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Abstract

An edge-colored hypergraph is rainbow if all of its edges have different colors. Given two
hypergraphs H and G, the anti-Ramsey number ar(G, H) of H in G is the maximum number
of colors in a coloring of the edges of G so that there does not exist a rainbow copy of H. Li
et al. determined the anti-Ramsey number of k-matchings in complete bipartite graphs. Jin
and Zang showed the uniqueness of the extremal coloring. In this paper, as a generalization

of these results, we determine the anti-Ramsey number ar,(Ky, ... n,., Mi) of k-matchings in

complete r-partite r-uniform hypergraphs and show the uniqueness of the extremal coloring.
Also, we show that Ky_1n,,..n, iS the unique extremal hypergraph for Turdn number
ex,(Kny ..., Mg) and show that ar.(KCp,.. n., Mi) = ex.(Kn, ..., Mg—1) + 1, which

gives a multi-partite version result of Ozkahya and Young’s conjecture.
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1 Introduction

An edge-colored graph G is called rainbow if every edge of G receives a different color. Given
two graphs H and G, ar(H,G) is defined to be the maximum number of colors in a coloring
of the edges of H that has no rainbow copy of G. The number ar(H,G) is called the anti-
Ramsey number of G in H. When H = K,, ar(K,,G) is the anti-Ramsey number of G.
Let ex(H,G) denote the maximum number of edges that a subgraph of H can have with no

subgraph isomorphic to G.
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The study of anti-Ramsey number began by Erdés et al. [3] in 1970s. In the original work,
they conjectured that ar (K,,Cy) = (k—gz + ﬁ) n + O(1), and proved the conjecture when
k = 3. After that, Alon [I] proved the conjecture for k = 4. Jiang, Schiermeyer and West
(unpublished manuscript) proved the conjecture for k£ < 7. Finally, Montellano-Ballesteros and

Neumann-Lara [12] completely proved the conjecture in 2005.

For matchings, Schiermeyer [14] used a counting technique to determine ar(K,, kKs2) for all
k > 2and n > 3k+3. After that, Fujita et al. [5] solved this problem for & > 2 and n > 2k + 1.
In 2009, Chen et al. [2] extended Schiermeyer’s result to all k¥ > 2 and n > 2k by using the

Gallai-Edmonds structure theorem.

Taking complete bipartite graphs as the host graphs, Li et al [9] determined ar(Ky, n,, kK2)
for all £ > 1. Denote by B, ,, the set of all the m-regular bipartite graphs of order 2n. Li and
Xu [10] showed that ar(By m, kK2) =m(k —2) +1 for k> 2, m >3 and n > 3k — 1.

A hypergraph H = (V(H), E(H)) is a finite set V(H) of elements, called vertices, together
with a finite set E(H) of subsets of V(H), called hyperedges or simply edges. The union of
hypergraphs G and H is the graph GUH with vertex set V (G)UV (H) and edge set E(G)UE(H). If
each edge of H has exactly r vertices, H is called r-uniform. For a subset V' of V(H), denoted
by H[V’] the subhypergraph of H induced by V’. For v € V(H), we use H — v to denote
H[V(H)\{v}]. For an edge e in E(H), denoted by H — e the hypergraph obtained by deleting
e from H. For a vertex v € V(H), the degree dy(v) is defined as the number of edges of H
containing v. A vertex of degree zero is called an isolated vertex. For u,v € V(H), we define
dy (u,v) to be the number of edges of H containing {u, v}, and we call this number the co-degree
of {u,v}. For a hypergraph H, we denote the number of edges in H by e(H). A complete r-
uniform hypergraph is a hypergraph whose edge set consists of all r-subsets of the vertex set. A
matching in a hypergraph is a set of edges in which no two edges have a common vertex. We call
a matching with k edges a k-matching, denoted by Mj. An edge-colored hypergraph is called
rainbow hypergraph if the all of its edges have different colors. The representing hypergraph of
a hypergraph H with an edge coloring ¢ is a spanning subhypergraph of H obtained by taking
one edge of each color of c¢. For an edge set £ C E(H), let ¢(E) denote the set of colors of edges
in E. For simplicity, when E = {e} and E = E(H), we use ¢(e) and ¢(H) instead of ¢({e}) and
c¢(E(H)), respectively.

Let ni,ng,...,n, be integers and Vi, Vs, ..., V, be disjoint vertex sets with |V;| = n; for
each i =1,2,...,7. A complete r-partite r-uniform hypergraph on vertex classes Vq,Va,..., V.,

denoted by Ky, .. n,., is defined to be the r-uniform hypergraph whose edge set consists of all
the r-element subsets S of V3 U--- UV, such that |[SNV;|=1foralli=1,2,..., 7.

Given two hypergraphs ‘H and G, the anti-Ramsey number of H in G, denoted by ar(G, H), is



the maximum number of colors in a coloring of the edges of G with no rainbow copy of #. When
G is an r-uniform complete hypergraph on n vertices, ar,(G,H) is the anti-Ramsey number of
H. The Turdn number ex,(G,H) is the maximum number of edges in an H-free subhypergraph

of G, where H-free hypergraph is one which contains no H as a subhypergraph.

Gu et al. [6] determined the anti-Ramsey numbers of linear paths/cycles and loose paths/cycles
in hypergraphs for sufficiently large n and gave bounds on the anti-Ramsey numbers of Berge
paths/cycles. For the anti-Ramsey number of matchings in hypergraphs, Ozkahya and Young
[13] stated a conjecture that ar,(K,, M) = ex,(K,, Mr_1) + 1 for all n > sk and proved
the conjecture when k = 2,3 and n is sufficiently large. Recently, Frankl and Kupavskii [4]
proved that the conjecture is true for n > rk + (r — 1)(k — 1) and k£ > 3. Jin [7] determined
the exact value of the anti-Ramsey number of a k-matching in a complete tripartite 3-uniform

hypergraph.

Take a subhypergraph Ki_2 1,.... n, of Ky no,...n,.. Color the edges of Kp_ p,. .. n,. by distinct
colors and color the remaining edges of Ky, . . by a new color. Denote by ¢, the obtained

((k = 2)ng---n, + 1)-edge-coloring of Iy, .. Li, Tu and Jin [9] determined the following

e

results in complete bipartite graphs.
Theorem 1 ([9]). Forng >mny >k > 1,

ex(Kn, ny, kK2) = (k — 1)ns.
Moreover, Kj_1 y, is the unique such extremal graph.
Theorem 2 ([9]). Forny >mny >k > 3,

CL?"(Knl,nz, k‘KQ) = (k’ — 2)712 + 1.
In addition to the anti-Ramsey number, another interesting problem posed by Erdos is the
uniqueness of the extremal coloring. In [§], Jin and Zang obtained the following result.

Theorem 3 ([8]). For ng > ny > k > 3, every ((k — 2)ny + 1)-edge-coloring except for ¢o of

Ky, n, contains a rainbow kKs.

The following proposition provides a lower and upper bound for ar,(ICp, . n., M), and the

proof of which is similar to that of [14].

Proposition 4. ez, (Kp, . n., Mp—1) +1 < ar,(Kn,y ..., Mi) < exr(Kp, oons Mi).

Proof. The upper bound is clear. For the lower bound, let Hy be an extremal hypergraph for
exr(KCn,....n.» Mi—1) and color all edges of H differently and all the edges in E (ICy,, . »,.) \E (Ho)



with one extra color. The hypergraph K, . . with this coloring does not contain a rainbow

T

k-matching. The result follows. O

The proposition provides a lower bound for ar, (K, n,, My). In this paper we will show
that ar, (Ky, ... n,., Mi) = ex,(Kn,,.. n,, Mp—1) + 1, which gives a multi-partite version result of

Ozkahya and Young’s conjecture.

In [11], Liu and Wang determined ez, (K, . n,, Mg).
Theorem 5 ([11]). Forn, >n,_1>--->ny >k>1,
exr(Kny,...nes Mi) = (K — 1)ng - - - .
We will show that Kj_1r, ., is the unique extremal hypergraph in Theorem [5l
The following result is very useful for us.

Theorem 6. For n, > ny_1 > --- > ny > k > 1, every subhypergraph of ICp,, . n, with (k —

1)ng - --n, edges and without isolated vertices, except for Ki_1 p,.. n., contains a k-matching.

T

Motivated by Theorem 2] one may naturally ask what is the maximum number of colors
in a complete r-partite r-uniform hypergraph without a rainbow k-matching, where r > 3.
This paper focus on the anti-Ramsey number of k-matchings in complete r-partite r-uniform

hypergraphs. The following are our main results.
Theorem 7. (i) Forn, >n,_1 > -+ >ny >3,
arr(’Cnl,...,an2) =1
(ii) For ny =2, let t be the largest integer such that ny = ny = 2. Then
_ ot—1
ary(Kny,..nys Ma) =277
Theorem 8. Forn, >n,_1>--->ny>2k—1 and k > 3,
ary(Kn,y .onpy M) = (K —2)ng - - -np + 1.

Moreover, every ((k—2)ng - - - n, + 1)-edge-coloring except for ¢, of ICp, .., contains a rainbow

T

k-matching.
Combining Theorems [Bl [ and [, we have the following corollary.
Corollary 9. Forn, >n,_1>--->n1 >2k—1and k > 2,

arT’(ICnL---mM Mk) = exr(lcnl,---mw Mk—l) +1.
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2 Proofs of Theorems [6] and [7]

Proof of Theorem[6l We use induction on . The base case of r = 2 is true for all ny > nq > k
by Theorem[Il Suppose that the assertion holds for all 7’ < r. Assume that G is a subhypergraph
of Knivom

k-matching. Let Vi = {vg1,vs9,...,0sp,} for s =1,2,...,r. We consider two different cases.

. with (kK — 1)ng---n, edges and without isolated vertices, and does not contain a
Case 1. n1 = no.

For 1 < i,j < my, let F;; = {{vli,vgj,wg,...,wr} € E(G)| ws € Vifor3 < s < r} and
F;, = Fi,l @] Fi+172 J---u Fi+n1_1,n1, where E,j = E—nl,j if i > ng.

For each F;, i = 1,2,...,nq, we construct an (r — 1)-partite (r — 1)-uniform hypergraph
G; on vertex classes V1, Vs,...,V,, and e = {vy;,ws,...,w,} is an edge of G; if and only if
e/ = {vy,vop,ws, ..., w.} is an edge of F;, where | —I' =i — 1 (mod ny). Therefore, there is a

bijection between F; and E(G;). Note that if two edges e; and ey in G; are independent, then

the corresponding edges €| and €, in F; are also independent. Then we have the following fact.
Fact A. Any matching in G; corresponds to a matching in F; C E(G).

First, we prove the following claims.
Claim 1. For i # j, F; N F; = .

Proof. If there exists an edge {vi;, vy, ws,...,w,} € F;NFj, thenl—1I'=i—1 (mod ny) and

Il—1"=7—1 (mod ny) which implies i = j. O
ni ni
It follows from Claim 1 that e(G) = Y |Fi| = >_ e(Gi).
i=1 i=1

Claim 2. For any 1 <i < mnj, e(G;) = (k—1)ng---n,.

Proof. First, we have e(G;) < (k—1)ns---n,. Otherwise, G; contains a k-matching by Theorem
Bl so does G by Fact A, a contradiction. Hence,

n1
(k‘ — 1)n1n3 Ny = e(g) = Z e(gi) < n1(k‘ — 1)n3 R
=1
which implies that e(G;) = (k — 1)n3---n, for each 1 < i < nj. 0

with (k — 1)ns -+ n,
edges and does not contain a k-matching. By the induction hypothesis, G; = Kiy_1 n,,.. pn, U
(n1—k+1)K; for i =1,2,...,n1. Recall the construction of G;, we deduce that dg(vi;,v2;) =0

According to Fact A and Claim 2, G; is a subhypergraph of K, ns...

T

or dg(vij,ve;) = n3---n, for 1 < 4,5 < ny. Construct an auxiliary bipartite graph G with
bipartition (Vi, V), where e;; = vi;v2; € E(G) if and only if dg(vi;,v9;) = n3---n,. Then
e(G) = (k — 1)ng---n, implies that e(G) = (kK — 1)ny = (kK — 1)ny. We claim that there is

no k-matching in G. If there exists a k-matching e;, j;, €y jo, - - -, €ip,j, i G, We can find k



/ / /
i1,51° Ginygo * 0 Ciggn

[ =1,2,...,r. This contradicts the choice of G. It follows from Theorem [I that G = Kj,_q p,, U
(n1 —k + 1)K;. Without loss of generality, let E(G) = {viv;] 1 <i < k—1,1 <j < no}.

By the construction of G, every edge in E(Ky, . n,.) containing {vi;,vs;} is an edge in G for

/

edges e to form a k-matching in G, where € = {v14,,v2,5,,vs1, . .., vp } for

1<i<k—-land1< 7 < na. Hence, g= ’Ck—l,nz,ng,...,nr when ny = no.
Case 2. n1 < ns.
Claim 3. For u € V3, dg(u) = (k— 1)ng - -n,.

Proof. If there exists a vertex u € Vo such that dg(u) < (k — 1)ng - - - n,, then
e(G—u) =e(G) —dg(u) > (k—1)(ng — 1)ng - - - n,.

By Theorem B G — u contains a k-matching, so does G, a contradiction. Hence, dg(u) >
(k—1)ng---n, for all u € V5. Note that

(k—1Dng---n, =e(G) = Z dg(u) > (k — 1)ngng - - - n,.
ueVa

We deduce that dg(u) = (k — 1)ng---n, for all u € V5. O

Set Vi C Vs such that |V5| = ny. Let ¢’ = G[V1, V4, Vs, ..., V;]. According to Claim 3, we

have e(G') = Y dg(u) = (kK — 1)nins---n,. It follows from Case 1 that
ueVy

g = Ick—l,nlm?n...,nr U (nl —k+ 1)]C1’

Combining this with the arbitrariness of V;, we have dg(vi;,v25) = 0 or dg(vi;,v25) = n3---n,
for 1 <i <mnj,1<j<ny. Construct an auxiliary bipartite graph G with bipartition (V1, V),
where e;; = vi;v9; € E(G) if and only if dg(vij, v2;) = n3---n,. Then e(G) = (k—1)nanz - - - n,
implies that e(G) = (k — 1)na. We claim that there is no k-matching. Otherwise, if there is a
k-matching e;, j,,...,¢€;, ;. in G, we can find k edges in F;, ;,,..., F;, j,
in G, a contradiction. By Theorem [l G = Kj,_; , U (n1 — k+1)K;. Without loss of generality,
let E(G) = {viiv25] 1 < i < k—1,1 < j < ny}. By the construction of G, every edge in
E(Ky,,..n,) containing {vi;,v;} is an edge in G for 1 < i <k —1and 1 < j < ny. Hence,
G = Kk—1,n9m3,...100 - O

to form a k-matching

We now turn to the proofs of the main results of this paper. Theorem [1 gives the value of

anti-Ramsey number of k-matching in complete r-partite r-uniform hypergraphs when k = 2.
Proof of Theorem [Tl

(1) niq Z 3.



Suppose to the contrary that H is a complete r-partite r-uniform hypergraph colored by more
than one color, and containing no rainbow 2-matching. Set e, f € E(H) such that c(e) # c(f).
Clearly, E(H —e)NE(H — f) # 0 as ny > 3. Choose an edge g € E(H —e) N E(H — f), then
¢(g) = c(e) as H does not contain a rainbow 2-matching. Similarly, we have c(g) = ¢(f), then
c(e) = ¢(f), contradicting the fact c(e) # c(f). Therefore, |c(H)| =1, i.e., ary(Kn,, . .n,, M2) =
1.

(ii) ny = 2.

By the choice of ¢, n1 = ng = --- = ny = 2. Let H = K,,,..n, be a complete r-partite
r-uniform hypergraph. Let R(H,t) = {{v1,va,...,v}| v; € V; and i € [t]}. For any edge
e ={vy,ve,...,v.} € E(H), let R(e,t) = {v1,va,...,v:}. For a = {v1,va,...,u:} € R(H,t), let
@ = {U1,7o,...,0t}, where T; is the remaining vertex in V; except v;. For a = {vy,va,..., 0} €

R(H,t), let
E{ozy = {e € E(H)|R(e,t) = a or R(e,t) =aj}.

Then we decompose the edge set of H into F(H) = Uiaaje@Ffa,a}, where Q = {{a,a}| a €
R(H,t)}. It is easily checked that |Q] = 2! and Bz N E BB = () for any two different
elements {«o, @}, {3,4} in Q.

We consider the following coloring of H: For any two edges e, f € E(H), c(e) = ¢(f) if and
only if there exists an element {a,@} € @ such that e, f € Ff, 5. By the definition of the
coloring of H, any two independent edges have the same color and |c¢(H)| = |Q| = 271, So H

does not contain a rainbow 2-matching. Therefore, ar, (K, .. pn,., M2) > 2t—1,

Let H = Ky, ... n, be an edge-colored complete r-partite r-uniform hypergraph without rain-

bow 2-matchings. To obtain the upper bound, we consider the following cases.
Case 1. t=r.

In this case, Ff,q} = {@,@}. Then E(H) can be decomposed into 21 pairs of independent
edges, and each pair of edges must be colored by the same color. Hence |c¢(H)| < 2"7!, then
ary(Ka,.. 2, M) < 21 which implies that ary (Ko, 2, M) = or—1,

Case 2. t <.
Recall that E(H) = Ugsaye@Fiaay- We have the following claims.
Claim 1. For any {a,a} € Q, if e, f € E,57) and R(e,t) = R(f,t), then c(e) = c(f).

Proof. For any {«,@} € Q, since n, > -+ > ngq > 3, there exists an edge g = {uy,ug,...,u,}
€ E{,ay, such that R(g,t) = R(e,t) and uj € V; —eU f for j =t+1,...,7. Then gNe =
gN f=0. Therefore, c(e) = ¢(g) = ¢(f). Otherwise, H contains a rainbow 2-matching. O

Claim 2. For any {a,a} € Q, if e, f € E,5) and R(e,t) = R(f,t), then c(e) = c(f).
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Proof. Since n, > --- > ny1 > 3, there exists an edge g = {u1,uz,...,u} € Efyq with
R(g,t) = R(e,t) and u; € V; — f for j =t +1,...,r. It follows from Claim 1 that c¢(g) = c(e).
Note that g N f = 0, we have ¢(f) = ¢(g). Then c(e) = ¢(f). O

Combining these two claims, we conclude that ¢(E, 7)) = 1 for any {a,a} € Q. Therefore,
le(H)| < 2t71, which implies that ar, (Ky, . n,, M2) < 2871 Thus ary (Ky, .., Ma) =271 O

3 Proof of Theorem [8

In this section we will determine the value of the anti-Ramsey number of k-matchings in com-

plete r-partite r-uniform hypergraphs, and also give the uniqueness of extremal coloring.

We need the following lemma.
Lemma 10. For ny > 2k —1 and k > 3,
aTT(Kn1,~~~,”17Mk) = (k - 2)77{_1 +1,

and every ((k — 2)n]~ " + 1)-edge-coloring except for ¢ of Kny. . .ny contains a rainbow k-

matching.

Proof. We use induction on r. The base case of r = 2 is true for all ny > 2k — 1 by Theorem
and Theorem Bl Suppose that the lemma holds for all v’ < r. Assume, by way of contradiction,
that H = K, n, is @ hypergraph with a ((k —2)n' ! 4+ 2)-edge-coloring and does not contain

a rainbow k-matching.

Let Vi = {vs1,vs2, -+, Usny }, s = 1,2,...,r. For 1 <i,j < nq, let
E;; = {{’L)u,’[)gj,w:g,...,wr} €EE(H)|ws € Vs for 3<s< r},

and F; = EZ'71 @] Ei+1,2 y---u Ei-i-nl—lmlv where Ei,j = Ez'—nl,j if i > ngq.

For each E;,i = 1,2,...,n;1, we construct a complete (r—1)-partite (r—1)-uniform hypergraph
H; on vertex classes Vi, Vs, ..., V, such that e = {vy, ws,...,w,} is an edge of H; if and only
if ¢/ = {vy, vop,ws, ..., w,} is an edge of E;, where | — ' =i —1 (mod ny), and we color e by

c(e'). Therefore, there is a bijection between E; and F(H;) and ¢(E;) = c¢(H;). Note that if
two edges e; and e in H; are independent, then the corresponding edges €} and €} in FE; are

also independent. Then we have the following fact.

Fact B. Any rainbow matching in H; corresponds to a rainbow matching in E; C E(H).



Obviously, E(H) = Lj E;. Then

=1

ni

Dol =) le(ED)| = le(H)| = (k = 2)ni " +2.
i=1

i=1
Without loss of generality, we assume that H; has the most colors in Hi, ..., Hy,.
Claim 1. |c(H1)| = (k —2)n] 2 + 1.

Proof. First, we have |c(H;)] < (k—2)n["2 +1 for 1 < i < ny. Otherwise, by induc-
tion hypothesis, H; contains a rainbow k-matching, so does ‘H by Fact B, a contradiction. If
lc(H1)| < (k —2)n]~2, then

(k= 2y 2 = (0] < 3 [el(H0)] <l — 22,
i=1
a contradiction. Hence, |c(H1)| = (k —2)n] 2 + 1. O

We next show that there exists an integer 2 < t < ny such that |c(H;)| = (k—2)n] 2+ 1 and
c(H1) Ne(Hy) = 0. Otherwise,

lc(H)| < (k=20 2+ 1)+ (k—2)n 2 (ng — 1) < (k—2)ni "1 + 2,

contradicting the assumption of H. Since H; and H; do not contain a rainbow k-matching and
with (k — 2)n{_2 + 1 colors, by the induction hypothesis, they are both colored by ¢,_;. Let
H; be the representing hypergraph of H;. Then

e(Hy) = |e(He)| > (k —2)ny 7,

so H; contains a (k — 1)-matching by Theorem [5 Hence, there is a rainbow (k — 1)-matching
in H;, which corresponds to a rainbow (k — 1)-matching, denoted by My_1, in E;. The (k —1)-
matching My_1 meets k — 1 vertices in V; and k — 1 vertices in V5, respectively. Asny > 2k —1,
there exists an integer s, such that vis € Vi — V(My_1) and ves € Vo — V(My_1). Then we
can find an edge e € E;; C Ej such that e N V(Mj_1) = 0. Recall that ¢(H1) Nc(He) = 0,
c¢(H1) = c¢(F1) and ¢(Hy) = c(Ey), then eU Mj_q is a rainbow k-matching in H, a contradiction.
Hence ar, (Ko, ..ny, Mi) < (k —2)n7~' + 1. Combining this with Proposition B and Theorem
B, we have ar, (K, . ny, My) = (k —2)n 1+ 1.

Now we prove the uniqueness of the extremal coloring. Suppose that [c(H)] = (k—2)n] ' +1

and H does not contain a rainbow k-matching. Let H be the representing hypergraph of
H. Then e(H) = (k —2)n] ' + 1. As the discussion above, we construct E; C E(H) and



a complete (r — 1)-partite (r — 1)-uniform hypergraph H; on vertex classes V1, Vs, ..., V, for
i =1,2,...,n1. Without loss of generality, assume that H; has the most colors in H;, ..., Hp,.
Then |¢(H1)| = (k —2)n] 2 + 1.

Notice that H; does not contain a rainbow k-matching and |c(H1)| = (k —2)n| "2+ 1. By the

induction hypothesis, # is colored by configuration ¢,_1. Without loss of generality, we assume
that in Hq, E* = {{Uli,ZU3,...,w7«} EFEMH1) |k—1<i<n;and ws € Vs for3 <s< r} are
colored by one color and all the remaining edges of H; colored by distinct colors. Then, in H,
c(Egp—1h-1) = = c(En, ny) = c(E*), and the colors of the edges in Ey 3 U---UEj_o_o are
different from each other. Let Hy be the rainbow subhypergraph of H obtained by taking one
edge of each color of ¢(H) except ¢(E*) and such that Ey; U--- U Ej_g_o are contained in
Ho. Then |E(Ho)| = (k — 2)nt~'. We have the following claim.

Claim 2. HO = le;—27n17__.,n1'

Proof. If Hy 2 Kk—2.n,...n,, then there exists a (k — 1)-matching, denoted by M| _,, in Ho
by Theorem [6l Notice that M _, meets at most 2(k — 1) vertices in V; U V3 and ny > 2k — 1,
we can find an edge e}, in Fy, such that V(M]_,)Ne, =0. If e} € Ey\(E1qU---UEk_25_2),
then ¢(M;_,)Ncle,) = 0. If e, € E11U---UEj_9,_2, then €, € E(Hy). We also have
c(Mj_y) Nc(e),) = 0 as Hp is a rainbow subhypergraph of H. Then e, U M| _, is a rainbow
k-matching in H, a contradiction. O

~

By Claim 2, there is a rainbow subhypergraph Ho = Kr_2,,...n, of H. Combining the
fact that all the edges in E(H)\E(Ho) are colored by c(E*), we deduce that H is colored by

configuration ¢,. O

We now prove Theorem 8

Proof of Theorem Bl We first prove that ar,(KCp, . n., M) = (k—2)ng---n, + 1 for n; >
2k —1 and k > 3. Since ¢, is an edge coloring of Ky, . 5, such that there is no rainbow
k-matching in Ky, ., arr(Kny,.opns Mi) > (E—2)ng---np + 1.

The upper bound is proven by induction on the number of vertices of ICy,, . »,.. The base case
of n; = n, is true by Lemma [0l we now suppose that nq < n,. Assume the assertion holds for
all nf,...,n. such that Y ., n; <37 n;, Suppose that H =Ky, n
a ((k —2)ng---n, + 2)-edge-coloring, and containing no rainbow k-matchings. Let H be the

is a hypergraph with

T

representing hypergraph of #. Then e(H) = (k —2)ny - - - n, + 2. For any vertex v € V., H — v
is a subhypergraph of some representing hypergraph of H —v. Since H — v contains no rainbow

k-matchings, by the induction hypothesis, we have
e(H—v) <l|c(H—-v)| < (k—2)ng---n,—1(n, — 1) + 1.
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Then dy(v) = e(H) —e(H —v) > (k—2)ng---n,—1 + 1. Thus,

e(H) = Y dg(v)=n,-((k—2)mng-n._1+1)
veEV,
= (k—=2)ng---n.+n, > (k—2)ng---n, +2,

which is a contradiction. Therefore, ar,(Kp, . ., M) = (k —2)ng---n, + 1.

Next we prove the uniqueness of the extremal coloring. Suppose that |c¢(H)| = (k—2)ng - - - n,+
1 and H does not contain a rainbow k-matching. Then e(H) = (k — 2)ng---n, + 1. We have
the following claim.
Claim 1. There exists a vertex v* € V, with dg(v*) = (k — 2)ny---n,—1 + 1, and dg(v) =
(k—2)ng---ny_q for v e V;\{v*}.
Proof. For any vertex v € V., H — v is a subhypergraph of some representing hypergraph of
H—wv. Ifdy(v) <(k—2)ng---ny—1 — 1, then

lc(H—v)|>e(H—v)>(k—2)n2---np_1(ny — 1) + 2 =ar,(Kpn, o1 mp—1, Mg) + 1.

By the induction hypothesis, H — v contains a rainbow k-matching, a contradiction. Thus,
dg(v) > (k—2)ng---n,_1 for all v € V.. Note that

e(H) = du()=n,-(k—2)ng---np1+1.
veEV,

Therefore, there is exactly one vertex, say v*, with degree (kK — 2)ng---n,—1 + 1, and the

remaining vertices in V, with degree (k —2)ng---n,_1. O

For v € V,\{v*}, we have
e(H—v)=e(H)—dyw)=(k—2)n2 -n—1(n, — 1) + 1.
Clearly, H — v is a subhypergraph of some representing hypergraph of H — v. Thus,
lec(H —v)| >e(H—v)=(k—2)ng---np_1(n, — 1) + 1.

By the induction hypothesis, |¢c(H —v)| < (k —2)ng---n,_1(n, — 1) + 1. Hence, we deduce
that |¢(H —v)| = (kK —2)n2---n,—1(n, — 1) + 1. By the induction hypothesis, H — v is colored
by ¢, since H — v contains no rainbow k-matchings. Due to the arbitrariness of v, for any two
vertices vy,vy € V.\{v*}, H —v1 and H — vy are colored by ¢,. Assume S; and Sy are the
(k — 2)-subsets of V; such that the colors of the edges intersecting S; and Ss are all different in

H —v1 and H — v9, and edges not intersecting S; and Sy are colored with a new color in H — vy
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and H — v, respectively. Then S7 = Ss. So all edges intersecting Sp are colored with different

colors in H and edges not intersecting S are colored with a new color in H. So H is colored

by ¢,. This completes the proof. O
References
[1] N. Alon. On a conjecture of Erdés, Simonovits, and Sés concerning anti-Ramsey theorems.

2]

[3]

[11]

[12]

J. Graph Theory. 7(1):91-94, 1983.

H. Chen, X. Li, and J. Tu. Complete solution for the rainbow numbers of matchings.
Discrete Math. 309(10):3370-3380, 20009.

P. Erdds, M. Simonovits, and V. T. Sés. Anti-Ramsey theorems. in: A. Hajnal, R. Rado,
V.T. S6s (Eds.), Infinite and Finite Sets, Vol. II, in: Colloq. Math. Soc. Janos Bolvai,
vol.10, 1975, pp. 633-643.

P. Frankl and A. Kupavskii. Two problems on matchings in set families - In the footsteps
of Erdos and Kleitman. J. Combin. Theory Ser. B 138:286-313, 2019.

S. Fujita, A. Kaneko, I. Schiermeyer, and K. Suzuki. A rainbow k-matching in the complete
graph with r colors. Electron. J. Combin. 16(1), 2009.

R. Gu, J. Li, and Y. Shi. Anti-Ramsey numbers of paths and cycles in hypergraphs. STAM
J. Discrete Math. 34(1):271-307, 2020.

Z. Jin. Anti-Ramsey number of matchings in a hypergraph, Discrete Math. 344:112594,
2021.

Z. Jin and Y. Zang. Anti-Ramsey coloring for matchings in complete bipartite graphs. J.
Comb. Optim. 33(1):1-12, 2017.

X. Li, J. Tu, and Z. Jin. Bipartite rainbow numbers of matchings. Discrete Math.
309(8):2575-2578, 20009.

X. Li and Z. Xu. The rainbow number of matchings in regular bipartite graphs. Appl.
Math. Lett. 22(10):1525-1528, 20009.

E. Liu and J. Wang. Turan problems for vertex-disjoint cliques in multi-partite hyper-
graphs. Discrete Math. 343(10):112005, 2020.

J. J. Montellano-Ballesteros and V. Neumann-Lara. An anti-Ramsey theorem on cycles.
Graphs and Combin. 21(3):343-354, 2005.

12



[13] L. Ozkahya and M. Young. Anti-Ramsey number of matchings in hypergraphs. Discrete
Mathd. 313(20):2359-2364, 2013.

[14] 1. Schiermeyer. Rainbow numbers for matchings and complete graphs. Discrete Math.
286(1-2):157-162, 2004.

13



	1 Introduction
	2 Proofs of Theorems 6 and 7
	3 Proof of Theorem 8

