V2.

Set V ′
2 ⊆ V2 such that |V ′

2 | = n1. Let G′ = G[V1, V
′
2 , V3, . . . , Vr]. According to Claim 3, we

have e(G′) =
∑

u∈V ′

2

dG(u) = (k − 1)n1n3 · · ·nr. It follows from Case 1 that

G′ ∼= Kk−1,n1,n3,...,nr
∪ (n1 − k + 1)K1.

Combining this with the arbitrariness of V ′
2 , we have dG(v1i, v2j) = 0 or dG(v1i, v2j) = n3 · · ·nr

for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Construct an auxiliary bipartite graph G with bipartition (V1, V2),

where eij = v1iv2j ∈ E(G) if and only if dG(v1i, v2j) = n3 · · · nr. Then e(G) = (k− 1)n2n3 · · ·nr

implies that e(G) = (k − 1)n2. We claim that there is no k-matching. Otherwise, if there is a

k-matching ei1,j1 , . . . , eik,jk in G, we can find k edges in Fi1,j1 , . . . , Fik ,jk to form a k-matching

in G, a contradiction. By Theorem 1, G ∼= Kk−1,n2
∪ (n1−k+1)K1. Without loss of generality,

let E(G) = {v1iv2j | 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n2}. By the construction of G, every edge in

E(Kn1,...,nr
) containing {v1i, v2j} is an edge in G for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n2. Hence,

G ∼= Kk−1,n2,n3,...,nr
.

We now turn to the proofs of the main results of this paper. Theorem 7 gives the value of

anti-Ramsey number of k-matching in complete r-partite r-uniform hypergraphs when k = 2.

Proof of Theorem 7.

(i) n1 ≥ 3.
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Suppose to the contrary that H is a complete r-partite r-uniform hypergraph colored by more

than one color, and containing no rainbow 2-matching. Set e, f ∈ E(H) such that c(e) 6= c(f).

Clearly, E(H − e) ∩ E(H − f) 6= ∅ as n1 ≥ 3. Choose an edge g ∈ E(H − e) ∩ E(H − f), then

c(g) = c(e) as H does not contain a rainbow 2-matching. Similarly, we have c(g) = c(f), then

c(e) = c(f), contradicting the fact c(e) 6= c(f). Therefore, |c(H)| = 1, i.e., arr(Kn1,...,nr
,M2) =

1.

(ii) n1 = 2.

By the choice of t, n1 = n2 = · · · = nt = 2. Let H ∼= Kn1,...,nr
be a complete r-partite

r-uniform hypergraph. Let R(H, t) = {{v1, v2, . . . , vt}| vi ∈ Vi and i ∈ [t]}. For any edge

e = {v1, v2, . . . , vr} ∈ E(H), let R(e, t) = {v1, v2, . . . , vt}. For α = {v1, v2, . . . , vt} ∈ R(H, t), let

α = {v1, v2, . . . , vt}, where vi is the remaining vertex in Vi except vi. For α = {v1, v2, . . . , vt} ∈

R(H, t), let

E{α,α} = {e ∈ E(H) |R(e, t) = α or R(e, t) = α}.

Then we decompose the edge set of H into E(H) = ∪{α,α}∈QE{α,α}, where Q = {{α,α}| α ∈

R(H, t)}. It is easily checked that |Q| = 2t−1 and E{α,α} ∩ E{β,β} = ∅ for any two different

elements {α,α}, {β, β} in Q.

We consider the following coloring of H: For any two edges e, f ∈ E(H), c(e) = c(f) if and

only if there exists an element {α,α} ∈ Q such that e, f ∈ E{α,α}. By the definition of the

coloring of H, any two independent edges have the same color and |c(H)| = |Q| = 2t−1. So H

does not contain a rainbow 2-matching. Therefore, arr(Kn1,...,nr
,M2) ≥ 2t−1.

Let H = Kn1,...,nr
be an edge-colored complete r-partite r-uniform hypergraph without rain-

bow 2-matchings. To obtain the upper bound, we consider the following cases.

Case 1. t = r.

In this case, E{α,α} = {α,α}. Then E(H) can be decomposed into 2r−1 pairs of independent

edges, and each pair of edges must be colored by the same color. Hence |c(H)| ≤ 2r−1, then

arr(K2,...,2,M2) ≤ 2r−1, which implies that arr(K2,...,2,M2) = 2r−1.

Case 2. t < r.

Recall that E(H) = ∪{α,α}∈QE{α,α}. We have the following claims.

Claim 1. For any {α,α} ∈ Q, if e, f ∈ E{α,α} and R(e, t) = R(f, t), then c(e) = c(f).

Proof. For any {α,α} ∈ Q, since nr ≥ · · · ≥ nt+1 ≥ 3, there exists an edge g = {u1, u2, . . . , ur}

∈ E{α,α}, such that R(g, t) = R(e, t) and uj ∈ Vj − e ∪ f for j = t + 1, . . . , r. Then g ∩ e =

g ∩ f = ∅. Therefore, c(e) = c(g) = c(f). Otherwise, H contains a rainbow 2-matching.

Claim 2. For any {α,α} ∈ Q, if e, f ∈ E{α,α} and R(e, t) = R(f, t), then c(e) = c(f).

7



Proof. Since nr ≥ · · · ≥ nt+1 ≥ 3, there exists an edge g = {u1, u2, . . . , ur} ∈ E{α,α} with

R(g, t) = R(e, t) and uj ∈ Vj − f for j = t+ 1, . . . , r. It follows from Claim 1 that c(g) = c(e).

Note that g ∩ f = ∅, we have c(f) = c(g). Then c(e) = c(f).

Combining these two claims, we conclude that c(E{α,α}) = 1 for any {α,α} ∈ Q. Therefore,

|c(H)| ≤ 2t−1, which implies that arr(Kn1,...,nr
,M2) ≤ 2t−1. Thus arr(Kn1,...,nr

,M2) = 2t−1.

3 Proof of Theorem 8

In this section we will determine the value of the anti-Ramsey number of k-matchings in com-

plete r-partite r-uniform hypergraphs, and also give the uniqueness of extremal coloring.

We need the following lemma.

Lemma 10. For n1 ≥ 2k − 1 and k ≥ 3,

arr(Kn1,...,n1
,Mk) = (k − 2)nr−1

1
+ 1,

and every ((k − 2)nr−1

1
+ 1)-edge-coloring except for φr of Kn1,...,n1

contains a rainbow k-

matching.

Proof. We use induction on r. The base case of r = 2 is true for all n1 ≥ 2k− 1 by Theorem 2

and Theorem 3. Suppose that the lemma holds for all r′ < r. Assume, by way of contradiction,

that H = Kn1,...,n1
is a hypergraph with a ((k− 2)nr−1

1
+2)-edge-coloring and does not contain

a rainbow k-matching.

Let Vs = {vs1, vs2, . . . , vsn1
}, s = 1, 2, . . . , r. For 1 ≤ i, j ≤ n1, let

Ei,j =
{

{v1i, v2j , w3, . . . , wr} ∈ E(H) |ws ∈ Vs for 3 ≤ s ≤ r
}

,

and Ei = Ei,1 ∪Ei+1,2 ∪ · · · ∪ Ei+n1−1,n1
, where Ei,j = Ei−n1,j if i > n1.

For each Ei, i = 1, 2, . . . , n1, we construct a complete (r−1)-partite (r−1)-uniform hypergraph

Hi on vertex classes V1, V3, . . . , Vr such that e = {v1l, w3, . . . , wr} is an edge of Hi if and only

if e′ = {v1l, v2l′ , w3, . . . , wr} is an edge of Ei, where l − l′ ≡ i− 1 (mod n1), and we color e by

c(e′). Therefore, there is a bijection between Ei and E(Hi) and c(Ei) = c(Hi). Note that if

two edges e1 and e2 in Hi are independent, then the corresponding edges e′1 and e′2 in Ei are

also independent. Then we have the following fact.

Fact B. Any rainbow matching in Hi corresponds to a rainbow matching in Ei ⊆ E(H).
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Obviously, E(H) =
n1
⋃

i=1

Ei. Then

n1
∑

i=1

|c(Hi)| =
n1
∑

i=1

|c(Ei)| ≥ |c(H)| = (k − 2)nr−1

1
+ 2.

Without loss of generality, we assume that H1 has the most colors in H1, . . ., Hn1
.

Claim 1. |c(H1)| = (k − 2)nr−2

1
+ 1.

Proof. First, we have |c(Hi)| ≤ (k − 2)nr−2

1
+ 1 for 1 ≤ i ≤ n1. Otherwise, by induc-

tion hypothesis, Hi contains a rainbow k-matching, so does H by Fact B, a contradiction. If

|c(H1)| ≤ (k − 2)nr−2

1
, then

(k − 2)nr−1

1
+ 2 = |c(H)| ≤

n1
∑

i=1

|c(Hi)| ≤ n1(k − 2)nr−2

1
,

a contradiction. Hence, |c(H1)| = (k − 2)nr−2

1
+ 1.

We next show that there exists an integer 2 ≤ t ≤ n1 such that |c(Ht)| = (k− 2)nr−2

1
+1 and

c(H1) ∩ c(Ht) = ∅. Otherwise,

|c(H)| ≤ ((k − 2)nr−2

1
+ 1) + (k − 2)nr−2

1
· (n1 − 1) < (k − 2)nr−1

1
+ 2,

contradicting the assumption of H. Since H1 and Ht do not contain a rainbow k-matching and

with (k − 2)nr−2

1
+ 1 colors, by the induction hypothesis, they are both colored by φr−1. Let

Ht be the representing hypergraph of Ht. Then

e(Ht) = |c(Ht)| > (k − 2)nr−2

1
,

so Ht contains a (k − 1)-matching by Theorem 5. Hence, there is a rainbow (k − 1)-matching

in Ht, which corresponds to a rainbow (k− 1)-matching, denoted by Mk−1, in Et. The (k− 1)-

matching Mk−1 meets k−1 vertices in V1 and k−1 vertices in V2, respectively. As n1 ≥ 2k−1,

there exists an integer s, such that v1s ∈ V1 − V (Mk−1) and v2s ∈ V2 − V (Mk−1). Then we

can find an edge e ∈ Es,s ⊆ E1 such that e ∩ V (Mk−1) = ∅. Recall that c(H1) ∩ c(Ht) = ∅,

c(H1) = c(E1) and c(Ht) = c(Et), then e∪Mk−1 is a rainbow k-matching in H, a contradiction.

Hence arr(Kn1,...,n1
,Mk) ≤ (k − 2)nr−1

1
+ 1. Combining this with Proposition 4 and Theorem

5, we have arr(Kn1,...,n1
,Mk) = (k − 2)nr−1

1
+ 1.

Now we prove the uniqueness of the extremal coloring. Suppose that |c(H)| = (k−2)nr−1

1
+1

and H does not contain a rainbow k-matching. Let H be the representing hypergraph of

H. Then e(H) = (k − 2)nr−1

1
+ 1. As the discussion above, we construct Ei ⊆ E(H) and
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a complete (r − 1)-partite (r − 1)-uniform hypergraph Hi on vertex classes V1, V3, . . . , Vr for

i = 1, 2, . . . , n1. Without loss of generality, assume that H1 has the most colors in H1, . . ., Hn1
.

Then |c(H1)| = (k − 2)nr−2

1
+ 1.

Notice that H1 does not contain a rainbow k-matching and |c(H1)| = (k−2)nr−2

1
+1. By the

induction hypothesis, H1 is colored by configuration φr−1. Without loss of generality, we assume

that in H1, E
∗ =

{

{v1i, w3, . . . , wr} ∈ E(H1) | k − 1 ≤ i ≤ n1 and ws ∈ Vs for 3 ≤ s ≤ r
}

are

colored by one color and all the remaining edges of H1 colored by distinct colors. Then, in H,

c(Ek−1,k−1) = · · · = c(En1,n1
) = c(E∗), and the colors of the edges in E1,1 ∪ · · · ∪ Ek−2,k−2 are

different from each other. Let H0 be the rainbow subhypergraph of H obtained by taking one

edge of each color of c(H) except c(E∗) and such that E1,1 ∪ · · · ∪ Ek−2,k−2 are contained in

H0. Then |E(H0)| = (k − 2)nr−1

1
. We have the following claim.

Claim 2. H0
∼= Kk−2,n1,...,n1

.

Proof. If H0 ≇ Kk−2,n1,...,n1
, then there exists a (k − 1)-matching, denoted by M ′

k−1
, in H0

by Theorem 6. Notice that M ′
k−1

meets at most 2(k − 1) vertices in V1 ∪ V2 and n1 ≥ 2k − 1,

we can find an edge e′k in E1, such that V (M ′
k−1

) ∩ e′k = ∅. If e′k ∈ E1\(E1,1 ∪ · · · ∪ Ek−2,k−2),

then c(M ′
k−1

) ∩ c(e′k) = ∅. If e′k ∈ E1,1 ∪ · · · ∪ Ek−2,k−2, then e′k ∈ E(H0). We also have

c(M ′
k−1

) ∩ c(e′k) = ∅ as H0 is a rainbow subhypergraph of H. Then e′k ∪ M ′
k−1

is a rainbow

k-matching in H, a contradiction.

By Claim 2, there is a rainbow subhypergraph H0
∼= Kk−2,n2,...,nr

of H. Combining the

fact that all the edges in E(H)\E(H0) are colored by c(E∗), we deduce that H is colored by

configuration φr.

We now prove Theorem 8.

Proof of Theorem 8. We first prove that arr(Kn1,...,nr
,Mk) = (k − 2)n2 · · ·nr + 1 for n1 ≥

2k − 1 and k ≥ 3. Since φr is an edge coloring of Kn1,...,nr
such that there is no rainbow

k-matching in Kn1,...,nr
, arr(Kn1,...,nr

,Mk) ≥ (k − 2)n2 · · ·nr + 1.

The upper bound is proven by induction on the number of vertices of Kn1,...,nr
. The base case

of n1 = nr is true by Lemma 10, we now suppose that n1 < nr. Assume the assertion holds for

all n′
1, . . . , n

′
r such that

∑r
i=1

n′
i <

∑r
i=1

ni. Suppose that H = Kn1,...,nr
is a hypergraph with

a ((k − 2)n2 · · · nr + 2)-edge-coloring, and containing no rainbow k-matchings. Let H be the

representing hypergraph of H. Then e(H) = (k− 2)n2 · · · nr +2. For any vertex v ∈ Vr, H − v

is a subhypergraph of some representing hypergraph of H− v. Since H− v contains no rainbow

k-matchings, by the induction hypothesis, we have

e(H − v) ≤ |c(H − v)| ≤ (k − 2)n2 · · · nr−1(nr − 1) + 1.
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Then dH(v) = e(H)− e(H − v) ≥ (k − 2)n2 · · ·nr−1 + 1. Thus,

e(H) =
∑

v∈Vr

dH(v) ≥ nr ·
(

(k − 2)n2 · · ·nr−1 + 1
)

= (k − 2)n2 · · ·nr + nr > (k − 2)n2 · · ·nr + 2,

which is a contradiction. Therefore, arr(Kn1,...,nr
,Mk) = (k − 2)n2 · · · nr + 1.

Next we prove the uniqueness of the extremal coloring. Suppose that |c(H)| = (k−2)n2 · · ·nr+

1 and H does not contain a rainbow k-matching. Then e(H) = (k − 2)n2 · · ·nr + 1. We have

the following claim.

Claim 1. There exists a vertex v∗ ∈ Vr with dH(v∗) = (k − 2)n2 · · ·nr−1 + 1, and dH(v) =

(k − 2)n2 · · ·nr−1 for v ∈ Vr\{v
∗}.

Proof. For any vertex v ∈ Vr, H − v is a subhypergraph of some representing hypergraph of

H− v. If dH(v) ≤ (k − 2)n2 · · ·nr−1 − 1, then

|c(H − v)| ≥ e(H − v) ≥ (k − 2)n2 · · · nr−1(nr − 1) + 2 = arr(Kn1,...,nr−1,nr−1,Mk) + 1.

By the induction hypothesis, H − v contains a rainbow k-matching, a contradiction. Thus,

dH(v) ≥ (k − 2)n2 · · · nr−1 for all v ∈ Vr. Note that

e(H) =
∑

v∈Vr

dH(v) = nr · (k − 2)n2 · · ·nr−1 + 1.

Therefore, there is exactly one vertex, say v∗, with degree (k − 2)n2 · · ·nr−1 + 1, and the

remaining vertices in Vr with degree (k − 2)n2 · · ·nr−1.

For v ∈ Vr\{v
∗}, we have

e(H − v) = e(H)− dH(v) = (k − 2)n2 · · · nr−1(nr − 1) + 1.

Clearly, H − v is a subhypergraph of some representing hypergraph of H− v. Thus,

|c(H − v)| ≥ e(H − v) = (k − 2)n2 · · · nr−1(nr − 1) + 1.

By the induction hypothesis, |c(H − v)| ≤ (k − 2)n2 · · · nr−1(nr − 1) + 1. Hence, we deduce

that |c(H− v)| = (k − 2)n2 · · ·nr−1(nr − 1) + 1. By the induction hypothesis, H− v is colored

by φr since H− v contains no rainbow k-matchings. Due to the arbitrariness of v, for any two

vertices v1, v2 ∈ Vr\{v
∗}, H − v1 and H − v2 are colored by φr. Assume S1 and S2 are the

(k− 2)-subsets of V1 such that the colors of the edges intersecting S1 and S2 are all different in

H− v1 and H− v2, and edges not intersecting S1 and S2 are colored with a new color in H− v1

11



and H− v2, respectively. Then S1 = S2. So all edges intersecting S1 are colored with different

colors in H and edges not intersecting S1 are colored with a new color in H. So H is colored

by φr. This completes the proof.
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