Anti-Ramsey number of matchings in r-partite r-uniform hypergraphs^{*}

Yisai Xue¹, Erfang Shan², Liying Kang^{1†}

¹Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

²School of Management, Shanghai University, Shanghai 200444, P.R. China

Abstract

An edge-colored hypergraph is rainbow if all of its edges have different colors. Given two hypergraphs \mathcal{H} and \mathcal{G} , the anti-Ramsey number $ar(\mathcal{G}, \mathcal{H})$ of \mathcal{H} in \mathcal{G} is the maximum number of colors in a coloring of the edges of \mathcal{G} so that there does not exist a rainbow copy of \mathcal{H} . Li et al. determined the anti-Ramsey number of k-matchings in complete bipartite graphs. Jin and Zang showed the uniqueness of the extremal coloring. In this paper, as a generalization of these results, we determine the anti-Ramsey number $ar_r(\mathcal{K}_{n_1,\ldots,n_r}, M_k)$ of k-matchings in complete r-partite r-uniform hypergraphs and show the uniqueness of the extremal coloring. Also, we show that $\mathcal{K}_{k-1,n_2,\ldots,n_r}$ is the unique extremal hypergraph for Turán number $ex_r(\mathcal{K}_{n_1,\ldots,n_r}, M_k)$ and show that $ar_r(\mathcal{K}_{n_1,\ldots,n_r}, M_k) = ex_r(\mathcal{K}_{n_1,\ldots,n_r}, M_{k-1}) + 1$, which gives a multi-partite version result of Özkahya and Young's conjecture.

Keywords: anti-Ramsey number; r-partite r-uniform hypergraph

AMS (2000) subject classification: 05C35

1 Introduction

An edge-colored graph G is called *rainbow* if every edge of G receives a different color. Given two graphs H and G, ar(H,G) is defined to be the maximum number of colors in a coloring of the edges of H that has no rainbow copy of G. The number ar(H,G) is called the *anti-Ramsey number* of G in H. When $H = K_n$, $ar(K_n,G)$ is the anti-Ramsey number of G. Let ex(H,G) denote the maximum number of edges that a subgraph of H can have with no subgraph isomorphic to G.

^{*}Research was partially supported by the National Natural Science Foundation of China (Nos. 11871329, 11971298)

[†]Email address: lykang@shu.edu.cn (L. Kang), xys16720018@163.com (Y. Xue), efshan@shu.edu.cn (E. Shan)

The study of anti-Ramsey number began by Erdős et al. [3] in 1970s. In the original work, they conjectured that $ar(K_n, C_k) = \left(\frac{k-2}{2} + \frac{1}{k-1}\right)n + O(1)$, and proved the conjecture when k = 3. After that, Alon [1] proved the conjecture for k = 4. Jiang, Schiermeyer and West (unpublished manuscript) proved the conjecture for $k \leq 7$. Finally, Montellano-Ballesteros and Neumann-Lara [12] completely proved the conjecture in 2005.

For matchings, Schiermeyer [14] used a counting technique to determine $ar(K_n, kK_2)$ for all $k \ge 2$ and $n \ge 3k+3$. After that, Fujita et al. [5] solved this problem for $k \ge 2$ and $n \ge 2k+1$. In 2009, Chen et al. [2] extended Schiermeyer's result to all $k \ge 2$ and $n \ge 2k$ by using the Gallai-Edmonds structure theorem.

Taking complete bipartite graphs as the host graphs, Li et al [9] determined $ar(K_{n_1,n_2}, kK_2)$ for all $k \ge 1$. Denote by $B_{n,m}$ the set of all the *m*-regular bipartite graphs of order 2n. Li and Xu [10] showed that $ar(B_{n,m}, kK_2) = m(k-2) + 1$ for $k \ge 2$, $m \ge 3$ and n > 3k - 1.

A hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ is a finite set $V(\mathcal{H})$ of elements, called vertices, together with a finite set $E(\mathcal{H})$ of subsets of $V(\mathcal{H})$, called hyperedges or simply edges. The union of hypergraphs \mathcal{G} and \mathcal{H} is the graph $\mathcal{G} \cup \mathcal{H}$ with vertex set $V(\mathcal{G}) \cup V(\mathcal{H})$ and edge set $E(\mathcal{G}) \cup E(\mathcal{H})$. If each edge of \mathcal{H} has exactly r vertices, \mathcal{H} is called r-uniform. For a subset V' of $V(\mathcal{H})$, denoted by $\mathcal{H}[V']$ the subhypergraph of \mathcal{H} induced by V'. For $v \in V(\mathcal{H})$, we use $\mathcal{H} - v$ to denote $\mathcal{H}[V(\mathcal{H})\setminus\{v\}]$. For an edge e in $E(\mathcal{H})$, denoted by $\mathcal{H}-e$ the hypergraph obtained by deleting e from \mathcal{H} . For a vertex $v \in V(\mathcal{H})$, the degree $d_{\mathcal{H}}(v)$ is defined as the number of edges of \mathcal{H} containing v. A vertex of degree zero is called an *isolated* vertex. For $u, v \in V(\mathcal{H})$, we define $d_{\mathcal{H}}(u,v)$ to be the number of edges of \mathcal{H} containing $\{u,v\}$, and we call this number the *co-degree* of $\{u, v\}$. For a hypergraph \mathcal{H} , we denote the number of edges in \mathcal{H} by $e(\mathcal{H})$. A complete r*uniform hypergraph* is a hypergraph whose edge set consists of all r-subsets of the vertex set. A matching in a hypergraph is a set of edges in which no two edges have a common vertex. We call a matching with k edges a k-matching, denoted by M_k . An edge-colored hypergraph is called rainbow hypergraph if the all of its edges have different colors. The representing hypergraph of a hypergraph \mathcal{H} with an edge coloring c is a spanning subhypergraph of \mathcal{H} obtained by taking one edge of each color of c. For an edge set $E \subseteq E(\mathcal{H})$, let c(E) denote the set of colors of edges in E. For simplicity, when $E = \{e\}$ and $E = E(\mathcal{H})$, we use c(e) and $c(\mathcal{H})$ instead of $c(\{e\})$ and $c(E(\mathcal{H}))$, respectively.

Let n_1, n_2, \ldots, n_r be integers and V_1, V_2, \ldots, V_r be disjoint vertex sets with $|V_i| = n_i$ for each $i = 1, 2, \ldots, r$. A complete *r*-partite *r*-uniform hypergraph on vertex classes V_1, V_2, \ldots, V_r , denoted by $\mathcal{K}_{n_1,\ldots,n_r}$, is defined to be the *r*-uniform hypergraph whose edge set consists of all the *r*-element subsets *S* of $V_1 \cup \cdots \cup V_r$ such that $|S \cap V_i| = 1$ for all $i = 1, 2, \ldots, r$.

Given two hypergraphs \mathcal{H} and \mathcal{G} , the *anti-Ramsey number* of \mathcal{H} in \mathcal{G} , denoted by $ar(\mathcal{G}, \mathcal{H})$, is

the maximum number of colors in a coloring of the edges of \mathcal{G} with no rainbow copy of \mathcal{H} . When \mathcal{G} is an *r*-uniform complete hypergraph on *n* vertices, $ar_r(\mathcal{G}, \mathcal{H})$ is the anti-Ramsey number of \mathcal{H} . The *Turán number* $ex_r(\mathcal{G}, \mathcal{H})$ is the maximum number of edges in an \mathcal{H} -free subhypergraph of \mathcal{G} , where \mathcal{H} -free hypergraph is one which contains no \mathcal{H} as a subhypergraph.

Gu et al. [6] determined the anti-Ramsey numbers of linear paths/cycles and loose paths/cycles in hypergraphs for sufficiently large n and gave bounds on the anti-Ramsey numbers of Berge paths/cycles. For the anti-Ramsey number of matchings in hypergraphs, Özkahya and Young [13] stated a conjecture that $ar_r(\mathcal{K}_n, M_k) = ex_r(\mathcal{K}_n, M_{k-1}) + 1$ for all n > sk and proved the conjecture when k = 2, 3 and n is sufficiently large. Recently, Frankl and Kupavskii [4] proved that the conjecture is true for $n \ge rk + (r-1)(k-1)$ and $k \ge 3$. Jin [7] determined the exact value of the anti-Ramsey number of a k-matching in a complete tripartite 3-uniform hypergraph.

Take a subhypergraph $\mathcal{K}_{k-2,n_2,\ldots,n_r}$ of $\mathcal{K}_{n_1,n_2,\ldots,n_r}$. Color the edges of $\mathcal{K}_{k-2,n_2,\ldots,n_r}$ by distinct colors and color the remaining edges of $\mathcal{K}_{n_1,\ldots,n_r}$ by a new color. Denote by ϕ_r the obtained $((k-2)n_2\cdots n_r+1)$ -edge-coloring of $\mathcal{K}_{n_1,\ldots,n_r}$. Li, Tu and Jin [9] determined the following results in complete bipartite graphs.

Theorem 1 ([9]). For $n_2 \ge n_1 \ge k \ge 1$,

$$ex(K_{n_1,n_2}, kK_2) = (k-1)n_2.$$

Moreover, K_{k-1,n_2} is the unique such extremal graph.

Theorem 2 ([9]). For $n_2 \ge n_1 \ge k \ge 3$,

$$ar(K_{n_1,n_2}, kK_2) = (k-2)n_2 + 1.$$

In addition to the anti-Ramsey number, another interesting problem posed by Erdős is the uniqueness of the extremal coloring. In [8], Jin and Zang obtained the following result.

Theorem 3 ([8]). For $n_2 \ge n_1 \ge k \ge 3$, every $((k-2)n_2+1)$ -edge-coloring except for ϕ_2 of K_{n_1,n_2} contains a rainbow kK_2 .

The following proposition provides a lower and upper bound for $ar_r(\mathcal{K}_{n_1,\ldots,n_r}, M_k)$, and the proof of which is similar to that of [14].

Proposition 4. $ex_r(\mathcal{K}_{n_1,...,n_r}, M_{k-1}) + 1 \le ar_r(\mathcal{K}_{n_1,...,n_r}, M_k) \le ex_r(\mathcal{K}_{n_1,...,n_r}, M_k).$

Proof. The upper bound is clear. For the lower bound, let \mathcal{H}_0 be an extremal hypergraph for $ex_r(\mathcal{K}_{n_1,\dots,n_r}, M_{k-1})$ and color all edges of \mathcal{H}_0 differently and all the edges in $E(\mathcal{K}_{n_1,\dots,n_r}) \setminus E(\mathcal{H}_0)$

with one extra color. The hypergraph $\mathcal{K}_{n_1,\dots,n_r}$ with this coloring does not contain a rainbow k-matching. The result follows.

The proposition provides a lower bound for $ar_r(\mathcal{K}_{n_1,\ldots,n_r}, M_k)$. In this paper we will show that $ar_r(\mathcal{K}_{n_1,\ldots,n_r}, M_k) = ex_r(\mathcal{K}_{n_1,\ldots,n_r}, M_{k-1}) + 1$, which gives a multi-partite version result of Özkahya and Young's conjecture.

In [11], Liu and Wang determined $ex_r(\mathcal{K}_{n_1,\dots,n_r}, M_k)$.

Theorem 5 ([11]). For $n_r \ge n_{r-1} \ge \cdots \ge n_1 \ge k \ge 1$,

$$ex_r(\mathcal{K}_{n_1,\ldots,n_r},M_k)=(k-1)n_2\cdots n_r.$$

We will show that $\mathcal{K}_{k-1,n_2,\dots,n_r}$ is the unique extremal hypergraph in Theorem 5.

The following result is very useful for us.

Theorem 6. For $n_r \ge n_{r-1} \ge \cdots \ge n_1 \ge k \ge 1$, every subhypergraph of $\mathcal{K}_{n_1,\dots,n_r}$ with $(k-1)n_2\cdots n_r$ edges and without isolated vertices, except for $\mathcal{K}_{k-1,n_2,\dots,n_r}$, contains a k-matching.

Motivated by Theorem 2, one may naturally ask what is the maximum number of colors in a complete r-partite r-uniform hypergraph without a rainbow k-matching, where $r \geq 3$. This paper focus on the anti-Ramsey number of k-matchings in complete r-partite r-uniform hypergraphs. The following are our main results.

Theorem 7. (i) For $n_r \ge n_{r-1} \ge \cdots \ge n_1 \ge 3$,

$$ar_r(\mathcal{K}_{n_1,\dots,n_r},M_2)=1.$$

(ii) For $n_1 = 2$, let t be the largest integer such that $n_t = n_1 = 2$. Then

$$ar_r(\mathcal{K}_{n_1,\dots,n_r},M_2) = 2^{t-1}.$$

Theorem 8. For $n_r \ge n_{r-1} \ge \cdots \ge n_1 \ge 2k - 1$ and $k \ge 3$,

$$ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_k) = (k-2)n_2\cdots n_r + 1.$$

Moreover, every $((k-2)n_2 \cdots n_r+1)$ -edge-coloring except for ϕ_r of $\mathcal{K}_{n_1,\dots,n_r}$ contains a rainbow k-matching.

Combining Theorems 5, 7 and 8, we have the following corollary.

Corollary 9. For $n_r \ge n_{r-1} \ge \cdots \ge n_1 \ge 2k-1$ and $k \ge 2$,

$$ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_k) = ex_r(\mathcal{K}_{n_1,\dots,n_r}, M_{k-1}) + 1.$$

2 Proofs of Theorems 6 and 7

Proof of Theorem 6. We use induction on r. The base case of r = 2 is true for all $n_2 \ge n_1 \ge k$ by Theorem 1. Suppose that the assertion holds for all r' < r. Assume that \mathcal{G} is a subhypergraph of $\mathcal{K}_{n_1,\ldots,n_r}$ with $(k-1)n_2\cdots n_r$ edges and without isolated vertices, and does not contain a k-matching. Let $V_s = \{v_{s1}, v_{s2}, \ldots, v_{sn_s}\}$ for $s = 1, 2, \ldots, r$. We consider two different cases.

Case 1. $n_1 = n_2$.

For $1 \leq i, j \leq n_1$, let $F_{i,j} = \{\{v_{1i}, v_{2j}, w_3, \dots, w_r\} \in E(\mathcal{G}) | w_s \in V_s \text{ for } 3 \leq s \leq r\}$ and $F_i = F_{i,1} \cup F_{i+1,2} \cup \dots \cup F_{i+n_1-1,n_1}$, where $F_{i,j} = F_{i-n_1,j}$ if $i > n_1$.

For each F_i , $i = 1, 2, ..., n_1$, we construct an (r - 1)-partite (r - 1)-uniform hypergraph \mathcal{G}_i on vertex classes $V_1, V_3, ..., V_r$, and $e = \{v_{1l}, w_3, ..., w_r\}$ is an edge of \mathcal{G}_i if and only if $e' = \{v_{1l}, v_{2l'}, w_3, ..., w_r\}$ is an edge of F_i , where $l - l' \equiv i - 1 \pmod{n_1}$. Therefore, there is a bijection between F_i and $E(\mathcal{G}_i)$. Note that if two edges e_1 and e_2 in \mathcal{G}_i are independent, then the corresponding edges e'_1 and e'_2 in F_i are also independent. Then we have the following fact.

Fact A. Any matching in \mathcal{G}_i corresponds to a matching in $F_i \subseteq E(\mathcal{G})$.

First, we prove the following claims.

Claim 1. For $i \neq j$, $F_i \cap F_j = \emptyset$.

Proof. If there exists an edge $\{v_{1l}, v_{2l'}, w_3, \dots, w_r\} \in F_i \cap F_j$, then $l - l' \equiv i - 1 \pmod{n_1}$ and $l - l' \equiv j - 1 \pmod{n_1}$ which implies i = j.

It follows from Claim 1 that $e(\mathcal{G}) = \sum_{i=1}^{n_1} |F_i| = \sum_{i=1}^{n_1} e(\mathcal{G}_i).$

Claim 2. For any $1 \leq i \leq n_1$, $e(\mathcal{G}_i) = (k-1)n_3 \cdots n_r$.

Proof. First, we have $e(\mathcal{G}_i) \leq (k-1)n_3 \cdots n_r$. Otherwise, \mathcal{G}_i contains a k-matching by Theorem 5, so does \mathcal{G} by Fact A, a contradiction. Hence,

$$(k-1)n_1n_3\cdots n_r = e(\mathcal{G}) = \sum_{i=1}^{n_1} e(\mathcal{G}_i) \le n_1(k-1)n_3\cdots n_r,$$

which implies that $e(\mathcal{G}_i) = (k-1)n_3 \cdots n_r$ for each $1 \le i \le n_1$.

According to Fact A and Claim 2, \mathcal{G}_i is a subhypergraph of $\mathcal{K}_{n_1,n_3,\ldots,n_r}$ with $(k-1)n_3\cdots n_r$ edges and does not contain a k-matching. By the induction hypothesis, $\mathcal{G}_i \cong \mathcal{K}_{k-1,n_3,\ldots,n_r} \cup (n_1-k+1)\mathcal{K}_1$ for $i=1,2,\ldots,n_1$. Recall the construction of \mathcal{G}_i , we deduce that $d_{\mathcal{G}}(v_{1i},v_{2j})=0$ or $d_{\mathcal{G}}(v_{1i},v_{2j})=n_3\cdots n_r$ for $1\leq i,j\leq n_1$. Construct an auxiliary bipartite graph G with bipartition (V_1,V_2) , where $e_{ij}=v_{1i}v_{2j}\in E(G)$ if and only if $d_{\mathcal{G}}(v_{1i},v_{2j})=n_3\cdots n_r$. Then $e(\mathcal{G})=(k-1)n_2\cdots n_r$ implies that $e(G)=(k-1)n_2=(k-1)n_1$. We claim that there is no k-matching in G. If there exists a k-matching $e_{i_1,j_1}, e_{i_2,j_2}, \ldots, e_{i_k,j_k}$ in G, we can find k

edges $e'_{i_1,j_1}, e'_{i_2,j_2}, \ldots, e'_{i_k,j_k}$ to form a k-matching in \mathcal{G} , where $e'_{i_l,j_l} = \{v_{1,i_l}, v_{2,j_l}, v_{3l}, \ldots, v_{rl}\}$ for $l = 1, 2, \ldots, r$. This contradicts the choice of \mathcal{G} . It follows from Theorem 1 that $G \cong K_{k-1,n_1} \cup (n_1 - k + 1)K_1$. Without loss of generality, let $E(G) = \{v_{1i}v_{2j} \mid 1 \le i \le k - 1, 1 \le j \le n_2\}$. By the construction of G, every edge in $E(\mathcal{K}_{n_1,\ldots,n_r})$ containing $\{v_{1i}, v_{2j}\}$ is an edge in \mathcal{G} for $1 \le i \le k - 1$ and $1 \le j \le n_2$. Hence, $\mathcal{G} \cong \mathcal{K}_{k-1,n_2,n_3,\ldots,n_r}$ when $n_1 = n_2$.

Case 2. $n_1 < n_2$.

Claim 3. For $u \in V_2$, $d_{\mathcal{G}}(u) = (k-1)n_3 \cdots n_r$.

Proof. If there exists a vertex $u \in V_2$ such that $d_{\mathcal{G}}(u) < (k-1)n_3 \cdots n_r$, then

$$e(\mathcal{G}-u) = e(\mathcal{G}) - d_{\mathcal{G}}(u) > (k-1)(n_2-1)n_3 \cdots n_r.$$

By Theorem 5, $\mathcal{G} - u$ contains a k-matching, so does \mathcal{G} , a contradiction. Hence, $d_{\mathcal{G}}(u) \geq (k-1)n_3 \cdots n_r$ for all $u \in V_2$. Note that

$$(k-1)n_2\cdots n_r = e(\mathcal{G}) = \sum_{u\in V_2} d_{\mathcal{G}}(u) \ge (k-1)n_2n_3\cdots n_r$$

We deduce that $d_{\mathcal{G}}(u) = (k-1)n_3 \cdots n_r$ for all $u \in V_2$.

Set $V'_2 \subseteq V_2$ such that $|V'_2| = n_1$. Let $\mathcal{G}' = \mathcal{G}[V_1, V'_2, V_3, \dots, V_r]$. According to Claim 3, we have $e(\mathcal{G}') = \sum_{u \in V'_2} d_{\mathcal{G}}(u) = (k-1)n_1n_3 \cdots n_r$. It follows from Case 1 that

$$\mathcal{G}' \cong \mathcal{K}_{k-1,n_1,n_3,\dots,n_r} \cup (n_1 - k + 1)\mathcal{K}_1.$$

Combining this with the arbitrariness of V'_2 , we have $d_{\mathcal{G}}(v_{1i}, v_{2j}) = 0$ or $d_{\mathcal{G}}(v_{1i}, v_{2j}) = n_3 \cdots n_r$ for $1 \leq i \leq n_1, 1 \leq j \leq n_2$. Construct an auxiliary bipartite graph G with bipartition (V_1, V_2) , where $e_{ij} = v_{1i}v_{2j} \in E(G)$ if and only if $d_{\mathcal{G}}(v_{1i}, v_{2j}) = n_3 \cdots n_r$. Then $e(\mathcal{G}) = (k-1)n_2n_3 \cdots n_r$ implies that $e(G) = (k-1)n_2$. We claim that there is no k-matching. Otherwise, if there is a k-matching $e_{i_1,j_1}, \ldots, e_{i_k,j_k}$ in G, we can find k edges in $F_{i_1,j_1}, \ldots, F_{i_k,j_k}$ to form a k-matching in \mathcal{G} , a contradiction. By Theorem 1, $G \cong K_{k-1,n_2} \cup (n_1 - k + 1)K_1$. Without loss of generality, let $E(G) = \{v_{1i}v_{2j} \mid 1 \leq i \leq k - 1, 1 \leq j \leq n_2\}$. By the construction of G, every edge in $E(\mathcal{K}_{n_1,\ldots,n_r})$ containing $\{v_{1i}, v_{2j}\}$ is an edge in \mathcal{G} for $1 \leq i \leq k - 1$ and $1 \leq j \leq n_2$. Hence, $\mathcal{G} \cong \mathcal{K}_{k-1,n_2,n_3,\ldots,n_r}$.

We now turn to the proofs of the main results of this paper. Theorem 7 gives the value of anti-Ramsey number of k-matching in complete r-partite r-uniform hypergraphs when k = 2.

Proof of Theorem 7.

(i)
$$n_1 \ge 3$$
.

Suppose to the contrary that \mathcal{H} is a complete *r*-partite *r*-uniform hypergraph colored by more than one color, and containing no rainbow 2-matching. Set $e, f \in E(\mathcal{H})$ such that $c(e) \neq c(f)$. Clearly, $E(\mathcal{H} - e) \cap E(\mathcal{H} - f) \neq \emptyset$ as $n_1 \geq 3$. Choose an edge $g \in E(\mathcal{H} - e) \cap E(\mathcal{H} - f)$, then c(g) = c(e) as \mathcal{H} does not contain a rainbow 2-matching. Similarly, we have c(g) = c(f), then c(e) = c(f), contradicting the fact $c(e) \neq c(f)$. Therefore, $|c(\mathcal{H})| = 1$, i.e., $ar_r(\mathcal{K}_{n_1,\ldots,n_r}, M_2) =$ 1.

(ii) $n_1 = 2$.

By the choice of $t, n_1 = n_2 = \cdots = n_t = 2$. Let $\mathcal{H} \cong \mathcal{K}_{n_1,\dots,n_r}$ be a complete r-partite r-uniform hypergraph. Let $R(\mathcal{H},t) = \{\{v_1, v_2, \dots, v_t\} | v_i \in V_i \text{ and } i \in [t]\}$. For any edge $e = \{v_1, v_2, \dots, v_r\} \in E(\mathcal{H})$, let $R(e,t) = \{v_1, v_2, \dots, v_t\}$. For $\alpha = \{v_1, v_2, \dots, v_t\} \in R(\mathcal{H}, t)$, let $\overline{\alpha} = \{\overline{v}_1, \overline{v}_2, \dots, \overline{v}_t\}$, where \overline{v}_i is the remaining vertex in V_i except v_i . For $\alpha = \{v_1, v_2, \dots, v_t\} \in R(\mathcal{H}, t)$, let $R(\mathcal{H}, t)$, let

$$E_{\{\alpha,\overline{\alpha}\}} = \{e \in E(\mathcal{H}) \mid R(e,t) = \alpha \text{ or } R(e,t) = \overline{\alpha}\}.$$

Then we decompose the edge set of \mathcal{H} into $E(\mathcal{H}) = \bigcup_{\{\alpha,\overline{\alpha}\}\in Q} E_{\{\alpha,\overline{\alpha}\}}$, where $Q = \{\{\alpha,\overline{\alpha}\} | \alpha \in R(\mathcal{H},t)\}$. It is easily checked that $|Q| = 2^{t-1}$ and $E_{\{\alpha,\overline{\alpha}\}} \cap E_{\{\beta,\overline{\beta}\}} = \emptyset$ for any two different elements $\{\alpha,\overline{\alpha}\}, \{\beta,\overline{\beta}\}$ in Q.

We consider the following coloring of \mathcal{H} : For any two edges $e, f \in E(\mathcal{H}), c(e) = c(f)$ if and only if there exists an element $\{\alpha, \overline{\alpha}\} \in Q$ such that $e, f \in E_{\{\alpha, \overline{\alpha}\}}$. By the definition of the coloring of \mathcal{H} , any two independent edges have the same color and $|c(\mathcal{H})| = |Q| = 2^{t-1}$. So \mathcal{H} does not contain a rainbow 2-matching. Therefore, $ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_2) \geq 2^{t-1}$.

Let $\mathcal{H} = \mathcal{K}_{n_1,\dots,n_r}$ be an edge-colored complete *r*-partite *r*-uniform hypergraph without rainbow 2-matchings. To obtain the upper bound, we consider the following cases.

Case 1. t = r.

In this case, $E_{\{\alpha,\overline{\alpha}\}} = \{\alpha,\overline{\alpha}\}$. Then $E(\mathcal{H})$ can be decomposed into 2^{r-1} pairs of independent edges, and each pair of edges must be colored by the same color. Hence $|c(\mathcal{H})| \leq 2^{r-1}$, then $ar_r(\mathcal{K}_{2,\ldots,2}, M_2) \leq 2^{r-1}$, which implies that $ar_r(\mathcal{K}_{2,\ldots,2}, M_2) = 2^{r-1}$.

Case 2. t < r.

Recall that $E(\mathcal{H}) = \bigcup_{\{\alpha,\overline{\alpha}\}\in Q} E_{\{\alpha,\overline{\alpha}\}}$. We have the following claims.

Claim 1. For any $\{\alpha, \overline{\alpha}\} \in Q$, if $e, f \in E_{\{\alpha, \overline{\alpha}\}}$ and R(e, t) = R(f, t), then c(e) = c(f).

Proof. For any $\{\alpha, \overline{\alpha}\} \in Q$, since $n_r \geq \cdots \geq n_{t+1} \geq 3$, there exists an edge $g = \{u_1, u_2, \ldots, u_r\} \in E_{\{\alpha,\overline{\alpha}\}}$, such that $R(g,t) = \overline{R(e,t)}$ and $u_j \in V_j - e \cup f$ for $j = t + 1, \ldots, r$. Then $g \cap e = g \cap f = \emptyset$. Therefore, c(e) = c(g) = c(f). Otherwise, \mathcal{H} contains a rainbow 2-matching. \Box **Claim 2.** For any $\{\alpha,\overline{\alpha}\} \in Q$, if $e, f \in E_{\{\alpha,\overline{\alpha}\}}$ and $R(e,t) = \overline{R(f,t)}$, then c(e) = c(f). **Proof.** Since $n_r \ge \cdots \ge n_{t+1} \ge 3$, there exists an edge $g = \{u_1, u_2, \ldots, u_r\} \in E_{\{\alpha,\overline{\alpha}\}}$ with R(g,t) = R(e,t) and $u_j \in V_j - f$ for $j = t+1, \ldots, r$. It follows from Claim 1 that c(g) = c(e). Note that $g \cap f = \emptyset$, we have c(f) = c(g). Then c(e) = c(f).

Combining these two claims, we conclude that $c(E_{\{\alpha,\overline{\alpha}\}}) = 1$ for any $\{\alpha,\overline{\alpha}\} \in Q$. Therefore, $|c(\mathcal{H})| \leq 2^{t-1}$, which implies that $ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_2) \leq 2^{t-1}$. Thus $ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_2) = 2^{t-1}$. \Box

3 Proof of Theorem 8

In this section we will determine the value of the anti-Ramsey number of k-matchings in complete r-partite r-uniform hypergraphs, and also give the uniqueness of extremal coloring.

We need the following lemma.

Lemma 10. For $n_1 \ge 2k - 1$ and $k \ge 3$,

$$ar_r(\mathcal{K}_{n_1,\dots,n_1}, M_k) = (k-2)n_1^{r-1} + 1,$$

and every $((k-2)n_1^{r-1}+1)$ -edge-coloring except for ϕ_r of $\mathcal{K}_{n_1,\dots,n_1}$ contains a rainbow k-matching.

Proof. We use induction on r. The base case of r = 2 is true for all $n_1 \ge 2k - 1$ by Theorem 2 and Theorem 3. Suppose that the lemma holds for all r' < r. Assume, by way of contradiction, that $\mathcal{H} = \mathcal{K}_{n_1,\dots,n_1}$ is a hypergraph with a $((k-2)n_1^{r-1}+2)$ -edge-coloring and does not contain a rainbow k-matching.

Let
$$V_s = \{v_{s1}, v_{s2}, \dots, v_{sn_1}\}, s = 1, 2, \dots, r$$
. For $1 \le i, j \le n_1$, let

$$E_{i,j} = \{\{v_{1i}, v_{2j}, w_3, \dots, w_r\} \in E(\mathcal{H}) \mid w_s \in V_s \text{ for } 3 \le s \le r\},\$$

and $E_i = E_{i,1} \cup E_{i+1,2} \cup \cdots \cup E_{i+n_1-1,n_1}$, where $E_{i,j} = E_{i-n_1,j}$ if $i > n_1$.

For each E_i , $i = 1, 2, ..., n_1$, we construct a complete (r-1)-partite (r-1)-uniform hypergraph \mathcal{H}_i on vertex classes $V_1, V_3, ..., V_r$ such that $e = \{v_{1l}, w_3, ..., w_r\}$ is an edge of \mathcal{H}_i if and only if $e' = \{v_{1l}, v_{2l'}, w_3, ..., w_r\}$ is an edge of E_i , where $l - l' \equiv i - 1 \pmod{n_1}$, and we color e by c(e'). Therefore, there is a bijection between E_i and $E(\mathcal{H}_i)$ and $c(E_i) = c(\mathcal{H}_i)$. Note that if two edges e_1 and e_2 in \mathcal{H}_i are independent, then the corresponding edges e'_1 and e'_2 in E_i are also independent. Then we have the following fact.

Fact B. Any rainbow matching in \mathcal{H}_i corresponds to a rainbow matching in $E_i \subseteq E(\mathcal{H})$.

Obviously, $E(\mathcal{H}) = \bigcup_{i=1}^{n_1} E_i$. Then

$$\sum_{i=1}^{n_1} |c(\mathcal{H}_i)| = \sum_{i=1}^{n_1} |c(E_i)| \ge |c(\mathcal{H})| = (k-2)n_1^{r-1} + 2.$$

Without loss of generality, we assume that \mathcal{H}_1 has the most colors in $\mathcal{H}_1, \ldots, \mathcal{H}_{n_1}$.

Claim 1. $|c(\mathcal{H}_1)| = (k-2)n_1^{r-2} + 1.$

Proof. First, we have $|c(\mathcal{H}_i)| \leq (k-2)n_1^{r-2} + 1$ for $1 \leq i \leq n_1$. Otherwise, by induction hypothesis, \mathcal{H}_i contains a rainbow k-matching, so does \mathcal{H} by Fact B, a contradiction. If $|c(\mathcal{H}_1)| \leq (k-2)n_1^{r-2}$, then

$$(k-2)n_1^{r-1} + 2 = |c(\mathcal{H})| \le \sum_{i=1}^{n_1} |c(\mathcal{H}_i)| \le n_1(k-2)n_1^{r-2},$$

a contradiction. Hence, $|c(\mathcal{H}_1)| = (k-2)n_1^{r-2} + 1.$

We next show that there exists an integer $2 \le t \le n_1$ such that $|c(\mathcal{H}_t)| = (k-2)n_1^{r-2} + 1$ and $c(\mathcal{H}_1) \cap c(\mathcal{H}_t) = \emptyset$. Otherwise,

$$|c(\mathcal{H})| \le ((k-2)n_1^{r-2} + 1) + (k-2)n_1^{r-2} \cdot (n_1 - 1) < (k-2)n_1^{r-1} + 2,$$

contradicting the assumption of \mathcal{H} . Since \mathcal{H}_1 and \mathcal{H}_t do not contain a rainbow k-matching and with $(k-2)n_1^{r-2} + 1$ colors, by the induction hypothesis, they are both colored by ϕ_{r-1} . Let H_t be the representing hypergraph of \mathcal{H}_t . Then

$$e(H_t) = |c(\mathcal{H}_t)| > (k-2)n_1^{r-2},$$

so H_t contains a (k-1)-matching by Theorem 5. Hence, there is a rainbow (k-1)-matching in \mathcal{H}_t , which corresponds to a rainbow (k-1)-matching, denoted by M_{k-1} , in E_t . The (k-1)matching M_{k-1} meets k-1 vertices in V_1 and k-1 vertices in V_2 , respectively. As $n_1 \geq 2k-1$, there exists an integer s, such that $v_{1s} \in V_1 - V(M_{k-1})$ and $v_{2s} \in V_2 - V(M_{k-1})$. Then we can find an edge $e \in E_{s,s} \subseteq E_1$ such that $e \cap V(M_{k-1}) = \emptyset$. Recall that $c(\mathcal{H}_1) \cap c(\mathcal{H}_t) = \emptyset$, $c(\mathcal{H}_1) = c(E_1)$ and $c(\mathcal{H}_t) = c(E_t)$, then $e \cup M_{k-1}$ is a rainbow k-matching in \mathcal{H} , a contradiction. Hence $ar_r(\mathcal{K}_{n_1,\dots,n_1}, M_k) \leq (k-2)n_1^{r-1} + 1$. Combining this with Proposition 4 and Theorem 5, we have $ar_r(\mathcal{K}_{n_1,\dots,n_1}, M_k) = (k-2)n_1^{r-1} + 1$.

Now we prove the uniqueness of the extremal coloring. Suppose that $|c(\mathcal{H})| = (k-2)n_1^{r-1} + 1$ and \mathcal{H} does not contain a rainbow k-matching. Let H be the representing hypergraph of \mathcal{H} . Then $e(H) = (k-2)n_1^{r-1} + 1$. As the discussion above, we construct $E_i \subseteq E(\mathcal{H})$ and a complete (r-1)-partite (r-1)-uniform hypergraph \mathcal{H}_i on vertex classes V_1, V_3, \ldots, V_r for $i = 1, 2, \ldots, n_1$. Without loss of generality, assume that \mathcal{H}_1 has the most colors in $\mathcal{H}_1, \ldots, \mathcal{H}_{n_1}$. Then $|c(\mathcal{H}_1)| = (k-2)n_1^{r-2} + 1$.

Notice that \mathcal{H}_1 does not contain a rainbow k-matching and $|c(\mathcal{H}_1)| = (k-2)n_1^{r-2} + 1$. By the induction hypothesis, \mathcal{H}_1 is colored by configuration ϕ_{r-1} . Without loss of generality, we assume that in \mathcal{H}_1 , $E^* = \{\{v_{1i}, w_3, \ldots, w_r\} \in E(\mathcal{H}_1) \mid k-1 \leq i \leq n_1 \text{ and } w_s \in V_s \text{ for } 3 \leq s \leq r\}$ are colored by one color and all the remaining edges of \mathcal{H}_1 colored by distinct colors. Then, in \mathcal{H} , $c(E_{k-1,k-1}) = \cdots = c(E_{n_1,n_1}) = c(E^*)$, and the colors of the edges in $E_{1,1} \cup \cdots \cup E_{k-2,k-2}$ are different from each other. Let \mathcal{H}_0 be the rainbow subhypergraph of \mathcal{H} obtained by taking one edge of each color of $c(\mathcal{H})$ except $c(E^*)$ and such that $E_{1,1} \cup \cdots \cup E_{k-2,k-2}$ are contained in \mathcal{H}_0 . Then $|E(\mathcal{H}_0)| = (k-2)n_1^{r-1}$. We have the following claim.

Claim 2. $\mathcal{H}_0 \cong \mathcal{K}_{k-2,n_1,\dots,n_1}$.

Proof. If $\mathcal{H}_0 \ncong \mathcal{K}_{k-2,n_1,\dots,n_1}$, then there exists a (k-1)-matching, denoted by M'_{k-1} , in \mathcal{H}_0 by Theorem 6. Notice that M'_{k-1} meets at most 2(k-1) vertices in $V_1 \cup V_2$ and $n_1 \ge 2k-1$, we can find an edge e'_k in E_1 , such that $V(M'_{k-1}) \cap e'_k = \emptyset$. If $e'_k \in E_1 \setminus (E_{1,1} \cup \dots \cup E_{k-2,k-2})$, then $c(M'_{k-1}) \cap c(e'_k) = \emptyset$. If $e'_k \in E_{1,1} \cup \dots \cup E_{k-2,k-2}$, then $e'_k \in E(\mathcal{H}_0)$. We also have $c(M'_{k-1}) \cap c(e'_k) = \emptyset$ as \mathcal{H}_0 is a rainbow subhypergraph of \mathcal{H} . Then $e'_k \cup M'_{k-1}$ is a rainbow k-matching in \mathcal{H} , a contradiction.

By Claim 2, there is a rainbow subhypergraph $\mathcal{H}_0 \cong \mathcal{K}_{k-2,n_2,\dots,n_r}$ of \mathcal{H} . Combining the fact that all the edges in $E(\mathcal{H}) \setminus E(\mathcal{H}_0)$ are colored by $c(E^*)$, we deduce that \mathcal{H} is colored by configuration ϕ_r .

We now prove Theorem 8.

Proof of Theorem 8. We first prove that $ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_k) = (k-2)n_2 \cdots n_r + 1$ for $n_1 \ge 2k-1$ and $k \ge 3$. Since ϕ_r is an edge coloring of $\mathcal{K}_{n_1,\dots,n_r}$ such that there is no rainbow k-matching in $\mathcal{K}_{n_1,\dots,n_r}$, $ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_k) \ge (k-2)n_2 \cdots n_r + 1$.

The upper bound is proven by induction on the number of vertices of $\mathcal{K}_{n_1,\ldots,n_r}$. The base case of $n_1 = n_r$ is true by Lemma 10, we now suppose that $n_1 < n_r$. Assume the assertion holds for all n'_1, \ldots, n'_r such that $\sum_{i=1}^r n'_i < \sum_{i=1}^r n_i$. Suppose that $\mathcal{H} = \mathcal{K}_{n_1,\ldots,n_r}$ is a hypergraph with a $((k-2)n_2\cdots n_r+2)$ -edge-coloring, and containing no rainbow k-matchings. Let H be the representing hypergraph of \mathcal{H} . Then $e(H) = (k-2)n_2\cdots n_r+2$. For any vertex $v \in V_r$, H-vis a subhypergraph of some representing hypergraph of $\mathcal{H} - v$. Since $\mathcal{H} - v$ contains no rainbow k-matchings, by the induction hypothesis, we have

$$e(H-v) \le |c(H-v)| \le (k-2)n_2 \cdots n_{r-1}(n_r-1) + 1.$$

Then $d_H(v) = e(H) - e(H - v) \ge (k - 2)n_2 \cdots n_{r-1} + 1$. Thus,

$$e(H) = \sum_{v \in V_r} d_H(v) \ge n_r \cdot ((k-2)n_2 \cdots n_{r-1} + 1)$$

= $(k-2)n_2 \cdots n_r + n_r > (k-2)n_2 \cdots n_r + 2,$

which is a contradiction. Therefore, $ar_r(\mathcal{K}_{n_1,\dots,n_r}, M_k) = (k-2)n_2\cdots n_r + 1$.

Next we prove the uniqueness of the extremal coloring. Suppose that $|c(\mathcal{H})| = (k-2)n_2 \cdots n_r + 1$ 1 and \mathcal{H} does not contain a rainbow k-matching. Then $e(H) = (k-2)n_2 \cdots n_r + 1$. We have the following claim.

Claim 1. There exists a vertex $v^* \in V_r$ with $d_H(v^*) = (k-2)n_2 \cdots n_{r-1} + 1$, and $d_H(v) = (k-2)n_2 \cdots n_{r-1}$ for $v \in V_r \setminus \{v^*\}$.

Proof. For any vertex $v \in V_r$, H - v is a subhypergraph of some representing hypergraph of $\mathcal{H} - v$. If $d_H(v) \leq (k-2)n_2 \cdots n_{r-1} - 1$, then

$$|c(\mathcal{H}-v)| \ge e(H-v) \ge (k-2)n_2 \cdots n_{r-1}(n_r-1) + 2 = ar_r(\mathcal{K}_{n_1,\dots,n_{r-1},n_r-1},M_k) + 1.$$

By the induction hypothesis, $\mathcal{H} - v$ contains a rainbow k-matching, a contradiction. Thus, $d_H(v) \ge (k-2)n_2 \cdots n_{r-1}$ for all $v \in V_r$. Note that

$$e(H) = \sum_{v \in V_r} d_H(v) = n_r \cdot (k-2)n_2 \cdots n_{r-1} + 1.$$

Therefore, there is exactly one vertex, say v^* , with degree $(k-2)n_2 \cdots n_{r-1} + 1$, and the remaining vertices in V_r with degree $(k-2)n_2 \cdots n_{r-1}$.

For $v \in V_r \setminus \{v^*\}$, we have

$$e(H - v) = e(H) - d_H(v) = (k - 2)n_2 \cdots n_{r-1}(n_r - 1) + 1.$$

Clearly, H - v is a subhypergraph of some representing hypergraph of $\mathcal{H} - v$. Thus,

$$|c(\mathcal{H} - v)| \ge e(H - v) = (k - 2)n_2 \cdots n_{r-1}(n_r - 1) + 1.$$

By the induction hypothesis, $|c(\mathcal{H} - v)| \leq (k - 2)n_2 \cdots n_{r-1}(n_r - 1) + 1$. Hence, we deduce that $|c(\mathcal{H} - v)| = (k - 2)n_2 \cdots n_{r-1}(n_r - 1) + 1$. By the induction hypothesis, $\mathcal{H} - v$ is colored by ϕ_r since $\mathcal{H} - v$ contains no rainbow k-matchings. Due to the arbitrariness of v, for any two vertices $v_1, v_2 \in V_r \setminus \{v^*\}$, $\mathcal{H} - v_1$ and $\mathcal{H} - v_2$ are colored by ϕ_r . Assume S_1 and S_2 are the (k-2)-subsets of V_1 such that the colors of the edges intersecting S_1 and S_2 are all different in $\mathcal{H} - v_1$ and $\mathcal{H} - v_2$, and edges not intersecting S_1 and S_2 are colored with a new color in $\mathcal{H} - v_1$ and $\mathcal{H} - v_2$, respectively. Then $S_1 = S_2$. So all edges intersecting S_1 are colored with different colors in \mathcal{H} and edges not intersecting S_1 are colored with a new color in \mathcal{H} . So \mathcal{H} is colored by ϕ_r . This completes the proof.

References

- N. Alon. On a conjecture of Erdős, Simonovits, and Sós concerning anti-Ramsey theorems. J. Graph Theory. 7(1):91–94, 1983.
- [2] H. Chen, X. Li, and J. Tu. Complete solution for the rainbow numbers of matchings. Discrete Math. 309(10):3370–3380, 2009.
- [3] P. Erdős, M. Simonovits, and V. T. Sós. Anti-Ramsey theorems. in: A. Hajnal, R. Rado, V.T. Sós (Eds.), Infinite and Finite Sets, Vol. II, in: Colloq. Math. Soc. János Bolvai, vol.10, 1975, pp. 633–643.
- [4] P. Frankl and A. Kupavskii. Two problems on matchings in set families In the footsteps of Erdős and Kleitman. J. Combin. Theory Ser. B 138:286–313, 2019.
- [5] S. Fujita, A. Kaneko, I. Schiermeyer, and K. Suzuki. A rainbow k-matching in the complete graph with r colors. Electron. J. Combin. 16(1), 2009.
- [6] R. Gu, J. Li, and Y. Shi. Anti-Ramsey numbers of paths and cycles in hypergraphs. SIAM J. Discrete Math. 34(1):271–307, 2020.
- [7] Z. Jin. Anti-Ramsey number of matchings in a hypergraph, Discrete Math. 344:112594, 2021.
- [8] Z. Jin and Y. Zang. Anti-Ramsey coloring for matchings in complete bipartite graphs. J. Comb. Optim. 33(1):1–12, 2017.
- [9] X. Li, J. Tu, and Z. Jin. Bipartite rainbow numbers of matchings. Discrete Math. 309(8):2575–2578, 2009.
- [10] X. Li and Z. Xu. The rainbow number of matchings in regular bipartite graphs. Appl. Math. Lett. 22(10):1525–1528, 2009.
- [11] E. Liu and J. Wang. Turán problems for vertex-disjoint cliques in multi-partite hypergraphs. Discrete Math. 343(10):112005, 2020.
- [12] J. J. Montellano-Ballesteros and V. Neumann-Lara. An anti-Ramsey theorem on cycles. Graphs and Combin. 21(3):343–354, 2005.

- [13] L. Özkahya and M. Young. Anti-Ramsey number of matchings in hypergraphs. Discrete Mathd. 313(20):2359–2364, 2013.
- [14] I. Schiermeyer. Rainbow numbers for matchings and complete graphs. Discrete Math. 286(1-2):157–162, 2004.