Acyclic matchings in graphs of bounded maximum degree*

Julien Baste Maximilian Fürst Dieter Rautenbach

Institute of Optimization and Operations Research, Ulm University, Germany julien.baste,maximilian.fuerst,dieter.rautenbach@uni-ulm.de

Abstract

A matching M in a graph G is acyclic if the subgraph of G induced by the set of vertices that are incident to an edge in M is a forest. We prove that every graph with n vertices, maximum degree at most Δ , and no isolated vertex, has an acyclic matching of size at least $(1 - o(1))\frac{6n}{\Delta^2}$, and we explain how to find such an acyclic matching in polynomial time.

Keywords: Acyclic Matching AMS subject classification: 05C70

^{*}Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 388217545.

1 Introduction

We consider simple, finite, and undirected graphs, and use standard terminology. Let M be a matching in a graph G, and let H be the subgraph of G induced by the set of vertices that are incident to an edge in M. If H is a forest, then M is an *acyclic* matching in G [7], and, if H is 1-regular, then M is an *induced* matching in G [14]. If $\nu(G)$, $\nu_{ac}(G)$, and $\nu_s(G)$ denote the largest size of a matching, an acyclic matching, and an induced matching in G, respectively, then, since every induced matching is acyclic, we have

$$\nu(G) \ge \nu_{ac}(G) \ge \nu_s(G)$$

In contrast to the matching number $\nu(G)$, which is a well known classical tractable graph parameter, both, the acyclic matching number $\nu_{ac}(G)$ as well as the induced matching number $\nu_s(G)$ are computationally hard [3, 7, 13, 14]. While induced matchings have been studied in great detail, see, in particular, [8–11] for lower bounds on $\nu_s(G)$ for graphs G of bounded maximum degree as well as the references therein, only few results are known on the acyclic matching number. While the equality $\nu(G) = \nu_s(G)$ can be decided efficiently for a given graph G [2, 12], it is NP-complete to decide whether $\nu(G) = \nu_{ac}(G)$ for a given bipartite graph G of maximum degree at most 4 [6], and efficient algorithms computing the acyclic matching number are known only for certain graph classes [1,4,6,13]. It is known [1] that $\nu_{ac}(G) \geq \frac{m}{\Delta^2}$ for a graph G with m edges and maximum degree Δ , which was improved [5] to $\frac{m}{6}$ for connected subcubic graphs G of order at least 7. Since, for every Δ -regular graph G with m edges, a simple edge counting argument implies $\nu_{ac}(G) \leq \frac{m-1}{2(\Delta-1)}$, the constructive proofs of these bounds yield an efficient $\frac{\Delta^2}{2(\Delta-1)}$ -factor approximation algorithm for Δ -regular graphs, and an efficient $\frac{3}{2}$ -factor approximation algorithm for cubic graphs for the maximum acyclic matching problem.

In the present paper we show a lower bound on the acyclic matching number of a graph G with n vertices, maximum degree Δ , and no isolated vertex, which is inspired by a result of Joos [9] who proved

$$\nu_s(G) \ge \frac{n}{\left(\lfloor \frac{\Delta}{2} \rfloor + 1\right) \left(\lceil \frac{\Delta}{2} \rceil + 1\right)} \tag{1}$$

provided that $\Delta \geq 1000$. (1) is tight for the graph that arises by attaching $\lfloor \frac{\Delta}{2} \rfloor$ new vertices of degree 1 to every vertex of a complete graph of order $\lceil \frac{\Delta}{2} \rceil + 1$. In view of these graphs, we conjectured [4,5] that twice the right hand side of (1) should be the right lower bound on the acyclic matching number of the considered graphs for sufficiently large Δ , that is, we believe that our following main result can be improved by a factor of roughly $\frac{4}{3}$.

Theorem 1. If G is a graph with n vertices, maximum degree at most Δ , and no isolated vertex, then

$$\nu_{ac}(G) \ge \frac{6n}{\Delta^2 + 12\Delta^{\frac{3}{2}}}.$$

Note that, for graphs that are close to Δ -regular, the bound $\nu_{ac}(G) \geq \frac{m}{\Delta^2}$ is stronger than Theorem 1. We prove Theorem 1 in the next section. In the conclusion we discuss algorithmic aspects of its proof and possible generalizations to so-called degenerate matchings [1].

2 Proof of Theorem 1

We prove the theorem by contradiction. Therefore, suppose that G is a counterexample of minimum order. Clearly, G is connected. If $\Delta = 1$, then G is K_2 , and, hence, $\nu_{ac}(G) = \frac{n}{2}$. If $\Delta = 2$, then G is a path or a cycle, which implies $\nu_{ac}(G) \ge \frac{n-2}{2}$. These observations imply $\Delta \ge 3$. At several points within the proof we consider an acyclic matching M in G, and we consistently use

- V_M to denote the set of vertices of G that are incident to an edge in M,
- N_M to denote the set of vertices in $V(G) \setminus V_M$ that have a neighbor in V_M ,
- G_M to denote the graph $G (V_M \cup N_M)$,
- I_M to denote the set of isolated vertices of G_M , and
- G'_M to denote the graph $G_M I_M$.

Since G'_M is no counterexample, and the union of M with any acyclic matching in G'_M is an acyclic matching in G, we obtain

$$\frac{6n}{\Delta^2 + 12\Delta^{\frac{3}{2}}} > \nu_{ac}(G) \ge |M| + \frac{6(n - |V_M \cup N_M \cup I_M|)}{\Delta^2 + 12\Delta^{\frac{3}{2}}},$$

which implies

$$|V_M| + |N_M| + |I_M| > \left(\frac{\Delta^2}{6} + 2\Delta^{\frac{3}{2}}\right)|M|.$$
(2)

Claim 1. For every edge uv in G, we have $d_G(u) + d_G(v) > 2\sqrt{\Delta}$.

Proof. Suppose, for a contradiction, that $d_G(u) + d_G(v) \le 2\sqrt{\Delta}$ for some edge uv of G. For $M = \{uv\}$, we obtain $|V_M| + |N_M| + |I_M| \le 2 + (2\sqrt{\Delta} - 2) + (2\sqrt{\Delta} - 2) (\Delta - 1) \le 2\Delta^{\frac{3}{2}}$, contradicting (2). \Box

Let S be the set of vertices of degree at most $\sqrt{\Delta}$. By Claim 1, the set S is independent.

Claim 2. S is not empty.

Proof. Suppose, for a contradiction, that the minimum degree δ of G is larger than $\sqrt{\Delta}$. Let uv be an edge of G such that u is of minimum degree. Let $M = \{uv\}$. Since every vertex in I_M has degree at least δ , we have

$$|V_M| + |N_M| + |I_M| \le 2 + (\Delta + \delta - 2) + \frac{(\Delta + \delta - 2)(\Delta - 1)}{\delta} \le \frac{(\Delta + \delta)^2}{\delta}.$$

If $\Delta = 3$, then δ is 2 or 3, and in both cases $2 + (\Delta + \delta - 2) + \frac{(\Delta + \delta - 2)(\Delta - 1)}{\delta}$ is less than the right hand side of (2), contradicting (2). For $\Delta \ge 4$, we obtain that $\frac{(\Delta + \delta)^2}{\delta} \le \frac{(\Delta + \sqrt{\Delta})^2}{\sqrt{\Delta}}$ is less than the right hand side of (2). Hence, also in this case, we obtain a contradiction (2).

Let N be the set of vertices that have a neighbor in S, and, for a vertex v in G, let $d_S(v)$ be the number of neighbors of v in S. Since S is independent, the sets S and N are disjoint.

Claim 3. $\max\{d_S(v) : v \in V(G)\} = \alpha \Delta$ for some α with $0.2 \le \alpha \le 0.8$.

In other words, we have $d_S(v) \leq 0.8\Delta$ for every vertex v of G, and $d_S(v) \geq 0.2\Delta$ for some vertex v of G.

Proof. Let the vertex v maximize $d_S(v)$. Suppose, for a contradiction, that $d_S(v) = \alpha \Delta$ for some α with either $\alpha < 0.2$ or $\alpha > 0.8$. Let u be a neighbor of v of minimum degree. By Claim 2, we have $d_S(v) \ge 1$, which implies $d_G(u) \le \sqrt{\Delta}$. Let $M = \{uv\}$. Clearly,

$$|V_M| + |N_M| \le \sqrt{\Delta} + \Delta.$$

Let I_1 be the set of vertices in I_M that have a neighbor in $N_G(u) \cup (N_G(v) \cap S)$, let $I_2 = (I_M \setminus I_1) \cap S$, and let $I_3 = I_M \setminus (I_1 \cup I_2)$.

We obtain

$$|I_1| \leq (\Delta - 1)(d_G(u) - 1) + (\sqrt{\Delta} - 1) |N_G(v) \cap S|$$

$$\leq (\Delta - 1) (\sqrt{\Delta} - 1) + (\sqrt{\Delta} - 1) \alpha \Delta$$

$$\leq (1 + \alpha) \Delta^{\frac{3}{2}} - (\sqrt{\Delta} + \Delta).$$

Let $N' = N_G(v) \setminus (N_G(u) \cup S)$. Note that $|N'| \leq (1 - \alpha)\Delta$, and that the vertices in $I_2 \cup I_3$ have all their neighbors in N'. By the choice of v, every vertex in N' has at most $\alpha\Delta$ neighbors in S, which implies

$$|I_2| \le \alpha \Delta |N'| \le \alpha (1-\alpha) \Delta^2.$$

Since there are at most $\Delta |N'|$ edges between N' and I_3 , and every vertex in I_3 has degree more than $\sqrt{\Delta}$, we obtain

$$|I_3| < \frac{\Delta |N'|}{\sqrt{\Delta}} \le (1-\alpha)\Delta^{\frac{3}{2}}.$$

Altogether, we obtain

$$\begin{aligned} |V_M| + |N_M| + |I_M| &\leq \sqrt{\Delta} + \Delta + (1+\alpha)\Delta^{\frac{3}{2}} - \left(\sqrt{\Delta} + \Delta\right) + \alpha(1-\alpha)\Delta^2 + (1-\alpha)\Delta^{\frac{3}{2}} \\ &= \alpha(1-\alpha)\Delta^2 + 2\Delta^{\frac{3}{2}} \\ &\leq 0.16\Delta^2 + 2\Delta^{\frac{3}{2}}, \end{aligned}$$

contradicting (2).

Note that, so far in the proof of each claim, we had |M| = 1, and iteratively applying the corresponding reductions would eventually lead to an induced matching in G similarly as in [9]. In order to improve (1), we now choose M non-locally in some sense: Let M be an acyclic matching in G such that

- (i) M only contains edges incident to a vertex in S,
- (ii) every vertex in $V_M \cap S$ has degree one in the subgraph of G induced by V_M ,
- (iii) every vertex v in $V_M \cap N$ satisfies $d_S(v) \ge 0.2\Delta$, and

M maximizes

$$\sum_{v \in V_M \cap N} d_S(v). \tag{3}$$

among all acyclic matchings satisfying (i), (ii), and (iii). By Claim 3, the matching M is non-empty.

We now define certain relevant sets, see Figure 1 for an illustration.

• Let X be the set of vertices in N_M that are not adjacent to a vertex in $V_M \cap S$ and that have at least one neighbor in S that is not adjacent to a vertex in V_M .

(Note that $X \subseteq N$, and that the edges between vertices in X and suitable neighbors in S are possible candidates for modifying M.)

- Let Y be the set of vertices in $N_M \setminus X$ that are not adjacent to a vertex in $V_M \cap S$. (Note that Y contains $N_M \setminus N = (N_M \cap S) \cup (N_M \setminus (S \cup N))$.)
- Let $Z = (N \cap N_M) \setminus (X \cup Y)$.

(Note that Z consists of the vertices in N_M that have a neighbor in $V_M \cap S$.)

- Let I₁ be the set of vertices in I_M ∩ S that have a neighbor in N_M \ X.
 (Note that, by the definition of X, no vertex in I₁ can have a neighbor in Y ∩ N, which implies that every vertex in I₁ has a neighbor in Z.)
- Let I_2 be the set of vertices in $I_M \setminus S$ that have a neighbor in Z.
- Let I₃ be the set of vertices in I_M ∩ S that only have neighbors in X.
 (Note that I₁ ∪ I₃ = I_M ∩ S.)
- Finally, let $I_4 = I_M \setminus (I_1 \cup I_2 \cup I_3)$.

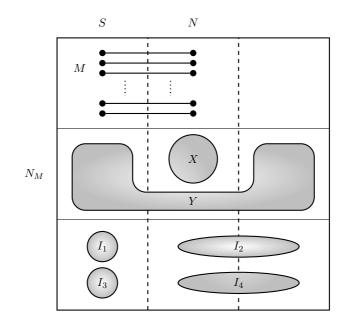


Figure 1: An illustration of the different relevant sets.

Clearly,

$$|V_M| + |N_M| \leq \left(\sqrt{\Delta} + \Delta\right) |M|. \tag{4}$$

Since every vertex in $I_1 \cup I_2$ has a neighbor in Z, and every vertex in Z has a neighbor in $V_M \cap S$, we have

$$|I_1 \cup I_2| \le (\Delta - 1)|Z| \le (\Delta - 1)\left(\sqrt{\Delta} - 1\right)|M| = \left(\Delta^{\frac{3}{2}} - \Delta - \sqrt{\Delta} + 1\right)|M|.$$

$$\tag{5}$$

Since every vertex in I_4 has degree more than $\sqrt{\Delta}$ and has all its neighbors in $X \cup Y$, and every vertex in $X \cup Y$ has a neighbor in $V_M \cap N$, we have

$$|I_4| \le \frac{(\Delta-1)|X \cup Y|}{\sqrt{\Delta}} \le \frac{(\Delta-1)^2|M|}{\sqrt{\Delta}} = \left(\Delta^{\frac{3}{2}} - 2\sqrt{\Delta} + \frac{1}{\sqrt{\Delta}}\right)|M|.$$
(6)

Combining (4), (5), and (6), we obtain

$$|V_M| + |N_M| + |I_M| - |I_3| \le 2\Delta^{\frac{3}{2}}.$$
(7)

In order to estimate $|I_3|$, we partition the set X as follows:

- Let X_1 be the set of vertices v in X with $d_S(v) < 0.2\Delta$,
- let X_2 be the set of vertices in $X \setminus X_1$ with at least four neighbors in V_M , and
- let $X_3 = X \setminus (X_1 \cup X_2)$.

For a vertex v in $V_M \cap N$, let $d_3(v)$ be the number of neighbors of v in X_3 .

Claim 4.
$$|I_3| \le 0.2\Delta |X_1| + 0.8\Delta |X_2| + \frac{2}{3} \sum_{v \in V_M \cap N} d_S(v) d_3(v).$$

Proof. By Claim 3, we obtain that

$$|I_3| \le \sum_{w \in X} d_S(w) = \sum_{w \in X_1 \cup X_2 \cup X_3} d_S(w) \le 0.2\Delta |X_1| + 0.8\Delta |X_2| + \sum_{w \in X_3} d_S(w).$$

Let w be a vertex in X_3 . By the definition of X, the vertex w has a neighbor u in S that is not adjacent to a vertex in V_M . If w has only one neighbor in V_M , then $M \cup \{wu\}$ is an acyclic matching satisfying (i), (ii), and (iii) that has a larger value in (3), contradicting the choice of M. Hence, we may assume that w has either k = 2 or k = 3 neighbors v_1, \ldots, v_k in V_M . Let u_1v_1, \ldots, u_kv_k be edges in M, and suppose that $d_S(v_1) \leq \ldots \leq d_S(v_k)$. Since

$$M' = (M \cup \{wu\}) \setminus \{u_1v_1, \dots, u_{k-1}v_{k-1}\}$$

is an acyclic matching satisfying (i), (ii), and (iii), the choice of M implies that the value of M' in (3) is at most the one of M, which implies

$$d_S(w) \le \sum_{i=1}^{k-1} d_S(v_i) \le \frac{k-1}{k} \sum_{i=1}^k d_S(v_i) \le \frac{2}{3} \sum_{i=1}^k d_S(v_i).$$

Now, we obtain

$$\sum_{w \in X_3} d_S(w) \le \frac{2}{3} \sum_{w \in X_3} \sum_{v \in V_M \cap N \cap N_G(w)} d_S(v) = \frac{2}{3} \sum_{v \in V_M \cap N} d_3(v) d_S(v),$$

which completes the proof.

For a vertex v in $V_M \cap N$, let $d_1(v)$ be the number of neighbors of v in $X_1 \cup X_2$. By property (iii), we have $d_S(v) \ge 0.2\Delta$, which implies that $d_1(v) \le 0.8\Delta$. Using Claim 4, $xy \le \frac{(x+y)^2}{4}$ for $x, y \ge 0$, and

 $d_S(v) + d_1(v) + d_3(v) \le \Delta$ and $d_1(v)^2 \le 0.8\Delta d_1(v)$ for $v \in V_M \cap N$, we obtain

$$\begin{split} |I_3| &\leq 0.2\Delta |X_1| + 0.8\Delta |X_2| + \frac{2}{3} \sum_{v \in V_M \cap N} d_S(v) d_3(v) \\ &\leq 0.2\Delta (|X_1| + 4|X_2|) + \frac{1}{6} \sum_{v \in V_M \cap N} (d_S(v) + d_3(v))^2 \\ &\leq 0.2\Delta \sum_{v \in V_M \cap N} d_1(v) + \frac{1}{6} \sum_{v \in V_M \cap N} (\Delta - d_1(v))^2 \\ &= \frac{\Delta^2}{6} |M| + \Delta \left(\frac{1}{5} - \frac{1}{3}\right) \sum_{v \in V_M \cap N} d_1(v) + \frac{1}{6} \sum_{v \in V_M \cap N} d_1(v)^2 \\ &\leq \frac{\Delta^2}{6} |M| + \Delta \left(\frac{2}{15} - \frac{2}{15}\right) \sum_{v \in V_M \cap N} d_1(v) \\ &= \frac{\Delta^2}{6} |M|, \end{split}$$

and together with (7), we obtain a final contradiction to (2) completing the proof. \Box

3 Conclusion

While the choice of M after Claim 3 in the proof is non-constructive, the proof of Theorem 1 easily yields an efficient algorithm that returns an acyclic matching in a given input graph G as considered in Theorem 1 with size at least $\frac{6n}{\Delta^2 + 12\Delta^2}$. If the statements of Claims 1, 2, or 3 fail, then their proofs contain simple reduction rules, each fixing one edge in the final acyclic matching and producing a strictly smaller instance G'_M . Adding that fixed edge to the output on the instance G'_M yields the desired acyclic matching. The matching M chosen after Claim 3 can be initialized as any acyclic matching satisfying (i), (ii), and (iii). If Claim 4 fails, then its proof contains simple update procedures that increase the value in (3). Since this value is integral and polynomially bounded, after polynomially many updates the statement of Claim 4 holds, and adding M to the output on the instance G'_M yields the desired acyclic matching.

The acyclic matchings M produced by the proof of Theorem 1 actually have a special structure because the subgraph H of G induced by the set of vertices that are incident to an edge in M is not just any forest but a so-called *corona* of a forest, that is, every vertex v of H of degree at least 2 in Hhas a unique neighbor u of degree 1 in H, and all the edges uv form M.

As a generalization of acyclic matchings, [1] introduced the notion of a k-degenerate matching as a matching M in a graph G such that the subgraph H of G defined as above is k-degenerate. If the k-degenerate matching number $\nu_k(G)$ of G denotes the largest size of a k-degenerate matching in G, then $\nu_1(G)$ coincides with the acyclic matching number. We conjecture that

$$\nu_k(G) \ge \frac{(k+1)n}{\left(\lfloor \frac{\Delta}{2} \rfloor + 1\right) \left(\lceil \frac{\Delta}{2} \rceil + 1\right)}$$

for every graph G with n vertices, sufficiently large maximum degree Δ , and no isolated vertex. A

straightforward adaptation of the proof of Theorem 1 yields

$$\frac{\nu_k(G)}{n} \ge \begin{cases} (1-o(1))\frac{4(k+3)}{3\Delta^2} & \text{for } k \in \{2,3,4,5,6\} \text{ and} \\ (1-o(1))\frac{k+4}{\Delta^2} & \text{for } k \ge 7. \end{cases}$$

for these graphs G.

References

- [1] J. Baste and D. Rautenbach, Degenerate matchings and edge colorings, Discrete Applied Mathematics 239 (2018) 38-44.
- [2] K. Cameron and T. Walker, The graphs with maximum induced matching and maximum matching the same size, Discrete Mathematics 299 (2005) 49-55.
- [3] K.K. Dabrowski, M. Demange, and V.V. Lozin, New results on maximum induced matchings in bipartite graphs and beyond, Theoretical Computer Science 478 (2013) 33-40.
- [4] M. Fürst, Restricted matchings, PhD thesis, Ulm University, 2019.
- [5] M. Fürst and D. Rautenbach, A lower bound on the acyclic matching number of subcubic graphs, Discrete Mathematics 341 (2018) 2353-2358.
- [6] M. Fürst and D. Rautenbach, On some hard and some tractable cases of the maximum acyclic matching problem, to appear in Annals of Operations Research.
- [7] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar, Generalized subgraph-restricted matchings in graphs, Discrete Mathematics 293 (2005) 129-138.
- [8] M.A. Henning and D. Rautenbach, Induced matchings in subcubic graphs without short cycles, Discrete Mathematics 315 (2014) 165-172.
- [9] F. Joos, Induced matchings in graphs of bounded maximum degree, SIAM Journal on Discrete Mathematics 30 (2016) 1876-1882.
- [10] F. Joos, Induced matchings in graphs of degree at most 4, SIAM Journal on Discrete Mathematics 30 (2016) 154-165.
- [11] F. Joos, D. Rautenbach, and T. Sasse, Induced matchings in subcubic graphs, SIAM Journal on Discrete Mathematics 28 (2014) 468-473.
- [12] D. Kobler and U. Rotics, Finding Maximum induced matchings in subclasses of claw-free and P₅-free graphs, and in graphs with matching and induced matching of equal maximum size, Algorithmica 37 (2003) 327-346.
- [13] B.S. Panda and D. Pradhan, Acyclic matchings in subclasses of bipartite graphs, Discrete Mathematics, Algorithms and Applications 4 (2012) 1250050 (15 pages).
- [14] L.J. Stockmeyer and V.V. Vazirani, NP-completeness of some generalizations of the maximum matching problem, Information Processing Letters 15 (1982) 14-19.