
New Updating Criteria for

Conflict-Based Branching Heuristics in

DPLL Algorithms for Satisfiability

Renato Bruni, Andrea Santori
Università di Perugia - D.I.E.I.

Via G. Duranti, 93 - 06125 Perugia, Italy.
E-mail: renato.bruni@diei.unipg.it, santori.andrea@libero.it

Abstract

The paper is concerned with the computational evaluation and comparison
of a new family of conflict-based branching heuristics for evolved DPLL
Satisfiability solvers. Such a family of heuristics is based on the use of
new scores updating criteria developed in order to overcome some of the
typical unpleasant behaviors of DPLL search techniques. In particular,
a score is associated with each literal. Whenever a conflict occurs, some
scores are incremented with different values, depending on the character
of the conflict. The branching variable is then selected by using the max-
imum among those scores. Several variants of this have been introduced
into a state-of-the-art implementation of a DPLL SAT solver, obtaining
several versions of the solver having quite different behavior. Experiments
on many benchmark series, both satisfiable and unsatisfiable, demonstrate
advantages of the proposed heuristics.

Keywords: Branching Rules, Conflict-Based Search Frameworks, Sat-
isfiability

1 Introduction

A propositional formula F in conjunctive normal form (CNF) is a conjunction of
clauses Cj , each clause being a disjunction of literals, each literal being either a
positive (xi) or a negative (¬xi) propositional variable, with j ∈ {1, . . . , m}, i ∈
{1, . . . , n}. By denoting with Ij the set of variables of Cj , and with [¬] the
possible presence of ¬, this is

∧
j=1...m

(
∨
i∈Ij

[¬] xi)

The satisfiability problem (SAT) consists in determining whether there exists a
truth assignment in {0, 1} (or equivalently in {False, True}) for the variables

1

such that F evaluates to 1. Extensive references can be found in [6, 14, 23].
Many problems arising from different fields, such as artificial intelligence, logic
circuit design and testing, cryptography, database systems, software verification,
are usually encoded as SAT. Moreover, SAT carries considerable theoretical
interest as the original NP-complete problem [7, 11]. From the practical point
of view, this implies that many instances require an exponentially bounded
computational time for their solution, but also that investing on the cleverness
of the solution algorithm can result in very large savings in such computational
times. The above has motivated a wide stream of research in practically efficient
SAT solvers. As a consequence, many algorithms for solving the SAT problem
have been proposed, based on different techniques (see for instance [8, 9, 12, 14,
17]). Computational improvements in this field are impressive, see e.g. [17, 22].
However, even if size and difficulty of the instances which can be solved are
greatly increasing, also size and difficulty of the instances which are needed to
be solved is greatly increasing (just to give an example, think about the case of
microprocessor verification).

A solution method is said to be complete if it guarantees (given enough
time) to find a solution if one exists, or prove lack of solution otherwise. In-
complete, or stochastic, methods, on the contrary, cannot guarantee finding
the solution, although they may scale better than complete methods, mainly
on large satisfiable problems. Most of the best complete solvers are based on
so-called Davis-Putnam-Logemann-Loveland (DPLL) enumeration techniques.
From the initial relatively simple DPLL backtracking algorithm described in
[8], SAT solvers have evolved experimenting with several more sophisticated
branching and backtracking frameworks, and eventually incorporating the best
ones. Noteworthily examples of this have been non-chronological backtracking
and conflict-driven clause learning [1, 19]. These techniques greatly improve the
efficiency of DPLL algorithms, especially for structured SAT instances. Subse-
quently, a further generation of solvers paying special attention to implementa-
tion aspects appeared: SATO [25], Chaff [21], BerkMin [13] and several others,
sometimes referred to as chaff-like solvers [17]. Such solvers nowadays appear
to be the most competitive in solving real-world satisfiability problems.

As a matter of fact, a relevant influence on computational behavior is given
by the branching rule, or branching heuristic, that is how to chose, at each
branching, the next variable assignment. Different branching heuristics for the
same basic algorithm may result in completely different computational results
[20, 24]. Early branching heuristics (e.g. Böhm [4], MOM [14], Jeroslow-Wang
[16]) have often been viewed as greedy trials of simplifying as much as possi-
ble the current subproblem, for instance by satisfying the most clauses. Such
heuristics are based on a priori statistics on the instance, and have a certain
effectiveness in the case of randomly generated problems. However, they usually
cannot capture hidden problem structure, and real world problems typically are
quite well structured. In order to tackle such problems, heuristics based on the
history of the search, and in particular on the history of conflicts, have been
proposed. Examples are VSIDS heuristic of Chaff [21], the adaptive branching
rule of ACS [2], BerkMin decision making strategy [13], the dynamic selection

2

of branching rules [15]. Conflict-based heuristics generally keep dynamically
updated scores associated with variables. A central issue is then the policy for
updating such scores. Recent studies on evolved scores updating techniques are
reported also in [5] and in a preliminary version of present paper [3].

We report here a computational study of new scores updating criteria for
conflict-based branching heuristics. Such criteria have been developed in order
to overcome a part of the typical time-wasting behaviors of DPLL search tech-
niques, as described in Section 2. In particular, a score is associated with each
literal. Whenever a conflict occurs, some scores are incremented with differ-
ent values, depending on the character of the conflict, as illustrated in detail
in Section 3. The branching variable is then selected by using the maximum
among those scores. Therefore, a new family of conflict-based branching heuris-
tics for evolved DPLL Satisfiability solvers, called reverse assignment sequence
(RAS), is obtained. Such heuristics have been introduced into a state-of-the-art
implementation of a DPLL SAT solver, obtaining several versions of the solver
having quite different behaviors, as described in Section 4. Experiments on
many benchmark series, both satisfiable and unsatisfiable, show that the pro-
posed branching heuristics are often able to improve solution times. Moreover,
notwithstanding the fact that the introduced counters updating requires some
computational overhead for its operations, total solution times on each series
are always in favor of one of the new versions of the solver.

2 Motivations and Aims of New Updating

Criteria

For DPLL-based algorithm, the search evolution is often represented as the ex-
ploration of a search tree, where each node subproblem is obtained by assigning
a variable. The fact that SAT is an NP-complete problem implies that, for satis-
fiable instances, if one could choose at every node subproblem the correct truth
assignment, that is the correct branch in the search tree, a satisfying solution
would be obtained in a polynomial number of assignments [11]. Unfortunately,
unless P=NP, it seems unlikely that some practical algorithm doing this in poly-
nomial time may in general exist. Moreover, the problem of choosing at every
node such an assignment for DPLL algorithms has been proven to be NP-hard
as well as coNP-hard [18]. Therefore, the (heuristic) policy governing the choice
of the variable assignments is generally called branching heuristic. Different
branching heuristics may produce drastically different sized search trees for the
same basic algorithm.

Conflict-based branching heuristics generally keep, for each variable xi, a
counter, or score si, or sometimes two counters, for the two possible truth assign-
ments, or phases, of xi. Score si is incremented when xi is somehow involved in
a conflict, i.e. an empty clause is derived by current truth assignments. Branch-
ing variables are selected according to the values of such scores. Counters are
often periodically proportionally reduced, both for avoiding overflow problems,

3

and for giving to earlier history of the search progressively less importance than
recent history. For instance, zChaff [21] heuristic (called VSIDS, variable state
independent decaying sum) uses for each variable two scores initialized to the
number of occurrences of each literal in the instance. Whenever a new clause
is learned, the counter of each of its literals is incremented by 1. The variable
assignment corresponds to the literal having maximum score. Also the adaptive
branching heuristic of ACS [2] uses a score for each clause, since it operates
with a clause-based branching tree. The score of each clause is incremented by
a penalty pv each time an assignment aimed at satisfying that clause is made,
and by another penalty pf each time that that clause causes a conflict. The
variable assignment is selected among literal contained in the unsatisfied clause
having maximum score. BerkMin [13] heuristic uses one score for each variable.
Whenever a conflict occurs, the scores of all variables contained in the clauses
that are responsible for the conflict are increased by 1. The variable assign-
ment corresponds to the literal whose variable has maximum score among those
contained in the last learned clause that is unresolved.

Conflict-based branching heuristics have the advantages of requiring low
computational overhead and of being often able to detect the hidden structure
of a problem. They therefore generally produce good results on large real-
world instances. The motivations of this can be explained by noticing that such
heuristics try to avoid, or at least to postpone, the exploration of some regions
of the search space which are likely to produce an unpleasant behavior of the
DPLL search algorithm.

We therefore try to follow along this line and develop more evolved tech-
niques for altogether avoiding other unpleasant phases of a DPLL search al-
gorithm. There are in fact a number of situations that may denote that the
search is passing through a non promising and time-wasting phase. Note that
the simple occurrence of such situations cannot guarantee that the search is
exploring a useless region of the search space. Therefore, such phases cannot
be just forbidden, or the search would become incomplete. Our aim is to avoid
them, or at least postpone them, in order to tackle them only when no bet-
ter option is available. We propose, in particular, techniques for avoiding the
unpleasant search phases denoted by the three situations described below, and
also illustrated in Fig. 1. In the following description, let the h-th level of the
search tree be the set of nodes the search tree having the same search tree depth
h. We will speak intuitively of first levels, i.e. the nearest ones to the root, and
of low levels, i.e. the most distant ones from the root.

i) A first situation denoting an unpleasant phase is having many backtracks
at the low levels of the search tree (Fig. 1 part i). If indeed backtracks
could be moved all at the very first levels of the search tree, either unsat-
isfiability would be detected much earlier, or a satisfiable solution would
be reached within a very limited number of useless variable assignments.

ii) A second situation (Fig. 1 part ii) denoting an unpleasant phase is the
repetition, in different branches of the search tree, of the same sequence of
variable assignments leading to a conflict (e.g. . . . xi = vi, xj = vj , xk =

4

vk, xl = vl). Conflict clause learning can only avoid, each time, the
repetition of the last assignment of such a sequence, but, without some
adaptive heuristic, it does not prevent the search to move again in the
same direction (e.g. . . . xi = vi, xj = vj , xk = vk). Although this search
phase cannot be forbidden without making the search incomplete, it would
be preferable to avoid it as far as it is possible.

iii) Finally, it may often happen that some of the variables of an instance
are related in such a way that, for large portions of the branching tree, a
conflict is obtained always at about the same decision level and due to a
small set of variables (Fig. 1 part iii). Such phase is clearly time-wasting
and should be avoided, even if, again, it cannot be forbidden.

i) ii)

xi = vi

xj = vj

xk = vk

xl = vl

xi = vi

xj = vj

xk = vk

iii)

Leftmost leaf Leftmost leaf

Leftmost leaf

Tree root Tree root

Tree root

Figure 1: Representation of the described unpleasant search situations for a DPLL
algorithm. Nodes corresponding to subproblems where an empty clause is derived,
hence backtrack is performed, are represented in black. Search trees are represented
in such a way that their exploration chronologically proceeds from right to left.

The above three aims can be pursued by using the scores updating mechanism.
Since in fact the branching decision is taken on the basis of the maximum among
such scores, by incrementing them in a suitable way we would be able to guide
the search in order to avoid, but not forbid, the above phases. Note that such
a list of situations denoting phases that should be avoided during the search,

5

but cannot be forbidden without making the search incomplete, could also be
enriched, still remaining in the proposed algorithmic framework.

3 The Proposed Updating Criteria

For each variable xi, i ∈ {1, . . . , n}, we use two counters, or scores, s0
i and s1

i

for the two possible phases of xi. Counters are therefore associated with the
two possible literals v0(xi) = ¬xi and v1(xi) = xi. When branching is needed,
we assign, as usual, variable xi at value v ∈ {0, 1} by choosing the maximum
score, as follows.

xi = v such that sv
i = max{s0

1, s
1
1, . . . , s

0
n, s1

n}
Similarly to other conflict-based heuristics, scores are initialized to the number
of occurrences of each literal in the instance, and periodically proportionally re-
duced. The main issue clearly is how scores {s0

1, s
1
1, . . . , s

0
n, s1

n} are incremented.
In order to pursue the above point i), we try to assign at first the more

difficult variables, in the sense of the more constrained ones. This because,
when assigning them in the upper levels of the search tree, either we should
discover unsatisfiability earlier, or we should remain with only easy variables to
assign in the lower levels of the search tree, and therefore little backtrack should
be needed there. Whenever a new learned clause Cl = {v(xl1), . . . , v(xlh)} is
added to the clause set by effect of a conflict, what we have actually discovered
is that variables {xl1, . . . , xlh} contained in Cl are a bit more constrained than
other variables. In fact, Cl represents just an explicitation of such constraint,
that is already implied by the original clauses. Therefore, we increment the
scores of those literals by a penalty for learning pl, as follows:

sv
i ← sv

i + pl, ∀v(xi) ∈ Cl

(where a ← a + b means that new value of a is obtained by adding b to its old
value). The effect can also be viewed as trying to satisfy Cl. Note that, so far,
this is also zChaff’s policy.

Moreover, in order to pursue the above point ii), we try to reverse every
sequence of assignments which leads to a conflict. Whenever a sequence of
assignments produces an empty clause, this sequence is at risk of being repeated
again in the search tree, leading again to the same conflict. The use of learned
clauses, together with the increment of the scores of their literals, can only
partially solve the problem. We therefore try to satisfy the failed clause Cf =
{v(xf1), . . . , v(xfk)} (the clause which has become empty) by incrementing the
scores of its literals by a penalty for failure pf , as follows:

sv
i ← sv

i + pf , ∀v(xi) ∈ Cf

After doing so, the subsequent assignments would be different, thus prevent-
ing the repetition of the above conflicting sequences of assignments. However,
since increasing scores has a cost, and moreover implies an even higher cost

6

for reordering the scores in order to choose the higher value, we consider also
the possibility of applying some simplifications to the above algorithm. In fact,
adding pf to only one of the counters corresponding to the literals of the failed
clause Cf , and in particular to the last assigned literal except the conflicting lit-
eral, decreases computational overhead while maintaining most of the positive
features. Several other alternatives were tested, but the above proposed one
appears more stable, in the sense of producing good results on different types
of problems.

Finally, in order to pursue the above point iii), we would like to avoid frequent
backtracks due to the same conflicting literal v(xf) at the same decision level d.
We therefore keep in memory the set of the last c conflict literals and their corre-
sponding levels, obtaining the set of couples M = {(v(xf1), dq1), . . . , (v(xfc), dqc)}.
Whenever a new conflict occurs due to literal v(xf) at decision level dq, if the
couple (v(xf), dq) is already contained in M, we increment the score of the direct
conflicting literal by a penalty pd, and the score of the negation of the conflicting
literal by a penalty pn, as follows:

{
sv

f ← sv
f + pd

s¬v
f ← s¬v

f + pn
if

{
v(xf) conflicts at level dq

and already (v(xf), dq) ∈M

There are in fact reasons for increasing the score of the conflicting literal v(xf),
and also reasons for increasing the score of the negation of the conflicting lit-
eral ¬v(xf). This is because, in the absence of further information, it should
be convenient to try to assign such a variable at an upper decision level, and,
moreover, both its values may reveal to be useful since they both were “needed”.
Since, however, increasing the two counters has a relatively high computational
cost, we also consider the possibility of increasing only the counter of the con-
flicting literal v(xf). We will briefly refer to the above operation as “frequent
conflicting literals detection”.

The following example illustrates in detail the counters updating performed
after a typical conflict.

Example 3.1. Consider an instance F containing, among others, the clauses:

Ca = (¬x1 ∨ x3 ∨ x5) Cb = (x2 ∨ ¬x4 ∨ ¬x5)

Imagine that {x1 to 1, x2 to 0, x3 to 0 and x4 to 1} have already been assigned,
and that a conflict due to x5 at the same decision level d where the search
currently is has already occurred within the last c conflicts, hence (x5, d) ∈M .
We now have Ca reduced to a unit clause, which forces assigning {x5 to 1}. So
far Cb becomes empty, and we learn Cl = (¬x1 ∨ x2 ∨ x3 ∨ ¬x4), while Cf is in
this case Cb and the conflict literal is x5. Therefore, scores corresponding to all
literals of the learned clause Cl are increased by pl, scores corresponding to all
literals of the failed clause Cb are increased by pf , score corresponding to the
conflict literal x5 is increased by pd and score corresponding to the negation of

7

the conflict literal ¬x5 is increased by pn. Updating is as follows:

s0
1 ← s0

1 + pl s1
2 ← s1

2 + pl + pf

s1
3 ← s1

3 + pl s0
4 ← s0

4 + pl + pf

s1
5 ← s1

5 + pd s0
5 ← s0

5 + pf + pn

4 Computational Analysis

The described heuristics were implemented in the state-of-the-art DPLL solver
zChaff [21, 10], obtaining several solver versions. Parameters are chosen in order
to cross combinations. In particular, for what concerns the following tables,

• ‘zChaff’ is the original version of zChaff 2004 [10];

• ‘zCh1’ is the version incrementing all literals of learned clauses using pl = 1
and frequent conflicting literals (not their negations) using c = 2 and
pd = 2;

• ‘zCh2’ is the version incrementing all literals of learned clauses using pl = 1
and frequent conflicting literals and their negations using c = 2, pd = 2
and pn = 2;

• ‘brChaff’ is the version incrementing all literals of learned clauses using
pl = 1 and the last literal of failed clauses except the conflicting literal
using pf = 2;

• ‘brCh1’ is the same as ‘brChaff’ but also incrementing frequent conflicting
literals using c = 2 and pd = 2;

• ‘brCh2’ is the same as ‘brChaff’ but also incrementing frequent conflicting
literals and their negations using c = 2, pd = 2 and pn = 2;

• ‘bChaff’ is the version incrementing all literals of learned clauses using
pl = 1 and all literals of failed clauses using pf = 2;

• ‘bCh1’ is the same as ‘bChaff’ but also incrementing frequent conflicting
literals using c = 2 and pd = 2;

• ‘bCh2’ is the same as ‘bChaff’ but also incrementing frequent conflicting
literals and their negations using c = 2, pd = 2 and pn = 2.

Note that zChaff 2004 may also use, for a limited number of times, other branch-
ing heuristics in addition to the classical VSIDS one. Our branching heuristics
substituted completely the VSIDS one and only that one. Experiments are con-
ducted on a 2.5GHz Intel Celeron PC with 512MB RAM and using MS VC++
compiler. Note also that some libraries may be different using other compilers,
therefore results may vary (we experienced it) but maintaining about the same
average results on each series.

We report, in the first line of each box of the tables, running times in CPU
seconds. Time limit was set at 3600 sec. (1 hours), when exceeded we report

8

“-”. Total solution times are obtained by counting each time-out as 3600 sec,
except for problems not solved by any solver (global time-outs), which are not
counted in the totals. Since the total for solvers incurring in non-global time-
outs is actually a lower bound, we denote this by writing a > before the value.
We report in bold face the best total time. We also report, in the second line
of each box of the tables, the number of decisions, that is how many times the
solver needs to select a variable and to assign it. Assignments which are just
forced consequences of such decisions (e.g. unit propagation) are not counted as
decisions themselves. The total number of decisions are obtained by counting
each time-out as the maximum among the numbers of decisions made by the
other solvers which solved the time-outed problem, except for the problems
which are not solved by any solver, which are not counted in the totals.

The considered benchmark series were provided by different authors to the
SAT community and are now publicly available. The majority of them were used
as benchmarks in recent SAT Solver Competitions (see [22], both for benchmark
details and for past and probably future results of other solvers on them). Most
of the considered series are real-world problems, therefore structured, but we also
considered one randomly generated series. The series are either all satisfiable,
or all unsatisfiable, or mixed.

As a general remark, notwithstanding the fact that the introduced counter
updating techniques require a computational overhead for its operations com-
pared to the original zChaff branching heuristic (especially for the detection of
frequent conflicting literals), computational times often decrease, proving the
algorithmic effectiveness of the proposed updating criteria. Moreover, our ex-
periments fully confirm that the branching rule has a very relevant influence

Barrel Sol zChaff zCh1 zCh2 brChaff brCh1 brCh2 bChaff bCh1 bCh2

0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
barrel2 U

3 3 3 5 5 5 5 5 5
0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

barrel3 U
154 127 101 119 119 119 192 152 228
0.08 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.09

barrel4 U
197 197 197 182 182 182 368 368 368
3.60 3.05 2.78 2.43 2.34 2.12 1.55 1.55 1.86

barrel5 U
11248 10832 9882 9083 9826 10596 8172 7860 7354
18.60 14.91 13.32 11.74 13.62 12.43 9.70 11.39 10.85

barrel6 U
38816 34104 35280 31381 36311 32159 24727 29779 27057
35.45 51.89 26.03 27.15 25.32 32.63 16.93 14.67 14.90

barrel7 U
54429 84568 57035 49911 54894 57721 46357 47706 47433
227.03 189.79 127.08 118.54 164.93 122.45 74.81 66.15 80.40

barrel8 U
180853 199608 143429 149886 174569 124932 122492 136210 128030
152.40 167.04 133.79 134.11 130.56 126.79 98.95 88.87 103.51

barrel9 U
417906 438875 368223 347597 365419 342494 282883 255763 282827

437.19 426.76 303.11 294.08 336.87 296.52 202.04 182.73 211.62
Total

703606 768314 614150 588164 641325 568208 485196 477843 493302

Table 1: Comparison on bounded model checking problems.

9

D
es

-e
n
cr

y
p
ti

o
n

S
o
l

zC
h
a
ff

zC
h
1

zC
h
2

b
rC

h
a
ff

b
rC

h
1

b
rC

h
2

b
C

h
a
ff

b
C

h
1

b
C

h
2

7
.4

0
1
3
.0

1
4
.6

8
1
1
.3

0
8
.4

8
7
.7

9
1
1
.3

2
1
0
.8

6
6
.6

1
cn

f-
r3

-b
1
-k

1
.1

S
2
8
8
7
1

4
1
4
1
0

2
1
0
8
8

4
0
4
7
1

2
8
9
2
7

2
4
1
3
8

3
5
8
2
0

2
9
5
9
6

2
3
3
3
4

4
.3

4
9
.0

1
4
.0

5
1
6
.4

9
6
.0

6
2
0
.1

0
4
.2

6
1
6
.4

2
1
3
.8

9
cn

f-
r3

-b
1
-k

1
.2

S
1
0
7
5
5

2
5
4
6
4

9
4
4
9

2
9
6
8
2

1
4
8
1
9

4
6
0
6
1

1
0
2
8
7

4
0
1
7
0

3
6
0
2
1

0
.9

2
0
.7

4
0
.7

7
0
.5

0
0
.7

6
0
.7

5
1
.1

6
0
.8

4
0
.7

2
cn

f-
r3

-b
2
-k

1
.1

S
1
3
2
8

8
6
2

1
2
9
9

6
3
8

1
2
3
6

8
9
9

1
4
6
5

1
0
4
2

9
9
4

2
.0

5
2
.1

7
2
.6

7
1
.7

5
1
.0

4
2
.1

4
3
.9

7
1
.7

7
1
.4

8
cn

f-
r3

-b
2
-k

1
.2

S
1
2
4
3

2
1
4
7

2
0
3
4

1
3
1
7

6
5
6

1
3
7
8

3
2
2
3

1
2
4
0

9
1
5

1
.1

7
0
.5

7
0
.7

0
1
.3

5
1
.2

5
1
.8

2
1
.0

0
1
.3

5
1
.1

0
cn

f-
r3

-b
3
-k

1
.1

S
1
1
2
9

5
7
7

8
9
0

1
1
9
6

1
2
1
7

1
5
3
1

7
4
1

1
0
6
3

1
0
1
6

1
.7

7
2
.0

3
1
.9

1
2
.1

8
2
.3

3
1
.6

3
1
.0

5
2
.0

4
1
.7

6
cn

f-
r3

-b
3
-k

1
.2

S
5
3
8

5
6
7

8
1
8

8
9
0

7
9
8

4
4
7

3
0
2

6
5
0

5
1
8

0
.9

1
1
.0

4
1
.1

2
1
.0

4
0
.9

5
1
.7

5
1
.2

3
1
.3

2
1
.2

5
cn

f-
r3

-b
4
-k

1
.1

S
4
9
7

6
0
7

5
1
3

7
0
6

4
1
5

1
2
3
9

4
9
1

5
7
3

5
6
2

2
.6

6
2
.0

4
1
.8

6
1
.6

6
2
.0

5
3
.0

3
1
.8

5
2
.0

3
2
.6

6
cn

f-
r3

-b
4
-k

1
.2

S
6
4
0

4
2
1

5
5
7

2
4
2

4
7
7

6
3
1

3
4
1

3
2
6

6
7
5

-
-

-
-

-
-

-
-

-
cn

f-
r4

-b
1
-k

1
.1

/
.2

-
-

-
-

-
-

-
-

-
-

-
1
0
1
0
.4

8
-

1
2
7
0
.9

4
3
3
4
8
.7

7
-

1
6
1
0
.4

8
-

-
cn

f-
r4

-b
2
-k

1
.1

S
-

2
6
2
5
5
6
5

-
2
9
0
1
8
8
0

5
3
4
0
9
1
8

-
3
6
8
2
2
2
6

-
-

-
-

-
1
0
2
6
.1

8
2
1
7
4
.8

6
-

2
0
9
5
.1

2
-

1
6
5
6
.7

7
cn

f-
r4

-b
2
-k

1
.2

S
-

-
-

2
2
2
1
1
5
1

4
0
0
8
0
9
2

-
3
3
3
2
4
1
4

-
2
8
9
4
6
1
0

7
0
5
.2

0
1
3
1
4
.4

4
-

1
4
8
2
.1

1
2
6
1
1
.2

9
-

6
6
7
.9

2
1
5
5
6
.7

1
1
1
5
0
.4

8
cn

f-
r4

-b
3
-k

1
.1

S
1
7
6
8
7
5
7

2
2
9
2
9
2
4

-
2
4
4
5
8
7
2

3
9
6
7
5
8
0

-
1
3
4
8
1
9
0

3
4
0
1
4
2
1

2
2
1
7
0
7
3

6
4
7
.3

9
-

1
5
5
1
.8

2
5
5
8
.1

2
-

-
2
0
6
7
.5

1
6
9
3
.6

9
2
5
2
.2

3
cn

f-
r4

-b
3
-k

1
.2

S
9
8
1
1
9
6

-
2
3
9
0
0
7
6

1
1
0
7
9
3
2

-
-

3
1
6
9
4
8
5

1
0
5
3
1
6
7

4
5
1
7
5
7

4
2
2
.6

1
1
3
6
1
.7

8
2
6
2
4
.3

2
7
6
7
.1

8
1
6
6
3
.3

0
1
0
6
0
.8

0
1
1
0
6
.7

4
1
3
4
8
.0

0
1
0
4
1
.6

0
cn

f-
r4

-b
4
-k

1
.1

S
8
1
6
4
4
4

2
1
7
9
9
1
8

3
9
1
3
8
2
6

1
4
0
2
1
2
8

2
0
8
3
6
5
3

1
7
6
9
6
8
7

1
4
2
8
7
2
5

1
6
8
3
8
7
0

1
5
9
6
7
3
4

6
4
7
.2

9
7
7
6
.8

9
3
1
6
.8

8
5
7
7
.0

5
4
9
0
.6

0
9
7
7
.6

8
3
4
2
.2

2
1
5
5
.5

4
4
9
4
.7

5
cn

f-
r4

-b
4
-k

1
.2

S
6
5
7
1
5
0

1
0
0
3
9
2
8

4
3
2
7
3
3

7
1
6
0
9
9

6
3
1
3
1
9

1
0
2
5
3
7
6

4
6
5
7
7
6

2
1
1
6
8
3

6
5
5
0
1
0

>
9
6
4
3
.7

1
>

1
1
6
9
4
.2

0
>

1
5
3
1
0
.7

8
5
7
1
7
.8

5
>

1
3
9
1
1
.7

4
>

1
6
4
7
7
.4

9
7
9
1
5
.8

4
>

1
0
9
9
0
.5

7
>

8
2
2
5
.3

0
T
o
ta

l
>

1
4
9
5
0
3
8
4

>
1
8
8
5
6
2
2
6

>
2
2
7
9
6
0
3
7

2
1
9
3
3
6
9

>
2
1
4
3
1
0
2
5

>
2
4
1
9
5
0
5
9

1
3
4
7
9
4
8
6

>
1
7
1
0
6
6
3
7

>
1
3
3
1
9
2
2
7

T
ab

le
2:

C
om

pa
ri

so
n

on
da

ta
en

cr
yp

ti
on

pr
ob

le
m

s.

10

on computational behavior: small modifications in it may cause completely dif-
ferent computational results. Versions incrementing literals of failed clauses
tend to be good compromises between speed and stability. On the other hand,
versions incrementing frequent conflicting literals tend to be less stable: some-
times they are the fastest, but they are often the slowest on easy instances due
to their heavier computational load.

FVP 2.0 Sol zChaff zCh1 zCh2 brChaff brCh1 brCh2 bChaff bCh1 bCh2

3.68 3.80 4.15 5.52 4.76 4.04 4.20 3.98 4.43
3pipe U

19628 18693 20080 21680 22070 21043 17454 18425 19436
2.30 3.11 2.59 2.67 2.56 3.14 2.94 2.93 2.61

3pipe 1 ooo U
12192 14849 12635 12922 13235 16170 12271 14327 12827

3.81 5.57 4.55 5.16 5.25 4.91 5.52 5.03 4.73
3pipe 2 ooo U

15274 17929 16551 17438 18359 18225 16421 17190 16412
6.13 6.01 5.54 5.73 4.81 7.06 5.23 5.20 5.72

3pipe 3 ooo U
23080 22783 19648 22853 17715 21979 19429 20288 20753
27.61 21.14 22.32 23.30 34.47 24.97 25.80 21.61 21.23

4pipe U
129609 111765 100785 96440 107298 110342 100481 104631 95646

27.01 28.80 27.68 36.22 24.38 29.80 27.04 29.10 27.96
4pipe 1 ooo U

78558 89836 82552 113272 89511 95661 72697 90805 100942
35.93 27.65 36.88 28.26 37.47 38.54 35.21 45.17 47.08

4pipe 2 ooo U
106541 93181 118288 98158 106880 108101 100979 114632 112418

32.23 31.39 30.38 24.27 33.73 35.99 31.45 33.10 33.71
4pipe 3 ooo U

113404 124496 108679 99329 129273 130067 112883 120171 122940
37.36 36.68 37.96 37.12 39.08 38.09 39.44 40.44 40.38

4pipe 4 ooo U
128679 126102 132114 115851 132240 135063 125913 129635 142974

33.54 31.92 33.08 34.79 35.62 32.09 31.54 33.13 32.34
5pipe U

203587 200877 209056 214131 220432 199249 204618 210301 202836
91.96 99.08 84.16 91.09 88.08 95.00 91.70 73.23 87.09

5pipe 1 ooo U
204155 243868 194285 223536 205210 226436 215116 195158 207876

79.72 90.37 90.46 81.42 91.51 81.75 93.76 90.22 87.62
5pipe 2 ooo U

179907 226359 224927 198077 224617 211995 229906 212275 216447
88.62 77.94 95.75 85.51 90.77 101.31 76.98 98.72 91.13

5pipe 3 ooo U
217160 211042 233444 218758 218790 237086 186882 263911 212417
166.98 171.78 169.43 176.46 177.69 176.30 183.19 164.79 185.20

5pipe 4 ooo U
430352 439102 440374 468466 443954 434125 451661 410764 474555

95.38 102.01 108.58 102.35 92.44 89.26 91.43 96.88 97.21
5pipe 5 ooo U

237306 270781 288828 250826 241146 229072 235347 247624 236855
288.37 324.90 329.82 268.67 289.89 228.32 280.19 290.11 261.05

6pipe U
841057 881971 837488 790432 925736 796393 863981 827799 705900
436.94 464.71 540.42 533.04 412.12 520.30 519.82 541.46 493.96

6pipe 6 ooo U
749135 801359 932423 889996 803188 931822 919249 935302 892079
824.51 1029.76 669.83 719.03 674.44 671.30 697.07 710.61 920.16

7pipe U
1541933 1887586 1868722 1990022 1676084 2039544 1845979 2094339 1805369

21.96 559.34 16.92 390.81 510.53 5.19 3.86 3.90 3.83
7pipe bug S

143775 1320204 129570 1179127 1302818 45325 34490 34491 34487

2301.74 3112.85 2307.91 2648.75 2647.04 2184.21 2243.63 2286.88 2444.83
Total

5375332 7102783 5970449 7021310 6898556 6007698 5765757 6062068 5633169

Table 3: Comparison on hardware verification problems.

11

Miters Sol zChaff zCh1 zCh2 brChaff brCh1 brCh2 bChaff bCh1 bCh2

1.05 1.16 1.29 1.24 1.64 1.43 0.96 1.37 1.29
c1355-s U

8692 9061 10345 8682 10022 9057 8180 9313 9531
1.19 1.35 0.96 5.23 1.26 1.66 1.11 2.02 1.06

c1355 U
8792 9930 7958 18452 7891 10144 8719 12156 8865
2.06 1.92 2.37 2.04 2.92 5.03 2.32 3.51 2.35

c1908-s U
9634 9212 11125 9954 11970 17665 10122 12622 9714
2.63 2.30 2.38 1.81 2.77 2.13 2.19 2.78 2.93

c1908 U
9910 9732 9635 8153 11507 9625 9751 11750 10810
1.71 2.04 2.83 2.48 2.11 2.52 1.63 1.51 2.73

c1908 bug S
8766 9400 12023 10464 9274 10335 8551 7890 11788
2.86 2.83 2.67 2.61 2.12 2.79 2.99 3.25 3.62

c2670-s U
19780 20161 19116 18909 16464 18693 19531 22893 23365

1.50 2.97 2.22 2.41 2.33 2.10 1.97 2.15 2.46
c2670 U

15121 20801 18411 16634 17753 16839 16889 17672 19330
0.04 0.04 0.05 0.38 0.30 0.35 0.19 0.19 0.25

c2670 bug S
1223 1223 1223 4814 4660 4058 4731 4718 5944
73.34 45.08 57.67 68.86 63.15 76.64 56.52 44.62 68.47

c3540-s U
92500 60189 74185 83350 81780 91941 73214 63795 83003
63.56 52.63 67.17 54.98 63.59 50.33 83.54 75.54 49.83

c3540 U
79945 74435 76123 75548 74249 67219 91694 85670 63814

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
c3540 bug S

50 50 50 50 50 50 50 50 50
0.08 0.08 0.11 0.12 0.10 0.10 0.08 0.08 0.09

c432-s U
1352 1395 1417 1396 1370 1463 1412 1372 1409
0.10 0.09 0.09 0.08 0.11 0.08 0.07 0.08 0.11

c432 U
1446 1440 1378 1374 1495 1389 1113 1177 1602
0.50 1.59 0.54 0.67 0.67 1.63 0.67 1.21 1.00

c499-s U
8111 13501 7213 8452 8810 14866 9356 10357 11526
1.13 0.63 1.91 1.28 0.66 1.22 0.89 0.95 0.73

c499 U
12213 9743 14880 12833 8768 11826 11198 10009 8831
20.21 23.41 22.17 23.08 25.19 23.14 22.84 26.78 22.91

c5315-s U
96129 99753 97248 102289 104273 100821 95347 104671 100992
21.29 23.39 23.92 21.44 23.57 23.95 25.90 21.35 18.01

c5315 U
94999 103893 100395 92809 94978 98990 111641 97445 84440

1.29 1.04 0.28 0.56 0.66 2.12 0.88 1.86 1.56
c5315 bug S

11723 11782 5513 6521 5892 24283 17809 23710 24451
- - - - - - - - -

c6288-s -
- - - - - - - - -
- - - - - - - - -

c6288 -
- - - - - - - - -

52.32 59.71 55.76 54.88 51.16 51.97 59.33 51.38 64.78
c7552-s U

198656 224167 210143 201799 200505 195630 213695 193681 227098
54.74 54.69 52.52 56.89 53.73 45.91 51.26 53.43 45.35

c7552 U
193567 200748 193449 209101 200137 183096 195410 205476 169670

3.11 2.07 1.47 1.62 0.57 0.48 1.47 0.64 0.64
c7552 bug S

31040 19863 16474 19727 9843 8832 17264 8474 9537
1.03 1.19 0.67 1.10 1.00 1.14 1.19 1.38 0.98

c880-s U
7299 7850 5943 7600 7309 7787 8444 9024 7815
1.04 1.15 0.68 1.14 1.04 1.18 1.18 1.39 1.02

c880 U
7299 7850 5943 7600 7309 7787 8444 9024 7815

306.55 280.63 299.47 302.84 297.88 296.66 321.34 290.12 285.68
Total

918247 926179 900190 926511 896309 912396 942565 922949 901400

Table 4: Comparison on combinational equivalence checking problems.

12

Effects are however quite different on the various benchmark series. In particu-
lar, on the Barrel series (bounded model checking problems) the versions incre-
menting all literals of learned clauses and all literals of failed clauses (bChaff,
bCh1, bCh2) are the fastest, and advantages are quite uniform and stable. On
the Des-encryption series (data encryption problems) the version increment-
ing all literals of learned clauses and the last literal of failed clauses except
the conflicting literal (brChaff) is by far the fastest. However advantages of
the proposed techniques are not uniform. On the contrary, on the FVP se-
ries (hardware verification problems) running times are quite similar, and the
proposed techniques produce more uniform results. The fastest is in this case
the version incrementing all literals of learned clauses, the last literal of failed
clauses except the conflicting literal, and frequent conflicting literals and their
negations (brCh2). On the Miters series (equivalence checking problems) the
version incrementing all literals of learned clauses and frequent conflicting lit-
erals is the fastest (zCh1), but running times are relatively similar. On the
Quasigroup series (latin squares logical problems) running times are again quite
similar, although the version incrementing all literals of learned clauses and the
last literal of failed clauses except the conflicting literal (brChaff) is again the
fastest. On the Ferries series (industrial planning problems from the 2005 SAT
Competition) the version incrementing all literals of learned clauses, all liter-
als of failed clauses and both frequent conflicting literals and their negations
(bCh2) is by far the fastest, even if results of the various versions are here quite
different. On the VMPC inversion series (open cryptographic problems from the
2005 SAT Competition) the version incrementing all literals of learned clauses
and frequent conflicting literals (zCh1) is the fastest, even if results of the vari-
ous versions are here considerably heterogeneous. Note, in particular, that the
version incrementing all literals of learned clauses, all literals of failed clauses
and both frequent conflicting literals and their negations (bCh2) is incredibly
fast on some difficult problems of the series, although has a poor behavior on
others. Finally, on the Hardnm series (randomly generated problems from 2003
SAT Competition, where we omitted for brevity the central part of the names,
e.g. hardnm-L19-02-S125896754.shuffled-as.sat03-916→ hrdnm-L19-02-03-916)
results are again not uniform, but the version incrementing all literals of learned
clauses and frequent conflicting literals (zCh1) is by far the fastest.

We mainly focus our attention on running times, which is the most impor-
tant practical aspect. Clearly not on its absolute values, which will rapidly
become outdated, but on the comparison among the different solver versions,
since the proposed technique may be introduced in any generic DPLL SAT
solver (and probably also in other branching-based algorithms used for solving
different problems). Note, however, some interesting absolute results: problems
vmpc 29 and vmpc 32, not solved by any complete solver in the most recent
(at the time of writing) SAT Competition 2005 (within their time limit and on
their machine) [22], are solved by some of the modified versions in quite short
times.

We furthermore observe that the number of decisions, for a given problem, is
only roughly proportional, and not exactly, to running times. This because the

13

propagation performed after variable assignments may require different times
for different variables, depending on their situation within the formula.

Quasigroup Sol zChaff zCh1 zCh2 brChaff brCh1 brCh2 bChaff bCh1 bCh2

0.09 0.08 0.07 0.09 0.11 0.09 0.08 0.07 0.08
qg1-07 S

140 140 140 158 158 195 137 137 143
0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03

qg2-07 S
42 43 42 42 42 42 43 43 43

60619 47505 49563 48895 57467 61654 28473 51409 61956
qg2-08 S

60619 47505 49563 48895 57467 61654 28473 51409 61956
0.05 0.05 0.05 0.09 0.08 0.06 0.06 0.07 0.11

qg3-08 S
157 157 157 354 336 257 279 249 418

78.27 70.21 92.94 62.67 110.16 103.46 96.90 104.00 119.14
qg3-09 U

49221 46020 55095 45095 65019 60786 56553 57712 63909
0.45 0.26 0.29 0.36 0.40 0.44 0.30 0.33 0.30

qg4-08 U
1416 852 879 1171 1333 1347 993 1026 1005
0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01

qg4-09 S
34 34 34 35 35 35 36 36 36

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
qg5-09 U

65 65 65 66 66 66 66 66 66
0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04

qg5-10 U
159 125 159 127 133 128 131 150 143
0.08 0.05 0.08 0.10 0.10 0.10 0.08 0.06 0.05

qg5-11 S
133 91 133 349 341 342 152 92 92
1.12 1.25 1.15 1.09 1.06 1.31 1.10 1.00 1.27

qg5-12 U
1508 1670 1584 1423 1288 1638 1389 1297 1610
85.97 93.83 102.28 75.41 82.49 94.33 90.91 93.74 81.49

qg5-13 U
58282 59252 63582 51393 55888 63119 60545 60119 54145

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
qg6-09 S

16 16 16 16 16 16 16 16 16
0.22 0.22 0.21 0.31 0.24 0.33 0.28 0.29 0.33

qg6-10 U
495 547 490 704 553 548 692 684 697
2.40 2.14 2.58 2.73 2.08 2.17 3.00 2.16 2.19

qg6-11 U
4116 3419 4462 4251 3711 3584 4396 3690 3399
44.47 47.03 59.82 52.74 51.62 45.81 43.31 55.43 57.32

qg6-12 U
37289 41871 44813 42167 42712 39929 35621 42334 45375

0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
qg7-09 S

8 8 8 8 8 8 8 8 8
0.10 0.09 0.09 0.08 0.07 0.10 0.10 0.09 0.10

qg7-10 U
269 269 269 240 226 228 281 263 264
0.89 1.09 1.07 0.76 0.79 1.11 1.03 1.17 0.83

qg7-11 U
1671 1977 2101 1663 1624 2216 1802 2006 1487
9.37 10.17 8.44 8.72 6.93 6.52 12.74 12.01 10.05

qg7-12 U
11993 13152 11235 10806 9433 9133 14443 13957 11421

9.53 4.74 2.59 2.20 1.05 1.36 4.18 2.52 4.59
qg7-13 S

32794 18107 10801 4387 1566 2256 9897 6540 12153

304.84 272.19 319.60 248.57 309.33 313.74 275.37 318.38 333.72
Total

260427 235320 245628 213350 241955 247527 215953 241834 258386

Table 5: Comparison on latin squares logical problems.

14

On the contrary, when considering different problems, the ratios between num-
ber of decisions and running times are almost completely unrelated, since, for
each decision, time spent in the propagation phase depends heavily on the size
of the problem, and can therefore vary greatly.

Ferries Sol zChaff zCh1 zCh2 brChaff brCh1 brCh2 bChaff bCh1 bCh2

0.09 0.06 0.06 0.09 0.06 0.09 0.09 0.09 0.09
ferry 5 ks99i S

1257 1275 1267 1093 1101 1083 1173 1179 1275
0.09 0.51 0.06 0.09 0.09 0.09 0.26 0.34 0.20

ferry 5 v01i S
973 4856 913 997 1102 1130 2520 3288 2274
0.09 0.20 0.09 0.14 0.23 0.23 0.20 0.12 0.18

ferry 6 ks99a S
704 1181 667 938 1208 1196 1129 686 1129
0.74 0.66 1.21 0.65 0.17 3.49 1.65 0.91 0.12

ferry 6 ks99i S
7148 6874 10215 6762 3230 16572 11948 9262 2999
0.09 0.20 0.20 0.20 0.20 0.20 0.23 0.20 0.17

ferry 6 v01a S
705 1168 1066 1132 1097 1119 1155 1155 1011
0.17 0.14 1.60 0.86 1.77 1.54 1.49 0.20 1.00

ferry 6 v01i S
1788 1830 10406 7077 12557 10002 9813 2212 6904
0.09 0.06 0.09 0.06 0.09 0.03 0.06 0.06 0.06

ferry 7 ks99a S
859 840 838 849 850 872 946 947 939
7.15 5.95 3.43 5.63 4.74 0.17 0.03 0.06 0.06

ferry 7 ks99i S
30372 27619 18846 25760 24800 4282 3560 3560 3560

0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.01 0.03
ferry 7 v01a S

427 427 427 425 424 424 442 442 445
0.51 25.31 4.06 11.32 5.57 9.43 0.86 1.54 1.23

ferry 7 v01i S
8610 56654 26116 38862 29490 34315 11073 13382 13164
0.03 0.06 0.03 0.06 0.06 0.06 0.06 0.06 0.12

ferry 8 ks99a S
1091 1091 1091 1031 992 1084 958 958 1219
8.78 6.46 7.06 8.75 8.43 13.27 32.88 12.72 11.92

ferry 8 ks99i S
42296 40972 39414 45256 41061 51134 74253 51431 54193

0.06 0.06 0.09 0.09 0.06 0.09 0.09 0.17 0.20
ferry 8 v01a S

1181 1188 1429 1014 969 999 1248 2262 2582
24.36 19.45 157.65 140.34 1.83 56.93 24.65 139.71 1.77

ferry 8 v01i S
68748 61474 245520 164733 23907 102114 72620 145180 21720

0.03 0.06 0.03 0.06 0.06 0.06 0.06 0.06 0.06
ferry 9 ks99a S

2457 3323 2457 3589 3578 3578 2975 2969 2959
0.06 0.06 0.03 0.03 0.06 0.03 0.03 0.03 0.03

ferry 9 v01a S
1870 1874 1869 1731 1731 1731 1355 1349 1349
0.60 0.79 1.83 1.29 0.74 0.43 5.31 6.63 1.54

ferry 10 ks99a S
4775 8503 9502 7711 6434 4915 20225 4652 9326
3.55 1.66 3.95 0.12 6.23 0.20 0.27 0.31 0.11

ferry 10 v01a S
11452 8044 11896 2366 11726 2920 3065 3623 2215

46.52 61.70 181.50 169.81 30.42 86.37 68.25 163.22 18.89
Total

186713 229193 383939 311326 166257 239470 220458 248537 129263

Table 6: Comparison on industrial planning problems.

15

V
M

P
C

S
o
l

zC
h
a
ff

zC
h
1

zC
h
2

b
rC

h
a
ff

b
rC

h
1

b
rC

h
2

b
C

h
a
ff

b
C

h
1

b
C

h
2

4
0
.1

7
3
5
.6

9
8
7
.0

7
1
0
.9

2
7
3
.5

4
1
6
.9

8
1
1
3
.2

6
4
.3

2
8
4
.1

2
v
m

p
c

2
1

S
5
1
4
4
7

4
9
3
8
3

7
1
9
3
4

3
7
3
8
2

6
4
2
5
3

3
2
5
8
7

7
6
7
9
7

2
6
8
5
8

6
4
6
9
0

1
7
.2

7
5
8
.9

6
1
6
7
.3

3
1
3
.7

5
5
1
.3

0
7
1
.1

7
8
1
.2

6
2
6
.0

5
2
0
.2

7
v
m

p
c

2
2

S
4
1
2
4
3

6
6
7
4
1

9
7
7
7
5

2
9
2
7
8

5
1
4
2
6

6
8
3
1
5

7
1
8
4
0

4
7
1
6
0

3
1
5
1
3

2
3
.5

0
1
4
.7

0
2
0
.8

4
8
0
.3

8
4
5
9
.0

2
8
.3

8
1
3
9
.3

7
7
.4

6
1
2
.8

7
v
m

p
c

2
3

S
3
2
0
8
7

4
0
0
4
3

3
0
1
0
1

7
7
4
4
4

1
6
5
1
4
7

3
6
9
8
2

8
2
2
7
1

1
9
9
7
7

3
8
4
4
0

4
8
7
.8

3
1
4
6
6
.9

1
-

6
2
.5

6
1
5
.7

8
2
9
5
.4

3
2
7
8
1
.9

5
1
9
1
.0

9
1
.0

0
v
m

p
c

2
4

S
1
6
4
3
3
1

3
4
4
4
6
2

-
7
2
5
5
5

2
7
5
4
9

1
2
4
7
1
5

4
5
3
6
4
5

9
8
8
2
0

6
6
6
3

4
5
.7

5
1
2
.0

4
1
2
1
2
.9

8
1
8
9
8
.0

2
-

4
7
1
.2

5
1
7
0
3
.7

9
2
6
7
7
.6

9
-

v
m

p
c

2
5

S
5
2
6
0
6

2
6
1
6
6

2
7
4
4
1
1

3
6
3
8
5
4

-
1
6
4
4
2
4

3
4
2
9
3
3

4
2
9
5
7
5

-
6
8
3
.2

2
1
0
9
.2

3
2
4
5
.4

0
-

3
0
7
8
.8

7
3
1
7
8
.8

6
-

1
0
3
7
.5

5
2
.5

3
v
m

p
c

2
6

S
2
0
3
3
0
9

7
8
0
3
8

1
1
4
2
3
9

-
4
9
1
8
5
5

4
8
6
2
4
1

-
2
4
3
0
3
3

1
6
1
5
3

4
5
6
.9

0
5
5
.2

7
3
9
1
.7

6
1
7
6
.9

7
4
1
5
.6

7
5
9
1
.3

5
4
8
0
.4

3
8
5
9
.5

3
1
6
2
.1

3
v
m

p
c

2
7

S
1
7
2
8
1
3

6
2
3
3
6

1
7
8
9
6
3

1
1
6
5
2
9

1
7
5
9
2
8

1
9
1
7
3
1

1
6
3
1
1
2

2
3
8
9
0
2

9
9
3
1
6

1
1
6
7
.8

8
3
4
.0

5
2
7
2
9
.9

6
-

-
-

2
4
0
4
.7

3
8
9
2
.9

5
-

v
m

p
c

2
8

S
2
8
5
2
9
4

5
2
4
7
9

4
5
7
8
8
5

-
-

-
3
8
7
1
4
5

2
4
2
8
1
7

-
-

-
-

-
-

-
-

-
2
3
9
.9

6
v
m

p
c

2
9

S
-

-
-

-
-

-
-

-
9
3
7
0
0

-
-

-
-

-
-

-
-

-
v
m

p
c

3
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
v
m

p
c

3
1

-
-

-
-

-
-

-
-

-
-

-
-

1
9
8
.7

2
8
3
7
.1

4
-

8
6
5
.8

2
-

-
-

v
m

p
c

3
2

S
-

-
1
1
0
1
1
2

2
8
1
4
1
5

-
2
4
9
9
3
3

-
-

-
-

-
-

-
-

-
-

-
1
4
9
3
.4

0
v
m

p
c

3
3

S
-

-
-

-
-

-
-

-
3
2
2
1
7
7

-
-

-
-

-
-

-
-

-
v
m

p
c

3
4

-
-

-
-

-
-

-
-

-
-

>
1
3
7
2
2
.5

2
>

1
2
5
8
6
.8

5
>

1
5
8
5
4
.0

6
>

1
9
4
5
4
.7

4
>

2
2
0
9
4
.1

8
>

1
6
2
9
9
.2

4
>

2
2
1
0
4
.7

9
>

1
6
4
9
6
.6

4
>

1
2
8
1
6
.2

8
T
o
ta

l
>

1
7
0
0
4
2
2

>
1
4
1
6
9
4
0

>
2
2
0
4
9
4
2

>
2
6
6
6
2
5
3

>
2
5
6
0
9
1
0

>
2
2
3
0
6
9
0

>
2
7
6
6
8
9
0

>
2
0
4
4
4
3
4

>
1
8
4
1
5
2
7

T
ab

le
7:

C
om

pa
ri

so
n

on
cr

yp
to

gr
ap

hi
c

pr
ob

le
m

s.

16

Hardnm shuffled Sol zChaff zCh1 zCh2 brChaff brCh1 brCh2 bChaff bCh1 bCh2

9.24 10.65 123.56 41.61 23.29 8.73 17.11 13.47 15.34
hrdnm-L19-01-03-915 S

25236 27521 85254 62255 42143 30594 38479 32548 33604
8.63 12.48 2.65 8.61 5.75 3.68 39.10 12.42 30.01

hrdnm-L19-02-03-916 S
25860 31683 11253 25337 20925 16423 56102 32242 58647
82.55 13.65 11.35 25.29 27.20 8.40 5.36 12.34 7.71

hrdnm-L19-03-03-917 S
83046 34632 30803 49694 48626 26517 19278 29194 26262

2.52 13.20 5.15 7.25 5.25 7.31 8.45 4.36 22.02
hrdnm-L22-01-03-920 S

12932 33368 22519 26418 24026 23146 30238 29668 20652
5.27 2.87 7.96 6.82 8.77 13.48 7.59 38.98 3.82

hrdnm-L22-02-03-921 S
22451 16762 28590 26141 29480 38988 29398 65562 20067

8.59 8.02 5.69 5.49 8.99 10.10 10.13 12.29 4.19
hrdnm-L22-03-03-922 S

30934 28817 24651 24323 30140 33155 31967 33514 19584
16.01 69.29 29.05 30.06 66.75 380.35 23.63 65.94 29.31

hrdnm-L23-01-03-925 S
48217 98247 66796 66299 96265 173629 63596 98711 68294
28.25 18.01 51.02 14.71 29.01 22.20 46.11 16.74 22.95

hrdnm-L23-02-03-926 S
59509 49629 77861 44176 62696 51443 80912 46323 56691
21.28 36.35 12.52 22.91 18.15 20.77 25.54 14.67 39.23

hrdnm-L23-03-03-927 S
64106 70584 44783 55877 48843 55804 68574 45455 70973
75.86 13.82 313.96 8.02 12.86 110.88 47.48 101.13 115.36

hrdnm-L25-01-03-930 S
108616 42366 209249 34393 43058 117917 84246 128466 137370

40.59 102.39 47.66 157.36 183.31 103.57 276.68 681.51 100.76
hrdnm-L25-02-03-931 S

82238 113462 89920 159150 164969 138525 192270 330759 135463
60.23 17.68 13.26 137.41 112.19 293.26 56.41 51.83 24.02

hrdnm-L25-03-03-932 S
86583 55290 42828 140286 121455 214873 96379 84411 62075
535.23 28.93 117.23 359.71 255.53 664.79 405.31 184.02 241.84

hrdnm-L29-01-03-935 S
317705 95837 179297 290982 262211 371819 348645 245036 205747
346.96 66.03 210.92 239.92 361.16 633.12 347.30 131.63 552.09

hrdnm-L29-02-03-936 S
287345 141558 215490 308060 289431 361345 281170 171277 376329
317.73 118.39 17.80 176.63 230.73 317.96 679.81 387.76 312.98

hrdnm-L29-03-03-937 S
295238 175396 71344 185118 242715 244672 393134 346807 277702

42.91 31.97 30.62 60.06 24.38 30.54 105.60 38.69 31.76
hrdnm-L32-01-03-940 S

135702 113662 121878 152236 107706 116380 207157 141886 119094
41.55 58.82 150.33 36.60 44.97 319.41 26.39 66.88 39.84

hrdnm-L32-02-03-941 S
142873 161608 248032 133982 144234 348274 100668 152691 137348

53.62 25.26 31.62 138.09 96.51 50.66 49.16 38.39 235.42
hrdnm-L32-03-03-942 S

160376 115426 119618 261505 179978 147518 141343 143495 366033

1707.02 647.81 1182.34 1476.55 1515.67 2997.15 2176.02 1877.14 1810.98
Total

1988967 1405848 1690166 2046232 1958901 2511022 2263556 2158045 2191935

Table 8: Comparison on randomly generated problems.

5 Conclusions

The branching heuristic has a relevant influence on computational behavior of
DPLL SAT solvers. Conflict-based branching heuristics have the advantages
of requiring low computational overhead and of being often able to detect the
hidden structure of a problem. We report here a computational study of new
scores updating criteria for conflict-based branching heuristics. Such criteria
have been developed in order to overcome some of the typical time-wasting

17

behaviors of DPLL search techniques. In particular, the proposed family of
conflict-based heuristics has three main aims: i) to assign at first the more
constrained variables; ii) to reverse every sequence of assignments which have
led to a conflict, by satisfying at first clauses which have become empty; and
iii) to assign at first variables that, due to their relations with the others, cause
frequent backtracks at the same decision level of the search tree. For the above
reasons, this family of branching heuristics has been called reverse assignment
sequence (RAS). Such heuristics have been implemented into the state-of-the-art
DPLL SAT solver zChaff 2004, obtaining several solver versions having quite
different behaviors. Experiments on many benchmark series, both satisfiable
and unsatisfiable, show that the proposed branching heuristics are often able to
improve solution times. Moreover, notwithstanding the fact that the introduced
counters updating requires some computational overhead for its operations, total
solution times on each series are always in favor of one of the new versions of
the solver.

As a final remark, the authors suppose that similar score based branching
heuristics for guiding the search performed by a generic complete branching
algorithm can be adapted also to the case of problems different from the propo-
sitional Satisfiability one.

References

[1] R. Bayardo, R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of 14th National Conference on Artificial
Intelligence (AAAI), 1997.

[2] R. Bruni, A. Sassano. Restoring Satisfiability or Maintaining Unsatisfiabil-
ity by finding small Unsatisfiable Subformulae. In Proceedings of Theory
and Applications of Satisfiability Testing (SAT2001), 2001.

[3] R. Bruni, A. Santori. Adding a New Conflict-Based Branching Heuristic in
two Evolved DPLL SAT Solvers. In Proceedings of the Seventh International
Conference on Theory and Applications of Satisfiability Testing (SAT2004),
2004.

[4] M. Buro, H. Kleine Büning. Report on a SAT Competition. Bulletin of
the European Association for Theoretical Computer Science, 49, 143–151,
1993.

[5] E. Cervalho, J.P. Marques-Silva. Using Rewarding Mechanisms for Improv-
ing Branching Heuristics. In Proceedings of the Seventh International Con-
ference on Theory and Applications of Satisfiability Testing (SAT2004),
2004.

[6] V. Chandru and J.N. Hooker. Optimization Methods for Logical Inference.
Wiley, New York, 1999.

18

[7] S.A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings
of Third Annual ACM Symposium on Theory of Computing, 1971.

[8] M. Davis, G. Logemann, D. Loveland. A machine program for theorem
proving. Communications of the ACM 5, 394-397, 1962.

[9] M. Davis, H. Putnam. A computing procedure for quantification theory.
Journal of the ACM 7, 201–215, 1960.

[10] Z. Fu, Y. Mahajan, S. Malik. New Features of the SAT’04 version of zChaff.
In SAT 2004 Competition: Solver Descriptions, 2004.

[11] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and co., San Francisco, 1979.

[12] I.P. Gent, H. van Maaren, T. Walsh editors. SAT 2000, IOS Press, Ams-
terdam, 2000.

[13] E. Goldberg, Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. In
Proceedings of Design Automation & Test in Europe (DATE 2002), 2002.

[14] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the Satisfi-
ability (SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics
American Mathematical Society, 1999.

[15] M. Herbstritt, B. Becker. Conflict-based Selection of Branching Rules in
SAT-Algorithms. In E. Giunchiglia, A. Tacchella eds., Sixth International
Conference on Theory and Applications of Satisfiability Testing -Selected
Papers, LNAI 2919, Springer, 2003.

[16] R.E. Jeroslow and J. Wang. Solving Propositional Satisfiability Problems.
Annals of Mathematics and AI 1, 167–187, 1990.

[17] D. Le Berre, L. Simon. The Essentials of the SAT 2003 Competition. In
E. Giunchiglia, A. Tacchella eds., Sixth International Conference on The-
ory and Applications of Satisfiability Testing -Selected Papers, LNAI 2919,
Springer, 2003.

[18] P. Liberatore. On the complexity of choosing the branching literal in DPLL.
Artificial Intelligence, 116(1-2):315-326, 2000.

[19] J.P. Marques-Silva, K.A. Sakallah. Conflict Analysis in Search Algorithms
for Propositional Satisfiability. In Proceedings of IEEE International Con-
ference on Tools with Artificial Intelligence, 1996.

[20] J.P. Marques-Silva. The Impact of Branching Heuristics in Propositional
Satisfiability Algorithms. In Proceedings of the 9th Portuguese Conference
on Artificial Intelligence (EPIA), 1999.

19

[21] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineer-
ing an Efficient SAT Solver. In Proceedings of the 39th Design Automation
Conference, 2001.

[22] SAT competitions web site, organizers D. Le Berre and L. Simon.
http://www.satcompetition.org/, and also http://www.satlive.org/.

[23] K. Truemper. Effective Logic Computation. Wiley, New York, 1998.

[24] L. Zhang, S. Malik. The Quest for Efficient Boolean Satisfiability Solvers.
In Proceedings of CADE 2002 and CAV 2002, 2002.

[25] H. Zhang, M.E. Stickel. Implementing the Davis-Putnam Method. In I.P.
Gent, H. van Maaren, and T. Walsh eds. SAT 2000, IOS Press, Amsterdam,
2000.

20

