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Abstract

In an undirected graph G = (V, E) with a weight function w : E × V → Q+, the weighted
degree dw(v; E) of a vertex v is defined as

P

{w(e, v) | e ∈ E incident to v}. In this paper, we
consider a network design problem which has upper-bounds on weighted degrees of vertices
as its constraints while the objective is to compute a minimum cost graph with a prescribed
connectivity. We propose bi-criteria approximation algorithms based on the iterative round-
ing, which has been successfully applied to the degree-bounded network design problem. A
problem of minimizing the maximum weighted degree of vertices is also discussed.
Key words: connectivity, degree constraint, iterative rounding, network design, spanning
tree

1 Introduction

Let G = (V,E) be an undirected graph. A weight function w : E × V → Q+ is defined on pairs of
edges and their end vertices, where Q+ is the set of non-negative rational numbers. Let δ(v;E)
denote the set of edges in E incident to v ∈ V . We define the weighted degree of a vertex v ∈ V
in G as

∑

e∈δ(v;E) w(e, v), and denote it by dw(v;E). The weighted degree of G is defined as

maxv∈V dw(v;E).
The weighted degree of a vertex measures load on the vertex in applications. For constructing

a network with balanced load, it is important to consider weighted degree of networks. Take a
communication network for example, and suppose that w(e, v) represents the load (e.g., commu-
nication traffic, communication charge) for the communication device on a node v to use a link e
incident to v. Then the weighted degree of v indicates the total load of v for using the network.

In this paper, we consider a network design problem which has upper-bounds on weighted
degrees of vertices as its constraints while the objective is to compute a minimum cost graph of a
prescribed connectivity. In the above example of the communication network, this corresponds to
the case in which each node has an upper-limit on the load that can be handled on the node.

The problem introduces two types of edges. This is useful for modeling various ways of allo-
cating loads. For an edge e = uv of the first type, weights of e on u and v are given as inputs. For
an edge e = uv of the second type, the sum of weights of e on u and v is given, and we can decide
how much is allocated to end vertices u and v.

For stating our problems formally, let us define several notations related to connectivity of
graphs. For a subset U of V and a subset F of E, δ(U ;F ) denotes the set of edges in F which
join vertices in U with those in V − U , and F (U) denotes the set of edges in F whose both end
vertices are in U . Let N be the set of natural numbers. For a given set function f : 2V → N on V ,
a graph G′ = (V, F ) is called f -connected when |δ(U ;F )| ≥ f(U) holds for every non-empty set
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U ⊂ V . A set function f is called skew supermodular if

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y )

or
f(X) + f(Y ) ≤ f(X − Y ) + f(Y −X)

holds for every pair of sets X,Y ⊆ V . With a skew supermodular set function, f -connectivity
represents a wide variety of connectivity of graphs. For example, when f(U), U ⊂ V is defined
as maxu∈U,v∈V −U r(u, v) by a function r : V × V → N, f -connectivity requires the local edge-
connectivity between every two vertices u and v to be at least r(u, v).

Now we formulate our problem.

Weighted Degree Bounded Survivable Network Problem (WDBoundedNetwork): Let
G = (V,E) be an undirected graph where E is the union of disjoint sets E1 and E2. For those edge
sets, weights w1 : E1×V → Q+ and µ : E2 → Q+ are respectively defined. As inputs, we are given
the graph G = (V,E = E1∪E2) with the weights w1 and µ, an edge-cost c : E → Q (Q is the set of
rational numbers), a skew supermodular set function f : 2V → N, and a degree-bound b : V → Q+.
A solution consists of F ⊆ E, and weights w2(e, u), w2(e, v) ∈ Q+ for each edge e = uv ∈ F2,
where Fi denotes F ∩ Ei. We call w2 an allocation of µ if w2(e, u) + w2(e, v) = µ(e) holds for
each e = uv ∈ F2. From F , w1 and w2, w : F × V → Q+ is defined as the function such that
w(e, v) = w1(e, v) if e ∈ F1, and w(e, v) = w2(e, v) otherwise. The solution is defined to be feasible

if G′ = (V, F ) is f -connected, w2 is an allocation of µ, and degree constraint dw(v;F ) ≤ b(v) is
satisfied for each v ∈ V . The goal of this problem is to find a feasible solution that minimizes its
cost

∑

e∈F c(e).

If f(U) = 1 for all non-empty U ⊂ V , then the minimal solutions of this problem are span-
ning trees. We particularly call such instances weighted degree bounded spanning tree problem

(WDBoundedTree).
Feasible solutions of WDBoundedTree are Hamiltonian paths when E2 = ∅, w1(e, u) =

w1(e, v) = 1 for all e = uv ∈ E1, and b(v) = 2 for all v ∈ V . This means that it is NP-hard to test
whether an instance of WDBoundedTree (and hence WDBoundedNetwork) has a feasible
solution or not. By this reason, it is natural to relax the degree constraints and consider bi-
criteria approximation algorithms. We say that, for an instance of WDBoundedNetwork and
some α, β ≥ 1, a solution consisting of F ⊆ E and an allocation w2 of µ is an (α, β)-approximate

solution if it satisfies

•
∑

e∈F c(e) ≤ αmin{
∑

e∈F ′ c(e) | F ′ ⊆ E is in a feasible solution}, and

• dw(v;F ) ≤ βb(v) for all v ∈ V .

Define θ as max{b(u)/b(v), b(v)/b(u) | uv ∈ E2} if E2 6= ∅, and 0 otherwise. For WDBound-

edTree and WDBoundedNetwork, we propose algorithms which achieve approximation ratios
(1, 4 + 3θ) and (2, 7 + 5θ) respectively. Our algorithms take the approach successfully applied to
the bounded degree spanning tree problem by Singh and Lau [1] and to the bounded-degree sur-
vivable network design problem by Lau et al. [2], which correspond to instances with uniform w1

and E2 = ∅ in our problems. Their approach is based on the iterative rounding originally used for
the generalized Steiner network problem by Jain [3]. Roughly illustrating, they iterate rounding
fractional variables in basic optimal solutions or removing constraints of a linear program relax-
ation. The key for guaranteeing the correctness of the algorithm is an analysis of the structure of
tight constraints which determine the basic optimal solutions. In this paper, we show that this
approach remains useful in our problems.

In addition, we also discuss the following variation of the above problem.

Minimum weighted degree survivable network problem (MinimumWDNetwork): An
undirected graph G = (V,E) with a partition E1, E2 of E, weights w1 : E1 × V → Q+ and
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µ : E2 → Q+, and a skew supermodular set function f : 2V → N are given. A feasible solution
consists of an f -connected subgraph G′ = (V, F ) of G and an allocation w2 : F2 × V → Q+ of µ.
The objective is to minimize the weighted degree maxv∈V dw(v;F ) of G′.

Similarly for WDBoundedNetwork, we call instances with f(U) = 1 for all non-empty
U ⊂ V minimum weighted degree spanning tree problem (MinimumWDTree).

For MinimumWDTree and MinimumWDNetwork, our algorithms achieve approximation
ratios 7 + ǫ and 12 + ǫ in polynomial time of log(1/ǫ) and input size for an arbitrary ǫ > 0. If
E2 = ∅, we can remove ǫ from the ratios while the algorithms run in polynomial time of only input
size.

The next theorems summarize our contribution.

Theorem 1. WDBoundedTree is (1, 4+3θ)-approximable in polynomial time. MinimumWDTree

is 4-approximable in polynomial time if E2 = ∅, and is (7 + ǫ)-approximable in polynomial time of

log(1/ǫ) and input size for any ǫ > 0 otherwise.

Theorem 2. WDBoundedNetwork is (2, 7 + 5θ)-approximable in polynomial time. Mini-

mumWDNetwork is 12-approximable in polynomial time if E2 = ∅, and is (12+ǫ)-approximable

in polynomial time of log(1/ǫ) and input size for any ǫ > 0 otherwise.

Previous Works

The bounded degree spanning tree problem has been studied extensively in the last two decades
[4, 5, 6, 7, 8, 9]. For the uniform cost (i.e., c(e) = 1 for e ∈ E), an optimal result was given by Fürer
and Raghavachari [10]. Their algorithm computes a spanning tree which violates degree upper-
bounds by at most one. For general costs, Goemans [11] gave an algorithm to compute a spanning
tree of the minimum cost although it violates degree upper-bounds by at most two. The algorithm
obtains such a spanning tree by rounding a basic optimal solution of an LP relaxation with the
matroid intersection algorithm. Afterwards an optimal result for general cost was presented by
Singh and Lau [1]; Their algorithm computes a spanning tree of minimum cost which violates
degree upper-bounds by at most one. As mentioned above, their result is achieved by extending
the iterative rounding due to Jain [3], who applied it for designing a 2-approximation algorithm
to the generalized Steiner network problem.

This approach is also applied to several problems related to degree bounds. Lau et al. [2]
considered the survivable network problem, and proposed an algorithm that outputs a network
of cost at most twice the optimal and the degree of v ∈ V is at most 2b(v) + 3. This result
was improved in Lau and Singh [12]. Bansal et al. [13] considered the arborescence problem
and survivable network problem with intersecting supermodular connectivity. Kiraly et al. [14]
generalized bounded degree spanning tree to bounded degree matroid. They also considered degree
bounded submodular flow problem.

There are also several works on the network design problem with weighted degree constraints.
All of these correspond to the case with E2 = ∅ and w1(e, u) = w2(e, v) for e = uv ∈ E1.
Ravi [15] presented an O(log |V |, log |V |)-approximation algorithm to WDBoundedTree and
an O(log |V |)-approximation algorithm to MinimumWDTree. For MinimumWDTree, Ghodsi
et al. [16] presented a 4.5-approximation algorithm under the assumption that G is a complete
graph and c is a metric cost (i.e., triangle inequality holds) while they also showed that it is
NP-hard to approximate it within a factor less than 2. Notice that our algorithm described in
this paper achieves (1, 4)-approximation to WDBoundedTree and 4-approximation to Mini-

mumWDTree when E2 = ∅. Hence it improves these previous works. Nutov [17] considered
WDBoundedNetwork for digraphs.

Organization

The rest of this paper is organized as follows. Section 2 proves Theorem 1 The algorithms are
derived from a good property of polytopes that give a linear program relaxation of the problems.
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Section 2 also shows that our analysis on the property is tight. Section 3 proves Theorem 2 and
shows that our analysis on the property of polytopes is tight. Section 4 concludes this paper.

2 Spanning Trees with Weighted Degree Constraints

We prove Theorem 1 in this section. For our algorithm to work recursively, we need to generalize
WDBoundedTree by defining b as a function A → Q+ for some A ⊆ V . This means that the
degree upper-bound is defined only on the vertices in A.

Let I stand for the instance of WDBoundedTree consisting of an undirected graph G =
(V,E) with E = E1 ∪ E2, weights w1 : E1 × V → Q+ and µ : E2 → Q+, a subset A of V , and
b : A → Q+. We denote by PT(I) the polytope that consists of vectors x ∈ QE and y ∈ QE2×V

that satisfy

0 ≤ x(e) for all e ∈ E, (1)

0 ≤ y(e, u), y(e, v) for all e = uv ∈ E2, (2)

y(e, u) + y(e, v) = x(e) for all e = uv ∈ E2, (3)

x(E) = |V | − 1, (4)

x(E(U)) ≤ |U | − 1 for all U ⊂ V with 2 ≤ |U |, (5)

and
∑

e∈δ(v;E1)

w1(e, v)x(e) +
∑

e∈δ(v;E2)

µ(e)y(e, v) ≤ b(v) for all v ∈ A, (6)

where x(F ) denotes
∑

e∈F x(e) for F ⊆ E. Variable x(e) decides whether edge e is chosen, and
variable y(e, v) decides how much of µ(e) is allocated to an end vertex v of e. Note that (5) with
U = {u, v}, uv ∈ E implies

x(e) ≤ 1 for all e ∈ E. (7)

Also constraints (4) and (5) with U = V − v imply

x(δ(v;E)) ≥ 1 for all v ∈ V , (8)

since x(δ(v;E)) = x(E) − x(E(V − v)) ≥ (|V | − 1) − (|V − v| − 1) = 1.
Observe that min{cTx | (x, y) ∈ PT(I)} with A = V is a linear program relaxation of WD-

BoundedTree. Although (5) has an exponential number of constraints, the linear program is
solvable in polynomial time by using the ellipsoid method [4] or by transforming it to an equivalent
formulation of polynomial-size [18].

For a vector x ∈ QE
+, let Ex denote {e ∈ E | x(e) > 0}. We say that polytope PT(I) is

(1, β)-bounded for some β ≥ 1 if every extreme point (x∗, y∗) of the polytope satisfies at least one
of the following:

• There exists a vertex v ∈ V such that |δ(v;Ex∗)| = 1;

• There exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β.

If |δ(v;Ex∗)| = 1, then x∗(e) = 1 holds for the edge e ∈ δ(v;Ex∗) by the equalities x(δ(v;Ex∗)) =
x(δ(v;E)) ≥ 1 and x(e) ≤ 1.

In what follows, we see that the iterative rounding can be applied to WDBoundedTree when
PT(I) is (1, β)-bounded. By this and the fact that PT(I) is (1, 3)-bounded (Theorem 5), we can
obtain an approximation algorithm for WDBoundedTree.

Now let us describe the algorithm which works under the assumption that PT(I) is (1, β)-
bounded. Roughly illustrating, if the former condition of the (1, β)-boundedness holds, then
the algorithm rounds the variable corresponding to e ∈ δ(v;Ex∗), and otherwise, the algorithm
removes the upper-bound on the weighted degree of v satisfying |δ(v;Ex∗)| ≤ β.

Algorithm for WDBoundedTree
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Input: An undirected graph G = (V,E) with a partition E1, E2 of E, weights w1 : E1 ×V → Q+

and µ : E2 → Q+, an edge-cost c : E → Q, and a degree-bound b : V → Q+.

Output: A solution consisting of a spanning tree T ⊆ E of G and an allocation w2 : T2×V → Q+

of µ, or message “INFEASIBLE.”

Step 1: Set A := V and T := ∅.

• Delete all edges e = uv ∈ E1 from G such that w1(e, u) > b(u) or w1(e, v) > b(v).

• Delete all edges e = uv ∈ E2 from G such that µ(e) > b(u) + b(v).

If PT(I) = ∅, then output “INFEASIBLE,” and terminate.

Step 2: Compute a basic solution (x∗, y∗) that minimizes
∑

e∈E c(e)x
∗(e) over (x∗, y∗) ∈ PT(I).

Step 3: Remove edges in E − Ex∗ from E.

Step 4: If there exists a vertex v ∈ V such that |δ(v;Ex∗)| = 1 (i.e., the edge e = uv ∈ δ(v;Ex∗)
satisfies x∗(e) = 1), then add the edge e to T and delete v from G. Moreover, execute one
of the following operations:

Case of e ∈ E1: If u ∈ A, then set b(u) := b(u) − w1(e, u).

Case of e ∈ E2: Set w2(e, u) := µ(e)y∗(e, u) and w2(e, v) := µ(e)y∗(e, v). If u ∈ A, then
set b(u) := b(u) − w2(e, u).

Step 5: If there exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β, then remove all such v from A.

Step 6: If |V | = 1, then output (T,w2) as a solution, and terminate. Otherwise, return to Step
2.

In Step 4, we need to update the function f . In actual, we can avoid updating by solving the
linear program with f(U) − |δ(U ;F )| instead of f(U).

Theorem 3. If each polytope PT(I) constructed in Step 2 of the algorithm is (1, β)-bounded, then

WDBoundedTree is (1, 1 + β(1 + θ))-approximable in polynomial time.

Proof: It is clear that the algorithm described above runs in polynomial time. In what follows,
we show that the algorithm computes a (1, 1 + β(1 + θ))-approximate solution.

Observe that the linear program over PT(I) is still a relaxation of the given instance after
Step 1. Hence the original instance has no feasible solutions when the algorithm outputs “INFEA-
SIBLE”. Each edge e = uv ∈ E satisfies the following properties after Step 1:

• If e = uv ∈ E1, then w1(e, u) ≤ b(u) and w1(e, v) ≤ b(v);

• If e = uv ∈ E2, then µ(e) ≤ b(u) + b(v) ≤ (1 + θ)b(u) and µ(e) ≤ b(u) + b(v) ≤ (1 + θ)b(v).

Now suppose that PT(I) 6= ∅ after Step 1. We then prove that PT(I) 6= ∅ also throughout
the subsequent iterations and that the spanning tree T output by the algorithm satisfies c(T ) ≤
min{cTx | (x, y) ∈ PT(I)} and dw(v;T ) ≤ (1 + β(1 + θ))b(v) for all v ∈ V .

Let ei = uivi denote the i-th edge added to T , Ii = (Gi = (Vi, E
i), w1, µ, Ai, bi) denote I at

the beginning of the iteration in which ei is added to T , and (x∗i , y
∗
i ) denote the basic solution

computed in Step 2 of that iteration. We also let I0 stand for I immediately after Step 1 of the
algorithm. Assume that ei is chosen by |δ(vi;Ex∗

i
)| = 1 in Step 4 (i.e., Vi+1 − Vi = {vi}).

By Steps 4 and 5, Ai+1 ⊆ Ai holds, and

bi+1(v) =











bi(v) − w1(ei, v) if v = ui ∈ A and ei ∈ E1,

bi(v) − µ(ei)y
∗
i (ei, v) if v = ui ∈ A and ei ∈ E2,

bi(v) otherwise

(9)
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also holds for i ≥ 1. Moreover, each edge in Ei−(Ei+1∪{ei}) is the one such that the corresponding
variable of x∗ becomes 0 in some iteration before ei+1 is chosen in Step 4. These facts indicate
that the projection of (x∗i , y

∗
i ) satisfies all constraints in PT(Ii+1). Hence we have the following:

If PT(Ii) 6= ∅, then PT(Ii+1) 6= ∅ for i ≥ 0; (10)

cTx∗i ≥ c(ei) + min{cTx | (x, y) ∈ PT(Ii+1)} = c(ei) + cTx∗i+1 for i ≥ 1. (11)

(i) We first see that the algorithm outputs a solution. Recall that we are assuming that
PT(I0) 6= ∅. By this and (10), PT(Ii) 6= ∅ for all i ≥ 1. The algorithm then terminates with
outputting a spanning tree T = {e1, . . . , e|V |−1} and an allocation w2 : T2 × V → Q+ of µ by the
way of the construction.

(ii) Next we see the optimality of c(T ). By applying (11) repeatedly, we obtain

cTx∗1 ≥ c(e1) + cTx∗2 ≥ · · · ≥

|V |−2
∑

i=1

c(ei) + cTx∗|V |−1.

Since |V|V |−1| = 2, we have x∗|V |−1(e|V |−1) = 1 and x∗|V |−1(e) = 0 for e ∈ E|V |−1 − {e|V |−1}, and
hence it holds that

|V |−2
∑

i=1

c(ei) + cTx∗|V |−1 =

|V |−1
∑

i=1

c(ei) = c(T ).

Notice that the algorithm constructs I1 from I0 by relaxing the degree constraints (i.e., A1 ⊆ A0).
Hence min{cTx | (x, y) ∈ PT(I0)} ≥ cTx∗1 holds. We thus have min{cTx | (x, y) ∈ PT(I0)} ≥ c(T ),
as required.

(iii) Fix v as an arbitrary vertex. Now we prove that dw(v;T ) ≤ (1 + β(1 + θ))b(v) holds.
Consider Step 4 of the iterations during v ∈ A. Let T ′ be the set of edges that are added to T

during those iterations. By applying (9) repeatedly, we obtain

b(v) ≥
∑

ei∈δ(v;T ′

1
)

w1(ei, v) +
∑

ei∈δ(v;T ′

2
)

µ(ei)y
∗
i (ei, v).

If ei ∈ δ(v;T2), then the algorithm sets w2(ei, v) to µ(ei)y
∗
i (ei, v).

Therefore,

∑

ei∈δ(v;T ′

1
)

w1(ei, v) +
∑

ei∈δ(v;T ′

2
)

µ(ei)y
∗
i (ei, v) = dw1

(v;T ′
1) + dw2

(v;T ′
2).

This implies that dw(v;T ′) ≤ b(v) holds.
Consider the iterations after v is removed from A. Let T ′′ denote the set of edges that are

added to T during those iterations. When v is removed from A in Step 5, the number of remaining
edges incident to v is at most β by the condition in Step 5. Hence |δ(v;T ′′)| ≤ β holds. We have
already seen that, after Step 1, each e = uv ∈ E1 satisfies w1(e, v) ≤ b(v) and each e = uv ∈ E2

satisfies w2(e, v) ≤ µ(e) ≤ (1+θ)b(v). So dw(v;T ′′) ≤ β(1+θ)b(v). Because dw(v;T ) = dw(v;T ′)+
dw(v;T ′′), we have dw(v;T ) ≤ (1 + β(1 + θ))b(v).

The following theorem shows that the algorithm to WDBoundedTree gives an algorithm to
MinimumWDTree.

Theorem 4. Suppose that WDBoundedTree is (α′, β′)-approximable for some α′ and β′ when

b is uniform. For an arbitrary ǫ > 0, MinimumWDTree is (β′ + ǫ)-approximable in polynomial

time of log(1/ǫ) and input size. If E2 = ∅, then it is β′-approximable in polynomial time of only

input size.
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Proof: For an r ∈ Q, define Gr as the subgraph obtained from G by deleting each edge e =
uv ∈ E1 such that max{w1(e, u), w1(e, v)} > r and each edge e ∈ E2 such that µ(e) > 2r. Let
br : V → Q+ be the function such that br(v) = r for all v ∈ V , and Ir = (Gr , w1, µ, A = V, br).

We denote min{r ∈ Q+ | PT(Ir) 6= ∅} by R, and the minimum weighted degree of the given
instance by OPT. Let ω (resp., W ) stand for the minimum (resp., maximum) of all entries in w1

and µ. For a given ǫ, define ǫ′ = ǫω/(2β′). Since ω/2 ≤ OPT, we have ǫ′ ≤ ǫOPT/β′. Since the
characteristic vector of an optimal solution to the given instance of MinimumWDTree satisfies
all constraints of PT(IOPT ), we have R ≤ OPT. It is possible to compute a value R′ such that
R ≤ R′ ≤ R+ ǫ′ by the binary search on interval [0,W ], which needs to solve the linear program
over PT(Ir) log(W/ǫ′) times.

Let T be an (α′, β′)-approximate solution to the instance of WDBoundedTree consisting of
IR′ and an arbitrary edge-cost c. We then have dw(v;T ) ≤ β′bR′(v) ≤ β′(R + ǫ′) ≤ (β′ + ǫ)OPT
for any v ∈ V . This implies that T is a (β′ + ǫ)-approximate solution to MinimumWDTree.

When E2 = ∅, set ǫ so that 1/(ψ+1) ≤ ǫ′ < 1/ψ holds, where ψ is the maximum denominator
of all entries in w1. In this case, if R′ satisfies R ≤ R′ ≤ R + ǫ′, then R′ ≤ OPT. Such R′

can be computed by solving the linear program log(W/ǫ′) ≤ log(W (ψ + 1)) times. Then we
have dw(v;T ) ≤ β′bR′(v) ≤ β′OPT for any v ∈ V , which implies that T is a β′-approximate
solution.

Now we see that PT(I) is (1, 3)-bounded. First let us observe that the key property of tight
constraints observed in [1] holds also in our setting.

Lemma 1. For any extreme point (x∗, y∗) of PT(I), there exists a laminar family L ⊆ {U ⊆ V |
|U | ≥ 2} (i.e., any U,U ′ ∈ L satisfy either U ⊆ U ′, U ′ ⊆ U , or U ∩ U ′ 6= ∅) and a subset X of A
such that |Ex∗ | ≤ |L| + |X |.

Proof: By the definitions of x∗ and y∗, the number of variables is equal to the dimension of
the vector space spanned by the coefficients vectors of tight constraints in PT(I). If x∗(e) = 0
(resp., y∗(e, v)), then fix the variable x(e) (resp., y(e, v)) to 0 and remove the corresponding tight
constraint of (1) (resp., (2)). We can also remove tight constraints of (3) by fixing y(e, u) to
x(e) − y(e, v). Then the number of remaining variables, which is at least |Ex∗ |, is equal to the
dimension of the vector space spanned by the tight constraints of (4), (5) and (6).

Let F = {U ⊆ V | |U | ≥ 2, x∗(E(U)) = |U | − 1} (i.e., family of vertex subsets defining tight
constraints of (4) and (5)) and X = {v ∈ A |

∑

e∈δ(v;E1) w1(e, v)x
∗(e) +

∑

e∈δ(v;E2) µ(e)y∗(e, v) =

b(v)} (i.e., set of vertices defining tight constraints of (6)).
For a subfamily F ′ of F , we denote by span(F ′∪X) the vector space spanned by the coefficient

vectors of constraints corresponding to F ′ and X . (Notice that coefficient vectors corresponding
to X are changed from the original by the operations described at the beginning of this proof.)
In [1], it is proven that a maximal laminar subfamily L of F satisfies span(L∪X) = span(F ∪X).
Since the dimension of span(L∪X) is at most |L|+ |X |, we have |Ex∗ | ≤ |L|+ |X |, as required.

Theorem 5. Polytope PT(I) is (1, 3)-bounded for any I.

Proof: Suppose the contrary, i.e. all vertices v ∈ V satisfy |δ(v;Ex∗)| ≥ 2 and all vertices v ∈ A
satisfy |δ(v;Ex∗)| ≥ 4. Then |Ex∗ | ≥ (2(|V | − |A|) + 4|A|)/2 = |V | + |A|.

On the other hand, let L be an arbitrary laminar family of subsets U of V with |U | ≥ 2, and
X be an arbitrary subset of A. By their definitions, |L| ≤ |V | − 1 and |X | ≤ |A| hold. Therefore
we have |L| + |X | ≤ |V | + |A| − 1 < |Ex∗ |, a contradiction to Lemma 1.

Theorem 1 is proven immediately from Theorems 3, 4 and 5.
It is a natural question to ask whether the (1, 3)-boundedness of PT(I) can be improved to

(1, 2)-boundedness. Let us discuss this assuming that E2 = ∅. Unfortunately (1, 2)-boundedness
does not hold even if w1(e, u) = w1(e, v) = 1 for all e = uv ∈ E1 as mentioned in [1]. Singh and
Lau [1] weakened the (1, 2)-boundedness by replacing its first condition with “There exists an edge
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Figure 1: A counterexample for (1, 2)-boundedness of PT(I)

e ∈ E such that x∗(e) = 1.” They then designed their algorithm by observing that the property
holds for more general polytopes than PT(I). This approach does not work in our setting because
there exists a counterexample for the weakened (1, 2)-boundedness, which we will give in the rest
of this section.

Let G be the graph in Figure 1. We let w1(e, u) = w1(e, v) for all e = uv ∈ E1 and the integers
beside edges in the figure represent their weights. Rational numbers beside vertices represent the
values of b for them. Let A = V , and the set of |E| = 6 tight constraints consist of constraints
(4), (5) for the set of white vertices and for the set of black vertices, and (6) for all vertices. Then
these tight constraints determine an extreme point x∗ of PT(I) such that

x∗(e) =

{

2/3 for edges represented by solid lines,

1/3 for edges represented by dotted lines.

Clearly x∗(e) < 1 for any edge e ∈ E and minv∈A=V |δ(v;Ex∗)| = 3.

3 Survivable Network with Weighted Degree Constraints

We prove Theorem 2 in this section. Similarly for the previous section, we introduce a general
form of WDBoundedNetwork by defining b : A→ Q+ on a subset A of V . Moreover we let I
stand for an instance of the problem consisting of an undirected graph G = (V,E) with a partition
E1, E2 of E, weights w1 : E1 × V → Q+ and µ : E2 → Q+, a skew supermodular set function
f : 2V → N, a subset A of V , and b : A→ Q+. We denote by PN(I) the polytope that consists of
vectors x ∈ QE and y ∈ QE2×V that satisfy

0 ≤ x(e) ≤ 1 for all e ∈ E, (12)

0 ≤ y(e, u), y(e, v) for all e = uv ∈ E2, (13)

y(e, u) + y(e, v) = x(e) for all e = uv ∈ E2, (14)

x(δ(U)) ≥ f(U) for all non-empty U ⊂ V, (15)

and
∑

e∈δ(v;E1)

w1(e, v)x(e) +
∑

e∈δ(v;E2)

µ(e)y(e, v) ≤ b(v) for all v ∈ A. (16)

Observe that min{cTx | (x, y) ∈ PN(I)} with A = V is a linear program relaxation of WDBound-

edNetwork.
We say that PN(I) is (α, β)-bounded for some α, β ≥ 1 if every extreme point (x∗, y∗) of the

polytope satisfies at least one of the following:

• There exists an edge e ∈ Ex∗ such that x∗(e) ≥ 1/α;

• There exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β.

Notice that (1, β)-boundedness of PN(I) is weaker than that of PT(I).
Now we describe the algorithm which works under the assumption that PN(I) is (α, β)-

bounded.

8



Algorithm for WDBoundedNetwork

Input: An undirected graph G = (V,E) with a partition E1, E2 of E, weights w1 : E1 ×V → Q+

and µ : E2 → Q+, an edge-cost c : E → Q, a skew supermodular set function f : 2V → N,
and a degree-bound b : V → Q+

Output: A solution consisting of an f -connected subgraph (V, F ) of G and an allocation w2 :
F2 × V → Q+ of µ, or message “INFEASIBLE.”

Step 1: Set A := V and F := ∅.

• Delete all edges e = uv ∈ E1 from G such that w1(e, u) > b(u) or w1(e, v) > b(v).

• Delete all edges e = uv ∈ E2 from G such that µ(e) > b(u) + b(v).

If PN(I) = ∅, then output “INFEASIBLE.”

Step 2: Compute a basic solution (x∗, y∗) that minimizes
∑

e∈E c(e)x
∗(e) over (x∗, y∗) ∈ PN(I).

Step 3: Remove edges in E − Ex∗ from E.

Step 4: If there exists an edge e = uv ∈ E such that x∗(e) ≥ 1/α, then add e to F , delete e from
E, and set f(U) := f(U) − 1 for all U ⊂ V with e ∈ δ(U). Moreover, execute one of the
following operations:

Case of e ∈ E1: If u ∈ A, then set b(u) := b(u) − w1(e, u)x
∗(e). If v ∈ A, then set b(v) :=

b(v) − w1(e, v)x
∗(e).

Case of e ∈ E2: Set w2(e, u) := µ(e)y∗(e, u)/x∗(e), and set w2(e, v) := µ(e)y∗(e, v)/x∗(e).
If u ∈ A, then set b(u) := b(u) − µ(e)y∗(e, u). If v ∈ A, then set b(v) := b(v) −
µ(e)y∗(e, v).

Step 5: If there exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β, then remove all such v from A.

Step 6: If E = ∅, then output (F,w2) as a solution, and terminate. Otherwise, return to Step 2.

Theorem 6. If each polytope PN(I) constructed in Step 2 of the algorithm is (α, β)-bounded, then

WDBoundedNetwork is (α, α+ β(1 + θ))-approximable in polynomial time.

Proof: It is clear that the algorithm described above runs in polynomial time. In what follows,
we show that the algorithm computes an (α, α+ β(1 + θ))-approximate solution.

Observe that the linear program over PN(I) is still a relaxation of the given instance after
Step 1. Hence the original instance has no feasible solutions when the algorithm outputs “INFEA-
SIBLE.” Each edge e = uv ∈ E satisfies the following after Step 1:

• If e = uv ∈ E1, then w1(e, u) ≤ b(u) and w1(e, v) ≤ b(v);

• If e = uv ∈ E2, then µ(e) ≤ b(u) + b(v) ≤ (1 + θ)b(u) and µ(e) ≤ b(u) + b(v) ≤ (1 + θ)b(v).

In what follows, suppose that PN(I) 6= ∅ after Step 1. We then prove that PN(I) 6= ∅ also
throughout the subsequent iterations and that the edge set F output by the algorithm satisfies
c(F ) ≤ αmin{cTx | (x, y) ∈ PN(I)} and dw(v;F ) ≤ (α+ β(1 + θ))b(v) for all v ∈ V .

Let ei = uivi denote the i-th edge added to F . Moreover, let Ii = (Gi = (V,Ei), w1, µ, ν, fi, Ai, bi)
denote I at the beginning of the iteration in which ei is added to F , and (x∗i , y

∗
i ) denote the basic

solution computed in Step 2 of that iteration. We also let I0 stand for I immediately after Step 1
of the algorithm, and assume that the algorithm outputs F = {e1, . . . , ej}. By Steps 4 and 5,
Ai+1 ⊆ Ai holds, and

bi+1(v
′) =











bi(v
′) − w1(ei, v

′)x∗i (ei) if v′ ∈ A and ei ∈ E1,

bi(v
′) − µ(ei)y

∗
i (ei, v

′) if v′ ∈ A and ei ∈ E2,

bi(v
′) otherwise.

(17)
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also holds for v′ ∈ {ui, vi}, i ≥ 1. Moreover, all edges in Ei+1 − Ei except ei are those such that
corresponding variables of x∗ took 0 in some iteration before ei+1 is chosen in Step 4. These facts
indicate that the projection of (x∗i , y

∗
i ) satisfies all constraints in PN(Ii+1). Hence we have the

following:
If PN(Ii) 6= ∅, then PN(Ii+1) 6= ∅ for i ≥ 0; (18)

cTx∗i ≥ c(ei)x
∗
i (ei) + min{cTx | (x, y) ∈ PN(Ii+1)} ≥ c(ei)/α+ cTx∗i+1for i ≥ 1. (19)

(i) We first see that the algorithm outputs a solution. Recall that we are assuming that
PN(I0) 6= ∅. By this and (18), PN(Ii) 6= ∅ holds for all 1 ≤ i ≤ j. Hence the algorithm
terminates with outputting a solution consisting of an f -connected subgraph F = {e1, . . . , ej} and
an allocation w2 : F2 × V → Q+ of µ by the way of construction.

(ii) Next we see the α-approximability of c(F ). By applying (19) repeatedly, we have

cTx∗1 ≥ c(e1)x
∗
1(e1) + cTx∗2 ≥ · · · ≥

j−1
∑

i=1

c(ei)x
∗
i (ei) + cTx∗j ≥

j
∑

i=1

c(ei)x
∗
i (ei).

Notice that x∗i (ei) ≥ 1/α holds for all 1 ≤ i ≤ j by the condition of Step 4. Hence,

j
∑

i=1

c(ei)x
∗
i (ei) ≥ c(F )/α,

implying that αcTx∗1 ≥ c(F ). Notice that the algorithm constructs I1 from I0 by relaxing the
degree constraints (i.e., A1 ⊆ A0). Hence min{cTx | (x, y) ∈ PT(I0)} ≥ cTx∗1. Therefore we have
αmin{cTx | (x, y) ∈ PN(I0)} ≥ c(F ), as required.

(iii) Fix v as an arbitrary vertex. Now we prove that dw(v;F ) ≤ (α+ β(1 + θ))b(v) holds.
Consider Step 4 of the iterations during v ∈ A. Let F ′ be the set of edges that are added to

F during those iterations. By applying (17) repeatedly, we obtain

b(v) ≥
∑

ei∈δ(v;F ′

1
)

w1(ei, v)x
∗
i (ei) +

∑

ei∈δ(v;F ′

2
)

µ(ei)y
∗
i (ei, v).

If ei ∈ δ(v;E2), then w2(ei, v) = µ(ei)y
∗
i (ei, v)/x

∗
i (ei). Recall that x∗i (ei) ≥ 1/α. Therefore,

∑

ei∈δ(v;F ′

1
)

w1(ei, v)x
∗
i (ei) +

∑

ei∈δ(v;F ′

2
)

µ(ei)y
∗
i (ei, v) ≥ dw1

(v;F ′
1)/α+ dw2

(v;F ′
2)/α.

This implies that dw(v;F ′) ≤ αb(v) holds.
Consider the iterations after v is removed from A. Let F ′′ denote the set of edges that

are added to F during those iterations. When v is removed from A in Step 5, the number of
remaining edges incident with v is at most β by the condition in Step 5. Hence |δ(v;F ′′)| ≤ β
holds. We have already seen that, after Step 1, e = uv ∈ E1 satisfies w1(e, v) ≤ b(v) and
e = uv ∈ E2 satisfies w2(e, v) ≤ µ(e) ≤ (1 + θ)b(v). So dw(v;F ′′) ≤ β(1 + θ)b(v). Because
dw(v;F ) = dw(v;F ′) + dw(v;F ′′), we now have dw(v;F ) ≤ (α+ β(1 + θ))b(v).

The following theorem shows that the algorithm for WDBoundedNetwork gives an algo-
rithm for MinimumWDNetwork.

Theorem 7. Suppose that WDBoundedNetwork with uniform b is (α′, β′)-approximable for

some α′ and β′. For an arbitrary ǫ > 0, MinimumWDNetwork is (β′ + ǫ)-approximable in

polynomial time of log(1/ǫ) and input size. If E2 = ∅, then it is β′-approximable in polynomial

time of only input size.

Proof: It can be derived from Theorem 6 as Theorem 4 is derived from Theorem 3.

We can show that polytope PN(I) is (2, 5)-bounded. For proving this, let us see that the key
property of tight constraints observed in [3] also holds in our setting.
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Lemma 2. Let (x∗, y∗) be any extreme point of PN(I) and suppose that x∗(e) < 1 for all e ∈ E.

There exists a laminar family L ⊆ 2V and a subset X of A such that characteristic vectors of

δ(U ;Ex∗) for all U ∈ L are linearly independent and |Ex∗ | ≤ |L| + |X |.

Proof: By the definitions of x∗ and y∗, the number of variables is equal to the dimension of
the vector space spanned by the coefficient vectors of tight constraints in PN(I). If x∗(e) = 0
(resp., y∗(e, v)), then fix the variable x(e) (resp., y(e, v)) to 0 and remove the corresponding tight
constraint of (12) (resp., (13)). We can also remove tight constraints of (14) by fixing y(e, u) to
x(e) − y(e, v). Then the number of remaining variables, which is at least |Ex∗ |, is equal to the
dimension of the vector space spanned by the tight constraints of (15) and (16).

Let F = {U ⊂ V | U 6= ∅, x∗(δ(U)) = f(U)} (i.e., family of vertex subsets defining tight
constraints of (15)) and X = {v ∈ A |

∑

e∈δ(v;E1)
w1(e, v)x

∗(e) +
∑

e∈δ(v;E2) µ(e)y∗(e, v) +
∑

e∈δ(v;E3)
ν(e)y∗(e, v) = b(v)} (i.e., set of vertices defining tight constraints of (16)). For a

subfamily F ′ of F , we denote by span(F ′) the vector space spanned by the characteristic vectors
of δ(U ;Ex∗), U ∈ F ′. In [3], it is proven that a maximal laminar subfamily F ′ of F satisfies
span(F ′) = span(F). From F ′, choose the maximal number of members whose coefficient vectors
are linearly independent, and define L as the family of them. Then L and X satisfy the required
properties.

Theorem 8. Polytope PN(I) is (2, 5)-bounded for any I.

Proof: Suppose the contrary, i.e., all edges e ∈ Ex∗ satisfy x∗(e) < 1/2, and all vertices v ∈ A
satisfy |δ(v;Ex∗)| ≥ 6.

Let L and X be those in Lemma 2. We define a child-parent relationship between all elements
in L and X as follows: For U ∈ L or v ∈ X , define its parent as the inclusion-wise minimal element
in L that contains it if any. Note that when v ∈ X and {v} ∈ L, {v} is the parent of v.

We assign one token to each end vertex of edges in Ex∗ . Define the co-requirement of U ∈ L
as |δ(U ;Ex∗)|/2− f(U). Following the approach in [3], we observe that it is possible to distribute
these tokens to all elements in L and in X so that

• each element having the parent owns two tokens,

• each element having no parent owns at least three tokens,

• and it owns exactly three only if its co-requirement equals to 1/2.

First two of these mean that the number of all tokens is more than 2(|L|+|X |). Since the number of
tokens is exactly 2|Ex∗ |, this indicates that |Ex∗ | > |L|+ |X |, which contradicts |Ex∗ | ≤ |L|+ |X |.

We prove the claim inductively. The base case is when the elements have no child. An element
v ∈ X owns at least six tokens by |δ(v;Ex∗)| ≥ 6. An element U ∈ L with no child owns at least
three tokens because |δ(U ;Ex∗)| ≥ 3 by x∗(e) < 1/2 for each e ∈ δ(U ;Ex∗) and f(U) ≥ 1. It owns
exactly three tokens if and only if |δ(U ;Ex∗)| = 3. Since |δ(U ;Ex∗)| = 3 indicates that f(U) = 1,
it means the co-requirement |δ(U ;Ex∗)|/2 − f(U) equals to 1/2 .

Let us consider the case in which an element U ∈ {L} has some children. If U has children
from X , then it is possible to redistribute tokens so that U owns at least four tokens, and each
child owns two tokens. If the children of U are all from L, then the argument is proven in [3].

Theorem 2 can be proven immediately from Theorems 6, 7 and 8.
Lau et. al. [2] designed their algorithm for w1(e, u) = w1(e, v) = 1, e = uv ∈ E1 and E2 = ∅ by

observing that PN(I) is (2, 4)-bounded with such instances. However, an example indicates that
this does not hold in our problem even if w1(e, u) = w1(e, v) for all e = uv ∈ E1 and E2 = ∅.

Let G be the graph in Figure 2, f(U) = 1 for all non-empty U ⊂ V , and A = V . We
suppose that |E| = |E1| = 42 tight constraints consists of (15) for all singletons, for {vi, vi+1, vi+2}
with i = 1, 4, 7, 10, 13, 16, and for {vi, vi+1, vi+2, vi+3, vi+4, vi+5} with i = 1, 7, 13, and (16) for
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Figure 2: A counterexample for (2, 4)-boundedness of PN(I)

all vertices. We set w1 so that the above tight constraints are linearly independent. Setting b
appropriately, we then have a basic optimal solution x∗ such that

x∗(e) =











1/3 for edges represented by black solid lines,

1/6 for edges represented by dotted lines,

1/12 for edges represented by gray solid lines.

Notice that x∗(e) < 1/2 for all e ∈ E and |δ(v;Ex∗)| ≥ 5 for all v ∈ V .

4 Conclusions

In this paper, we designed algorithms to network design problems related to the weighted degree
constraints. Those algorithms are based on the iterative rounding, which has been applied for
several network design problems with degree constraints. Our main contribution is to show that
the iterative rounding is still applicable even after extending the degree constraints to the weighted
degree constraints. For general formulation, we also introduced two definitions of edges weights,
and showed that the iterative rounding works for them. The examples we obtained imply that the
approximation guarantees of our algorithms are hard to improve.
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