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Abstract

In this paper, we study structural properties of Toeplitz graphs. We char-
acterize Kq-free Toeplitz graphs for an integer q ≥ 3 and give equivalent
conditions for a Toeplitz graph Gn〈t1, t2, . . . , tk〉 with t1 < · · · < tk and
n ≥ tk−1 + tk being chordal and equivalent conditions for a Toeplitz graph
Gn〈t1, t2〉 being perfect. Then we compute the edge clique cover number
and the vertex clique cover number of a chordal Toeplitz graph. Finally, we
characterize the degree sequence (d1, d2, . . . , dn) of a Toeplitz graph with n
vertices and show that a Toeplitz graph is a regular graph if and only if it
is a circulant graph.
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1. Introduction

An n × n matrix T = (tij)1≤i,j≤n is called a Toeplitz matrix if ti,j =
ti+1,j+1 for each {i, j} ⊂ [n− 1] where [m] denotes the set {1, 2, . . . ,m} for
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Figure 1: A (0, 1)-symmetric Toeplitz matrix and its Toeplitz graph

a positive integer m. Toeplitz matrices are precisely those matrices that
are constant along all diagonals parallel to the main diagonal, and thus a
Toeplitz matrix is determined by its first row and column. Toeplitz matri-
ces occur in a large variety of areas in pure and applied mathematics. For
example, they often appear when differential or integral equations are dis-
cretized and arise in physical data-processing applications and in the theories
of orthogonal polynomials, stationary processes, and moment problems; see
Heinig and Rost [8]. Other references on Toeplitz matrices are Gohberg [7]
and lohvidov [13].

A Toeplitz graph is defined to be a simple, undirected graph whose ad-
jacency matrix is a (0, 1)-symmetric Toeplitz matrix. Any Toeplitz matrix
mentioned in this paper has the main diagonal entries 0. One can see that the
first row of a symmetric Toeplitz matrix determines a unique Toeplitz graph.
In this vein, we denote a Toeplitz graph with n vertices by Gn〈t1, t2, . . . , tk〉
if the 1’s in the first row of its adjacency matrix are placed at positions
1 + t1, 1 + t2, . . . , 1 + tk with 1 ≤ t1 < t2 < . . . < tk < n. In addition, we
label the vertices of Gn〈t1, t2, . . . , tk〉 with 1, . . . , n so that the ith row of its
adjacency matrix corresponds to the vertex labeled i. See Figure 1 for an
illustration.

For V = N and k < ∞, infinite Toeplitz graphs G∞〈t1, t2, . . . , tk〉 are
defined the same way. Both types may be studied as special subgraphs of
integer distance graphs [1, 14, 15].

Toeplitz graphs have been introduced by G. Sierksma and first been in-
vestigated with respect to hamiltonicity by van Dal et al. [24] (see also
Heuberger [9], Malik and Qureshi [19], Malik and Zamfirescu [20] for more
recent works). Infinite, bipartite Toeplitz graphs have been fully character-
ized in terms of bases and circuits by Euler et al. [6] (with results on the
finite case presented in Euler [3]). Colouring aspects are especially treated in
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Heuberger [10], Kemnitz and Marangio [15], Nicoloso and Pietropaoli [23].
Infinite, planar Toeplitz graphs have been fully characterized in Euler [4]
providing, in particular, a complete description of the class of 3-colourable
such graphs. Finite planar Toeplitz graphs are studied in [5].

A hole is a chordless cycle of length at least 4 as an induced subgraph,
while an anti-hole is the complement of a hole. An odd hole (respectively odd
anti-hole) is a hole (respectively anti-hole) with an odd number of vertices.
A chordal graph is a simple graph without holes. A graph G = (V,E) is an
interval graph if it captures the intersection relation for some set of intervals
on the real line. Formally, G is an interval graph provided that one can
assign to each v ∈ V an interval Iv such that Iu ∩ Iv is nonempty precisely
when uv ∈ E. Three independent vertices form an asteroidal triple in a
graph G if, for each two, there exists a path containing those two but no
neighbor of the third. It is well-known that a graph G is an interval graph
if and only if it is chordal and has no asteroidal triple [17].

A clique is a complete subgraph or a subset of vertices of an undirected
graph such that every two distinct vertices in the clique are adjacent. A
clique cover of G is a set of cliques of G such that every vertex is in at least
one of them. The clique cover number is the minimum size of a clique cover,
and is denoted by θv(G). An edge clique cover of G is a set of cliques of G,
which together contain each edge of G at least once. The smallest cardinality
of any edge clique cover of G is called the edge clique cover number of G,
and is denoted by θE(G). Those numbers exist as the vertex set (resp. the
edge set) of G forms a clique cover (resp. an edge clique cover) for G.

The chromatic number of a graph G, denoted by χ(G), is the smallest
number of colors needed to color the vertices of G so that no two adjacent
vertices share the same color.

The clique cover number of G equals the chromatic number of its com-
plement G, that is,

θv(G) = χ(G). (1)

A perfect graph is a graph G such that for every induced subgraph H of
G, the clique number equals the chromatic number, i.e., ω(H) = χ(H). A
graph for which ω(G) = χ(G) (without any requirement that this condition
also hold on induced subgraphs) is called a weakly perfect graph. All perfect
graphs are therefore weakly perfect by definition.
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Figure 2: Where do Toeplitz graphs stand?

A circulant matrix Cn is an n×n Toeplitz matrix in the following form:

Cn =

















c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 . . . c1 c0

















.

A graph is said to be a circulant graph if it is isomorphic to a Toeplitz graph
whose adjacency matrix is a (0, 1)-symmetric circulant matrix Cn where

ci = cn−i ∈ {0, 1} (2)

for each i ∈ {1, . . . , ⌊n/2⌋} and c0 = 0. Circulant graphs are well-studied
(see [12, 16, 21, 22, 25] for references). The family of circulant graphs is an
important subclass of Toeplitz graphs. Circulant graphs have various appli-
cations in the design of interconnection networks in parallel and distributed
computing.

The paper is organized as follows. In Section 2, we characterize Kq-free
Toeplitz graphs for an integer q ≥ 3, where Kq denotes the complete graph
with q vertices, and then we compute the edge clique cover number and the
vertex clique cover number of a Toeplitz graph. In section 3, we study holes
in Toeplitz graphs and give a condition for a Toeplitz graph not having holes,
which leads to a characterization of chordal Toeplitz graphs. Then we give
equivalent conditions for a Toeplitz graph G = Gn〈t1, t2〉 being perfect. In
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Section 4, we characterize the degree sequence (d1, d2, . . . , dn) of a Toeplitz
graph with n vertices and show that a Toeplitz graph is a regular graph if
and only if it is a circulant graph. In Section 5, we propose open problems.

Our results are summarized in Figure 2. The grey region A represents
the set of Toeplitz graphs G = Gn〈t1, t2, . . . , tk〉 with t1 < · · · < tk and
n ≥ tk−1+ tk being chordal for a fixed positive integer n (Theorem 3.3); the
region B represents the set of odd-hole-free Toeplitz graphs G = Gn〈t1, t2〉
(Theorem 3.7); the region C represents the set of circulant graphs (Theo-
rem 4.6).

2. Cliques in Toeplitz graphs

In this section, we give an upper bound for the clique number of Toeplitz
graphs and characterize Kq-free Toeplitz graphs for an integer q ≥ 3, and
then we compute the edge clique cover number and the vertex clique cover
number of a Toeplitz graph Gn〈t, 2t, . . . , kt〉. The following two results im-
mediately follow from the definition of Toeplitz graph.

Proposition 2.1. For a positive integer k, let G = Gn〈t1, t2, . . . , tk〉. Then
for each i, j ∈ [n], i and j are adjacent if and only if |i− j| ∈ {t1, . . . , tk}.

Lemma 2.2. For positive integers t and k, let G = Gn〈t, 2t, . . . , kt〉. Then
u and v are connected in G if and only if v − u is a multiple of t.

Proposition 2.3. For positive integers t and k, let G = Gn〈t, 2t, . . . , kt〉.
Then G has t components. In particular, if H1, . . . ,Ht are the components
of G, then Hi is isomorphic to the graph G⌊(n−i)/t⌋+1〈1, 2, . . . , k〉 and the
vertex set of Hi is {s ∈ [n] | s ≡ i (mod t)} for each i ∈ [t].

Proof. For each i ∈ [t], we let Vi = {i + st | s = 0, 1, . . . , ⌊(n− i)/t⌋}.
Then |Vi| = ⌊(n − i)/t⌋ + 1 for each i ∈ [t]. By Lemma 2.2, Hi := G[Vi]
is a component of G for each i ∈ [t]. Fix i ∈ [t] and let f be a function
from V (G⌊(n−i)/t⌋+1〈1, 2, . . . , k〉) to Vi defined by f(s+ 1) = i+ st for each
s ∈ {0, 1, . . . , ⌊(n− i)/t⌋}. It is easy to see that f is a bijection. Then u and
v are adjacent in G⌊(n−i)/t⌋+1〈1, 2, . . . , k〉 if and only if |u− v| ∈ {1, . . . , k},
which is equivalent to |(i + (u − 1)t) − (i + (v − 1)t)| ∈ {t, . . . , kt}, that is,
f(u) and f(v) are adjacent in Hi.

Lemma 2.4. Let G = Gn〈t1, t2, . . . , tk〉. Then there is a maximum clique
of G that contains the vertex 1.
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Proof. Let S1 = {i1, i2, . . . , iℓ} be a maximum clique in G and let i1 =
minS1. Then, by Proposition 2.1, |iu−iv| ∈ {t1, . . . , tk} for each {u, v} ⊂ [l].
If i1 = 1, then we are done. If i1 > 1, then the vertices 1, i2 − i1 + 1, i3 −
i1 + 1, . . . , iℓ − i1 + 1 form a clique of size ℓ in G by Proposition 2.1.

In the following, we present a condition for a Toeplitz graph being Kq-
free.

Theorem 2.5. Let G = Gn〈t1, t2, . . . , tk〉. Then G is Kq-free if and only
if for any subset S ⊆ [k] with size q − 1, there is a pair of distinct integers
a, b ∈ S such that |ta − tb| /∈ {t1, . . . , tk}.

Proof. Let N(1) be the set of neighbors of 1 in G. Then N(1) = {t1+1, t2+
1, . . . , tk + 1}. Now G is Kq-free if and only if 1 does not belong to a clique
of size q (by Lemma 2.4), equivalently, any subset of N(1) with size q − 1
contains a pair ti+1, tj+1 such that |ti−tj| = |(ti+1)−(tj+1)| /∈ {t1, . . . , tk}.

If any subset S ⊆ [k] with size q − 1 contains a pair of distinct integers
a, b ∈ S such that |ta − tb| /∈ {t1, . . . , tk}, then any subset of N(1) with size
q − 1 contains a pair ti +1, tj +1 such that |ti − tj | /∈ {t1, . . . , tk}. Suppose
that any subset of N(1) with size q − 1 contains a pair ti + 1, tj + 1 such
that |ti − tj | /∈ {t1, . . . , tk}. Let S be a subset of [k] with size q − 1. Then
{ti+1 | i ∈ S} is a subset of N(1) with size q−1, so there is a pair ti+1, tj+1
such that |ti − tj| /∈ {t1, . . . , tk} by the last equivalence above. Thus there
is a pair of distinct integers a, b ∈ S such that |ta − tb| /∈ {t1, . . . , tk}.

Corollary 2.6. Let G = Gn〈t1, t2, . . . , tk〉. Then G is triangle-free if and
only if |ti − tj | /∈ {t1, t2, . . . , tk} for any pair i, j ∈ [k].

For a Toeplitz graph G := Gn〈t1, . . . , tk〉, we denote B(G) = {t1, . . . , tk}.

Lemma 2.7. Let G = Gn〈t1, t2, . . . , tk〉. Then |ti − tj | ∈ B(G) for every
{ti, tj} ⊂ B(G) with i 6= j if and only if ti = it1 for each i ∈ [k].

Proof. We can easily check the ‘if’ part. To show the ‘only if’ part, suppose
that |ti − tj| ∈ B(G) for every {ti, tj} ⊂ B(G) with i 6= j. Then t2 − t1 ∈
B(G). Since t2−t1 < t2, t2−t1 = t1. Therefore t2 = 2t1. By the supposition
again, t3 − t1 ∈ B(G). Since t3 − t1 < t3, t3 − t1 = t2 or t3 − t1 = t1. If
t3−t1 = t1, then t3 = t2, a contradiction. Thus t3−t1 = t2 and consequently
t3 = 3t1. By repeating this procedure, we conclude that ti = it1 for each
i ∈ [k] and thus B(G) = {t1, 2t1, . . . , kt1}.

We denote the degree of the vertex i by deg(i) in a Toeplitz graph.
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Theorem 2.8. Let G = Gn〈t1, t2, . . . , tk〉. Then ω(G) ≤ k + 1. Further-
more, the equality holds if and only if ti = it1 for each i ∈ [k].

Proof. By Lemma 2.4, there is a maximum clique that contains the vertex
1. Then the clique is contained in the closed neighborhood of 1. Since
deg(1) = k, the inequality holds. Now we show the equality part. If B(G) =
{t1, 2t1, . . . , kt1}, then {1, 1 + t1, . . . , 1 + kt1} is a clique of size k + 1 in G
and so ω(G) = k + 1.

Suppose that ω(G) = k + 1. Then, by Lemma 2.4, there is a maximum
clique of size k+1 containing 1. Therefore {1, 1 + t1, . . . , 1+ tk} is a clique.
Now, for each i, j ∈ [k], 1+ti and 1+tj are adjacent since they belong to the
same clique. Then |(1+ tj)− (1+ ti)| = |tj − ti| ∈ B(G) by Proposition 2.1,
so B(G) = {t1, 2t1, . . . , kt1} by Lemma 2.7.

Theorem 2.9. Let G = Gn〈t, 2t, . . . , kt〉. Then θE(G) = max{t, n − kt}.
Moreover, for H := Gn〈s1, s2, . . . , sk〉 with s1 = t and sk = kt, θE(G) ≤
θE(H).

Proof. Suppose that n − kt ≤ t. Then n ≤ (k + 1)t. By Proposition 2.3,
G has t components and so θE(G) ≥ t. Again, by Proposition 2.3, each
component is isomorphic to G⌊(n−i)/t⌋+1〈1, 2, . . . , k〉 for each i ∈ [t]. Since
n ≤ (k + 1)t, the number of vertices in a component is at most k + 1 and
so G⌊(n−i)/t⌋+1〈1, 2, . . . , k〉 for each i ∈ [t] is a complete graph by Proposi-
tion 2.1. Thus θE(G) = t.

Now, suppose that t < n − kt. Then n > (k + 1)t. Let Ci = {i, i +
t, . . . , i+ kt} for each i ∈ {1, . . . , n− kt}. Then, for each i ∈ {1, . . . , n− kt},
an element in Ci is at least i ≥ 1 and at most i+ kt ≤ (n− kt) + kt = n, so
Ci is a vertex set of G . In addition, Ci is a clique for each i ∈ {1, . . . , n−kt}
by definition. Take an edge uv ∈ E(G) such that u < v. If kt < v, then
Cv−kt = {v− kt, v− (k− 1)t, . . . , v} contains u and v. Suppose that v ≤ kt.
Then there exists an integer r such that r ≡ v (mod t) with 1 ≤ r ≤ t.
Obviously, r ≤ v and v − r is a multiple of t. Since v ≤ kt, v − r ≤ kt and
so v − r ∈ {t, 2t, . . . , kt}. Thus Cr = {r, r + t, . . . , r + kt} contains v. Thus
{Ci | 1 ≤ i ≤ n− kt} is an edge-clique cover of G and so θE(G) ≤ n− kt.

Now, let F = {i i+ kt | 1 ≤ i ≤ n− kt}. Take edges i i+ kt and j j+ kt
for some 1 ≤ i < j ≤ n − kt. Since j + kt − i > kt, i and j + kt are not
adjacent by Proposition 2.1 and so i i+ kt and j j+ kt do not belong to the
same clique. Thus θE(G) ≥ |F | = n− kt and hence θE(Gn) = n− kt.

Let H := Hn〈s1, s2, . . . , sk〉 be a Toeplitz graph with s1 = t and sk = kt.
Note that G = H if k ≤ 2, so θE(G) = θE(H). We assume that k ≥ 3.
Suppose that kt < n ≤ (k + 1)t. Let I = {i i + s1 | 1 ≤ i ≤ s1}. Since
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k ≥ 3, 2s1 = 2t < kt < n and so, by Proposition 2.1, I ⊂ E(H). Take edges
i i + s1 and j j + s1 for some 1 ≤ i < j ≤ s1. Since j − i < s1, i and j are
not adjacent by Proposition 2.1 and so i i+ s1 and j j+ s1 do not belong to
the same clique. Thus we have shown that θE(H) ≥ |I| = s1 = t = θE(G) if
kt < n ≤ (k + 1)t. Suppose that n > (k + 1)t. Since sk = kt, F ⊂ E(H) by
Proposition 2.1 and so θE(H) ≥ |F | = n − kt. Therefore θE(G) ≤ θE(H) if
(k + 1)t < n. Thus the “moreover” part is true.

In the following, we compute the vertex clique cover number of a Toeplitz
graph Gn〈t, 2t, . . . , kt〉.

Theorem 2.10. Let G = Gn〈t, 2t, . . . , kt〉 for n > (2k − 1)t. Then

θv(G) = s

⌈

⌈n/t⌉

k + 1

⌉

+ (t− s)

⌈

⌊n/t⌋

k + 1

⌉

where s is the positive integer such that s ≡ n (mod t) and 1 ≤ s ≤ t.

Proof. Since s ≡ n (mod t) and 1 ≤ s ≤ t, it follows from Proposition 2.3
that G has t components, each of the first s components H1, . . . ,Hs is
isomorphic to G⌈n/t⌉〈1, 2, . . . , k〉, and each of the other t − s components
Hs+1, . . . ,Ht is isomorphic to G⌊n/t⌋〈1, 2, . . . , k〉.

Since Hi ≃ G⌈n/t⌉〈1, 2, . . . , k〉 for each i ∈ [s] and k + 1 consecutive ver-
tices of {1, 2, . . . , ⌈nt ⌉} form a clique in G⌈n/t⌉〈1, 2, . . . , k〉, we have θv(Hi) ≤
⌈

⌈n/t⌉
k+1

⌉

for each i ∈ [s]. Now, by Theorem 2.8, ω(Hi) = k+1 for each i ∈ [s],

so we can conclude that θv(Hi) =
⌈

⌈n/t⌉
k+1

⌉

for each i ∈ [s]. Similarly, we can

show that θv(Hi) =
⌈

⌊n/t⌋
k+1

⌉

for each i ∈ {s + 1, . . . , t}. Therefore

θv(G) =
t

∑

i=1

θv(Hi) =
s

∑

i=1

θv(Hi)+
t

∑

i=s+1

θv(Hi) = s

⌈

⌈n/t⌉

k + 1

⌉

+(t−s)

⌈

⌊n/t⌋

k + 1

⌉

.

3. Chordal Toeplitz graphs and Perfect Toeplitz graphs

In this section, we study holes in Toeplitz graphs and give a condition
for a Toeplitz graph not having holes, which leads to a characterization of
chordal Toeplitz graphs. Then we give equivalent conditions for a Toeplitz
graph G = Gn〈t1, t2〉 being perfect. By Theorem 2.8, we know that, for
G = Gn〈t1, t2, . . . , tk〉, ω(G) = k + 1 if and only if ti = it1 for each i ∈ [k].
Yet, as long as n ≥ tk−1 + tk, we add more equivalent statements such as G
is chordal.
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Proposition 3.1. For positive integers k and t, Gn〈t, 2t, . . . , kt〉 is chordal.

Proof. By Proposition 2.3, it suffices to show that G := Gm〈1, 2, . . . , k〉 is
chordal for each integer m, m > k. To reach a contradiction, suppose that
G contains a hole C := v1v2 . . . vℓv1 for some integer ℓ ≥ 4. We identify
vℓ+1 with v1. Since the sequence C cannot strictly increase or decrease,
either vi−1 < vi and vi > vi+1 or vi−1 > vi and vi < vi+1 for some i,
2 ≤ i ≤ ℓ. Assume the former. Then vi − vi−1 = |vi − vi−1| = a and
vi − vi+1 = |vi − vi+1| = b for some a, b ∈ {1, 2, . . . , k} by Proposition 2.1.
Since ℓ ≥ 4, a 6= b and so |vi−1−vi+1| = |a−b| ∈ {1, 2, . . . , k−1}. Therefore
vi−1vi+1 is a chord of C and we reach a contradiction. We can similarly
show that C also has a chord in the latter case. Thus G is chordal.

For a path P = v1v2 · · · vk, we denote by P−1 the path vkvk−1 · · · v2v1.

Lemma 3.2. Let G = Gn〈t1, t2〉 be a Toeplitz graph with n ≥ t1 + t2. If
t2 6= 2t1, then G has a hole of length (t1 + t2)/ gcd(t1, t2).

Proof. For each i ∈ {1, . . . , t1}, let Pi be the path such that

Pi = i i+ t1 i+ 2t1 · · · i+ ⌊(n− i)/t1⌋ t1.

Then P1, . . . , Pt1 are t1 disjoint paths which contain all the vertices of G.
Now we construct a cycle in the following way. We start from the vertex

1 and consider the edge 1 1+ t2. Then 1+ t2 is on the path Pj for j ≡ 1+ t2
(mod t1). We denote by P ′

1 the (1 + t2, j)-section of Pj
−1. Since j ≤ t1,

j + t2 ≤ t1 + t2 ≤ n and so j + t2 is a vertex of G. Then we take the edge
j j+ t2 and the path Pk where k ≡ j+ t2 ≡ 1+2t2 (mod t1). We denote by
P ′
2 the (j+ t2, k)-section of Pk

−1. Then 1 P ′
1 P

′
2 is a (1, k)-path. Noting that

1 ≡ 1+ xt2 (mod t1) has a solution s := t1/d where d = gcd(t1, t2), we may
conclude that 1 P ′

1 P ′
2 · · · P ′

s is a cycle in G. By construction, the length of
this cycle is the minimum of sum of two positive integers x and y satisfying
yt2 = xt1, that is, min{x+ y | yt2 − xt1 = 0, x, y ∈ Z

+} = (t1 + t2)/d.
To show that the cycle has no chord, take two vertices u and v with

u < v on the cycle. Then u = 1 + u1t2 − v1t1 and v = 1 + u2t2 − v2t1 for
some {u1, u2} ⊂ {1, . . . , t1/d} and {v1, v2} ⊂ {1, . . . , t2/d}. If u and v are
adjacent, v−u is either t1 or t2. Suppose v−u = t1. Then (u2−u1)t2−(v2−
v1 + 1)t1 = 0. However, |u2 − u1| < t1/d and so u2 = u1 and |v2 − v1| = 1,
which implies that u and v are consecutive on the cycle. Similarly one can
show that if v − u = t2, then u and v are also consecutive. Thus the cycle
has no chord. Since t2 6= 2t1, (t1 + t2)/d > 3 and so the cycle is a hole.
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The following theorem characterizes the chordal Toeplitz graphs G =
Gn〈t1, t2, . . . , tk〉 with n ≥ tk−1 + tk.

Theorem 3.3. Let G = Gn〈t1, t2, . . . , tk〉 be a Toeplitz graph. If n ≥ tk−1+
tk, then the following statements are equivalent.

(i) G is interval.

(ii) G is chordal.

(iii) ti = it1 for each i ∈ [k].

(iv) ω(G) = k + 1.

Proof. (i) ⇒ (ii) is obvious. By Theorem 2.8, (iii) ⇔ (iv). To complete the
proof, we shall show that (ii) ⇒ (iii) and (iii) ⇒ (i). To show (ii) ⇒ (iii),
we denote by C4(ti, tj) the 4-cycle

1 (1 + ti) (1 + ti + tj) (1 + tj) 1

for each {i, j} ⊂ [k] with i < j and ti + tj < n. Since G is chordal, C4(ti, tj)
has a chord for each {i, j} ⊂ [k] with i < j and ti + tj < n. Thus, for each
{i, j} ⊂ [k] with i < j and tj + ti < n,

tj − ti ∈ {t1, t2, . . . , tk} or tj + ti ∈ {t1, t2, . . . , tk}. (3)

Suppose that k = 2. If t2 6= 2t1, then G has a hole of length (t1 +
t2)/ gcd(t1, t2) by Lemma 3.2 and we reach a contradiction. Thus t2 = 2t1.
Now we suppose that k = 3. Since t1+t2 < t1+t3 < t2+t3 ≤ n, C4(t1, t2) and
C4(t1, t3) exist. Therefore we have t2− t1 = t1 or t1+ t2 = t3 from C4(t1, t2)
and t3 − t1 ∈ {t1, t2} from C4(t1, t3). If t2 − t1 = t1, then t3 − t1 = t2, so
t2 = 2t1 and t3 = 3t1. Assume that t1 + t2 = t3. To reach a contradiction,
suppose that t2 6= 2t1. By definition, H = Gt1+t2〈t1, t2〉 is a subgraph of G
and H contains a hole C by Lemma 3.2. Since G is chordal, C has a chord
in G. Then the difference of two ends of a chord is t3, for otherwise the
chord also exists in H. However, since C is a subgraph of H, the difference
of any pair of vertices on C is at most t1 + t2 − 1 = t3 − 1 and we reach a
contradiction. Thus t2 = 2t1 and t3 = t1 + t2 = 3t1.

Now suppose k ≥ 4. We consider the cycle C4(tj , tk) for each j ∈ [k−2].
Then for each j ∈ [k − 2], tj + tk < n and tj + tk /∈ {t1, . . . , tk} and so
tk − tj ∈ {t1, . . . , tk} for each j ∈ [k − 2] by (3). To reach a contradiction,
suppose that tk − tk−1 /∈ B. Then tk − tj 6= tk−1 for any j ∈ [k − 2] and so

10



{tk − t1, tk − t2, . . . , tk − tk−2} = {t1, . . . , tk−2}. Since tk − t1 is the largest
element in the set, we have tk − t1 = tk−2. Then

tk = tk−2 + t1 < tk−1 + tk−2 < tk + tk−1 ≤ n,

so tk−1−tk−2 ∈ B by (3). However, tk−1−tk−2 < tk−tk−2 = t1 and we reach
a contradiction. Therefore tk − tk−1 ∈ B and so {tk − t1, tk − t2, . . . , tk −
tk−1} = {t1, . . . , tk−1}. Thus

tk = tj + tk−j for each j ∈ [k − 1]. (4)

For each j ∈ {2, . . . , k − 2},

tk−1 − tj ≤ tk−1 − t2 < tk − t2 = tk−2

by (4). Yet, since tj+tk−1 > tk for each j ∈ {2, . . . , k−2} by (4), tk−1−tj ∈
{t1, . . . , tk} for each j ∈ {2, . . . , k − 2}. Therefore

tk−1 − tj ≤ tk−3 for each j ∈ {2, . . . , k − 2}. (5)

In addition, since tk−1−tk−2 < tk−tk−2 = t2 by (4), we have tk−1−tk−2 = t1.
Thus, by (5),

tk−1 = tj + tk−j−1 for each j ∈ {1, . . . , k − 2}. (6)

By subtracting (6) from (4) for each j ∈ {1, . . . , k − 2}, we have

tk − tk−1 = tk−j − tk−j−1 for each j ∈ {1, . . . , k − 2}. (7)

By (4), tk − tk−1 = t1. Thus, by (7),

tj = tj−1 + t1 = tj−2 + 2t1 = · · · = t1 + (j − 1)t1 = jt1

for each j ∈ [k].
Now we show (iii) ⇒ (i). Suppose that G = Gn〈t1, 2t1, . . . , kt1〉.
By Proposition 2.3, each component of G is Gni

〈1, 2, . . . , k〉 for some
ni ≤ n. Therefore it suffices to show that Gni

〈1, 2, . . . , k〉 is an interval
graph for any ni. To each vertex u ∈ [ni], we assign an interval [u, u + k].
We note that [u, u + k] ∩ [v, v + k] 6= ∅ if and only if v − u ∈ [k], that is,
u and v are adjacent in Gni

〈1, 2, . . . , k〉. Thus Gni
〈1, 2, . . . , k〉 is an interval

graph and hence we may conclude G is an interval graph.

In the rest of this section, we characterize perfect Toeplitz graphs in the
following by utilizing the results we have shown. We first introduce classes
of well-known perfect graphs.
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Theorem 3.4. [11] Chordal graphs, cographs and bipartite graphs are per-
fect.

The following corollary is an immediate consequence of Proposition 3.1
and Theorem 3.4.

Corollary 3.5. Let G = Gn〈t, 2t, . . . , kt〉. Then χ(G) = k + 1.

Proof. By Proposition 3.1, G = Gn〈t, 2t, . . . , kt〉 is chordal, and thus, by
Theorem 3.4, it is a perfect graph. Then, by Theorem 3.3, χ(G) = ω(G) =
k + 1.

Next, we characterize perfect Toeplitz graphs Gn〈t1, t2〉. To do so, we
introduce the following Theorem. A graph G is called a Berge graph if it
contains neither an odd hole nor an odd anti-hole as an induced subgraph.

Theorem 3.6. (Strong Perfect Graph Theorem [2]) A graph is perfect if
and only if it is Berge.

Theorem 3.7. Let G = Gn〈t1, t2〉 with n ≥ t1 + t2 and d = gcd(t1, t2).
Then the following statements are equivalent.

(i) (t1 + t2)/d is even or (t1 + t2)/d = 3.

(ii) G is an odd-hole-free graph.

(iii) G is a perfect graph.

(iv) G is a weakly perfect graph.

Proof. Let k1 = t1/d and k2 = t2/d. We first show (ii) ⇒ (i). Since G has
a hole of length k1 + k2 by Lemma 3.2, G is an odd-hole-free graph only if
k1 + k2 is even or k1 + k2 = 3.

Now we show (i) ⇒ (ii). Suppose that k1 + k2 = 3. Since t1 < t2, k1 = 1
and k2 = 2 and so t2 = 2t1. Therefore G is chordal by Proposition 3.1
and thus G is odd-hole-free by Theorem 3.4. Suppose that k1 + k2 is even.
We prove by contradiction. Suppose that G has an odd-hole C of length
ℓ for some positive odd integer ℓ ≥ 5. Let C = v1v2 . . . vℓv1. Then, by
Proposition 2.1, |vi+1 − vi| ∈ {t1, t2} for each i ∈ [ℓ] (we identify v1 with
vℓ+1). For each j ∈ {1, 2}, let aj be the number of indices i such that
vi+1 − vi = tj , and let bj be the number of indices i such that vi − vi+1 = tj
for each i ∈ [ℓ]. Then the length of C is a1 + b1 + a2 + b2. Since v1 = vℓ+1,

0 = (vℓ+1 − vℓ) + (vℓ − vℓ−1) + · · · + (v2 − v1) + (v1 − vℓ+1)

= a1t1 + a2t2 − b1t1 − b2t2,
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or (a1 − b1)t1 = (b2 − a2)t2. If a2 = b2, then b1 = a1 and so the length of C
is 2(a1 + a2), which is a contradiction. Thus a2 6= b2. Then

k2
k1

=
t2
t1

=
a1 − b1
b2 − a2

.

Therefore αk2 = a1 − b1 and αk1 = b2 − a2 for some integer α. Then the
length of C is 2b1+2a2+α(k1+k2). Since k1+k2 is even by the supposition,
we reach a contradiction. Thus G is odd-hole-free. Hence we have shown
that (i) ⇔ (ii).

By Theorem 3.6, (iii) ⇒ (ii). Next, we will show (i) ⇒ (iii). Suppose
that k1 + k2 is even or k1 + k2 = 3. If k2 = 2k1, then G is chordal by
Proposition 3.1 and thus G is a perfect graph by Theorem 3.4. Suppose
that k2 6= 2k1. Then k1 + k2 6= 3, so k1 + k2 is even. In addition, G is
not chordal by Theorem 3.3, so ω(G) ≤ 2 by Theorem 2.8. Since we have
shown (i) ⇒ (ii), G is an odd-hole-free graph. By Theorem 3.6, it remains
to show that G does not contain an odd anti-hole. Since the complement of
a cycle C5 is C5 again, G does not contain an anti-hole on 5 vertices. Note
that any odd anti-hole with at least 7 vertices contains a triangle. Yet, since
ω(G) ≤ 2, G does not contain a triangle. Therefore G does not contain any
odd anti-hole with at least 7 vertices and so we have shown that G is odd
anti-hole-free.

Obviously (iii) ⇒ (iv). To complete the proof, we will show (iv) ⇒ (ii).
Suppose that G is a weakly perfect graph. Then χ(G) = ω(G) by definition.
By Theorem 2.8, ω(G) ≤ 3 and the equality holds if and only if G is chordal.
If ω(G) = 3, then G is chordal and so, by Theorem 3.4, G is a perfect graph.
Since we have shown (iii) ⇒ (ii), G is odd-hole-free if ω(G) = 3. Suppose
that ω(G) = 2. Then χ(G) = 2, so G is a bipartite graph, which implies
that G is odd-hole-free.

Theorem 3.8. (Weak Perfect Graph Theorem [18]) A graph is perfect if
and only if its complement is perfect.

By definition, it is easy to check that the complement of a Toeplitz graph
Gn〈s1, s2〉 is Gn〈t1, t2, . . . , tn−3〉 where {t1, . . . , tn−3} = [n − 1] \ {s1, s2}.
Thus, by Theorems 3.7 and 3.8, the following corollary is true.

Corollary 3.9. Let G = Gn〈t1, . . . , tn−3〉 and {s1, s2} = [n−1]\{t1, . . . , tn−3}
with s1+s2 ≤ n. Then G is a perfect graph if and only if (s1+s2)/ gcd(s1, s2)
is even or (s1 + s2)/ gcd(s1, s2) = 3.
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4. Degree sequence of Toeplitz graphs

The degree sequence of a graph is defined to be a monotonic nonincreasing
sequence of the vertex degrees of its graph vertices. In this section, we
characterize the degree sequence (d1, d2, . . . , dn) of a Toeplitz graph with n
vertices and show that a Toeplitz graph is a regular graph if and only if it
is a circulant graph.

We recall that B(G) = {t1, . . . , tk} for G := Gn〈t1, . . . , tk〉. For a
Toeplitz graph G = Gn〈t1, . . . , tk〉, we denote by ℓG(i) the number of el-
ements in {t1, . . . , tk} which are less than i. Then it is easy to see that

ℓG(j + 1)− ℓG(j) = 1 ⇔ j ∈ B(G) (8)

for any j ∈ [n− 1].

Theorem 4.1. Let G = Gn〈t1, . . . , tk〉. Then for each i ∈ [n],

deg(i) = ℓG(i) + ℓG(n− i+ 1).

Proof. Take a vertex i ∈ [n]. Then

deg(i) = |{i− t1, . . . , i− tk, i+ t1, . . . , i+ tk} ∩ [n]|

= |{i− t1, . . . , i− tk} ∩ [n]|+ |{i+ t1, . . . , i+ tk} ∩ [n]|.

By definition of ℓG(i),

{i− t1, . . . , i− tk} ∩ [n] = {i− t1, . . . , i− tℓG(i)}

and
{i+ t1, . . . , i+ tk} ∩ [n] = {i+ t1, . . . , i+ tℓG(n−i+1)},

where the right sides of the first and second equalities are ∅ if ℓG(i) = 0 or
ℓG(n− i+ 1) = 0, respectively.

Corollary 4.2. For a Toeplitz graph on n vertices, the following are true:

(a) For each j ∈ [n], deg(j) = deg(n− j + 1).

(b) If n is odd, then deg
(

n+1
2

)

is even.

Lemma 4.3. The difference of degrees of two consecutive vertices of a
Toeplitz graph is at most 1. Moreover, for G := Gn〈t1, . . . , tk〉 and each
vertex j ∈ [n− 1], the following are true:
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(a) deg(j) = deg(j + 1) if and only if {j, n − j} ⊆ B(G) or {j, n − j} ⊆
[n− 1]\B(G).

(b) deg(j) + 1 = deg(j + 1) if and only if j ∈ B(G) and n− j /∈ B(G).

(c) deg(j) − 1 = deg(j + 1) if and only if n− j ∈ B(G) and j /∈ B(G).

Proof. Let G = Gn〈t1, . . . , tk〉. Take j ∈ [n− 1]. By definition,

0 ≤ ℓG(j + 1)− ℓG(j) ≤ 1 and − 1 ≤ ℓG(n − j)− ℓG(n− j + 1) ≤ 0.

Therefore
−1 ≤ deg(j + 1)− deg(j) ≤ 1

by Theorem 4.1. To show the ‘moreover’ part, suppose that deg(j + 1) =
deg(j). Then either (i) ℓG(j+1)−ℓG(j) = 1 and ℓG(n−j)−ℓG(n−j+1) = −1
or (ii) ℓG(j + 1) − ℓG(j) = ℓG(n − j) − ℓG(n − j + 1) = 0. Thus, by (8),
{j, n − j} ⊆ B(G) in the case (i) and {j, n − j} ⊆ [n− 1]\B(G) in the case
(ii). One may check (b) and (c) in a similar manner as above.

From Corollary 4.2, we know that the degree sequence of a Toeplitz graph
of order n has the property that each term appears an even number of times,
except the degree of (n+ 1)/2 which happens to be even when n is odd. In
addition, the terms form consecutive integers with possible repetition by
Lemma 4.3. However, this necessary condition cannot be sufficient. To
see why, we take the sequence d = (4, 3, 3, 2, 2, 1, 1), which satisfies the
necessary condition. Suppose that d is the degree sequence of a Toeplitz
graph G. Then deg(1) = 1, deg(2) = 2, deg(3) = 3. By Lemma 4.3(b),
1 ∈ B(G) and 2 ∈ B(G). Then 1 is adjacent to 2 and 3 and we reach a
contradiction.1 This counterexample is a special case of (2m, 2m − 1, 2m−
1, 2m− 2, 2m− 2, . . . , 2, 2, 1, 1) for some m ≥ 2, which cannot be the degree
sequence of any Toeplitz graph of order 4m− 1.

The following theorem gives a necessary and sufficient condition for a
monotone nonincreasing sequence dn = (d1, d2, . . . , dn) of nonnegative inte-
gers being the degree sequence of a Toeplitz graph.

Theorem 4.4. A monotone nonincreasing sequence dn = (d1, d2, . . . , dn)
of nonnegative integers is the degree sequence of a Toeplitz graph if and only
if there is a permutation π on [n] such that

(a) |dπ(i+1) − dπ(i)| ≤ 1 for each i ∈ [n− 1];

1The authors thank Homoon Ryu for finding this counterexample.
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(b) dπ(i) = dπ(n−i+1) for each i ∈ [n];

(c) s ≤ dπ(1) ≤ n− 1− s;

(d) dπ(1) and s have the same parity if n is odd,

where s is the number of i ∈ {1, . . . , ⌊(n− 1)/2⌋} for which dπ(i+1) − dπ(i) 6=
0.

Proof. For notational convenience, we let m = ⌊(n− 1)/2⌋. We first show
the ‘only if’ part. Suppose that dn = (d1, d2, . . . , dn) is the degree sequence
of a Toeplitz graph G := Gn〈t1, . . . , tk〉. Let π be the permutation on [n]
such that dπ(i) = deg(i) for each i ∈ [n]. Then the conditions (a) and (b)
immediately come from Corollary 4.2 and Lemma 4.3. Obviously, dπ(1) =
deg(1) = k. Now, for each i ∈ [m] such that deg(i+1)− deg(i) 6= 0, exactly
one of i or n− i belongs to B(G) and the other belongs to [n− 1] \B(G) by
Lemma 4.3 (b) and (c). Therefore s ≤ |B(G)| = k and s ≤ |[n−1]\B(G)| =
n−1−k, so the sequence with the permutation π satisfies the condition (c).
Let

B+ = {i ∈ [m] | deg(i+ 1)− deg(i) = 1}

and
B− = {i ∈ [m] | deg(i+ 1)− deg(i) = −1}.

Then

dπ(m+1) − dπ(1) =
(

dπ(m+1) − dπ(m)

)

+ · · · +
(

dπ(2) − dπ(1)
)

= |B+| − |B−|.

Since the parities of s = |B+|+|B−| and |B+|−|B−| are the same, dπ(m+1) is
odd and we reach a contradiction. Thus the sequence with the permutation
π satisfies the condition (d).

Now we show the ‘if’ part. Suppose that there exists a permutation π on
[n] satisfying the conditions (a), (b), (c) and (d). For notational convenience,
let k = dπ(1). We will construct a Toeplitz graph G := Gn〈t1, . . . , tk〉 such
that deg(i) = dπ(i) for each i ∈ [n] as follows.

Let
B1 = {i | dπ(i+1) − dπ(i) = 1, i ∈ [m]},

B2 = {i | dπ(i+1) − dπ(i) = −1, i ∈ [m]},

and
B3 = {i | dπ(i+1) − dπ(i) = 0, i ∈ [m]}.
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Then |B1|+ |B2|+ |B3| = m by condition (a) and they are mutually disjoint
sets. By definition, |B1|+ |B2| = s and so |B3| = m− s. In addition, since
dπ(1) ≤ n− 1− s by the condition (c), dπ(1) − s ≤ n− 1− 2s. Thus

⌊

dπ(1) − s

2

⌋

≤

⌊

n− 1− 2s

2

⌋

≤ |B3|,

and so we may choose
⌊

(dπ(1) − s)/2
⌋

elements from B3. We denote by B∗
3

the set of those
⌊

(dπ(1) − s)/2
⌋

elements. Now we define {t1, . . . , tk} by

{

B1 ∪ {n − i | i ∈ B2} ∪B∗
3 ∪ {n− i | i ∈ B∗

3} if dπ(1) − s is even;

B1 ∪ {n − i | i ∈ B2} ∪B∗
3 ∪ {n− i | i ∈ B∗

3} ∪ {n
2 } otherwise.

Then the set {t1, . . . , tk} is well-defined because n
2 is integer when dπ(1) − s

is odd, by the condition (d), and it is straightforward to check that the set
defined above has k element.

Let G = Gn〈t1, . . . , tk〉. Then

degG(1) = k = dπ(1). (9)

Take i ∈ [m]. By the definition of B(G), i ∈ B1 if i ∈ B(G) and
n− i /∈ B(G); i ∈ B2 if i /∈ B(G) and n− i ∈ B(G); i ∈ B∗

3 if either i ∈ B(G)
and n − i ∈ B(G) or i /∈ B(G) and n − i /∈ B(G). Thus deg(i) = dπ(i) by
Lemma 4.3. By the way, for each i ∈ [m], dπ(i) = dπ(n−i+1) by the condition
(b), so deg(n− i+ 1) = deg(i) = dπ(i) = dπ(n−i+1). Hence dπ(i) = deg(i) for
each i ∈ [n] and dn is the degree sequence of G.

In the rest of this section, we will show that a necessary and sufficient
condition for a Toeplitz graph being regular is its being a circulant graph.
To do so, we need the following lemma.

Lemma 4.5. Let G = Gn〈t1, t2, . . . , tk〉. Then G is a circulant graph if and
only if tk+1−i = n− ti for each i ∈ [k].

Proof. Let (aij)1≤i,j≤n be the adjacency matrix of G. To show the ‘only if’
part, suppose that G is a circulant graph.

Take i ∈ [n − 1]. Suppose that i ∈ B(G) (recall B(G) = {t1, . . . , tk}).
Then ai+1,1 = 1 by definition. By (2), an−i+1,1 = ai+1,1 = 1. Therefore
n− i ∈ B(G). Thus

B(G) = {n− tk, . . . , n− t1}.

Since t1 < t2 < · · · < tk, tk+1−j = n− tj for each j ∈ [k].
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Now we show the ‘if’ part. Suppose that tk+1−i = n − ti for each i ∈
[n − 1]. Then, for each s ∈ [n − 1], as+1,1 = 1 if and only if s ∈ B(G) if
and only if n− s ∈ B(G) if and only if an−s+1,1 = 1. Thus (aij)1≤i,j≤n is a
circulant matrix.

Let G be a circulant graph isomorphic to Gn〈t1, . . . , tk〉. It is well-known
that if ti 6= n/2 for each i ∈ [k], then k is even and G is a regular graph; if
n is even and tj = n/2 for some j ∈ [k], then k is odd and G is a regular
graph (see [22]). Therefore any circulant graph is a regular Toeplitz graph.
In the following, we show that its converse is also true.

Theorem 4.6. A Toeplitz graph is regular if and only if it is a circulant
graph.

Proof. By the argument above, it is sufficient to show the ‘only if’ part. Let
G = Gn〈t1, . . . , tk〉 be a regular Toeplitz graph. Then deg(i) = deg(i+1) for
each i ∈ {1, . . . , ⌈n/2⌉−1}. Now, by Lemma 4.3(a), either {i, n− i} ⊂ B(G)
or {i, n − i} ⊂ [n− 1]\B(G) for each i ∈ [n− 1]. Since B(G) 6= ∅,

B(G) = {t1, . . . , tk} = {n − tk, . . . , n− t1}.

Thus tk+1−i = n− ti for each i ∈ [k] and so, by Lemma 4.5, G is a circulant
graph.

5. Closing remarks

Theorem 3.3 gives equivalent conditions for a Toeplitz graphGn〈t1, t2, . . . , tk〉
with t1 < · · · < tk and n ≥ tk−1 + tk being chordal. In the proof of The-
orem 3.3, we did not use the condition n ≥ tk−1 + tk when we showed
(iii) ⇔ (iv), (iii) ⇒ (i), and (i) ⇒ (ii).

Question 1. Does the statement (ii) imply the statement (i) in Theorem 3.3
without the condition n ≥ tk−1 + tk?

Theorem 3.7 gives equivalent conditions for a Toeplitz graph Gn〈t1, t2〉
being perfect for any positive integers n and t1 < t2.

Question 2. Is there any meaningful characterization for (weakly) perfect
Toeplitz graphs Gn〈t1, t2, . . . , tk〉 with k ≥ 3?

Acknowledgements

The authors thank anonymous referees for his/her helpful comments to
improve the paper (in particular, the proof of Lemma 3.2 and Section 4).

18



This work was supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIP) (2016R1A5A1008055,
NRF-2017R1E1A1A03070489, 2021R1C1C2014187), the Ministry of Educa-
tion (NRF-2016R1A6A3A11930452).

References

[1] J. Chen, G. Chang, K. Huang, Integral distance graphs, J. Graph The-
ory 25 (1997) 287–294.

[2] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong
perfect graph theorem, Annals of Mathematics 164 (2006) 51–229.

[3] R. Euler, Characterizing bipartite Toeplitz graphs, Theor. Comput. Sci
263 (2001) 47–58.

[4] R. Euler, Coloring planar Toeplitz graphs and the stable set polytope,
Discret. Math. 276 (2004) 183–200.

[5] R. Euler, T. Zamfirescu, On planar Toeplitz graphs, Graphs and Com-
binatorics 29 (2013) 1311–1327.

[6] R. Euler, H. Le Verge, T. Zamfirescu, A characterization of infinite,
bipartite Toeplitz graphs, In: Ku Tung-Hsin (ed.) Combinatorics and
Graph Theory’95, vol. 1, pp. 119–130. Academia Sinica, World Scien-
tific, Singapore (1995).

[7] I. Gohberg (ed.), Toeplitz centennial, Birkhäuser, Boston, 1982.

[8] G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and
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