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THE RATIO OF THE NUMBERS OF ODD AND EVEN CYCLES

IN OUTERPLANAR GRAPHS

AKIHIRO HIGASHITANI AND NAOKI MATSUMOTO

Abstract. In this paper, we investigate the ratio of the numbers of odd and

even cycles in outerplanar graphs. We verify that the ratio generally diverges to

infinity as the order of a graph diverges to infinity. We also give sharp estimations

of the ratio for several classes of outerplanar graphs, and obtain a constant upper

bound of the ratio for some of them. Furthermore, we consider similar problems in

graphs with some pairs of forbidden subgraphs/minors, and propose a challenging

problem concerning claw-free graphs.

1. Introduction

How different is the number of odd cycles and that of even cycles in a graph?

(The number of subgraphs means that of distinct subgraphs; see Subsection 1.3 for

details.) This is a very natural and fundamental question in graph theory, but, as

far as we know, there is no serious study for this question. Thus, we investigate the

ratio of the number of odd cycles and that of even cycles in graphs, in particular, in

outerplanar graphs.

In the introduction, we first provide a short survey for the study on graph polyno-

mials some of which can be applied to evaluate the number of odd cycles and that of

even cycles in outerplanar graphs. Next we summarize main previous studies on the

number of cycles in graphs, and then we describe our results and the organization

of this paper. For fundamental terminologies and notations undefined in this paper,

we refer the reader to [5].

1.1. Graph polynomial. The chromatic polynomial is the most classical graph

polynomial, introduced by Birkhoff (cf. [4]), which counts the number of proper

colorings of a graph with a given number of colors. This polynomial can count the

number of acyclic orientations of a graph by assigning −1 to the (unique) variable

of the polynomial. Tutte [27] developed a more general graph polynomial, namely

the Tutte polynomial. This polynomial can count forests and spanning subgraphs

(or spanning forests) by suitably setting values of two variables, and specializes

to the chromatic polynomial by assigning some constant to one of two variables.
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For counting of spanning subgraphs of a graph, Farrell [12] introduced a family

polynomial (or F -polynomial), which counts the number of spanning subgraphs of a

graph with each component belonging to the family.

Jamison [16] developed a subtree polynomial which counts all subtrees of a tree,

and well investigated the coefficients of the polynomial [17, 18, 19]. In particular, he

discovered the following interesting fact on the difference between the number of odd

subtrees and that of even subtrees, which can be used to evaluate the ratio of the

number of odd cycles and that of even cycles in some family of outerplanar graphs,

where a graph is odd (resp. even) if the order of the graph is odd (resp. even).

Theorem 1.1 ([18]). For any tree T , the number of odd subtrees minus that of even

subtrees in T is equal to the independence number of T .

The research has been continuing on subtree polynomials; for example, see [7, 29].

A few years ago, Dod et al. [10] introduced a bipartition polynomial which is a com-

mon generalization of several polynomials, namely, the domination polynomial, the

Ising polynomial, the matching polynomial and the cut polynomial. Note that each

cycle in a planar graph G drawn on the plane without edge crossings corresponds to

a cut (i.e., a set of edges which makes a graph disconnected) in the dual graph of G,

where the dual graph of a graph G drawn on the plane is a plane graph which has a

vertex for each face of G and an edge for each pair of faces in G sharing an edge of G.

Thus, the cut polynomial can evaluate the number of cycles in a planar graph, but

it is hard in general to exactly count the number of cycles of a given planar graph

even if we use this polynomial; in fact, this counting problem is #P-complete [28].

For other polynomials and related topics, see a book [25]. (We can also define the

cycle polynomial whose coefficients are the number of cycles. However, this is just

an analogy of other polynomials, and hence, there seems no serious study on this

polynomial.1)

1.2. The number of cycles. For a graph G, the classical estimation of the number

of cycles ν(G) was given as follows:

µ(G) ≤ ν(G) ≤ 2µ(G) − 1,

where µ(G) is the circuit rank (or the cyclomatic number) of G. Volkmann [30] gave

another lower bound to ν(G) using the minimum degree of G, and some authors

study graphs G with ν(G) = 2µ(G) − 1; for example, see [3, 24]. Counting cycles

in graphs has probably begun in 1960s by several groups, e.g., [8, 14]. Khomenko

and Golovko [21] gave a formula counting the number of cycles of a given length

using the adjacency matrix. However, described as in the previous subsection, since

1For several graphs, the cycle polynomial is determined; see

https://mathworld.wolfram.com/CyclePolynomial.html
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counting cycles in a given graph is hard in general, there are many studies on the

number of cycles for particular graph classes; for example, see [2].

It is deeply and widely studied to count the number of hamiltonian cycles. It

is well known that determining whether a graph has a hamiltonian cycle is NP-

hard [20], and hence, many authors count the number of hamiltonian cycles in

prescribed graph classes, e.g., bipartite graphs [26], regular graphs [15] and planar

triangulations [6]. For related studies and other topics, see surveys [13, 23], and for

the directed version of such problems, see another survey [22]. Moreover, we refer

the reader to a more recent paper [1] which investigates the number of (hamiltonian)

cycles in planar graphs with prescribed connectivity.

Despite of those several kinds of results on the number of cycles, there seems no

result on the difference between the number of odd cycles and that of even cycles as

far as we know.

1.3. Contribution. We first introduce terminologies and notations to mention our

results. All graphs considered in this paper are finite simple undirected graphs. For

a graph G, we denote by V (G), E(G) and F (G) the set of vertices, edges and faces,

respectively. Note that we define F (G) only if G is embedded on some surface. In

this paper, the number of subgraphs means the number of distinct subgraphs, where

two subgraphs H1 and H2 of G are distinct if V (H1) 6= V (H2) or E(H1) 6= E(H2).

Let co(G) and ce(G) denote the number of odd cycles and that of even cycles,

respectively.

Let G be an outerplanar graph embedded on the plane so that all vertices lie on

the boundary walk of the infinite face, where a finite (resp. infinite) face of G is a

face of G with its boundary walk bounding a finite (resp. infinite) region. In what

follows, an outerplanar graph means one embedded on the plane. Note that there is

only one infinite face for any outerplanar graph. The boundary walk of the infinite

face of G is denoted by ∂G and an edge e of G is diagonal if e does not belong to ∂G.

We say that ∂G is odd (resp. even) if the length of ∂G is odd (resp. even). When

∂G is an even cycle, we always color ∂G by two colors, black and white. In this case,

an odd (resp. even) chord of G is a diagonal of G joining two vertices with the same

color (resp. distinct colors). When ∂G is a cycle, the dual tree of G, denoted by TG,

is the graph obtained from the dual graph of G by deleting the vertex corresponding

to the infinite face of G.

In this paper, for an outerplanar graph G where ∂G is a cycle, i.e., G is 2-

connected, we have the following results on co(G)/ce(G) and ce(G)/co(G):

• Both co(G)/ce(G) and ce(G)/co(G) diverge to infinity as |V (G)| → ∞ in

general, not depending on the parity of ∂G (Theorem 2.4).

• If the size of each finite face of an outerplanar graphG is odd and |F (G)| ≥ 3,

then |F (G)|−1
2ce(G)

+ 1 ≤ co(G)/ce(G) ≤ |F (G)|−2
ce(G)

+ 1 (Theorem 3.1).
3



• If ∂G is even, then co(G)/ce(G) ≤ k, where k is the number of odd chords,

and this bound is sharp (Theorem 3.2).

• If ∂G is even and the dual tree TG is a path, then co(G)/ce(G) ≤ 2, and this

bound is sharp (Proposition 3.3).

• If the dual tree TG is a star and there is at least one odd face corresponding

to a leaf of TG, then both co(G)/ce(G) and ce(G)/co(G) converge to 1 as

|F (G)| → ∞ (Proposition 3.4).

Note that if a graph G is bipartite, then co(G) = 0 always holds. Thus, we deal

with only non-bipartite graphs in what follows. Moreover, if an outerplanar graph G

is not 2-connected, then we can obtain similar results by applying the above results

to each block of G (see Section 5).

In Section 4, we consider conditions for a graph G concerning forbidden sub-

graphs/minors that co(G)/ce(G) or ce(G)/co(G) is bounded by some constant. Recall

that every outerplanar graph is characterized as aK2,3-minor-free and K4-minor-free

graph [5, Exercise 10.5.12]. Our first result (Theorem 2.4) implies that the K2,3-

minor-free and K4-minor-free condition is not sufficient to bound co(G)/ce(G) or

ce(G)/co(G) by a constant. Moreover, by application of Wagner’s proof [31], every

2-connected graph is K2,3-minor-free if and only if it is either isomorphic to K4 or

outerplanar (cf. [11]). Hence, replacing K2,3-minor-free with K1,3-free (or, popularly,

claw-free), we show that every K1,3-free and K4-minor-free graph is outerplanar, and

we completely characterize the structure of such outerplanar graphs (Theorem 4.1).

As a corollary, for any K1,3-free and K4-minor-free graph G, both co(G)/ce(G) and

ce(G)/co(G) are bounded by a constant unless G is a cycle (Corollary 4.2).

1.4. Organization of the paper. In the next section, we construct 2-connected

outerplanar graphs G such that co(G)/ce(G) or ce(G)/co(G) diverges to infinity. In

Section 3, we show upper/lower bounds of the ratio of the number of odd cycles and

that of even cycles in 2-connected outerplanar graphs. In Section 4, we consider the

ratio of the number of odd cycles and that of even cycles in graphs characterized by

forbidden subgraphs/minors regarding to outerplanar graphs. In the final section,

we give concluding remarks and future perspectives.

2. Outerplanar graphs with many odd/even cycles

We first introduce two particular 2-connected outerplanar graphs G such that ∂G

is odd.

The graph Rk: Given an odd number k with k ≥ 3, prepare a cycle Ck =

v0v1v2 . . . vk−1v0 of length k. Prepare k copies of the 4-cycle denoted by

D0, D1, . . . , Dk−1. For each i ∈ {0, 1, . . . , k − 1}, identify an edge of Di

and vivi+1 where the subscripts are modulo k. The resulting 2-connected

outerplanar graph is denoted by Rk; see Figure 1.
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The graph Lm: Given an odd number m with m ≥ 3, prepare a path Pm =

v0v1v2 . . . vm−1 of order m. For each i ∈ {0, . . . , (m − 3)/2}, join vi and

vm−1−i. The resulting 2-connected outerplanar graph is denoted by L(m−1)/2;

see Figure 2.

v0

v1

v2 v5

v6

v4v3

Figure 1. R7

v0 v1 v2 v3
v4

v5v6v7v8

Figure 2. L4

Proposition 2.1.

(1) co(Rk)/ce(Rk) diverges to infinity as k → ∞.

(2) ce(Lm)/co(Lm) diverges to infinity as m → ∞.

Proof. (1) The number of even cycles in Rk is exactly k (i.e., equal to the number

of 4-cycles). On the other hand, since whether an odd cycle passes an edge shared

by Ck and a 4-cycle does not change the parity of the length of the cycle, we see

that the number of odd cycles is equal to 2k. Hence, co(Rk)/ce(Rk) = 2k/k → ∞

as k → ∞.

(2) Since every odd cycle passes vm−1vmvm+1, the number of odd cycles in Lm is

equal to m (i.e., equal to the number of added edges in the construction). On the

other hand, since every even cycle passes exactly two added edges, the number of

even cycles is equal to
(

m
2

)

. Hence, ce(Lm)/co(Lm) =
(

m
2

)

/m → ∞ as m → ∞. �

Next we show a similar result as above for 2-connected outerplanar graphs G such

that ∂G is even. Let q ≡ 0 (mod 4) be a positive integer. Let Hq be the graph

obtained from two copies of Lq/2 by identifying two vq/2−1vq/2’s of them, where the

labels are as in the construction of Lq/2; see Figure 3. Let Tn be the graph obtained

from Rn and Ln for some odd n ≥ 3 by identifying an edge u2u3 of a 4-cycle

u0u1u2u3u0 in Rn with u0u1 ∈ E(Cn) and an edge v0v2n, where the labels are as

in the construction of Ln; see Figure 4. Note that Hq and Tn are 2-connected non-

bipartite outerplanar graphs and the boundary cycle of each infinite face is even.

Moreover, Hq has exactly one odd chord and Ln has exactly (n + 1) odd chords.
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Figure 3. H8; a bold line denotes the identified edge.

Figure 4. T7; a bold line denotes the identified edge.

To show the desired claim, we prepare the following useful observation. For a

graph G and an edge f ∈ E(G), let co(G, f) and ce(G, f) denote the number of odd

cycles and that of even cycles passing f in G, respectively.

Observation 2.2. Let G1 and G2 be graphs, and let e1 and e2 be edges of G1 and

G2, respectively. Let G be the graph obtained from G1 and G2 by identifying e1 and

e2. Then the following equalities hold:

co(G) = co(G1) + co(G2) + co(G1, e1)ce(G2, e2) + ce(G1, e1)co(G2, e2)(1)

ce(G) = ce(G1) + ce(G2) + co(G1, e1)co(G2, e2) + ce(G1, e1)ce(G2, e2)(2)

Proposition 2.3.

(1) co(Tn)/ce(Tn) diverges to infinity as n → ∞.

(2) ce(Hq)/co(Hq) diverges to infinity as q → ∞.

Proof. By the proof of Proposition 2.1, we have

co(Rn) = 2n, ce(Rn) = n, co(Ln) = n and ce(Ln) =

(

n

2

)

.

Let e be an edge of a 4-cycle in Rn with each end not lying on Cn. Let f1 =

v0v2n and f2 = vn−1vn be the edges of Ln where the labels of vertices are as in its
6



construction. Then we have

co(Rn, e) = 2n−1 and ce(Rn, e) = 1,

co(Ln, f1) = 1 and ce(Ln, f1) = n− 1,

co(Ln, f2) = n and ce(Ln, f2) = 0.

Thus, by Observation 2.2, we have

co(Tn)

ce(Tn)
=

co(Rn) + co(Ln) + co(Rn, e)ce(Ln, f1) + ce(Rn, e)co(Ln, f1)

ce(Rn) + ce(Ln) + co(Rn, e)co(Ln, f1) + ce(Rn, e)ce(Ln, f1)

=
2n + n+ 2n−1(n− 1) + 1

n +
(

n
2

)

+ 2n−1 + n− 1

=
n+ 1 + (n + 1)/2n−1

1 + (n2 + 3n− 2)/2n
→ ∞ as n → ∞,

and

ce(Hq)

co(Hq)
=

2ce(Lq) + co(Lq, f2)
2 + ce(Lq, f2)

2

2co(Lq) + 2co(Lq, f2)ce(Lq, f2)
= q −

1

2
→ ∞ as q → ∞.

Therefore, the proposition holds. �

The following theorem is a direct consequence of Propositions 2.1 and 2.3.

Theorem 2.4. There are 2-connected outerplanar graphs G such that for any r ∈

{co(G)/ce(G), ce(G)/co(G)}, r diverges to infinity as |V (G)| → ∞, not depending

on the parity of ∂G.

3. Bounds

We first consider outerplanar graphs all of whose finite faces are odd, where a finite

face f is odd (resp. even) if the length of the boundary walk of f is odd (resp. even).

In this case, we can directly apply Theorem 1.1 to evaluate the number of odd/even

cycles.

Theorem 3.1. Let G be a 2-connected outerplanar graph with each finite face odd

and |F (G)| ≥ 3. Then |F (G)|−1
2ce(G)

+ 1 ≤ co(G)/ce(G) ≤ |F (G)|−2
ce(G)

+ 1. In particular,

1 ≤ co(G)/ce(G) ≤ 2.

Proof. By the assumption, for any subtree H of the dual tree TG, the parity of

the order of H is the same as that of the cycle in G bounding a union of faces

corresponding to vertices of H . Thus, Theorem 1.1 implies that co(G) − ce(G) =

α(TG), where α(TG) denotes the independence number of TG. Since |F (G)|−1
2

≤

α(TG) ≤ (|F (G)| − 1) − 1, we obtain that 1 ≤ |F (G)|−1
2ce(G)

+ 1 ≤ co(G)/ce(G) ≤
|F (G)|−2
ce(G)

+ 1. Since ce(G) is equal to the number of even subtrees of TG, one has

ce(G) ≥ |E(TG)| = |F (G)| − 2 ≥ 1 by |F (G)| ≥ 3. Hence, co(G)/ce(G) ≤ 2 also

holds. �

7



Next, we give a general upper bound of co(G)/ce(G) for a 2-connected outerplanar

graph G with even ∂G as follows.

Theorem 3.2. Let G be a 2-connected outerplanar graph with even ∂G and let k ≥ 0

be the number of odd chords of G. Suppose that G has at least one even chord. Then

co(G)/ce(G) ≤ k. Furthermore, this bound is sharp.

Proof. We prove the theorem by induction on k. If k = 0, then co(G)/ce(G) = 0, so

we are done. Assume that k ≥ 1 and the theorem holds for any non-negative integer

smaller than k.

Let e be an odd chord of G and let G′ be the 2-connected outerplanar graph

obtained from G by removing e. Since G′ has k − 1 odd chords and at least one

even chord, co(G
′)/ce(G

′) ≤ k − 1 by induction hypothesis. On the other hand, G

can be obtained from two outerplanar graphs G1 and G2 by identifying e, where

e lies on both ∂G1 and ∂G2. Thus, ce(G
′) = co(G1, e)co(G2, e) + α, where α ≥ 1

since G′ has at least one even chord. By co(G
′)/ce(G

′) ≤ k − 1, we know co(G
′) ≤

(k − 1) (co(G1, e)co(G2, e) + α). Note that ce(G) ≥ ce(G
′). Therefore, we have

co(G)

ce(G)
≤

(k − 1) (co(G1, e)co(G2, e) + α) + co(G1, e) + co(G2, e)

co(G1, e)co(G2, e) + α

≤ (k − 1) +
co(G1, e) + co(G2, e)

co(G1, e)co(G2, e) + α
≤ k,

where the final inequality holds by α ≥ 1 and co(G1, e), co(G2, e) ≥ 1.

Regarding the sharpness of co(G)/ce(G) ≤ k, since Tk has (k+1) odd chords and

at least one even chord when k ≥ 3, we see that co(Tk)/ce(Tk) =
k+1+(k+1)/2k−1

1+(k2+3k−2)/2k
≥ k

if k ≥ 11. Therefore, this upper bound is the best possible. �

In the remaining part of this section, we show upper/lower bounds of the ratio

for outerplanar graphs with prescribed dual trees, namely a path and a star.

Proposition 3.3. Let G be a 2-connected outerplanar graph with even ∂G and

assume that the dual tree TG of G is a path. Then co(G)/ce(G) ≤ 2. Furthermore,

this bound is sharp.

Proof. Let a and b be the number of odd and even chords of G, respectively. Since

TG is a path, we have

co(G) = a · b+ 2a = a(b+ 2) and ce(G) =

(

b

2

)

+

(

a

2

)

+ 2b+ 1.

We suppose to the contrary that co(G)/ce(G) > 2. This together with the above

two equations leads to the following:

co(G)

ce(G)
=

2a(b+ 2)

a(a− 1) + (b+ 1)(b+ 2)
> 2 ⇐⇒ a(b+ 2) > a(a− 1) + (b+ 1)(b+ 2).

8



By this inequality, we see that a(b − a + 3) > (b + 1)(b + 2) > 0, so b − a + 3 ≥ 1,

i.e., a ≤ b + 2. We also see that (a − b − 1)(b + 2) > a(a − 1) ≥ 0, so a ≥ b + 1.

Thus, we obtain that a = b + 1 or b + 2. However, for each of those two cases, we

have co(G)/ce(G) = (b+ 2)/(b+ 1) ≤ 2, a contradiction.

Regarding the sharpness of this bound, every outerplanar graph G obtained from

an even cycle by adding exactly one odd chord attains the equality. �

Proposition 3.4. Let G be a 2-connected outerplanar graph and assume that the

dual tree TG of G is a star. If there is at least one odd face corresponding to a leaf

of TG, then both co(G)/ce(G) and ce(G)/co(G) converge to 1 as |F (G)| → ∞.

Proof. First suppose that ∂G is even. Let a and b be the number of odd chords and

that of even chords of G, respectively; note that a ≥ 1 by the assumption. Let f be

the face in G corresponding to the center vertex of TG. Since TG is a star and ∂G is

even, the parity of the number of odd chords lying on ∂f is the same as that of the

length of ∂f . If a is even, then we have

co(G) = 2b
a/2−1
∑

k=0

(

a

2k + 1

)

+ a = 2a+b−1 + a, and

ce(G) = 2b
a/2
∑

k=0

(

a

2k

)

+ b = 2a+b−1 + b.

If a is odd, then we have

co(G) = 2b
(a−1)/2
∑

k=0

(

a

2k

)

+ a = 2a+b−1 + a, and

ce(G) = 2b
(a−1)/2
∑

k=0

(

a

2k + 1

)

+ b = 2a+b−1 + b.

Thus, regardless of the parity of a, co(G)/ce(G) and ce(G)/co(G) converge to 1 as

|F (G)| → ∞ (i.e., a + b → ∞) since 2a+b−1 ≫ a+ b.

Next suppose that ∂G is odd. Let f be the face in G corresponding to the center

vertex of TG. Let a (resp. b) be the number of chords shared by f and an odd

(resp. even) face corresponding to a leaf of TG. Since TG is a star and ∂G is odd,

the parity of the length of ∂f is opposite to the parity of the number of odd chords

lying on ∂f . Thus, the number of odd and even cycles can be calculated similarly

to the first case depending on the opposite parity of a. �

4. Forbidden subgraphs/minors condition

A graph G is H-free (resp. H-minor-free) if G contains no H as its induced sub-

graph (resp. as a minor). Recall that Theorem 2.4 implying that the K4-minor-free

and K2,3-minor-free condition is not sufficient to bound co(G)/ce(G) or ce(G)/co(G)
9



by a constant for a 2-connected outerplanar graph G. Thus, we consider another

forbidden subgraphs/minors condition which bounds co(G)/ce(G) or ce(G)/co(G) by

a constant.

It is easy to see that for any k ≥ 3, there is a 2-connected Ck-free outerplanar

graph such that neither co(G)/ce(G) nor ce(G)/co(G) can be bounded by a constant

since we can make each cycle in the constructions of R and L be arbitrarily long.

Of course, no 2-connected graph of order at least 3 is C3-minor-free, and every

H-minor-free graph is H-free. Therefore, we focus on a 2-connected K1,3-free (or

claw-free) and K4-minor-free graphs.

We here introduce two particular outerplanar graphs. Let Ct = v0v1 . . . vt−1 be

a cycle with t ≥ 3. For several indices i ∈ {0, 1, . . . , t − 1}, we add a vertex ri to

make a triangle vivi+1ri, where subscripts are modulo t (see Figure 5). The set of

2t resulting graphs constructed above is denoted by St. Let Zd be the outerplanar

graph obtained from Ld (where recall that d ≥ 1) by joining vi and v2d−1−i for each

i ∈ {0, . . . , d − 2} (see Figure 6), and let Z∗
d be the graph obtained from Zd by

removing vd. Observe that Zd,Z
∗
d and any graph in St are 2-connected outerplanar

graphs and that they are K1,3-free.

v0

v1

v2 v5

v6

v4v3

r0

r1

r3

r5

Figure 5. A graph in S7

v0 v1 v2 v3
v4

v5v6v7v8

Figure 6. Z4

Theorem 4.1. If a 2-connected graph G is K1,3-free and K4-minor-free, then G is

outerplanar. Furthermore, G is isomorphic to Zd,Z
∗
d or a graph in St.

Proof. Let G be a 2-connected K1,3-free and K4-minor-free graph. Note that G has

no vertex of degree at least 5; otherwise, G has an induced K1,3 or a K4-minor

consisting of the vertex and its neighbors. Thus, degG(x) ≤ 4 for every vertex x of

G, where degG(x) denotes the degree of a vertex x in G.

It is well known that every K4-minor-free graph is a subgraph of a 2-tree [9], where

a 2-tree is a graph obtained from a triangle by repeatedly adding vertices in such

a way that each added vertex has two adjacent neighbors (i.e., those three vertices

induce a triangle). Hence, since every 2-tree is planar, we embed G into the plane

in such a way that the length of the boundary cycle of the outer face is the longest

among all planar embeddings of G.
10



Let C = u0u1 . . . um−1 for some m ≥ 3 be the outer cycle of G. If all vertices of G

lie on C, then G is outerplanar. Thus, we may suppose that ui ∈ V (C) has degree 3

or 4 and to the contrary that ui has a neighbor not lying on C. Let K4(a, b, c, d)

denote a K4-minor in G consisting of four vertices a, b, c, d and internally disjoint

paths between them, where two paths are internally disjoint if they do not share

vertices except their end vertices.

First suppose degG(ui) = 3. Let a be a unique neighbor of ui which does not lie on

C. A path P between two vertices x and y in which any vertex of P does not lie on

C except x, y is called an inner (x, y)-path. Since G is K1,3-free, we may assume by

symmetry that ui−1a ∈ E(G) or ui−1ui+1 ∈ E(G). Moreover, since G is K4-minor-

free, there is at most one of an inner (a, ui−1)-path and an inner (a, ui+1)-path, say

the former.

a

ui

ui−1 ui+1 a

ui

ui−1 ui+1

v

Figure 7. The case when degG(ui) = 3

See Figure 7. The left depicts the case when ui−1ui+1 ∈ E(G) and there is an

inner (a, ui−1)-path. In this case, if there is also an inner (a, ui+1)-path, then G has

a K4-minor K4(ui−1, ui, ui+1, a), a contradiction. The right depicts the case when

ui−1a ∈ E(G) but ui−1ui+1 /∈ E(G). In this case, if there is an inner (a, v)-path for

some v ∈ V (C)\{ui−1, ui}, then G has a K4-minor K4(ui−1, ui, v, a). Thus, in either

case, we can obtain another outerplanar embedding of G with outer cycle longer than

C, by making the outer cycle pass uia and an inner (a, ui−1)-path instead of ui−1ui.

Intuitively, we can obtain this embedding by applying a “jump” of the edge ui−1ui

over a as shown in Figure 8. This contradicts that C is the longest outer cycle.

a

ui

ui−1 ui+1 a

ui

ui−1 ui+1

Figure 8. A “jump” of ui−1ui

Next suppose degG(ui) = 4. Let a, b be neighbors of ui with a, b /∈ {ui−1, ui}.

By symmetry, we first consider the case when b ∈ V (C) (see Figure 9). Since
11



four vertices ui−1, ui, ui+1, a do not induce a K1,3, ui−1a ∈ E(G). Thus, G has

no inner (a, v)-path for any v ∈ V (C) \ {ui−1, ui}; otherwise G has a K4-minor

K4(ui−1, ui, a, v). Therefore, similarly to the case when degG(ui) = 3, we can obtain

another outerplanar embedding of G with outer cycle longer than C by applying a

“jump” of the edge ui−1ui over a.

a

ui

ui−1 ui+1

bv

Figure 9. The case when degG(ui) = 4 and b ∈ V (C)

We next consider the case when neither a nor b lies on C. Any four vertices in

{ui−1, ui, ui+1, a, b} do not induce a K1,3, we have one of the following configurations

by symmetry: (1) ui−1ui+1, ab ∈ E(G), (2) ui−1a, ab ∈ E(G) but ui−1ui+1 /∈ E(G),

and (3) ui−1a, bui+1 ∈ E(G) (see Figure 10). In the case (1), there is at most one

of an inner (a, ui−1)-path and an inner (b, ui+1)-path, and so we may assume that

there is the former one (see the left of Figure 10).

a

ui

ui−1 ui+1b a

ui

ui−1

ui+1b a

ui

ui−1

ui+1b

v′v v v′

(1) (2) (3)

Figure 10. The case when degG(ui) = 4

By similar arguments in the case when degG(ui) = 3, as depicted in Figure 10,

(1) there is no inner (b, ui+1)-path, (2) there is neither an inner (a, v)-path, an inner

(b, v′)-path nor an inner (b, ui+1)-path, (3) there is neither an inner (a, v)-path, an

inner (b, v′)-path nor an inner (a, b)-path, where v, v′ ∈ V (C)\{ui−1, ui, ui+1}. Thus,

similarly to the above cases, we can obtain another outerplanar embedding of G with

outer cycle longer than C, by applying a “jump” of the edge ui−1ui over a, b in cases

(1) and (2) and over only a in case (3).

Therefore, we can conclude that G is outerplanar.

Next, we show that G is isomorphic to Zd,Z
∗
d or a graph in St. If |V (G)| ≤ 4, then

we can easily verify that the theorem holds, and hence, we assume that |V (G)| ≥ 5.
12



Note that every vertex of degree at least 3 in a K1,3-free graphs belongs to at least

one triangle. Thus, we divide the proof into the following two cases.

Case 1. There is a pair of triangles sharing an edge.

Let xuv and uvy be two triangles sharing an edge uv. If degG(u) = degG(v) = 3,

then |V (G)| ≤ 4 since G is 2-connected and outerplanar, a contradiction. Thus, at

least one of u and v is of degree 4, say u. Let w1 be a neighbor of u other than v, x, y.

Since G is K1,3-free, w1 is adjacent to y by symmetry. If degG(v) = degG(y) = 3,

then G ∼= Z2 and if there is a triangle vyz, then G ∈ S3. Thus, degG(v) = 4 or

degG(y) = 4 but there is no triangle sharing vy with uvy.

We consider only the case when degG(v) = 3 and degG(y) = 4, since two other

cases (1) degG(v) = degG(y) = 4 and (2) degG(v) = 4 and degG(y) = 3 may be

similarly proved. Let w2 be the fourth neighbor of y (other than u, v, w1). Since G

is K1,3-free and has no triangle sharing vy with uvy, G has a triangle w1w2y; observe

that w2 can be adjacent to neither x nor v by the outerplanarity of G. Then we

next consider whether deg(w1) = 4. By repeating this argument, we can conclude

that G ∼= Zd or G ∼= Z∗
d for some d ≥ 2.

Case 2. Otherwise.

We may assume that any two triangles of G do not share an edge. In this case,

we show that G ∈ St for some t. Let ∂G = u0u1 . . . un−1. Since it follows from

what G is K1,3-free that any chord of G is contained in a triangle, it suffices to show

that every triangle of G is ui−1uiui+1, that is, the three vertices are consecutive on

∂G, where the subscripts are modulo n. Suppose to the contrary that there is a

triangle uiujuk with |j − i| ≥ 2, j 6= i − 2 and i < j < k. In this case, we have

degG(ui) = 4 or degG(uj) = 4, and hence, without loss of generality, we suppose

degG(ui) = 4. Similarly to the proof of Case 1, uj (or uk) has to adjacent to ui+1

(or ui−1), which contradicts that any two triangles do not share an edge. Therefore,

the three vertices of each triangle of G are consecutive on ∂G, which implies that

G ∈ St for some t, since any two triangles share at most one vertex. �

By Theorem 4.1, we have the following corollary.

Corollary 4.2. If a 2-connected graph G is K1,3-free and K4-minor-free, then both

co(G)/ce(G) and ce(G)/co(G) are bounded by a constant unless G is a cycle.

Proof. Let G be a 2-connected K1,3-free and K4-minor-free graph. By Theorem 4.1,

G is isomorphic to Zd,Z
∗
d or a graph in St. If G is isomorphic to Zd or Z∗

d , then we

are done by Theorem 3.1 since every finite face of G is triangular. If G ∈ St and G

is not a cycle, then we are also done by Proposition 3.4 since there is at least one

triangular face corresponding to a leaf of a dual tree. �

As noted in the proof of Theorem 4.1, every vertex of degree at least 3 in a K1,3-

free graph belongs to a triangle. Intuitively, if there is a cycle C passing exactly one
13



edge of a triangle xyz, say xy, then there is another cycle C ′ passing xzy (ignoring

the details whether C passes z). It is notable that the parity of the lengths of C

and that of C ′ are different, that is, we guess that the number of odd cycles in a

2-connected K1,3-free graph is almost the same as that of even cycles. Therefore, we

conclude this section proposing the following challenging conjecture. (Note that we

can easily construct infinitely many non-2-connected K1,3-free graphs G such that

co(G)/ce(G) → ∞ as |V (G)| → ∞.)

Conjecture 4.3. For any 2-connected K1,3-free graph G, both co(G)/ce(G) and

ce(G)/co(G) are bounded by a constant unless G is a cycle.

5. Concluding remarks

Throughout this paper, we addressed only 2-connected outerplanar graphs. If

an outerplanar graph G is not 2-connected, then G consists of several blocks such

that each two blocks share at most one vertex, where a block of G is a maximal

2-connected subgraph of G. Note that each cycle in G consists of edges in ex-

actly one block. Therefore, by applying our results to each block, we can obtain

the corresponding results for any non-2-connected outerplanar graphs. (We do not

specifically write the statements of the corresponding results since it is just a tedious

routine.)

For several 2-connected outerplanar graphs G with prescribed dual trees, a path,

a star and a broom (the dual tree of Tn), we can show the results on the sharpness

of the ratio of the numbers of odd and even cycles. It is a natural open problem

to evaluate the ratio for 2-connected outerplanar graphs with other dual trees. In

particular, it is of interest to evaluate the ratio using the number of leaves of a dual

tree.

For other particular graph classes, e.g., planar graphs, the analysis of the ratios

seems more difficult and complicated even if the graph is a planar triangulation.

Thus, we need to find some reasonable assumption or forbidden subgraphs/minors

conditions for such graph classes, and we believe that the study on this problem will

give a huge contribution to the graph theory.
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[31] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570–590.

(A Higashitani) Department of Pure and Applied Mathematics, Graduate School

of Information Science and Technology, Osaka University, Suita, Osaka 565-0871,

Japan

Email address : higashitani@ist.osaka-u.ac.jp

(N. Matsumoto) Research Institute for Digital Media and Content, Keio Univer-

sity, Yokohama, Kanagawa 232-0062, Japan

Email address : naoki.matsumo10@gmail.com

16


	1. Introduction
	1.1. Graph polynomial
	1.2. The number of cycles
	1.3. Contribution
	1.4. Organization of the paper

	2. Outerplanar graphs with many odd/even cycles
	3. Bounds
	4. Forbidden subgraphs/minors condition
	5. Concluding remarks
	References

