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3-facial edge-coloring of plane graphs
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Abstract

An ℓ-facial edge-coloring of a plane graph is a coloring of its edges such that any two edges at
distance at most ℓ on a boundary walk of any face receive distinct colors. It is the edge-coloring
variant of the ℓ-facial vertex coloring, which arose as a generalization of the well-known cyclic
coloring. It is conjectured that at most 3ℓ+1 colors suffice for an ℓ-facial edge-coloring of any
plane graph. The conjecture has only been confirmed for ℓ ≤ 2, and in this paper, we prove
its validity for ℓ = 3.
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1. Introduction

An ℓ-facial edge-coloring (ℓ-FEC) of a plane graph G (with loops and parallel edges allowed)
is a not necessarily proper edge-coloring of its edges such that all the edges on a facial trail
of length at most ℓ + 1 receive distinct colors. The minimum number of colors for which G
admits an ℓ-facial edge-coloring is called the ℓ-facial chromatic index of G, denoted by χ′

ℓ-f(G).
This type of coloring was introduced in [9], as the edge-coloring variant of the ℓ-facial

vertex coloring [8], which is a generalization of the cyclic coloring [10]; the latter being a
vertex coloring of a plane graph in which all the vertices incident with the same face receive
distinct colors. The cyclic coloring and the ℓ-facial vertex coloring received a lot of attention,
but there are still many open problems regarding these two topics (see [3] for a comprehensive
survey and [4] for the most recent results). Particularly, Král’ et al. [8] conjectured that at
most 3ℓ+1 colors are required for an ℓ-facial vertex coloring of any plane graph with the bound
being tight by the plane embeddings of K4, in which three edges adjacent to the same vertex
are subdivided ℓ − 1 times. All the cases for ℓ ≥ 2 are still open, whereas the case ℓ = 1 is
implied by the Four Color Theorem.

Note that an ℓ-facial edge-coloring of a plane graph G corresponds to an ℓ-facial vertex
coloring of the medial graph M(G) of G; i.e., the graph with the vertex set V (M(G)) = E(G)
and two vertices u and v of M(G) being connected with k edges if u and v correspond to two
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adjacent edges of G incident with k common faces in G. Yet, the upper bound for ℓ-facial
chromatic index seems to be the same as for the vertex variant. Namely, in [9], the authors
proposed the following conjecture.

Conjecture 1 (Facial Edge-Coloring Conjecture). Every plane graph admits an ℓ-facial edge-
coloring with at most 3ℓ+ 1 colors for every ℓ ≥ 1.

If true, the conjectured bound is tight and achieved by the graphs depicted in Figure 1.

ℓ− 1

}

ℓ− 1

}

ℓ

}

Figure 1: A graph G with χ′

ℓ-f(G) = 3ℓ+ 1.

As mentioned above, for the case ℓ = 1, Conjecture 1 is implied by the Four Color Theorem,
and for the case ℓ = 2, it has been confirmed in [9]. In this paper, we prove that Conjecture 1
holds also for the case ℓ = 3.

Theorem 1. Every plane graph admits a 3-facial edge-coloring with at most 10 colors.

Note that the theorem holds for graphs with loops and parallel edges (the so-called pseu-
dographs).

The paper is structured as follows. In Section 2, we introduce notation and present auxiliary
results used for proving Theorem 1. The proof of the theorem is given in Section 3, and we
conclude the paper with a discussion on limitations of our approach and directions for further
work.

2. Preliminaries

In this section, we define notions and present auxiliary results that we are using in our
proof. In figures, by full circles we depict the vertices with a given degree, while empty circles
denote vertices with arbitrary degrees. We denote the set of consecutive integers from p to q
by [p, q], i.e., [p, q] = {z ∈ Z : p ≤ z ≤ q}.

We denote the degree of a vertex v by d(v) and the length of a face α by ℓ(α). A vertex
of degree k (at least k, at most k) is called a k-vertex (a k+-vertex, a k−-vertex, respectively).
Similarly, a face of length k (at least k, at most k) is called a k-face (a k+-face, a k−-face,
respectively). Note that the length of a face α in a 2-connected plane graph is the number of
edges (as well as the number of vertices) incident with α.

Two edges are at facial-distance k if they are at distance k on some facial trail and k is
minimum satisfying the property; two edges are k-facially adjacent or within facial-distance k
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if they are at facial-distance at most k. Note that we define the distance between two edges in
G as the distance between the corresponding vertices in the line graph of G; in particular, the
distance between adjacent edges equals 1. The k-facial neighborhood of an edge e is the set of
all edges that are k-facially adjacent to e.

We define the distance between a vertex v and an edge e as the minimum distance from v
to any endvertex of e.

A k-vertex (a k+-vertex) adjacent to a vertex v is a k-neighbor (a k+-neighbor) of v. A
k-thread is a subgraph in G, isomorphic to the path Pk, in which all vertices have degree 2
in G. When considering a 2-thread composed of vertices u and v, we denote it the 2-thread
(u, v). A k-thread is incident with a face α if all its vertices are incident with α. A 2-thread
(u, v) is ℓ-facially adjacent to a vertex w if there is a facial trail of length at most ℓ between u
and w or between v and w.

The number of 2-vertices adjacent to a vertex v (incident with a face α) is denoted n2(v)
(n2(α), respectively).

By contracting a face α of a graph G we mean contracting step by step all the edges on
the boundary of α, i.e., removing the edges and identifying the vertices of α. We denote the
obtained graph by G/α.

Let σ be a partial 3-FEC of a graph G with the color set C. A color c ∈ C is σ-available
(or available if σ is evident from the context) for a non-colored edge e ∈ E(G) provided that
the set of colors of the edges 3-facially adjacent to e does not contain c. The set of σ-available
colors for e is denoted Aσ(e) or A(e) for short. Given a set E ⊆ E(G) of non-colored edges,
the set

Aσ(E) =
⋃

e∈E

Aσ(e)

is called the set of σ-available colors for E. The just introduced notion is used mainly for
E = E(α) if all edges in E(α) (i.e., edges incident with a face α of G) are non-colored, and
the notation Aσ(E(α)) is then simplified to A(α).

A map L is a list-assignment for a graph G if it assigns a list L(v) of colors to each vertex
v of G. If G admits a proper vertex coloring σL such that σL(v) ∈ L(v) for all vertices in
V (G), then G is L-colorable and σL is an L-coloring of G. The graph G is k-choosable if it is
L-colorable for every list-assignment L, where |L(v)| ≥ k, for every v ∈ V (G).

We make use of the following generalization of Brooks’ theorem to list coloring.

Theorem 2 (Borodin [2]; Erdős, Rubin, Taylor [5]). Let G be a connected graph. Suppose that
L is a list-assignment where |L(v)| ≥ d(v) for each v ∈ V (G). If

• |L(v)| > d(v) for some vertex v, or

• G contains a block which is neither a complete graph nor an induced odd cycle (i.e., G
is not a Gallai tree),

then G admits an L-coloring.

In our proofs, for a configuration of edges being colored we create a conflict graph, in which
every edge is represented by a vertex, and two vertices are adjacent if the corresponding edges
are within facial-distance 3. The map L assigns to every edge its list of available colors.

A useful tool in proving coloring results is also Hall’s Theorem, which guarantees distinct
colors for a set of vertices.
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Theorem 3 (Hall [6]). A bipartite graph with partition sets A and B admits a matching that
covers every vertex of A if and only if for every set S ⊆ A the number of vertices of B with a
neighbor in S is at least |S|.

In other words, if a partial proper vertex coloring σ of a graph G with a color set C and
n non-colored vertices is such that for every k ∈ [1, n] and for every set S ⊆ V (G) of k non-
colored vertices there is a set A(S) ⊆ C with |A(S)| ≥ k such that each color c ∈ A(S) can
be used as a color for at least one vertex v ∈ S (i.e., colors of the colored neighbors of v are
distinct from c), then σ can be extended to a proper vertex coloring of the whole G. Let us
note that Theorem 3 was already successfully used in the context of facial colorings [7].

Finally, we recall another tool for determining if one can always choose colors from the
lists of available colors such that all conflicts are avoided. The result, due to Alon [1], is also
referred to as the Combinatorial Nullstellensatz.

Theorem 4 (Alon [1]). Let F be an arbitrary field, and let P = P (X1, . . . ,Xn) be a polynomial
in F[X1, . . . ,Xn]. Suppose that the coefficient of a monomial

∏n
i=1X

ki
i , where each ki is a

nonnegative integer, is non-zero in P and the degree deg(P ) of P equals
∑n

i=1 ki. Moreover, if
S1, . . . , Sn are any subsets of F with |Si| > ki, then there exist s1 ∈ S1, . . . , sn ∈ Sn such that
P (s1, . . . , sn) 6= 0.

Namely, in our particular case of the 3-facial edge-coloring, we assign a variable Xi to every
edge ei that we want to color (for 1 ≤ i ≤ k), and define a polynomial P (X1, . . . ,Xk) such
that every pair of 3-facially adjacent edges is represented by a term (Xi−Xj) in P . If there is
a monomial (of a proper degree) of P with a non-zero coefficient, then there exists a coloring
of the considered edges.

3. Proof of Theorem 1

We prove the theorem by contradiction; namely, we suppose that there exists a minimal
counterexample to the theorem, i.e., a graph G (minimal according to the number of vertices)
that does not admit a 3-FEC with at most 10 colors. We first determine some structural
properties of G in Section 3.1, and then, in Section 3.2, we use the discharging method to show
that a graph G with specified properties cannot exist, hence obtaining a contradiction.

3.1. Structure of a minimal counterexample

First, we show that there are no cut vertices in G. Note that throughout the paper, for
simplicity, we do not distinguish vertices and edges of G and the graphs obtained by modifying
G.

Lemma 1. G is 2-connected.

Proof. Suppose the contrary and let v be a cut vertex of G. There exists a component H of
G− v such that the vertex v is in the subgraph G1 of G induced by the vertex set V (H)∪{v}
incident with the unbounded face. Let G2 be the subgraph of G induced by the vertex set
V (G) \ V (H). By the minimality of G, there exist a 3-FEC σ1 of G1 and a 3-FEC σ2 of G2

with the same set C of at most 10 colors.
Consider the set E1

1 of edges of the unbounded face of G1 that are incident with v (note
that 1 ≤ |E1

1 | ≤ 2) and the set Ej
1 of edges of G1 that are in G1 at facial-distance j − 1 from
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the closest edge of E1
1 , for j = 2, 3. Furthermore, consider the set Ej

2 of edges of G2 that are
in G at facial-distance j from the closest edge of E1

1 , for j = 1, 2, 3. For the set Cj
i of colors of

edges in Ej
i we have |Cj

i | ≤ 2, and we may assume without loss of generality that |C ′
1| ≤ |C ′

2|
for C ′

i = C1
i ∪C2

i ∪C3
i , for i = 1, 2. If |C ′

1|+ |C ′
2| ≤ 10, then (again without loss of generality)

C ′
1 ∩C ′

2 = ∅ and so the common extension of σ1 and σ2 is a 3-FEC of G with the set of colors
C, a contradiction.

So, 5 ≤ |C ′
1| ≤ 6, |C ′

2| = 6, |C1
2 | = |C2

2 | = |C3
2 | = 2 and E3

2 = {e1, e2}. Let C(e)/C[c] for
e ∈ E(G2)/c ∈ C be the color class of σ2 containing the edges of G2 colored with σ2(e)/c.
Since 1 ≤ p = | {σ2(e1)} ∪ {σ2(e2)} | ≤ 2, and the color set C∗ = C \ (C1

1 ∪C2
1 ∪C3

1 ∪C1
2 ∪C2

2 )
is of size at least 10− 4 · 2 ≥ p, there is a p-element set {cj : j ∈ [1, p]} ⊆ C∗. Now recolor G2

using the permutation π of C that induces the permutation of color classes of σ2, under which
the color classes C(σ2(ej)) and C[cj] are interchanged for each j ∈ [1, p], and all remaining
color classes are fixed. It is easy to see that the common extension of σ1 and π ◦σ2 is a 3-FEC
of G with the color set C, a contradiction.

From the above, we also infer that there are no pendant vertices in G.

Corollary 1. The minimum degree of G is at least 2.

Similarly, using Lemma 1, we show there are no loops in G.

Lemma 2. G is loopless.

Proof. Suppose, to the contrary, that there is a loop e in G. If e bounds a 1-face, then it is
3-facially adjacent to at most 6 edges in G and thus we obtain a 3-FEC with at most 10 colors
of G by removing e, coloring the obtained graph, and finally coloring e with one of at least 4
available colors. On the other hand, if e does not bound a 1-face, then its unique endvertex is
a cut vertex in G, a contradiction to Lemma 1.

Hence, in G, every k-face is incident with k distinct vertices and with k distinct edges. In
the rest of the paper, we will mainly deal with 2-vertices and small faces in G.

Lemma 3. A 4-vertex in G has at most three 2-neighbors.

Proof. Suppose the contrary and let v be a 4-vertex adjacent to four 2-vertices v1, v2, v3 and
v4 in a clockwise order. Let vi+4 be the other neighbor of vi, for 1 ≤ i ≤ 4. Let G′ be the
graph obtained from G by deleting the vertices v, v1, v2, v3 and v4. By the minimality of G,
there exists a 3-FEC coloring σ of G′ with at most 10 colors. Notice that each of the edges vvi
and vivi+4 has at least 4 available colors. Let Xj , 1 ≤ j ≤ 8 be a variable associated with the
edge vvj if j ≤ 4 and the edge vj−4vj otherwise. Let us now define the following polynomial,
simulating the conflicts between the non-colored edges:

F (X1, . . . ,X8) =(X1 −X2)(X1 −X4)(X1 −X5)(X1 −X6)(X1 −X8)

·(X2 −X3)(X2 −X5)(X2 −X6)(X2 −X7)(X3 −X4)

·(X3 −X6)(X3 −X7)(X3 −X8)(X4 −X5)(X4 −X7)

·(X4 −X8)(X5 −X6)(X5 −X8)(X6 −X7)(X7 −X8).

5



The coefficient of the monomial X3
1X

3
2X

3
3X

3
4X

2
5X

2
6X

2
7X

2
8 in F (X1, . . . ,X8) is equal to 64,

and thus by Theorem 4 we can extend the coloring σ to the coloring of G using at most 10
colors.

Let C be a cycle in G. We denote by int(C) the graph induced by the vertices lying strictly
in the interior of C. Similarly, we denote by ext(C) the graph induced by the vertices lying
strictly in the exterior of C. We say that C is a separating cycle if both, int(C) and ext(C),
contain at least one vertex.

Lemma 4. There is no separating cycle of length at most 7 in G.

Proof. Suppose the contrary and let C be a separating cycle of length at most 7. Let G1 be
the subgraph of G induced by the vertex set V (int(C)) ∪ V (C) and let G2 be the subgraph of
G induced by the vertex set V (ext(C))∪ V (C). By the minimality of G, there exists a 3-FEC
σ1 and a 3-FEC σ2 of G1 and G2, respectively, using the same set of at most 10 colors. Notice
that, since the length of C is at most 7, every edge of C is 3-facially adjacent to all the other
edges of C in both G1 and G2. Thus, all the edges of C receive distinct colors in both σ1 and
σ2. Hence, permuting the colors in σ1 such that the colors of the edges of C coincide in σ1 and
in σ2, results in a 3-FEC of G with at most 10 colors.

Next, we show that G does not contain small faces nor faces of length 8.

Lemma 5. Every face in G is of length at least 5.

Proof. Suppose the contrary and let α be a face of G of length at most 4. Let G′ = G/α and
let, by the minimality of G, σ be a 3-FEC of G′ using at most 10 colors. Next, observe that
each edge of α is 3-facially adjacent to at most six edges of G′ in G. Thus, each edge of α has
at least 4 available colors. By Theorem 2, we can therefore extend the coloring σ to obtain a
3-FEC of G using at most 10 colors.

Note that Lemmas 1, 2, 4, and 5 imply that G is a simple graph.

Lemma 6. There are no 8-faces in G.

In the proof of Lemma 6 and several other proofs, we identify two edges of the same face
α which are not in conflict in G. The identification is always made in such a way that the
resulting graph is still planar, i.e., the subgraph of G induced by the edges of the involved face
α is transformed to a dumbbell subgraph of the resulting graph.

Proof. Suppose the contrary and let α be an 8-face in G and e and f be two edges at facial-
distance 4 on α. Let G′ be the graph obtained from G by identifying the edges e and f and
let σ be a 3-FEC of G′ using at most 10 colors. Observe that the edges e and f are not
3-facially adjacent in G, otherwise G would contain either a separating cycle of length at most
5 (contradicting Lemma 4) or a 3-face (contradicting Lemma 5). Therefore, after we uncolor
every edge of α distinct from e and f , σ induces a partial 3-FEC of G in which the edges e
and f receive the same color.

4We verified the values of the coefficients with a computer program.
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To extend the coloring σ to a coloring of G, notice that all six non-colored edges of α have
at least 3 available colors. Furthermore, among those edges there are exactly three distinct
pairs of edges at facial-distance 4. If we can color any such pair with the same color, then the
remaining four edges will each have at least 2 available colors. Furthermore, each of them is at
facial-distance at most 3 from exactly two other non-colored edges. Applying Theorem 2, we
obtain a 3-FEC using at most 10 colors. Therefore, we may assume that the union of available
colors of any such pair is of size at least 6, with each edge having at least 3 available colors.
Thus, we can extend the coloring σ to a 3-FEC of G by Theorem 3.

In the following lemmas, we give several properties of 2-vertices in G. First, we show that
there are no (naturally defined) 3+-threads in G.

Lemma 7. Every 2-vertex in G has at least one 3+-neighbor.

Proof. Suppose to the contrary that v is a 2-vertex with neighbors u1 and u2, both being
2-vertices. Let G′ = G/u1v and let, by the minimality of G, σ be a 3-FEC of G′ using at
most 10 colors. Notice that facial-distances between the edges in G are at least the distances
between them in G′, and thus the coloring σ induces a partial 3-FEC of G in which only the
edge u1v is non-colored. However, there are only nine edges in the 3-facial-neighborhood of
u1v, and therefore at least one color is available for u1v (to extend σ to a 3-FEC of G), a
contradiction.

Lemma 8. Let (u, v) be a 2-thread in G incident with an 8+-face α. Then, within facial-
distance 3 on the face α, except from u, v is adjacent only to 3+-vertices.

Proof. Suppose the contrary and let a 2-thread (u, v) be 3-facially adjacent to a 2-vertex
w ∈ {v2, v3} of α. We use the labeling of vertices as depicted in Figure 2.

uvv1

v2

v3

u1

α

Figure 2: A reducible configuration with a 2-thread and a 2-vertex w ∈ {v2, v3}.

Let G′ = G/ {uu1, uv, vv1, v1v2, v2v3} and let σ be a 3-FEC of G′. In the coloring of G
induced by σ, regardless which is w, we have |A(v2v3)| ≥ 2, |A(v1v2)| ≥ 2, |A(vv1)| ≥ 4,
|A(uv)| ≥ 4, and |A(uu1)| ≥ 3. If A(uu1) ∩A(v2v3) 6= ∅, then we color uu1 and v2v3 with the
same color (recall that they are not 3-facially adjacent since α is an 8+-face), and color the
remaining three edges by Theorem 3.

On the other hand, if A(uu1) ∩ A(v2v3) = ∅, then in the union of available colors of the
five non-colored edges we have at least 5 colors, and it is easy to see that again Theorem 3 can
be applied to color all the edges of G, a contradiction.
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Clearly, if every 2-vertex incident with a k-face α has two 3+-neighbors, then α is incident
with at most ⌊k/2⌋ vertices of degree 2. In the case of incident 2-threads, we can further limit
the number of 2-vertices incident with a face using Lemma 8. We will formalize this fact in
the next corollary after defining some additional notions.

Let nt
2(α) be the number of 2-vertices incident with a face α that belong to 2-threads. A

k-path of a face α, k ∈ {2, 3+}, is a maximal (i.e., non-extendable) facial path in α composed
of k-vertices. If n2(α) > 0, then the set V (α) of the vertices incident with α has, for some
positive integer p, a partition

{

V i : i = 1, . . . , 2p
}

such that the set V 2i−1 induces a 2-path
P 2i−1 of α, and the set V 2i induces a 3+-path P 2i of α that follows P 2i−1 in the (say) clockwise
orientation of α for each i = 1, . . . , p (and P 1 follows P 2p). A section of α is a pair (V 2i−1, V 2i),
i = 1, . . . , p; the pair (V 2i−1, V 2i) is a j-section of α if |V 2i−1| = j ∈ {1, 2} (see Lemma 7).
Let Sj(α) denote the set of j-sections of α, j = 1, 2.

Corollary 2. For a k-face α of G, where k ≥ 8 and n2(α) > 0, we have

n2(α) ≤

⌊

k

2

⌋

and |S2(α)| ≤

⌊

k − 2 · |S1(α)|

5

⌋

.

Moreover, if k = 11 and |S2(α)| > 0, then n2(α) ≤ 4.

Proof. Let
{

V i : i = 1, . . . , 2p
}

be the partition of V (α) as defined in the above paragraph.
If (V 2i−1, V 2i) ∈ S1(α), then |V 2i| ≥ 1. On the other hand, if (V 2i−1, V 2i) ∈ S2(α), then, by
Lemma 8, |V 2i| ≥ 3. Therefore,

k =

p
∑

i=1

(

|V 2i−1|+ |V 2i|
)

≥ 2|S1(α)| + 5|S2(α)| = 2
(

|S1(α)| + 2|S2(α)|
)

+ |S2(α)| . (1)

From (1) we infer that

n2(α) = |S1(α)| + 2|S2(α)| ≤
1

2

(

k − |S2(α)|
)

≤
k

2
,

implying n2(α) ≤
⌊

k
2

⌋

, as well as

|S2(α)| ≤
1

5

(

k − 2|S1(α)|
)

,

implying |S2(α)| ≤
⌊k−2·|S1(α)|

5

⌋

.
Now suppose that k = 11 and |S2(α)| > 0, which implies |S2(α)| = q ∈ {1, 2}, since

otherwise n2(α) ≥ 2q ≥ 6 contradicting that n2(α) ≤ ⌊112 ⌋ = 5.
If q = 1, then the number of 3+-vertices of α, that are in α within facial-distance 3 from a

vertex of the 2-thread of α, is 6 (by Lemma 8). At most two of the three remaining vertices of
α are 2-vertices (by Lemma 7), hence |S1(α)| ≤ 2 and n2(α) ≤ 2 + 2 · 1 = 4.

If q = 2, consider an arbitrary vertex x of α that is not a part of a 2-thread of α. The
vertex x is in α within facial-distance 2 from a vertex of at least one of the two 2-threads of
α, and so, by Lemma 8, x is a 3+-vertex. This reasoning leads to n2(α) = 2 · 2 = 4.

In the next lemma, we show that presence of 3-vertices in some cases enables recoloring of
certain edges.
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Lemma 9. Let uv be an edge with d(u) = 3, and let uu1, uu2 be the other two edges incident
with u. Consider a partial 3-FEC of G, in which the edge uv is, and the edges uu1, uu2 are
not colored. If |A(uu1) ∩ A(uu2)| = k for some k ≥ 3, then there are at least k − 2 colors in
A(uu1)∩A(uu2) such that each can be used to recolor the edge uv in such a way that the result
is again a partial 3-FEC of G.

Proof. In the 3-facial-neighborhood of uv, there are at most two edges which are not 3-facially
adjacent to uu1 or uu2, which means that there are at least k − 2 available colors for uv from
the intersection A(uu1) ∩A(uu2).

We continue by establishing properties about incidences of small faces. First, we show that
5-faces are not incident with small vertices.

Lemma 10. Every 5-face in G is incident only with 4+-vertices.

Proof. Suppose the contrary and let α be a 5-face of G incident with a 3-vertex v1, where the
vertices are labeled as in Figure 3. (Note that G is not the 5-cycle C5.)

v1

v2

v3 v4

v5

u

Figure 3: A reducible 5-face incident with a 3-vertex.

Let σ be a 3-FEC of G′ = G/α. It induces a partial 3-FEC of G with the five edges of α
being non-colored. Each of the non-colored edges has at least 4 available colors. By Theorem 3,
if the union of the five sets of available colors contains at least 5 distinct colors, then σ can
be extended to G. Therefore, we may assume that A(e) is the same for every e ∈ E(α), say
A(e) = [1, 4]. In such a case, the face α is incident with 3+-vertices only: if d(vi) = 2 for
some i ∈ [2, 5], then both edges incident with vi have at least 5 available colors. Now, we
recolor the edge uv1 with a color j ∈ A(v1v2) ∩ A(v1v5) = [1, 4]. (By Lemma 9, there are at
least 2 possibilities for the choice of j.) Recall that the 2-connected graph G contains neither
3-faces nor separating cycles of length at most 5. Thus, the edges v2v3, v3v4, and v4v5 are not
within facial-distance 3 from the edge uv1, and they retain [1, 4] as the set of available colors.
Furthermore, σ(uv1) /∈ [1, 4] replaces j in the set of available colors for the edges v1v2 and
v1v5. So, the coloring of G′ can be extended to G using Theorem 3, a contradiction.

So, there are no 3−-vertices incident with 5-faces. On the other hand, there might be
2-vertices incident with 6-faces.

Lemma 11. Both neighbors of a 2-vertex incident with a 6-face in G are 4+-vertices.
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Proof. We divide the proof in two parts. First, we show that a 2-vertex does not have a 2-
neighbor, i.e., there is no 2-thread on a 6-face. Suppose the contrary and let α be a 6-face
with an incident 2-thread (u, v) and let G′ = G/α. Then, G′ admits a 3-FEC σ with at most
10 colors, which induces a 3-FEC of G with only the edges of α being non-colored. The three
edges incident with the vertices u and v have at least 6 available colors, and the other edges
of α have at least 4 available colors. It is easy to see that we can extend σ to all edges of G
by applying Theorem 3, a contradiction.

Second, suppose that a 2-vertex v of a 6-face α is adjacent to a 3-vertex u. Let u1 be the
neighbor of u, distinct from v, which is incident with α, and u2 the third neighbor of u. Again,
consider G′ = G/α and a 3-FEC σ of G′ using at most 10 colors. In the coloring of G induced
by σ, only the edges of α are non-colored. Every non-colored edge has at least 4 available
colors, while the two edges incident with v have at least 5 available colors. Hence, if the set
A(α) contains at least 6 colors, then we can apply Theorem 3 and we are done.

Thus, we may assume that A(α) contains precisely 5 colors, say [1, 5]. Notice that the sets
of available colors on the edges of α not incident with v are not necessarily the same. However,
since |A(uv)| = 5, the intersection of A(e)∩A(uv), for any e ∈ E(α), contains at least 4 colors.
Therefore, from among at least 2 colors that can be used to recolor the edge uu2 by Lemma 9,
at least one, say j, appears in A(e) for some e ∈ E(α) \ {uu1, uv}. Then, after recoloring the
edge uu2 with the color j, the new set of available colors for E(α) is of size 6, and we can
apply Theorem 3 to find a 3-FEC of G with at most 10 colors, a contradiction.

From Lemmas 5, 10, and 11 we obtain the following Corollary.

Corollary 3. No 2-thread in G is incident with a 6−-face.

Lemma 12. A 2-vertex in G is incident with at least one 7+-face.

Proof. We again proceed by contradiction. Since 2-vertices are not incident with 5−-faces by
Lemmas 5 and 10, suppose that there is a 2-vertex v in G incident with two 6-faces. Let
G′ = G − v. By the minimality, there is a 3-FEC σ of G′ using at most 10 colors. Consider
now the coloring of G induced by σ, in which only the two edges incident with v remain non-
colored. Each of the two edges has at least 2 available colors, so we can color them, and thus
extend σ to all edges of G, a contradiction.

Now, we focus on 7-faces incident with 2-vertices. We begin with 7-faces incident with a
2-thread.

Lemma 13. Every 2-thread incident with a 7-face in G has at least one 4+-neighbor.

Proof. Suppose the contrary and let α be a 7-face incident with a 2-thread (v2, v3), where the
other neighbors of v2 and v3 (v1 and v4, respectively) are both 3-vertices. We label the vertices
as depicted in Figure 4.

Let G′ = G/α and let σ be a 3-FEC of G′. In the partial coloring of G induced by σ, only
the edges of α are non-colored, and the number of available colors is at least 4 for arbitrary
non-colored edge, while it is at least 6 for the three edges incident with v2 and/or v3. It is
easy to verify that if the set A(α) of available colors contains at least 7 colors, then we can
complete the coloring by Theorem 3. Thus we may assume that |A(α)| = 6, say A(α) = [1, 6].
Additionally, we may assume that σ(u1v1) = 7.

10



v2 v3 v4

v5

v6

v1

v7

u1 u4

Figure 4: A reducible 7-face incident with a 2-thread with two 3-neighbors.

So, |A(v1v2) ∩ A(v1v7)| ≥ 4, and we can recolor u1v1 with a color from I = A(v1v2) ∩
A(v1v7)∩A(u1v1), since |I| ≥ 2 by Lemma 9. If there is an edge e of α which is not 3-facially
adjacent to u1v1 and A(e) contains a color from I, say 1, then we can recolor u1v1 with 1. The
new set of available colors for E(α) is then [1, 7], and hence we can apply Theorem 3 to find a
contradictory 3-FEC of G.

Note that if |I| ≥ 3, then we can always find a suitable edge e. Therefore, we may assume
|I| = 2, say I = {1, 2}, hence d(v7) ≥ 3, and, by symmetry, d(v5) ≥ 3. Therefore, by Lemmas 5
and 7, there is no edge in the set {v4v5, v5v6, v6v7} that is 3-facially adjacent to u1v1; thus, we
have, say, A(v1v7) = [1, 4] and A(v4v5) = A(v5v6) = A(v6v7) = [3, 6]. Analogously as above,
at least two colors from A(v3v4)∩A(v4v5) can be used to recolor u4v4 by Lemma 9. Since the
color of A(α) involved in the recoloring is still available for v6v7, the new set of available colors
for E(α), namely [1, 6] ∪ {σ(u4v4)}, is of size 7, a contradiction.

Lemma 14. A 2-thread in G is incident with at most one 7-face.

Proof. Suppose the contrary and let (v1, v2) be a 2-thread incident with two 7-faces α and α′.
Let G′ = G \ {v1, v2}. By Lemma 6, there is a 3-FEC σ of G′ using at most 10 colors such
that two edges of the face in G′ corresponding to the faces α and α′ in G have the same color
assigned. This means that in the coloring of G induced by σ, each of the three non-colored
edges (the edges incident with the 2-thread) have at least 3 available colors, and therefore we
can extend σ to all edges of G, a contradiction.

Lemma 15. Let α be a 7-face in G with a 2-thread (v2, v3) and at least one 2-vertex v distinct
from v2 and v3. Then, every 2-vertex incident with α has a 2-neighbor and a 4+-neighbor or
two 4+-neighbors.

Proof. Suppose the contrary and let α be a 7-face with the vertices labeled as in Figure 5,
with a 2-vertex incident with a 3-vertex. We present three possibilities (up to symmetry) for a
neighboring 2-vertex and a 3-vertex; namely, in the case (a), there is a 3-neighbor of a 2-thread,
and in the cases (b) and (c) a 3-neighbor of a 2-vertex v, which is not a part of the 2-thread
(v2, v3). By Lemma 7, we may assume that v ∈ {v5, v6, v7}.

We prove the lemma for all three cases at once. Suppose to the contrary that α (one of the
three possible ones) exists in G. Let G′ = G/α and let σ be a 3-FEC of G′ with at most 10
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(a)
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(c)

Figure 5: The three possible configurations of a 7-face incident with a 2-thread, a 2-vertex, and a 3-vertex.

colors. In the coloring of G induced by σ, only the edges of α are non-colored. Notice that the
three edges incident with the 2-thread (v2, v3) have at least 6 available colors, the two edges
incident with v have at least 5, and the remaining two edges have at least 4. From this it
follows that if |A(α)| ≥ 7, then Theorem 3 applies, and we can color all the edges of α with a
different color, hence extending σ to G, a contradiction.

So, we may assume that |A(α)| = 6. Denote by v′ the 3-vertex adjacent to u1 (hence,
v′ ∈ {v1, v6, v7}), and let v′1, v

′
2 be the two neighbors of v′ on α. We claim that there exists an

edge e′ in α, which is not 3-facially adjacent to u1v
′, such that |A(v′v′1)∩A(v′v′2)∩A(e′)| ≥ 3.

Note first that by the above argument on the number of available colors, the intersection of
available colors of any two edges of α, where at least one of them is incident with a 2-vertex, is
at least of size 3. If v′ is not v1, then e′ = v1v2 is not 3-facially adjacent to u1v

′ by Lemma 4,
and since |A(v1v2)| = 6, the claim follows. Otherwise, if v′ = v1, we may assume v′1 = v2,
and we choose e′ ∈ {v4v5, v6v7} in such a way that e′ is incident with a 2-vertex. Similarly as
above, since |A(v1v2)| = 6 and |A(v′v′2) ∩ A(e′)| ≥ 3, the claim follows. Now, by Lemma 9,
recoloring u1v

′ with a color c ∈ A(v′v′1) ∩A(v′v′2) ∩A(e′) introduces the color σ(u1v
′) /∈ A(α)

to the set of available colors for E(α). Since the color c is still available for e′, the new 3-FEC
of G′ can be extended to G by Theorem 3, a contradiction.

Note that there might be a 7-face in G incident with two 2-threads.

Lemma 16. If a 7-face α in G is incident with at least two 2-vertices but no 2-thread, then
every 2-vertex incident with α has at least one 4+-neighbor.

Proof. Suppose the contrary and let α be a 7-face in G incident with at least two 2-vertices,
where one of them, call it v1, has two 3-neighbors. Note that by symmetry we may also
assume that either v3 or v4 is a 2-vertex, hence there are two possibilities as depicted in
Figure 6. Moreover, by Lemmas 4 and 10, v4v5 is 3-facially adjacent neither to u2v2 nor to
u7v7, and so recoloring u2v2 and/or u7v7 does not change the set of available colors for v4v5.

Consider a 3-FEC σ of G/α using at most 10 colors. In G, σ induces a coloring with
only the edges of α being non-colored. Every non-colored edge incident with a 2-vertex has
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Figure 6: A 7-face with at least two incident 2-vertices, where one of them has two 3-neighbors.

at least 5 available colors and every other edge has at least 4 available colors. Moreover, for
every two edges e1 and e2 of α which are both incident with the same 2-vertex, we have that
|A(e1) ∩ A(e2)| ≥ 4. By assumption, there are at least two 2-vertices in α and thus at least
four edges have at least 5 available colors. This implies that the union of available colors of
every subset of k edges is of size at least k, for k ≤ 5. We divide the proof into three cases
regarding the number of colors in the union A(α).

(1) Suppose first that |A(α)| = 5, say A(α) = [1, 5]. Then A(v1v2) = A(v1v7) = A(α). We
may also assume that σ(u2v2) = 6 and σ(u7v7) = 7. We intend to recolor the edges u2v2 and
u7v7 with two colors c1 and c2 from A(α) such that after recoloring, c1 and c2 will still be
available colors for some edges of α, and so the colors of [1, 7] will be available for E(α).

By Lemma 9, u2v2 can be recolored with at least two colors from A(v1v2)∩A(v2v3). Since
|A(v1v2)∩A(v2v3)∩A(v4v5)| ≥ 4 in both cases depicted in Figure 6, we can recolor u2v2 with
a color c1 ∈ A(v1v2)∩A(v2v3)∩A(v4v5), and thus make the color 6 available for E(α). Next,
we recolor u7v7 with (possibly the only) color from A(v1v7)∩A(v6v7), and thus make the color
7 available for E(α). Note that then c1 is still available for v4v5, c2 is still available for v3v4,
hence all colors of [1, 7] are available for E(α).

It remains to show that the union of available colors of any six edges of α contains at least
6 colors. Suppose this is not true, and there is e′ ∈ E(α) such that the set A of available colors
for E(α) \ {e′} is of size 5. Then, the set of available colors for e′ contains exactly two colors
c′1, c

′
2 ∈ [1, 7] \ A, and it is easy to see that {c′1, c

′
2} = {c1, c2}. However, u2v2 is colored with

c1 ∈ A(v4v5), and u7v7 is colored with c2 ∈ A(v3v4), therefore e′ can be neither v4v5 nor v3v4,
a contradiction. Thus, by Theorem 3, we can color each non-colored edge with a distinct color
from the set [1, 7], which provides a 3-FEC of G with at most 10 colors.

(2) Now, suppose that |A(α)| = 6, say A(α) = [1, 6]. First, note that at most one of the
edges u2v2 and u7v7 is colored with a color from A(α), otherwise |A(α)| ≥ |A(v1v2)| + 2 ≥ 7.
Observe that we can proceed in this way, since the cases (3), when |A(α)| ≥ 7, and (2), when
|A(α)| = 6, are analyzed independently from each other. So, we may assume that σ(u2v2) = 7
or σ(u7v7) = 7. We suppose the former, i.e., σ(u2v2) = 7, and note that the proof for the
second case proceeds similarly, although not completely symmetrically, due to the assumption
that one of the vertices v3 and v4 is a 2-vertex. We consider two cases regarding the color of
u7v7.

(2.1) Suppose first that u7v7 is colored with a color from A(α), say σ(u7v7) = 6. Then,
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A(v1v2) = A(v1v7) = A(α)\{6} = [1, 5]. We split this case further into two subcases, regarding
which of the vertices v3 and v4 is a 2-vertex (recall that, by symmetry, we know precisely one
of v3, v4 is of degree 2).

(2.1.1) If v3 is a 2-vertex, then |A(v1v2)∩A(v2v3)| ≥ 4 and |A(v1v2)∩A(v2v3)∩A(v6v7)| ≥ 3.
Thus, by Lemma 9, we can recolor u2v2 with a color c1 from A(v1v2)∩A(v2v3)∩A(v6v7). By
Lemmas 4 and 10, the set of available colors for v6v7 does not change. Therefore, the set of
available colors for E(α) changes to [1, 7], and it only remains to show that any set E ⊆ E(α)
with |E| = 6 has its set of available colors of size at least 6. So, suppose the contrary, and let
e ∈ E(α) be such that the set of available colors for E(α) \ {e} is of size 5. This means that
there are two colors in [1, 7] that are available only for e. Note that all colors of [1, 5] \ {c1}
are available for v1v2 and v1v7, and color 7 is available for v1v2, v2v3, v3v4, and v1v7. So, the
above two colors must be c1 and 6. However, since c1 is available for v6v7, while 6 is not (recall
that u7v7 is colored with 6), no edge e ∈ E(α) can have the required property, a contradiction.
Hence, we can apply Theorem 3 to extend the present coloring of G/α to G.

(2.1.2) If v4 is a 2-vertex, then v3 is a 3+-vertex. If there is a color c1 from A(v1v2)∩A(v2v3)
with which we can recolor u2v2 and c1 is also in the set of available colors of some edge that is not
3-facially adjacent to u2v2, then we proceed as in the case (2.1.1). So we may assume that u2v2
can only be recolored with a unique color, say, 1, meaning that |A(v1v2) ∩A(v2v3)| = 3, and,
without loss of generality, A(v2v3) = {1, 2, 3, 6}, A(v3v4) = A(v4v5) = [2, 6], A(v5v6) ⊂ [2, 6],
and A(v6v7) = [2, 5]. Now, by Lemma 9, there are at least two colors from A(v1v7)∩A(v6v7) ⊆
A(v3v4) to recolor u7v7, and we do it with color c2. By Lemma 1, the edge u2v2 is incident
with two distinct faces; let α1 be that incident with v1v2, and let α2 be the other one. Next,
consider eji , the j-th edge following u2v2 in the direction from v2 to u2 in αi, for i = 1, 2
and j = 1, 2, 3. Note that from |A(v2v3)| = 4 it follows that d(u2) ≥ 3, hence, by Lemma 1,
{

e11, e
2
1, e

3
1

}

∩
{

e12, e
2
2, e

3
2

}

= ∅. As a consequence of σ(u2v2) = 7, σ(u7v7) = 6, and A(v1v2) =
[1, 5], we have

{

σ(e11), σ(e
2
1)
}

⊆ [8, 10]. Moreover, 6 ∈ A(v2v3), and so 6 /∈
{

σ(e12), σ(e
2
2)
}

.
Finally, u2v2 can be recolored neither with 2 nor with 3; therefore,

{

σ(e31), σ(e
3
2)
}

= {2, 3}.
The above reasoning shows that after recoloring u7v7 with c2, we can recolor u2v2 with 6, which
transforms the set of available colors for E(α) to [1, 7]. As in the previous case, it remains to
verify that any set E ⊆ E(α) with |E| = 6 has its set of available colors of size at least 6. This
is true, since c2 and 6 are available for v3v4 and v4v5, 7 is available for v1v2, v2v3, and v1v7,
and each color of [1, 5] \ {c2} is available for v1v2 and v1v7. Thus, again by Theorem 3, we can
find a required 3-FEC of G.

(2.2) Now, suppose that u7v7 is colored with a color not in A(α), say σ(u7v7) = 8. We
proceed as in the previous cases. If there is a color c1 from A(v1v2) ∩ A(v2v3) with which
we can recolor u2v2 and c1 appears as an available color of a non-colored edge that is not
3-facially adjacent to u2v2, then we are done. Otherwise, we may assume that all 4 colors of
A(v6v7) are available for the edges v3v4, v4v5, and v5v6. Then recoloring u7v7 with a color
from A(v1v7) ∩ A(v6v7) (at least one color for such a recoloring is guaranteed by Lemma 9)
increases the size of the set of available colors for E(α) to 7. Again, every color, that is
available for E(α), is available for at least two edges of α; thus, we can use Theorem 3 to
obtain a contradiction as above.

(3) Finally, suppose that |A(α)| ≥ 7. To apply Theorem 3, we only need to show that any
subset of E(α) of size 6 has the set of available colors of size at least 6. If this is not the
case, there is a set E ⊆ E(α) of size 6 such that |A(E)| = 5, hence E(α) \ E = {e} implies
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|A(e) \ A(E)| ≥ 2. Clearly, we have |A(v1v2) ∩ A(v2v3) ∩ A(e′)| ≥ 3 for every e′ ∈ E. Pick
an edge e′′ ∈ E that is not 3-facially adjacent to u2v2. By Lemma 9, at least one color from
A(v1v2)∩A(v2v3)∩A(e′′) can be used to recolor u2v2. In this way, the size of the set of colors
available for E increases to 6. Besides that, at least one color of A(e) \A(E) remains available
for e, and so the set of available colors is of size at least 6 for any subset of E(α) of size 6 that
contains e. Thus we can apply Theorem 3 again.

Lemma 17. No 9-face in G is incident with a 2-vertex.

v1

v
′

1

v2v3

v
′

4

v4

v5

v6

v7

Figure 7: A reducible 9-face with an incident 2-vertex.

Proof. Suppose the contrary and let α be a 9-face incident with a 2-vertex. We label the vertices
as depicted in Figure 7. Let G′ be the graph obtained by identifying the edges v1v

′
1 and v4v

′
4,

and let σ′ be a 3-FEC of G′ using at most 10 colors. From the coloring of G induced by σ′ we
create the coloring σ by uncoloring all edges of E(α) \ {v1v

′
1, v4v

′
4}. Observe that the edges

v1v
′
1 and v4v

′
4 are not 3-facially adjacent in G, otherwise G would contain a separating cycle of

length at most 7, or a 5-face with an incident 2-vertex, contradicting Lemma 4 or Lemma 10.
Therefore, σ is a partial 3-FEC of G, in which the edges v1v

′
1 and v4v

′
4 receive the same color.

Note that each of the edges v1v2, v2v3, v3v
′
4, v4v5, v7v

′
1 has at least 3 available colors, while the

two edges v5v6 and v6v7, incident with the 2-vertex v6, have at least 4 available colors. Next,
we associate with each edge of α distinct from v1v

′
1 and v4v

′
4 a variable Xi, i ∈ {1, . . . , 7}, in

clockwise order starting from v1v2. To apply Theorem 4, we define the following polynomial:

F (X1, . . . ,X7) =(X1 −X2)(X1 −X3)(X1 −X6)(X1 −X7)(X2 −X3)

·(X2 −X4)(X2 −X7)(X3 −X4)(X3 −X5)(X4 −X5)

·(X4 −X6)(X4 −X7)(X5 −X6)(X5 −X7)(X6 −X7).

The coefficient of the monomial X2
1X

2
2X

2
3X

2
4X

2
5X

3
6X

2
7 in F (X1, . . . X7) is equal to −3, thus by

Theorem 4, we can extend the coloring σ to the 3-FEC of G using at most 10 colors.

Lemma 18. Every 10-face in G is incident with at most two 2-vertices.

Proof. Suppose the contrary and let α be a 10-face in G incident with at least three 2-vertices.
Let the vertices of α be labeled as depicted in Figure 8. We prove the lemma by considering
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three cases regarding the distances between 2-vertices. Namely, it suffices to show that the
facial-distance in the face α between two 2-vertices does not belong to the set {1, 3, 4}. We do
it by using Theorem 4, in which the variable Xi is associated with the edge vivi+1 for every
i ∈ [1, 9], and the variable X10 is associated with the edge v1v10.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 8: Labeling of the 10-face α.

(1) Suppose first that there are two adjacent 2-vertices in α, say v1 and v2. Consider the
graph G′

1 obtained from G by identifying the edges v4v5 and v8v9. It admits a 3-FEC σ′
1 using

at most 10 colors. The coloring of G induced by σ′
1 is not necessarily a 3-FEC. However, by

Lemmas 4 and 7, v4v5 and v8v9 are not 3-facially adjacent in G, hence uncoloring the edges
of E(α) \ {v4v5, v8v9} yields a partial 3-FEC σ1 of G with σ1(v4v5) = σ1(v8v9). Note that in
this setting, the edges v1v2, v2v3, and v1v10 have at least 5 available colors, and the other five
edges of α have at least 3 available colors. Now, we define the polynomial:

F1(X1, . . . ,X10) =(X1 −X2)(X1 −X3)(X1 −X9)(X1 −X10)

·(X2 −X3)(X2 −X5)(X2 −X9)(X2 −X10)

·(X3 −X5)(X3 −X6)(X3 −X10)(X5 −X6)(X5 −X7)

·(X6 −X7)(X6 −X9)(X7 −X9)(X7 −X10)(X9 −X10) .

Expanding it, we see that the coefficient of the monomial X4
1X

4
2X

2
3X

2
5X

1
6X

2
7X

3
10 in F1(X1, . . . ,X10)

is 1, and thus, by Theorem 4, we can extend σ1 to G, a contradiction.

(2) Suppose now that there are 2-vertices at distance 3 in α, say v1 and v4. Consider the
graph G′

2 obtained from G by identifying the edges v5v6 and v9v10. It admits a 3-FEC σ′
2

using at most 10 colors. By Lemmas 4 and 7, v5v6 and v9v10 are not 3-facially adjacent, and
so by uncoloring the edges of E(α) \ {v5v6, v9v10}, we obtain a partial 3-FEC σ2 of G with
σ2(v5v6) = σ2(v9v10). Note that in this setting the edges v1v2, v1v10, v3v4, and v4v5 have at
least 4 available colors, and the other four edges of α have at least 3 available colors. We define
the polynomial:

F2(X1, . . . ,X10) =(X1 −X2)(X1 −X3)(X1 −X4)(X1 −X8)(X1 −X10)

·(X2 −X3)(X2 −X4)(X2 −X10)

·(X3 −X4)(X3 −X6)(X3 −X10)(X4 −X6)(X4 −X7)

·(X6 −X7)(X6 −X8)(X7 −X8)(X7 −X10)(X8 −X10) .
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Realizing that the coefficient of the monomial X3
1X

2
2X

2
3X

3
4X

2
6X

2
7X

1
8X

3
10 in F2(X1, . . . ,X10) is

−1, we infer that σ2 can be extended to G by Theorem 4, a contradiction.

(3) Suppose now that there are 2-vertices at distance 4 in α, say v1 and v5. Note that the
argument of the case (2) is also valid here, since the only difference is that the edge v3v4 may
now have only 3 available colors. This is sufficient for applying Theorem 4 to extend σ2 to G,
since the exponent of X3 in the above monomial of F2(X1, . . . ,X10) is 2.

Lemma 19. If a 6-face α1 and a 7-face α2 of G share a 2-vertex v, and u 6= v is a vertex of
α2, then d(u) ≥ 3.

Proof. Suppose the contrary and let u 6= v be a 2-vertex of α2. Observe that by Lemma 11,
v is the only 2-vertex incident with both α1 and α2, thus u is either at facial-distance 2 or
at facial-distance 3 from v. Consider now the graph G′ = G − v. Note that the remaining
edges incident with either α1 or α2 form a 9-face in G′. Label the edges of G according to
Figure 7 with v6 = u, and let σ′ be a 3-FEC with at most 10 colors of the graph obtained from
G′ by identifying the edges e = v1v

′
1 and e′ = v4v

′
4 (as in the proof of Lemma 17). One can

easily observe that in any case, one of the edges e and e′ is incident with α1, while the other
is incident with α2. Thus the edges e and e′ are not incident with a common face in G. It
follows that the only conflict of the coloring σ of G− v induced by σ′ vanishes when the vertex
v with its incident edges is added back to G− v. Finally, since at most 8 colors appear on the
edges incident with α1 and α2, the two non-colored edges incident with v both have at least 2
available colors. Hence, we can extend σ to all edges of G, a contradiction.

Lemma 20. Let α1 and α2 be distinct 7-faces of G with a common 2-vertex v that has a 3-
neighbor u and a 4+-neighbor w. Furthermore, let u1 and w1 be the vertices of α1 adjacent to u
and w, respectively. Finally, let either d(u1) ≥ 3 and e1 ∈ E(α1) \ {uu1, uv, vw} or d(u1) = 2
and e1 = ww1, and let e2 ∈ E(α2) \ {uv, vw}. Then, the edge e1 is not 3-facially adjacent to
the edge e2.

Proof. Suppose to the contrary that e1 is within facial-distance 3 from e2. First realize that
the faces α1 and α2 share the vertices u, v, and w only (use Lemmas 5 and 10).

Let α be a face incident with both α1 and α2. Consider a facial path P of length ℓ ≤ 4
in α having the first edge e1 and the last edge e2. Note that e1 ∈ E(α1) \ E(α2) and e2 ∈
E(α2)\E(α1), hence α is unique and ℓ ≥ 2. From e1 6= e2 we infer that |e1∩e2| ≤ 1. Moreover,
|e1∩e2| = 1 yields e1∩e2 = {w}, which in turn means that the edges e1 and e2 are not facially
adjacent to each other (since w is a 4+-vertex). So, e1 ∩ e2 = ∅ and ℓ ∈ {3, 4}.

If ℓ = 3, then the second edge of P is x1x2, where x1 is a vertex of α1, x2 is a vertex of α2,
and the requirements on e1 imply u /∈ {x1, x2}. Moreover, from d(w) ≥ 4 it follows that x1x2
is incident neither with α1 nor with α2. The faces α1 and α2 create in G − v a 10-face α1,2

incident with ten distinct vertices and ten distinct edges. From the two facial paths joining
x1 to x2 in α1,2, one does, and the other does not contain the vertex u; let P+ be the former
and P− the latter one. Denote by ℓ+ and ℓ− the length of P+ and P−, respectively, and so
ℓ++ℓ− = 10. Use P+, P−, and the edge x2x1 to construct cycles C+ = P+x1 and C− = P−x1.
The sum of lengths of C+ and C− is (ℓ+ +1) + (ℓ− +1) = 12. We have min(ℓ+, ℓ−) = ℓ∗ ≤ 5,
where ∗ ∈ {+,−}. If C∗ is a separating cycle, its existence contradicts Lemma 4. On the other
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hand, if C∗ is not separating, it either bounds a face in G contradicting one of Lemmas 5, 10,
11, or it has at least one chord, which ultimately yields a contradiction to Lemma 5.

If ℓ = 4, then P = y1x1zx2y2, where e1 = y1x1, e2 = x2y2, and u /∈ {x1, x2}. Let P+, P−,
ℓ+, ℓ−, and ℓ∗ be defined as in the case ℓ = 3, and let C+ = P+zx1, C− = P−zx1. Now,
the sum of lengths of C+ and C− is (ℓ+ + 2) + (ℓ− + 2) = 14. Again by Lemma 4, the cycle
C∗ is not separating. If ℓ∗ ≤ 4, a contradiction is reached as above. Finally, assume that
ℓ∗ = 5 = l+ = l−. Since C+ is not a separating cycle (we can choose ∗ = +), and does not
have a chord (this would contradict Lemma 5), it bounds a face in G, which is impossible by
Lemmas 7 and 14.

Lemma 21. Let α1 and α2 be two 7-faces in G that have a common 2-vertex v. If α1 and α2

have at least two incident 2-vertices each, then v has two 4+-neighbors.

Proof. Suppose the contrary and let u and w be distinct neighbors of v. By Lemmas 14 and 16,
we may assume, without loss of generality, that d(u) = 3 and d(w) ≥ 4. For both i ∈ {1, 2}
there is in the face αi a neighbor ui 6= v and wi 6= v of u and w, respectively. Again without
loss of generality, we may assume that d(u1) ≥ d(u2). Furthermore, let α1,2 be the 10-face in
G− v created from α1 and α2 (cf. the proof of Lemma 20).

(1) If d(u2) ≥ 3, there exist vertices x 6= v and y 6= v incident with α1 and α2, respectively,
such that d(x) = d(y) = 2. Let G′ be the graph obtained from G − v by identifying the two
edges incident with x and the two edges incident with u2. By the minimality of G, there exists
a 3-FEC σ′ of G′ using at most 10 colors. From the coloring of G− v induced by σ′ we obtain
a coloring σ by uncoloring all edges of α1,2 that are incident neither with x nor with u2. By
Lemma 20, σ is a partial 3-FEC of G. Let Ei be the set of (all) three non-colored edges incident
in G with the face αi, for i = 1, 2. We can color the edges of E1 and E2 separately, i.e., when
coloring the edges of Ei, we suppose that the edges of E3−i are still non-colored, for i = 1, 2.
For that purpose, note that the edge uu1 ∈ E1 has at least 3 available colors, and there is an
edge e2 ∈ E2 incident with y such that e2 has at least 3 available colors as well. Furthermore,
at least 2 colors are available for any other edge in E1 ∪ E2. Therefore, by Theorem 3, the
mentioned separate coloring of edges in E1 ∪ E2 is possible, and, by Lemma 20, results in a
3-FEC of G− v, in which edges incident with α1,2 use at most 8 colors. Two of the remaining
colors then suffice to color the edges uv and vw.

(2) If d(u1) ≥ 3 and d(u2) = 2, there exists a 2-vertex x incident with α1. Let G′ be the
graph constructed from G− v by identifying the two edges incident with x and the two edges
incident with w2. By the minimality of G, there exists a 3-FEC σ′ of G′ using at most 10
colors. From the coloring of G−v induced by σ′ we obtain a coloring σ by uncoloring all edges
of α1,2 that are incident neither with x nor with w2. By Lemma 20, σ is a partial 3-FEC of
G. Let the edge sets E1 and E2 be defined as in the case (1). Color first the edges of E1 by
Theorem 3 noting that the number of available colors is at least 4 for the edge uu1 and at least
2 for the remaining two edges. Next, color the three edges of E2, again by Theorem 3, having
in mind that the number of available colors is now at least 3 for the two edges incident with
u2 and at least 2 for the last edge. The edges uv and vw are then colored as before.

(3) If d(u1) = d(u2) = 2, let G′ be created from G − v by identifying the edges ww1 and
ww2. By the minimality of G, there exists a 3-FEC σ′ of G′ using at most 10 colors. From
the coloring of G− v induced by σ′ we obtain a coloring σ by uncoloring all edges of α1,2 not

18



incident with w. By Lemma 20, σ is a partial 3-FEC of G, and, without loss of generality,
we may assume that σ(ww1) = σ(ww2) = 1. Denote by E+

i /E−
i the set of non-colored edges

incident in G with the face αi that are/are not incident with ui, for i = 1, 2. Notice that the
number of available colors is at least 6 for any edge of E+

1 ∪E+
2 and at least 3 for any edge of

E−
1 ∪E−

2 .
Suppose now that we are able to use the same color for an edge of E+

1 and an edge of E−
2 .

Then, by Theorem 2, σ is extendable to G − v. A similar extension is possible if the same
color can be used either for an edge of E−

1 and an edge of E+
2 , or for the edge of E−

1 incident
with w1 and the edge of E−

2 incident with w2. The final extension of the coloring of G− v to
G works as in the case (1).

Thus, we may assume, without loss of generality, that the set of available colors is [2, 4] for
each edge in E−

1 , [5, 10] for each edge in E+
2 , [5, 7] for each edge in E−

2 and [2, 4] ∪ [8, 10] for
each edge in E+

1 . This, however, leads to a contradiction: since in the facial path u2uu1z1z2
(where z2 is necessarily not incident with α1) the edge z1z2 has a color from [5, 7], the set of
available colors for uu2 ∈ E+

2 is not [5, 10].

Lemma 22. Let α1 and α2 be two 7-faces in G that have a common 2-vertex v. If α1 has at
least three incident 2-vertices, then v is the only 2-vertex incident with α2.

Proof. Suppose the contrary and let v be a 2-vertex incident with 7-faces α1 and α2, where
n2(α1) ≥ 3 and n2(α2) ≥ 2. By Lemma 21, both neighbors of v, v1 and v2, are 4+-vertices.
This implies that every pair of edges e1 ∈ E(α1) and e2 ∈ E(α2), which are not incident with
v, are not 3-facially adjacent by Lemmas 4 and 7. Furthermore, by Lemma 7, we also have
that there exist vertices u1 and u2 of α1 and α2, respectively, such that u1, u2 /∈ {v, v1, v2} and
d(u1), d(u2) ≥ 3.

Denote by α1,2 the face of the graph G− v created from the faces α1 and α2. Let G′ be the
graph obtained from G − v by identifying the two edges incident with u1 and the two edges
incident with u2. By the minimality of G, there exists a 3-FEC σ′ of G′ using at most 10
colors. From the coloring of G−v induced by σ′ we obtain a coloring σ by uncoloring all edges
of α1,2 that are incident neither with u1 nor with u2. By mimicking the proof of Lemma 20,
we show that if ei is any edge of α1,2 incident in G with the face αi, for i = 1, 2, then e1 is
not 3-facially adjacent (in G) to e2: since d(v1) ≥ 4 and d(v2) ≥ 4, the cycle C∗ of length at
most 7 from the mentioned proof either is separating or has a chord, in both cases we obtain
a contradiction. So, σ is a partial 3-FEC of G− v.

Let us extend σ to a (full) 3-FEC of G − v. For that purpose consider in the face α1,2

a 2-vertex w1 6= v and a 2-vertex w2 6= v that is in G incident with the face α1 and α2,
respectively. If the sets of edges E1 and E2 are defined as in the proof of Lemma 21, case (1),
the edges of E1 and those of E2 can be colored separately (using Theorem 3). Indeed, |Ei| = 3,
while the number of available colors is at least 3 for any (at least one) edge of Ei incident with
wi and at least 2 for any of the remaining edges of Ei, for i = 1, 2.

The number of available colors is now at least 2 for both non-colored edges vv1, vv2 of
G− v, hence there is a 3-FEC of G using at most 10 colors, a contradiction.

3.2. Discharging

In this part, we decribe the discharging procedure. First, we assign initial charges to all
vertices and faces of G. For every vertex v ∈ V (G), we set

ch0(v) = 2d(v) − 6 ,
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and for every face α ∈ F (G), we set

ch0(α) = ℓ(α)− 6 .

By Euler’s Formula, the total charge of G, i.e., the sum of all initial charges, is
∑

v∈V (G)

ch0(v) +
∑

α∈F (G)

ch0(α) =
∑

v∈V (G)

(

2d(v) − 6
)

+
∑

α∈F (G)

(

ℓ(α) − 6
)

= −12 . (2)

During the discharging process, we apply the following rules to redistribute the charges
between vertices and faces of G. Observe that all amounts of charges sent (and so received,
too) by the rules are positive.

R1 Every 4+-vertex sends 1
5 to every incident 5-face.

R2 For each pair v and u, where v is a 4+-vertex and u is a 2-vertex adjacent to v and
incident with faces α1 and α2 (note that α1 6= α2 by 2-connectivity of G), a charge is sent
according to the following (without loss of generality, we may assume that ℓ(α1) ≤ ℓ(α2)
and if ℓ(α1) = ℓ(α2), then n2(α1) ≥ n2(α2)):

(a) If ℓ(α1) = 6, then v sends 2
3 to α1.

(b) If ℓ(α1) = ℓ(α2) = 7 and n2(α1) = n2(α2) = 2, then v sends 1
3 to α1 and 1

3 to α2.

(c) If ℓ(α1) = ℓ(α2) = 7, n2(α1) ≥ 2, and n2(α2) = 1, then v sends 2
3 to α1.

(d) If ℓ(α1) = 7 and ℓ(α2) ≥ 8, then v sends 2
3 to α1.

R3 Every face sends 1 to every incident 2-vertex that is not a part of a 2-thread.

R4 Every 7-face sends 5
6 to every incident 2-vertex that is a part of a 2-thread.

R5 Every 8+-face sends 7
6 to every incident 2-vertex that is a part of a 2-thread.

We prepared all the tools we need to complete our proof of the main theorem.

Proof of Theorem 1. Clearly, the redistribution of charges does not change the total charge of
G. So,

∑

v∈V (G)

chf(v) +
∑

α∈F (G)

chf(α) = −12 , (3)

where chf(v)/chf(α) stands for the final charge (the “local” result of the charge redistribution)
of a vertex v/a face α of G. We are going to show that final charges of vertices and faces of
G are all nonnegative. This will mean that the total final charge of G is nonnegative, too, in
contradiction to (3).

We first show that each vertex v ∈ V (G) has a nonnegative final charge. In particular,
since by Corollary 1 there are no 1-vertices in G, and 3-vertices have initial charge 0 while not
sending any charge, we only consider 2-vertices and 4+-vertices.

• Suppose first that v is a 2-vertex in G, incident with faces α1 and α2. Without loss
of generality, we assume ℓ(α1) ≤ ℓ(α2). If v is not a part of a 2-thread, then it receives 1
from each of α1 and α2 by R3. Hence, chf(v) = 2d(v) − 6 + 2 · 1 = 0. If v is a part of a
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2-thread, then ℓ(α1) ≥ 7 by Corollary 3. Moreover, by Lemma 14, ℓ(α2) ≥ 8, and thus by R5,
v receives 7

6 from α2. On the other hand, v receives at least 5
6 from α1 by R4 or R5. Hence,

chf(v) ≥ 2d(v) − 6 + 5
6 +

7
6 = 0.

• Now, suppose that v is a 4+-vertex. Note that, by Lemma 10, i5(v) + n2(v) ≤ d(v),
where i5(v) is the number of 5-faces incident with v. Moreover, if d(v) = 4, then n2(v) ≤ 3
by Lemma 3, and if additionally n2(v) = 3, then v is not incident with a 5-face by Lemma 10.
Thus, if d(v) = 4, then v sends at most 3 · 2

3 of charge by R1 and/or R2, and so chf(v) ≥
2d(v) − 6 − 3 · 2

3 = 0. If d(v) ≥ 5, then v sends at most 2
3 of charge for each of at most

d(v) adjacent 2-vertices by R1 and/or R2, and so chf(v) ≥ 2d(v) − 6− d(v) · 2
3 > 0. So, after

redistribution of charges, all vertices in G have nonnegative final charges.

Next, we show that each face α ∈ F (G) has a nonnegative final charge. Again, we consider
several cases, regarding the length of α. Recall that by Lemma 5, α is of length at least 5.

• Suppose that α is a 5-face in G. By Lemma 10, it is incident only with 4+-vertices, and
so it receives 5· 15 by R1. Moreover, it does not send any charge, thus chf(α) = ℓ(α)−6+5· 15 = 0.

• Suppose that α is a 6-face in G. By Lemma 11, every 2-vertex incident with α is adjacent
to two 4+-vertices. Thus, for every adjacent 2-vertex, α receives 2 · 2

3 by R2(a), and sends 1
by R3. Altogether, its final charge is chf(α) ≥ ℓ(α) − 6 + 2n2(α) ·

2
3 − n2(α) =

1
3n2(α) ≥ 0.

• Suppose that α is a 7-face in G. It sends charge to incident 2-vertices by R3 and R4, and
it receives charge from incident 4+-vertices by R2. We consider the cases regarding incident
2-vertices. If n2(α) ≤ 1, then, by R3, chf(α) ≥ ℓ(α) − 6− n2(α) = 1− n2(α) ≥ 0.

Now, suppose that α is incident with two 2-vertices v1 and v2, and let α1 and α2 be the
faces incident with v1 and v2, respectively, that are distinct from α (possibly, α1 = α2). Then,
by Lemma 19, none of these 2-vertices is incident with a 6-face. If v1 and v2 form a 2-thread,
then, by Lemma 14, they are also incident with an 8+-face. By Lemma 13, at least one of v1
and v2 has a 4+-neighbor which sends 2

3 to α by R2(d). On the other hand, α sends 5
6 to each

of v1 and v2 by R4. Hence, chf(α) ≥ ℓ(α) − 6 + 2
3 − 2 · 5

6 = 0. Thus, we may assume that
v1 and v2 are not adjacent, and by Lemma 16, each of them has at least one 4+-neighbor. If
i ∈ {1, 2} and ℓ(αi) = 7, then, by Lemma 22, n2(αi) ≤ 2; if, moreover, n2(αi) = 2, then, by
Lemma 21, vi has two 4+-neighbors. Therefore, α receives at least 2 · 2

3 by R2(b), R2(c), or
R2(d), and sends 2 · 1 by R3. Hence, chf(α) ≥ ℓ(α)− 6 + 2 · 2

3 − 2 · 1 = 1
3 .

Next, if α is incident with three 2-vertices, we distinguish two subcases. Suppose first that
α is incident with a 2-thread. Then, by Lemma 15, each of the incident 2-vertices has at least
one 4+-neighbor, and by R2(c) and R2(d), α receives at least 3 · 2

3 of charge (note that by
Lemma 22, if ℓ(α1) = 7, then α receives charge by R2(c)). It sends 1 by R3 and 2 · 5

6 by R4.
Hence, chf(α) ≥ ℓ(α)− 6 + 3 · 23 − 1− 2 · 5

6 = 1
3 . Similarly, if α is not incident with a 2-thread,

then, by Lemma 16, each of the incident 2-vertices has at least one 4+-neighbor, and by R2(c)
and R2(d), α receives at least 3 · 2

3 of charge. Since α sends 3 · 1 by R3, its final charge is
chf(α) ≥ ℓ(α)− 6 + 3 · 2

3 − 3 · 1 = 0.
Finally, suppose that α is incident with four 2-vertices. In this case, α is incident with at

least one 2-thread. Then, by Lemma 15, each 2-vertex incident with α has a 4+-neighbor, and
any 4+-vertex incident with α sends 2

3 to α by R2(c) or R2(d) for each of its 2-neighbors. Since α
sends at most 2· 56 and 2·1 by R4 and R3, its final charge is chf(α) ≥ ℓ(α)−6+4· 23−2· 56−2·1 = 0.

• By Lemma 6, we can skip the assumption that α is an 8-face in G.
• Suppose that α is a 9-face in G. Then, by Lemma 17, α is incident with no 2-vertex,

and hence chf(α) ≥ ℓ(α)− 6 = 3.
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• Suppose that α is a 10-face in G. By Lemma 18, α is incident with at most two
2-vertices, and so it sends at most 2 · 7

6 charge by R3 or R5. So, chf(α) ≥ ℓ(α)− 6− 2 · 7
6 = 5

3 .
• Suppose that α is an 11-face in G. Then, by Corollary 2, α is incident with at most five

2-vertices. If nt
2(α) = 0, then it sends charge only by R3. Thus, chf(α) ≥ ℓ(α)− 6− 5 = 0. If

nt
2(α) ≥ 1, then, by Corollary 2, n2(α) ≤ 4. The charge from α is sent by R3 and/or R5, thus

chf(α) ≥ ℓ(α)− 6− 4 · 7
6 = 1

3 .
• Suppose that α is a k-face in G, k ≥ 12. If nt

2(α) = 0, then α sends charge only by R3,
and so, by Corollary 2, chf(α) ≥ k − 6− ⌊k/2⌋ ≥ k−12

2 ≥ 0. If nt
2(α) > 0, then α sends charge

by R3 and/or R5, in total at most, again by Corollary 2,

|S1(α)|+ 2|S2(α)| ·
7

6
≤ |S1(α)| +

7

3
·

⌊

k − 2|S1(α)|

5

⌋

≤ |S1(α)| +
1

15

(

7k − 14|S1(α)|
)

=
1

15

(

7k + |S1(α)|
)

≤
1

15

(

7k +

⌊

k

2

⌋

)

≤
k

2
.

Thus, for any value of nt
2(α), chf(α) ≥ k − 6− k

2 = k−12
2 ≥ 0.

This proves that every face in G has a nonnegative final charge, which means that the total
charge in G is nonnegative, which contradicts (3).

4. Conclusion

The problems for the edge-coloring version of ℓ-facial coloring are clearly easier to tackle
than those for the vertex version. Recall that in the vertex version, only the case with ℓ = 1
is resolved, and moreover, its only proof is implied by the Four Color Theorem. In this paper,
we resolved another case and it seems that our approach allows, with some additional effort,
settling the Facial Edge-Coloring Conjecture for several other small values of ℓ. However, we
failed when trying to generalize our structural lemmas for large values of ℓ although faces of
lengths at most ℓ + 1 are reducible. Namely, to apply the discharging method, we need to
send enough charge to 2-vertices of a minimal counterexample G, and one possibility how to
do that is to show that every face of G is incident with at least six 3+-vertices. It turns out
that the most problematic faces are those of lengths k, for 3

2ℓ ≤ k ≤ 2ℓ.
Thus, a step towards showing the Facial Edge-Coloring Conjecture would consist of finding

an efficient approach for resolving the cases with large values of ℓ.

Problem 1. Find a constant C such that the Facial Edge-Coloring Conjecture holds for every
ℓ ≥ C.

Another line of research consists of determining the upper bounds for the ℓ-facial chromatic
index of plane graphs (and graphs on other surfaces) with additional constraints. In particular,
it remains unknown how high values can the ℓ-facial chromatic index of a plane graph with
minimum degree 3 achieve. More generally, further research could be oriented towards
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Problem 2. Given ℓ ≥ 4 and k ∈ [1, 5], find an upper bound for ℓ-facial chromatic index of
plane graphs with minimum degree k.
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