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Abstract

In this paper, by shifting technique we study t-intersecting families for
direct products where the ground set is divided into several parts. As-
suming the size of each part is sufficiently large, we determine all extremal
t-intersecting families for direct products. We also prove that every largest
t-intersecting subfamily of a more general family introduced by Katona is
trivial under certain conditions.
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1 Introduction

Let n and k be two integers with 0 6 k 6 n. For an n-element set X , denote
the set of all subsets and the collection of all k-subsets of X by 2X and

(
X

k

)
,

respectively. Given a positive integer t, we say a family F ⊂ 2X is t-intersecting
if |A ∩ B| > t for any A,B ∈ F . A t-intersecting family is called trivial if every
element of this family contains a fixed t-subset of X . When t = 1, we usually omit
t. The famous Erdős-Ko-Rado theorem [7] states that if F ⊂

(
X

k

)
is t-intersecting

and n > n0(k, t), then

|F | 6

(
n− t

k − t

)

,

and the equality holds if and only if F =
{
F ∈

(
X

k

)
: T ⊂ F

}
for some T ∈

(
X

t

)
.

It is well-known that the smallest value of n0(k, t) is (t + 1)(k − t + 1), which
was proved by Frankl [8] for t > 15, and confirmed by Wilson [20] for all t via
the eigenvalue method. In [8], Frankl also put forward a conjecture about the
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maximum size of a t-intersecting subfamily of
(
X

k

)
for n > 2k− t. This conjecture

was proved by Ahlswede and Khachatrian [2].
The Erdős-Ko-Rado theorem has been extended to different mathematical ob-

jects, such as vector spaces [11, 18], attenuated spaces [12], permutation groups
[6], 2-transitive groups [13], labeled sets [3] and partition sets [16].

In [9], Frankl studied intersecting families for direct products. For convenience,
set X = [n] := {1, . . . , n} in the following. Let p, n1, . . . , np be positive integers
such that n = n1+ · · ·+np. Then X can be partitioned into p parts X1, X2, . . . , Xp

where

X1 = [n1], Xi =

[
∑

j6i

nj

]

\

[
∑

j6i−1

nj

]

, i = 2, . . . , p.

For positive integers ki ∈ [ni] with k = k1 + · · ·+ kp, write

H1 :=

(
X1, . . . , Xp

k1, . . . , kp

)

=

{

F ∈

(
X

k

)

: |F ∩Xi| = ki, i = 1, . . . , p

}

.

Observe that |H1| =
∏

j∈[p]

(
nj

kj

)
. For each x ∈ Xl, the size of {A ∈ H1 : x ∈ A}

is kl|H1|/nl. Frankl gave the maximum size of an intersecting subfamily of H1 by
the eigenvalue method.

Theorem 1.1. ([9]) Suppose F ⊂ H1 is an intersecting family and ni > 2ki for
i = 1, . . . , p. Then

|F |

|H1|
6 max

i∈[p]

ki
ni

.

Recently, Kwan et al. [17] determined the maximum size of a non-trivially
intersecting subfamily of H1 when n1, . . . , np are sufficiently large and so disproved
a conjecture of Alon and Katona, which was also mentioned in [14]. The maximum
sum of sizes of cross intersecting subfamilies of H1 was determined by Kong et al.
[15]. Ahlswede et al. [1] completely determined the maximum size of a (t1, . . . , tp)-
intersecting subfamily of H1, in which any two sets intersect in at least ti elements
of Xi for some i ∈ [p].

In this paper, we study t-intersecting subfamilies of H1. One of our main
results is the following.

Theorem 1.2. Suppose F ⊂ H1 is a t-intersecting family. If ni > 2(t + 1)pk2
i

for any i ∈ [p], then

|F | 6 max
t1+···+tp=t
t1,...,tp∈N

∏

i∈[p]

(
ni − ti
ki − ti

)

.

Moreover, the equality holds if and only if

F = {F ∈H1 : T ⊂ F},
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where T ∈
(
X

t

)
such that

ki − |T ∩Xi|

ni − |T ∩Xi|
6

kj − |T ∩Xj|+ 1

nj − |T ∩Xj |+ 1
(1)

for any i ∈ [p] whenever |T ∩Xj | > 1.

We remark here that t-intersecting subfamilies of H1 with maximum size may
not be trivial when n1, . . . , np are small. Under the condition that p = t = 2, n1 =
8, n2 = 10 and k1 = k2 = 4, it is routine to check that the 2-intersecting family
{A ∈H1 : |A ∩ [4]| > 3} has a larger size than the largest trivially 2-intersecting
subfamily of H1.

In [14], Katona extended H1 to a more general case. For a non-empty finite
set R ⊂ Z

+ × · · · × Z
+

︸ ︷︷ ︸

p

, write

H2 :=
⋃

(r1,...,rp)∈R

(
X1, . . . , Xp

r1, . . . , rp

)

.

For convenience, let b and c denote the maximum and minimum of numbers ap-
pearing in some elements of R, respectively. By the cyclic method, Katona proved
the following result.

Theorem 1.3. ([14]) Suppose p = 2 and n1, n2 > 9b2. If F ⊂H2 is intersecting,
then |F | cannot exceed the size of the largest trivially intersecting subfamily of
H2.

Our another main result extends Katona’s result.

Theorem 1.4. Suppose t 6 c. If ni > 2(t + 1)pbt+2 for any i ∈ [p], then every

largest t-intersecting subfamily of H2 is trivial.

Write

H3 :=

{

F ∈

(
X

k

)

: |F ∩Xi| > ai, i = 1, . . . , p

}

,

where a1, . . . , ap are integers with a1+ · · ·+ap 6 k and 0 6 ai < ni. In [10], Frankl
et al. put forward the following conjecture.

Conjecture 1.5. ([10]) If ni > 2ai for all i and ni > k −
∑p

j=1 aj + ai for all but
at most one i ∈ [p] such that ai > 0, then the largest intersecting subfamily of H3

is trivial.

As a corollary of Theorem 1.4, Conjecture 1.5 is true when a1, . . . , ap are posi-
tive and each Xi has a size larger than 4p(k −

∑p

i=1 ai +maxi∈[p] ai)
3.

In Section 2, we will focus on the shifting technique and prove some useful
results for direct products. In Section 3, we will give the proof of our main results.
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2 Shifting technique for direct products

In this section, we investigate the shifting technique and prove some useful results
for direct products.

For any i, j ∈ X and F ⊂ X , define

δi,j(F ) =

{

(F \ {j}) ∪ {i}, j ∈ F, i 6∈ F ;

F, otherwise.

Let ∆i,j be the operation on a family F ⊂ 2X defined by

∆i,j(F ) = {δi,j(F ) : F ∈ F} ∪ {F ∈ F : δi,j(F ) ∈ F}.

We have |∆i,j(F )| = |F |.
A family F ⊂ 2X is called shifted if ∆i,j(F ) = F holds for any i, j ∈ X with

i < j. By applying such operations repeatedly to a subfamily of 2X we can get a
shifted family.

We say two non-empty subfamilies A and B of 2X are cross t-intersecting if
|A ∩ B| > t for any A ∈ A and B ∈ B. The following lemma states that the
shifting operation keeps such intersection property.

Lemma 2.1. ([4, Lemma 2.1]) Let A and B ⊂ 2X be cross t-intersecting families.

(i) For any i, j ∈ X , ∆i,j(A ) and ∆i,j(B) are still cross t-intersecting.

(ii) If t 6 r 6 s 6 n, A ⊂
(
X

r

)
, B ⊂

(
X

s

)
, and A and B are shifted, then

|A ∩B ∩ [r + s− t]| > t for any A ∈ A and B ∈ B.

For F ⊂ H2, if ∆i,j(F ) = F holds for any i, j ∈ Xl with i < j, we say F
is l-shifted. Similar to the single-part case, one gains an l-shifted family by doing
the shifting operation repeatedly on F . Notice that Lemma 2.1(i) still holds for
A ⊂

(
X1,...,Xp

r1,...,rp

)
and B ⊂

(
X1,...,Xp

s1,...,sp

)
.

For l ∈ [p] and a positive integer s 6 nl, denote the collection of the first s
elements of Xl by Ql(s). The next lemma is an extension of Lemma 2.1(ii).

Lemma 2.2. Suppose ni > ri + si − 1 for any i ∈ [p]. Let A ⊂
(
X1,...,Xp

r1,...,rp

)
and

B ⊂
(
X1,...,Xp

s1,...,sp

)
be cross t-intersecting families. If A and B are l-shifted for any

l ∈ [p], then
p
∑

i=1

|A ∩B ∩Qi(ri + si − 1)| > t

for any A ∈ A and B ∈ B.
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Proof. For each i ∈ [p], write

Di := Qi(ri + si − 1) \ (A ∪B), Ei := (A ∩ B ∩Xi) \Qi(ri + si − 1).

Note that

ri + si = |A ∩Xi|+ |B ∩Xi| > 2|Ei|+ |(A ∪ B) ∩Qi(ri + si − 1)|, (2)

|Di| = ri + si − 1− |(A ∪ B) ∩Qi(ri + si − 1)|. (3)

If |Ei| 6= ∅, then |Di| > |Ei| from (2) and (3).
Let Gi be an |Ei|-subset of Di. Write

C :=



B \
⋃

i∈[p]

Ei



 ∪




⋃

i∈[p]

Gi



 .

Observe that, for each i ∈ [p],

C ∩A ∩Xi = ((B \ Ei) ∪Gi) ∩A ∩Xi = A ∩B ∩Qi(ri + si − 1).

When Ei 6= ∅, notice that maxGi < minEi and |Ei| = |Gi|. Thus C can be
obtained by doing a series of shifting operations on B. Since B is l-shifted for any
l ∈ [p], we have C ∈ B. So |A ∩ C| > t. Hence

p
∑

i=1

|A ∩B ∩Qi(ri + si − 1)| =

p
∑

i=1

|A ∩ C ∩Xi| = |A ∩ C| > t,

as desired.

Given positive integers g, h with g > 2h, it is well-known that the Kneser graph

KG(g, h) is the graph on the vertex set
(
[g]
h

)
, with an edge between two vertices if

and only if they are disjoint. To characterize extremal structures in Theorems 1.2
and 1.4, we need a property of Kneser graphs which is derived from Theorem 1 in
[5].

Lemma 2.3. For Kneser graphs KG(g1, h1), . . . , KG(gw, hw) with gi > 2hi for

any i ∈ [w], their direct product
∏

i∈[w]KG(gi, hi) is connected.

For H ⊂ 2X , we say F ⊂H is a full t-star in H if F is the collection of all
sets in H containing a fixed t-subset of X . For each i ∈ [p], let bi be the maximum
number appearing in the i-th coordinate of some elements of R.

Lemma 2.4. Let F ⊂ H2 be a t-intersecting family. Suppose nm > 2(t + 1)bm
for any m ∈ [p]. For l ∈ [p] and i, j ∈ Xl, if ∆i,j(F ) is a full t-star in H2, then

F is also a full t-star in H2.
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Proof. For r = (r1, . . . , rp) ∈ R, let Fr denote F ∩
(
X1,...,Xp

r1,...,rp

)
in the rest of the

paper. Write
Fr(l) := {F \Xl : F ∈ Fr}.

For each R ∈ Fr(l), let

GR :=

{

R′ ∈

(
Xl

rl

)

: R ∪R′ ∈ Fr

}

.

Observe that

Fr =
⋃

R∈Fr(l)

{R∪R′ : R′ ∈ GR}, ∆i,j(Fr) =
⋃

R∈Fr(l)

{R∪R′′ : R′′ ∈ ∆i,j(GR)}. (4)

By assumption, there exists T0 ∈
(
X

t

)
such that ∆i,j(F ) = {F ∈ H2 : T0 ⊂ F},

which implies that

∆i,j(Fr) =

{

F ∈

(
X1, . . . , Xp

r1, . . . , rp

)

: T0 ⊂ F

}

. (5)

We have |GR| = |∆i,j(GR)| =
(
nl−tl
rl−tl

)
, where tl := |T0 ∩Xl|.

If T0 ∩ Xl = ∅, we get GR = ∆i,j(GR) from ∆i,j(GR) =
(
Xl

rl

)
. By (4), Fr =

∆i,j(Fr). Hence F = ∆i,j(F ), as desired.
Now suppose T0 ∩Xl 6= ∅. By (5), we have

Fr(l) = {G ⊂ X \Xl : T0 \Xl ⊂ G, |G ∩Xm| = rm, m ∈ [p] \ {l}}.

Note that nm > 2(t + 1)rm for any m ∈ [p]. Then given R0 ∈ Fr(l), there exists
S0 ∈ Fr(l) such that R0 ∩ S0 = T0 \Xl. Since Fr is t-intersecting, GR0

and GS0

are cross tl-intersecting families with |GR0
||GS0
| =

(
nl−tl
rl−tl

)2
. By Theorem 1 in [19],

we get

GR0
= GS0

=

{

G ∈

(
Xl

rl

)

: T ′
l ⊂ G

}

for some T ′
l ∈

(
Xl

tl

)
. Next we prove GS = GR0

for any S ∈ Fr(l) \ {R0}.

For each S ∈ Fr(l), we have |(S \ T0) ∩ Xm| = rm − tm, m ∈ [p] \ {l}.
Thus the set {R \ T0 : R ∈ Fr(l)} can be seen as the vertex set of the graph
∏

m∈[p]\{l}KG(nm − tm, rm − tm). Notice that nm − tm > 2(rm − tm). Suppose
S 6= R0. By Lemma 2.3, this graph contains a walk

R0 \ T0, A1, . . . , Az = S \ T0.

Let B0 = R0, B1 = A1 ∪ (T0 \Xl), . . . , Bz = S ∈ Fr(l). Then Bq ∩Bq+1 = T0 \Xl

for q = 0, 1, . . . , z − 1. Consequently GR0
= GB1

= · · · = GS.
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For any R ∈ Fr(l), GR is the collection of all rl-subsets of Xl containing T ′
l .

Hence

Fr =

{

R ∪R′ : R ∈ Fr(l), T ′
l ⊂ R′ ∈

(
Xl

rl

)}

=

{

F ∈

(
X1, . . . , Xp

r1, . . . , rp

)

: T1 ⊂ F

}

,

(6)

where T1 := (T0 \Xl) ∪ T ′
l .

For s = (s1, . . . , sp) ∈ R, by (6), there exists T2 ∈
(
X

t

)
such that Fs is the

collection of all sets in
(
X1,...,Xp

s1,...,sp

)
containing T2. Since nm > 2(t + 1)bm for any

m ∈ [p], there are F1 ∈ Fr and F2 ∈ Fs such that (F1 \ T1)∩ (F2 \ T2) = ∅. Then
t 6 |F1 ∩ F2| = |T1 ∩ T2| 6 t, which implies that T1 = T2. Thus for any s ∈ R,
Fs is the collection of all sets in

(
X1,...,Xp

s1,...,sp

)
containing T1, which implies that the

desired result follows.

3 Proof of main results

In this section, we shall prove our main results.
Let F ⊂ H2 be a t-intersecting family. If F = ∅, there is nothing to prove.

So suppose that F 6= ∅. Besides, according to Lemma 2.4, we may assume that
F is l-shifted for any l ∈ [p].

Recall that bi = max
(r1,...,rp)∈R

ri for i = 1, . . . , p. Write

K :=

p
⋃

i=1

Qi(2bi − 1), α(F ) := min
F∈F
|F ∩K|.

We have α(F ) > t. Indeed, since two non-empty subfamilies Fr and Fs are cross
t-intersecting and l-shifted for any l ∈ [p], by Lemma 2.2 we get

|F ∩K| >

p
∑

i=1

|F ∩G ∩Qi(2bi − 1)| > t, (7)

where F ∈ Fr and G ∈ Fs.

Lemma 3.1. Suppose F ⊂ H2 is a t-intersecting family. If α(F ) = t and F is

l-shifted for any l ∈ [p], then

|F | 6 max
t1+···+tp=t
t1,...,tp∈N

∑

(r1,...,rp)∈R

∏

i∈[p]

(
ni − ti
ri − ti

)

. (8)

Moreover, when the equality holds, F is a full t-star in H2.

7



Proof. By assumption, there exists F0 ∈ F such that |F0 ∩ K| = t. By (7), for
any G ∈ F , we have

F0 ∩K =
⋃

i∈[p]

(F0 ∩G ∩Qi(2bi − 1)) ⊂ G. (9)

Therefore, for any r = (r1, . . . , rp) ∈ R,

|Fr| 6
∏

i∈[p]

(
ni − |F0 ∩Qi(2bi − 1)|

ri − |F0 ∩Qi(2bi − 1)|

)

.

Then (8) follows from |F | =
∑

r∈R |Fr|.
By (9), F is a collection of some sets in H2 containing F0 ∩K. So when the

equality in (8) holds, F is a full t-star in H2.

For positive integers t, p, n1, . . . , np, k1, . . . , kp with ni > ki and k1+· · ·+kp > t,
write

gt,p(n1, . . . , np; k1, . . . , kp) = max
t1+···+tp=t
t1,...,tp∈N

∏

i∈[p]

(
ni − ti
ki − ti

)

.

Proof of Theorem 1.2. Notice that H1 is a special case of H2. In view of
Lemma 3.1, we show that

|F | < gt,p(n1, . . . , np; k1, . . . , kp)

when α(F ) > t + 1. For convenience, if there is no confusion, we replace α(F )
with α in the following.

By assumption, there exists A0 ∈ F such that |A0∩K| = α. Then for F ∈ F ,
we have |F ∩K| > α and |F ∩K ∩A0| > t by (7). Thus

F ⊂
⋃

J∈(Kα), |J∩A0|>t

{F ∈H1 : J ⊂ F} . (10)

Let N be the collection of all non-negative integer solutions of the equation
x1+ · · ·+xp = α− t. For each H ∈

(
K∩A0

t

)
and β = (c1, . . . , cp) ∈ N , let J (H, β)

be the set of all J ∈
(
K

α

)
with H ⊂ J and |(J \H)∩Xi| = ci. Denote the number of

F ∈H1 containing at least one element of J (H, β) by f(H, β). For each J ∈
(
K

α

)

satisfying |J ∩ A0| > t, observe that J is an element of some J (H, β). Then by
(10), we have

|F | 6
∑

H∈(K∩A0
t )

∑

β∈N

f(H, β).
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Observe that

|J (H, β)| 6
∏

i∈[p]

(
2ki − 1

ci

)

6
∏

i∈[p]

(2ki)
ci.

Thus

f(H, β)

gt,p(n1, . . . , np; k1, . . . , kp)
6

(

∏

i∈[p]

(2ki)
ci

)

·

(

∏

i∈[p]

(
ni−|H∩Xi|−ci
ki−|H∩Xi|−ci

)

)

∏

i∈[p]

(
ni−|H∩Xi|
ki−|H∩Xi|

) 6
∏

i∈[p]

(
2k2

i

ni

)zi

,

where (z1, . . . , zp) ∈ N such that

∏

i∈[p]

(
2k2

i

ni

)zi

= max
(c1,...,cp)∈N

∏

i∈[p]

(
2k2

i

ni

)ci

.

Note that |N | =
(
α−t+p−1

p−1

)
and

(
x

y

)

=
x∏

i=y+1

(1 +
y

i− y
) 6 (y + 1)x−y

for any positive integers x, y with x > y + 1. By above discussion, we obtain

|F |

gt,p(n1, . . . , np; k1, . . . , kp)
6

(
α

t

)(
α− t+ p− 1

p− 1

)

·
∏

i∈[p]

(
2k2

i

ni

)zi

6 ((t+ 1)p)α−t ·
∏

i∈[p]

(
2k2

i

ni

)zi

=
∏

i∈[p]

(
2(t+ 1)pk2

i

ni

)zi

.

Since ni > 2(t+1)pk2
i for any i ∈ [p], we have |F | < gt,p(n1, . . . , np; k1, . . . , kp), as

desired.
For each S ∈

(
X

t

)
, write

P(S) := {(i, j(i)) ∈ Z
2 : i ∈ [p], 0 6 j(i) < |S ∩Xi|}.

Observe that

e(S) :=

∏

i∈[p]

(
ni−|S∩Xi|
ki−|S∩Xi|

)

∏

i∈[p]

(
ni

ki

) =
∏

(i,j)∈P(S)

ki − j

ni − j
. (11)

9



Let T be a t-subset of X . To finish the proof, it is sufficient to show that e(T ) =
max

S∈(Xt )
e(S) if and only if (1) holds for any i ∈ [p] whenever |T ∩Xj | > 1.

Suppose that (1) holds for any i ∈ [p] whenever |X ∩ Tj | > 1. For each
S ∈

(
X

t

)
\ {T}, from

ki
ni

>
ki − 1

ni − 1
> · · · >

1

ni − ki + 1
,

we get

min
(i,j)∈P(T )\P(S)

ki − j

ni − j
> max

(i,j)∈P(S)\P(T )

ki − j

ni − j
. (12)

By (11) and (12), we have e(T )/e(S) > 1. On the other hand, suppose e(T ) =
max

S∈(Xt )
e(S). For each i, j with |T ∩Xj | > 1, let T ′ := (T \ {u}) ∪ {v} ∈

(
X

t

)
,

where u ∈ T ∩Xj and v ∈ Xi \ T . By (11), we have

ki − |T ∩Xi|

ni − |T ∩Xi|
=

e(T ′)

e(T )
·
kj − |T ∩Xj|+ 1

nj − |T ∩Xj |+ 1
6

kj − |T ∩Xj |+ 1

nj − |T ∩Xj|+ 1
.

Hence the desired result holds.

It is not intuitive to find T ∈
(
X

t

)
such that the size of {F ∈ H1 : T ⊂ F}

is gt,p(n1, . . . , np; k1, . . . , kp). Thus we extract an algorithm about how to find all
|T ∩Xi| from the proof of Theorem 1.2.

Algorithm 1

1: Input t, p, k1, . . . , kp, n1, . . . , np

2: Let A be the collection of
ki − j

ni − j
for all i, j with i ∈ [p], j = 0, . . . , ki − 1

3: Sort A in decreasing order a1, a2, . . .

4: Let A(f) be the collection of (i, j) satisfying
ki − j

ni − j
= f for f ∈ A

5: Put i← 1, c← 0, k ← 0, G← ∅
6: while k < t do
7: k ← k + |A(ai)|
8: if k 6 t then
9: G← G ∪ A(ai)

10: else

11: c← |A(ai)| − k + t
12: H ←

(
A(ai)

c

)

13: end if

14: i← i+ 1
15: end while

10



16: if c = 0 then

17: for tm do

18: tm ← |{(m, j) : (m, j) ∈ G}|
19: end for

20: Output t1, . . . , tp
21: else

22: for L ∈ H do

23: J ← G ∪ L
24: for tm do

25: tm ← |{(m, j) : (m, j) ∈ J}|
26: end for

27: Output t1, . . . , tp
28: end for

29: end if

Proof of Theorem 1.4. In consideration of Lemma 3.1, it is sufficient to show
that

|F | < max
t1+···+tp=t
t1,...,tp∈N

∑

(r1,...,rp)∈R

∏

i∈[p]

(
ni − ti
ri − ti

)

when α(F ) > t+ 1. W.o.l.g., suppose that n1 = mini∈[p] ni.
We may assume that Fr 6= ∅ for some r = (r1, . . . , rp) ∈ R, otherwise there is

nothing to prove. Observe that Fr is t-intersecting and α(Fr) > α(F ) > t + 1.
From the proof of Theorem 1.2, we get

|Fr|

gt,p(n1, . . . , np; r1, . . . , rp)
6
∏

i∈[p]

(
2(t+ 1)pr2i

ni

)wi

6
∏

i∈[p]

(
2(t+ 1)pb2i

ni

)qi

, (13)

where w1 + · · ·+wp = α(Fr)− t and q1 + · · ·+ qp = α(F )− t. Notice that there
exist non-negative integers d1, . . . , dp with d1 + · · ·+ dp = t such that

gt,p(n1, . . . , np; r1, . . . , rp)
(
n1−t

r1−t

)
·
∏p

i=2

(
ni

ri

) =




∏

i∈[p]

(
di−1∏

j=0

ri − j

ni − j

)

 ·

(
t−1∏

j=0

n1 − j

r1 − j

)

6 bt. (14)

Combining (13) and (14), we derive

|Fr|
(
n1−t

r1−t

)
·
∏p

i=2

(
ni

ri

) 6 bt ·
∏

i∈[p]

(
2(t+ 1)pb2i

ni

)qi

6

(
2(t+ 1)pbt+2

n1

)α−t

< 1

from n1 > 2(t+ 1)pbt+2. Therefore, |F | is smaller than the number of sets in H2

containing [t], which implies that the desired result follows.
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