Acyclic matchings in graphs of bounded maximum degree*

Julien Baste Maximilian Fürst Dieter Rautenbach
Institute of Optimization and Operations Research, Ulm University, Germany julien.baste,maximilian.fuerst, dieter.rautenbach@uni-ulm.de

Abstract

A matching M in a graph G is acyclic if the subgraph of G induced by the set of vertices that are incident to an edge in M is a forest. We prove that every graph with n vertices, maximum degree at most Δ, and no isolated vertex, has an acyclic matching of size at least $(1-o(1)) \frac{6 n}{\Delta^{2}}$, and we explain how to find such an acyclic matching in polynomial time.

Keywords: Acyclic Matching
AMS subject classification: 05C70

[^0]
1 Introduction

We consider simple, finite, and undirected graphs, and use standard terminology. Let M be a matching in a graph G, and let H be the subgraph of G induced by the set of vertices that are incident to an edge in M. If H is a forest, then M is an acyclic matching in G [7, and, if H is 1-regular, then M is an induced matching in G [14]. If $\nu(G), \nu_{a c}(G)$, and $\nu_{s}(G)$ denote the largest size of a matching, an acyclic matching, and an induced matching in G, respectively, then, since every induced matching is acyclic, we have

$$
\nu(G) \geq \nu_{a c}(G) \geq \nu_{s}(G) .
$$

In contrast to the matching number $\nu(G)$, which is a well known classical tractable graph parameter, both, the acyclic matching number $\nu_{a c}(G)$ as well as the induced matching number $\nu_{s}(G)$ are computationally hard [3, 7, 13, 14]. While induced matchings have been studied in great detail, see, in particular, [8-11] for lower bounds on $\nu_{s}(G)$ for graphs G of bounded maximum degree as well as the references therein, only few results are known on the acyclic matching number. While the equality $\nu(G)=\nu_{s}(G)$ can be decided efficiently for a given graph G [2,12], it is NP-complete to decide whether $\nu(G)=\nu_{a c}(G)$ for a given bipartite graph G of maximum degree at most 4 [6], and efficient algorithms computing the acyclic matching number are known only for certain graph classes [1,4,6, 13 . It is known [1] that $\nu_{a c}(G) \geq \frac{m}{\Delta^{2}}$ for a graph G with m edges and maximum degree Δ, which was improved [5] to $\frac{m}{6}$ for connected subcubic graphs G of order at least 7. Since, for every Δ-regular graph G with m edges, a simple edge counting argument implies $\nu_{a c}(G) \leq \frac{m-1}{2(\Delta-1)}$, the constructive proofs of these bounds yield an efficient $\frac{\Delta^{2}}{2(\Delta-1)}$-factor approximation algorithm for Δ-regular graphs, and an efficient $\frac{3}{2}$-factor approximation algorithm for cubic graphs for the maximum acyclic matching problem.

In the present paper we show a lower bound on the acyclic matching number of a graph G with n vertices, maximum degree Δ, and no isolated vertex, which is inspired by a result of Joos [9 who proved

$$
\begin{equation*}
\nu_{s}(G) \geq \frac{n}{\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)} \tag{1}
\end{equation*}
$$

provided that $\Delta \geq 1000$. (11) is tight for the graph that arises by attaching $\left\lfloor\frac{\Delta}{2}\right\rfloor$ new vertices of degree 1 to every vertex of a complete graph of order $\left\lceil\frac{\Delta}{2}\right\rceil+1$. In view of these graphs, we conjectured [4, 5] that twice the right hand side of (11) should be the right lower bound on the acyclic matching number of the considered graphs for sufficiently large Δ, that is, we believe that our following main result can be improved by a factor of roughly $\frac{4}{3}$.

Theorem 1. If G is a graph with n vertices, maximum degree at most Δ, and no isolated vertex, then

$$
\nu_{a c}(G) \geq \frac{6 n}{\Delta^{2}+12 \Delta^{\frac{3}{2}}} .
$$

Note that, for graphs that are close to Δ-regular, the bound $\nu_{a c}(G) \geq \frac{m}{\Delta^{2}}$ is stronger than Theorem 1. We prove Theorem $\mathbb{1}$ in the next section. In the conclusion we discuss algorithmic aspects of its proof and possible generalizations to so-called degenerate matchings [1].

2 Proof of Theorem 1

We prove the theorem by contradiction. Therefore, suppose that G is a counterexample of minimum order. Clearly, G is connected. If $\Delta=1$, then G is K_{2}, and, hence, $\nu_{a c}(G)=\frac{n}{2}$. If $\Delta=2$, then G is a path or a cycle, which implies $\nu_{a c}(G) \geq \frac{n-2}{2}$. These observations imply $\Delta \geq 3$. At several points within the proof we consider an acyclic matching M in G, and we consistently use

- V_{M} to denote the set of vertices of G that are incident to an edge in M,
- N_{M} to denote the set of vertices in $V(G) \backslash V_{M}$ that have a neighbor in V_{M},
- G_{M} to denote the graph $G-\left(V_{M} \cup N_{M}\right)$,
- I_{M} to denote the set of isolated vertices of G_{M}, and
- G_{M}^{\prime} to denote the graph $G_{M}-I_{M}$.

Since G_{M}^{\prime} is no counterexample, and the union of M with any acyclic matching in G_{M}^{\prime} is an acyclic matching in G, we obtain

$$
\frac{6 n}{\Delta^{2}+12 \Delta^{\frac{3}{2}}}>\nu_{a c}(G) \geq|M|+\frac{6\left(n-\left|V_{M} \cup N_{M} \cup I_{M}\right|\right)}{\Delta^{2}+12 \Delta^{\frac{3}{2}}},
$$

which implies

$$
\begin{equation*}
\left|V_{M}\right|+\left|N_{M}\right|+\left|I_{M}\right|>\left(\frac{\Delta^{2}}{6}+2 \Delta^{\frac{3}{2}}\right)|M| . \tag{2}
\end{equation*}
$$

Claim 1. For every edge $u v$ in G, we have $d_{G}(u)+d_{G}(v)>2 \sqrt{\Delta}$.
Proof. Suppose, for a contradiction, that $d_{G}(u)+d_{G}(v) \leq 2 \sqrt{\Delta}$ for some edge $u v$ of G. For $M=\{u v\}$, we obtain $\left|V_{M}\right|+\left|N_{M}\right|+\left|I_{M}\right| \leq 2+(2 \sqrt{\Delta}-2)+(2 \sqrt{\Delta}-2)(\Delta-1) \leq 2 \Delta^{\frac{3}{2}}$, contradicting (2)).

Let S be the set of vertices of degree at most $\sqrt{\Delta}$. By Claim the set S is independent.
Claim 2. S is not empty.
Proof. Suppose, for a contradiction, that the minimum degree δ of G is larger than $\sqrt{\Delta}$. Let $u v$ be an edge of G such that u is of minimum degree. Let $M=\{u v\}$. Since every vertex in I_{M} has degree at least δ, we have

$$
\left|V_{M}\right|+\left|N_{M}\right|+\left|I_{M}\right| \leq 2+(\Delta+\delta-2)+\frac{(\Delta+\delta-2)(\Delta-1)}{\delta} \leq \frac{(\Delta+\delta)^{2}}{\delta}
$$

If $\Delta=3$, then δ is 2 or 3 , and in both cases $2+(\Delta+\delta-2)+\frac{(\Delta+\delta-2)(\Delta-1)}{\delta}$ is less than the right hand side of (22), contradicting (22). For $\Delta \geq 4$, we obtain that $\frac{(\Delta+\delta)^{2}}{\delta} \leq \frac{(\Delta+\sqrt{\Delta})^{2}}{\sqrt{\Delta}}$ is less than the right hand side of (2). Hence, also in this case, we obtain a contradiction (2).

Let N be the set of vertices that have a neighbor in S, and, for a vertex v in G, let $d_{S}(v)$ be the number of neighbors of v in S. Since S is independent, the sets S and N are disjoint.

Claim 3. $\max \left\{d_{S}(v): v \in V(G)\right\}=\alpha \Delta$ for some α with $0.2 \leq \alpha \leq 0.8$.
In other words, we have $d_{S}(v) \leq 0.8 \Delta$ for every vertex v of G, and $d_{S}(v) \geq 0.2 \Delta$ for some vertex v of G.

Proof. Let the vertex v maximize $d_{S}(v)$. Suppose, for a contradiction, that $d_{S}(v)=\alpha \Delta$ for some α with either $\alpha<0.2$ or $\alpha>0.8$. Let u be a neighbor of v of minimum degree. By Claim 2 we have $d_{S}(v) \geq 1$, which implies $d_{G}(u) \leq \sqrt{\Delta}$. Let $M=\{u v\}$. Clearly,

$$
\left|V_{M}\right|+\left|N_{M}\right| \leq \sqrt{\Delta}+\Delta .
$$

Let I_{1} be the set of vertices in I_{M} that have a neighbor in $N_{G}(u) \cup\left(N_{G}(v) \cap S\right)$, let $I_{2}=\left(I_{M} \backslash I_{1}\right) \cap S$, and let $I_{3}=I_{M} \backslash\left(I_{1} \cup I_{2}\right)$.

We obtain

$$
\begin{aligned}
\left|I_{1}\right| & \leq(\Delta-1)\left(d_{G}(u)-1\right)+(\sqrt{\Delta}-1)\left|N_{G}(v) \cap S\right| \\
& \leq(\Delta-1)(\sqrt{\Delta}-1)+(\sqrt{\Delta}-1) \alpha \Delta \\
& \leq(1+\alpha) \Delta^{\frac{3}{2}}-(\sqrt{\Delta}+\Delta) .
\end{aligned}
$$

Let $N^{\prime}=N_{G}(v) \backslash\left(N_{G}(u) \cup S\right)$. Note that $\left|N^{\prime}\right| \leq(1-\alpha) \Delta$, and that the vertices in $I_{2} \cup I_{3}$ have all their neighbors in N^{\prime}. By the choice of v, every vertex in N^{\prime} has at most $\alpha \Delta$ neighbors in S, which implies

$$
\left|I_{2}\right| \leq \alpha \Delta\left|N^{\prime}\right| \leq \alpha(1-\alpha) \Delta^{2} .
$$

Since there are at most $\Delta\left|N^{\prime}\right|$ edges between N^{\prime} and I_{3}, and every vertex in I_{3} has degree more than $\sqrt{\Delta}$, we obtain

$$
\left|I_{3}\right|<\frac{\Delta\left|N^{\prime}\right|}{\sqrt{\Delta}} \leq(1-\alpha) \Delta^{\frac{3}{2}} .
$$

Altogether, we obtain

$$
\begin{aligned}
\left|V_{M}\right|+\left|N_{M}\right|+\left|I_{M}\right| & \leq \sqrt{\Delta}+\Delta+(1+\alpha) \Delta^{\frac{3}{2}}-(\sqrt{\Delta}+\Delta)+\alpha(1-\alpha) \Delta^{2}+(1-\alpha) \Delta^{\frac{3}{2}} \\
& =\alpha(1-\alpha) \Delta^{2}+2 \Delta^{\frac{3}{2}} \\
& \leq 0.16 \Delta^{2}+2 \Delta^{\frac{3}{2}}
\end{aligned}
$$

contradicting (2).
Note that, so far in the proof of each claim, we had $|M|=1$, and iteratively applying the corresponding reductions would eventually lead to an induced matching in G similarly as in [9]. In order to improve (11), we now choose M non-locally in some sense: Let M be an acyclic matching in G such that
(i) M only contains edges incident to a vertex in S,
(ii) every vertex in $V_{M} \cap S$ has degree one in the subgraph of G induced by V_{M},
(iii) every vertex v in $V_{M} \cap N$ satisfies $d_{S}(v) \geq 0.2 \Delta$, and
M maximizes

$$
\begin{equation*}
\sum_{v \in V_{M} \cap N} d_{S}(v) . \tag{3}
\end{equation*}
$$

among all acyclic matchings satisfying (i), (ii), and (iii). By Claim 3, the matching M is non-empty.
We now define certain relevant sets, see Figure $\mathbb{1}$ for an illustration.

- Let X be the set of vertices in N_{M} that are not adjacent to a vertex in $V_{M} \cap S$ and that have at least one neighbor in S that is not adjacent to a vertex in V_{M}.
(Note that $X \subseteq N$, and that the edges between vertices in X and suitable neighbors in S are possible candidates for modifying M.)
- Let Y be the set of vertices in $N_{M} \backslash X$ that are not adjacent to a vertex in $V_{M} \cap S$.
(Note that Y contains $N_{M} \backslash N=\left(N_{M} \cap S\right) \cup\left(N_{M} \backslash(S \cup N)\right)$.)
- Let $Z=\left(N \cap N_{M}\right) \backslash(X \cup Y)$.
(Note that Z consists of the vertices in N_{M} that have a neighbor in $V_{M} \cap S$.)
- Let I_{1} be the set of vertices in $I_{M} \cap S$ that have a neighbor in $N_{M} \backslash X$.
(Note that, by the definition of X, no vertex in I_{1} can have a neighbor in $Y \cap N$, which implies that every vertex in I_{1} has a neighbor in Z.)
- Let I_{2} be the set of vertices in $I_{M} \backslash S$ that have a neighbor in Z.
- Let I_{3} be the set of vertices in $I_{M} \cap S$ that only have neighbors in X.
(Note that $I_{1} \cup I_{3}=I_{M} \cap S$.)
- Finally, let $I_{4}=I_{M} \backslash\left(I_{1} \cup I_{2} \cup I_{3}\right)$.

Figure 1: An illustration of the different relevant sets.
Clearly,

$$
\begin{equation*}
\left|V_{M}\right|+\left|N_{M}\right| \leq(\sqrt{\Delta}+\Delta)|M| . \tag{4}
\end{equation*}
$$

Since every vertex in $I_{1} \cup I_{2}$ has a neighbor in Z, and every vertex in Z has a neighbor in $V_{M} \cap S$, we have

$$
\begin{equation*}
\left|I_{1} \cup I_{2}\right| \leq(\Delta-1)|Z| \leq(\Delta-1)(\sqrt{\Delta}-1)|M|=\left(\Delta^{\frac{3}{2}}-\Delta-\sqrt{\Delta}+1\right)|M| . \tag{5}
\end{equation*}
$$

Since every vertex in I_{4} has degree more than $\sqrt{\Delta}$ and has all its neighbors in $X \cup Y$, and every vertex in $X \cup Y$ has a neighbor in $V_{M} \cap N$, we have

$$
\begin{equation*}
\left|I_{4}\right| \leq \frac{(\Delta-1)|X \cup Y|}{\sqrt{\Delta}} \leq \frac{(\Delta-1)^{2}|M|}{\sqrt{\Delta}}=\left(\Delta^{\frac{3}{2}}-2 \sqrt{\Delta}+\frac{1}{\sqrt{\Delta}}\right)|M| \tag{6}
\end{equation*}
$$

Combining (4), (5), and (6), we obtain

$$
\begin{equation*}
\left|V_{M}\right|+\left|N_{M}\right|+\left|I_{M}\right|-\left|I_{3}\right| \leq 2 \Delta^{\frac{3}{2}} \tag{7}
\end{equation*}
$$

In order to estimate $\left|I_{3}\right|$, we partition the set X as follows:

- Let X_{1} be the set of vertices v in X with $d_{S}(v)<0.2 \Delta$,
- let X_{2} be the set of vertices in $X \backslash X_{1}$ with at least four neighbors in V_{M}, and
- let $X_{3}=X \backslash\left(X_{1} \cup X_{2}\right)$.

For a vertex v in $V_{M} \cap N$, let $d_{3}(v)$ be the number of neighbors of v in X_{3}.
Claim 4. $\left|I_{3}\right| \leq 0.2 \Delta\left|X_{1}\right|+0.8 \Delta\left|X_{2}\right|+\frac{2}{3} \sum_{v \in V_{M} \cap N} d_{S}(v) d_{3}(v)$.
Proof. By Claim 3, we obtain that

$$
\left|I_{3}\right| \leq \sum_{w \in X} d_{S}(w)=\sum_{w \in X_{1} \cup X_{2} \cup X_{3}} d_{S}(w) \leq 0.2 \Delta\left|X_{1}\right|+0.8 \Delta\left|X_{2}\right|+\sum_{w \in X_{3}} d_{S}(w)
$$

Let w be a vertex in X_{3}. By the definition of X, the vertex w has a neighbor u in S that is not adjacent to a vertex in V_{M}. If w has only one neighbor in V_{M}, then $M \cup\{w u\}$ is an acyclic matching satisfying (i), (ii), and (iii) that has a larger value in (3), contradicting the choice of M. Hence, we may assume that w has either $k=2$ or $k=3$ neighbors v_{1}, \ldots, v_{k} in V_{M}. Let $u_{1} v_{1}, \ldots, u_{k} v_{k}$ be edges in M, and suppose that $d_{S}\left(v_{1}\right) \leq \ldots \leq d_{S}\left(v_{k}\right)$. Since

$$
M^{\prime}=(M \cup\{w u\}) \backslash\left\{u_{1} v_{1}, \ldots, u_{k-1} v_{k-1}\right\}
$$

is an acyclic matching satisfying (i), (ii), and (iii), the choice of M implies that the value of M^{\prime} in (3) is at most the one of M, which implies

$$
d_{S}(w) \leq \sum_{i=1}^{k-1} d_{S}\left(v_{i}\right) \leq \frac{k-1}{k} \sum_{i=1}^{k} d_{S}\left(v_{i}\right) \leq \frac{2}{3} \sum_{i=1}^{k} d_{S}\left(v_{i}\right)
$$

Now, we obtain

$$
\sum_{w \in X_{3}} d_{S}(w) \leq \frac{2}{3} \sum_{w \in X_{3}} \sum_{v \in V_{M} \cap N \cap N_{G}(w)} d_{S}(v)=\frac{2}{3} \sum_{v \in V_{M} \cap N} d_{3}(v) d_{S}(v)
$$

which completes the proof.
For a vertex v in $V_{M} \cap N$, let $d_{1}(v)$ be the number of neighbors of v in $X_{1} \cup X_{2}$. By property (iii), we have $d_{S}(v) \geq 0.2 \Delta$, which implies that $d_{1}(v) \leq 0.8 \Delta$. Using Claim 4, $x y \leq \frac{(x+y)^{2}}{4}$ for $x, y \geq 0$, and

$$
\begin{aligned}
d_{S}(v)+d_{1}(v)+d_{3}(v) \leq & \Delta \text { and } d_{1}(v)^{2} \leq 0.8 \Delta d_{1}(v) \text { for } v \in V_{M} \cap N \text {, we obtain } \\
\left|I_{3}\right| & \leq 0.2 \Delta\left|X_{1}\right|+0.8 \Delta\left|X_{2}\right|+\frac{2}{3} \sum_{v \in V_{M} \cap N} d_{S}(v) d_{3}(v) \\
& \leq 0.2 \Delta\left(\left|X_{1}\right|+4\left|X_{2}\right|\right)+\frac{1}{6} \sum_{v \in V_{M} \cap N}\left(d_{S}(v)+d_{3}(v)\right)^{2} \\
& \leq 0.2 \Delta \sum_{v \in V_{M} \cap N} d_{1}(v)+\frac{1}{6} \sum_{v \in V_{M} \cap N}\left(\Delta-d_{1}(v)\right)^{2} \\
& =\frac{\Delta^{2}}{6}|M|+\Delta\left(\frac{1}{5}-\frac{1}{3}\right) \sum_{v \in V_{M} \cap N} d_{1}(v)+\frac{1}{6} \sum_{v \in V_{M} \cap N} d_{1}(v)^{2} \\
& \leq \frac{\Delta^{2}}{6}|M|+\Delta\left(\frac{2}{15}-\frac{2}{15}\right) \sum_{v \in V_{M} \cap N} d_{1}(v) \\
& =\frac{\Delta^{2}}{6}|M|,
\end{aligned}
$$

and together with (7), we obtain a final contradiction to (2) completing the proof.

3 Conclusion

While the choice of M after Claim 3 in the proof is non-constructive, the proof of Theorem 1 easily yields an efficient algorithm that returns an acyclic matching in a given input graph G as considered in Theorem 11 with size at least $\frac{6 n}{\Delta^{2}+12 \Delta^{\frac{3}{2}}}$. If the statements of Claims [1, 2, or 3 fail, then their proofs contain simple reduction rules, each fixing one edge in the final acyclic matching and producing a strictly smaller instance G_{M}^{\prime}. Adding that fixed edge to the output on the instance G_{M}^{\prime} yields the desired acyclic matching. The matching M chosen after Claim 3 can be initialized as any acyclic matching satisfying (i), (ii), and (iii). If Claim 4 fails, then its proof contains simple update procedures that increase the value in (3). Since this value is integral and polynomially bounded, after polynomially many updates the statement of Claim 4 holds, and adding M to the output on the instance G_{M}^{\prime} yields the desired acyclic matching.

The acyclic matchings M produced by the proof of Theorem \square actually have a special structure because the subgraph H of G induced by the set of vertices that are incident to an edge in M is not just any forest but a so-called corona of a forest, that is, every vertex v of H of degree at least 2 in H has a unique neighbor u of degree 1 in H, and all the edges $u v$ form M.

As a generalization of acyclic matchings, [1] introduced the notion of a k-degenerate matching as a matching M in a graph G such that the subgraph H of G defined as above is k-degenerate. If the k-degenerate matching number $\nu_{k}(G)$ of G denotes the largest size of a k-degenerate matching in G, then $\nu_{1}(G)$ coincides with the acyclic matching number. We conjecture that

$$
\nu_{k}(G) \geq \frac{(k+1) n}{\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)}
$$

for every graph G with n vertices, sufficiently large maximum degree Δ, and no isolated vertex. A
straightforward adaptation of the proof of Theorem 1 yields

$$
\frac{\nu_{k}(G)}{n} \geq \begin{cases}(1-o(1)) \frac{4(k+3)}{3 \Delta^{2}} & \text { for } k \in\{2,3,4,5,6\} \text { and } \\ \left(1-o(1) \frac{k+4}{\Delta^{2}}\right. & \text { for } k \geq 7\end{cases}
$$

for these graphs G.

References

[1] J. Baste and D. Rautenbach, Degenerate matchings and edge colorings, Discrete Applied Mathematics 239 (2018) 38-44.
[2] K. Cameron and T. Walker, The graphs with maximum induced matching and maximum matching the same size, Discrete Mathematics 299 (2005) 49-55.
[3] K.K. Dabrowski, M. Demange, and V.V. Lozin, New results on maximum induced matchings in bipartite graphs and beyond, Theoretical Computer Science 478 (2013) 33-40.
[4] M. Fürst, Restricted matchings, PhD thesis, Ulm University, 2019.
[5] M. Fürst and D. Rautenbach, A lower bound on the acyclic matching number of subcubic graphs, Discrete Mathematics 341 (2018) 2353-2358.
[6] M. Fürst and D. Rautenbach, On some hard and some tractable cases of the maximum acyclic matching problem, to appear in Annals of Operations Research.
[7] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar, Generalized subgraph-restricted matchings in graphs, Discrete Mathematics 293 (2005) 129-138.
[8] M.A. Henning and D. Rautenbach, Induced matchings in subcubic graphs without short cycles, Discrete Mathematics 315 (2014) 165-172.
[9] F. Joos, Induced matchings in graphs of bounded maximum degree, SIAM Journal on Discrete Mathematics 30 (2016) 1876-1882.
[10] F. Joos, Induced matchings in graphs of degree at most 4, SIAM Journal on Discrete Mathematics 30 (2016) 154-165.
[11] F. Joos, D. Rautenbach, and T. Sasse, Induced matchings in subcubic graphs, SIAM Journal on Discrete Mathematics 28 (2014) 468-473.
[12] D. Kobler and U. Rotics, Finding Maximum induced matchings in subclasses of claw-free and P_{5}-free graphs, and in graphs with matching and induced matching of equal maximum size, Algorithmica 37 (2003) 327-346.
[13] B.S. Panda and D. Pradhan, Acyclic matchings in subclasses of bipartite graphs, Discrete Mathematics, Algorithms and Applications 4 (2012) 1250050 (15 pages).
[14] L.J. Stockmeyer and V.V. Vazirani, NP-completeness of some generalizations of the maximum matching problem, Information Processing Letters 15 (1982) 14-19.

[^0]: *Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 388217545.

