A Greedy Partition Lemma for Directed Domination

${ }^{1}$ Yair Caro and ${ }^{2}$ Michael A. Henning*
${ }^{1}$ Department of Mathematics and Physics
University of Haifa-Oranim
Tivon 36006, Israel
Email: yacaro@kvgeva.org.il
${ }^{2}$ Department of Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
Email: mahenning@uj.ac.za

Abstract

A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex $u \in V(D) \backslash S$ has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by $\gamma(D)$, is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted $\Gamma_{d}(G)$, which is the maximum directed domination number $\gamma(D)$ over all orientations D of G. The directed domination number of a complete graph was first studied by Erdös [Math. Gaz. 47 (1963), 220-222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α denotes the independence number of a graph G, we show that $\alpha \leq \Gamma_{d}(G) \leq \alpha(1+2 \ln (n / \alpha))$.

Keywords: directed domination; oriented graph; independence number.
AMS subject classification: 05C69

[^0]
1 Introduction

An asymmetric digraph or oriented graph D is a digraph that can be obtained from a graph G by assigning a direction to (that is, orienting) each edge of G. The resulting digraph D is called an orientation of G. Thus if D is an oriented graph, then for every pair u and v of distinct vertices of D, at most one of (u, v) and (v, u) is an arc of D. A directed dominating set, abbreviated DDS, in a directed graph $D=(V, A)$ is a set S of vertices of V such that every vertex in $V \backslash S$ is dominated by some vertex of S; that is, every vertex $u \in V \backslash S$ has an adjacent vertex v in S with v directed to u. Every digraph has a DDS since the entire vertex set of the digraph is such a set.

The directed domination number of a directed graph D, denoted by $\gamma(D)$, is the minimum cardinality of a DDS in D. A DDS of D of cardinality $\gamma(D)$ is called a $\gamma(D)$-set. Directed domination in digraphs is well studied (cf. [2, 3, 9, 10, 12, 16, 17, 19, 22, 24]).

The directed domination number of a graph G, denoted $\Gamma_{d}(G)$, is defined in [7] as the maximum directed domination number $\gamma(D)$ over all orientations D of G; that is,

$$
\Gamma_{d}(G)=\max \{\gamma(D) \mid \text { over all orientations } D \text { of } G\} .
$$

The directed domination number of a complete graph was first studied by Erdös [14] albeit in disguised form. In 1962, Schütte [14 raised the question of given any positive integer $k>0$, does there exist a tournament $T_{n(k)}$ on $n(k)$ vertices in which for any set S of k vertices, there is a vertex u which dominates all vertices in S. Erdös [14] showed, by probabilistic arguments, that such a tournament $T_{n(k)}$ does exist, for every positive integer k. The proof of the following bounds on the directed domination number of a complete graph are along identical lines to that presented by Erdös [14]. This result can also be found in [24]. Throughout this paper, \log is to the base 2 while \ln denotes the logarithm in the natural base e.

Theorem 1 (Erdös [14]) For $n \geq 2$, $\log n-2 \log (\log n) \leq \Gamma_{d}\left(K_{n}\right) \leq \log (n+1)$.

In [7] this notion of directed domination in a complete graph is extended to directed domination of all graphs.

1.1 Notation

For notation and graph theory terminology we in general follow [18]. Specifically, let $G=$ (V, E) be a graph with vertex set V of order $n=|V|$ and edge set E of size $m=|E|$, and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. If the graph G is clear from context, we simply write $N(v)$ and $N[v]$ rather than $N_{G}(v)$ and $N_{G}[v]$, respectively. For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. If A and B are subsets of $V(G)$, we let $[A, B]$ denote the set of all edges between A and B in G.

We denote the degree of v in G by $d_{G}(v)$, or simply by $d(v)$ if the graph G is clear from context. The average degree in G is denoted by $d_{\mathrm{av}}(G)$. The minimum degree among the vertices of G is denoted by $\delta(G)$, and the maximum degree by $\Delta(G)$. The parameter $\gamma(G)$ denotes the domination number of G. The parameters $\alpha(G)$ and $\alpha^{\prime}(G)$ denote the (vertex) independence number and the matching number, respectively, of G, while the parameters $\chi(G)$ and $\chi^{\prime}(G)$ denote the chromatic number and edge chromatic number, respectively, of G. The covering number of G, denoted by $\beta(G)$, is the minimum number vertices that covers all the edges of G.

A vertex v in a digraph D out-dominates, or simply dominates, itself as well as all vertices u such that (v, u) is an arc of D. The out-neighborhood of v, denoted $N^{+}(v)$, is the set of all vertices u adjacent from v in D; that is, $N^{+}(v)=\{u \mid(v, u) \in A(D)\}$. The out-degree of v is given by $d^{+}(v)=\left|N^{+}(v)\right|$, and the maximum out-degree among the vertices of D is denoted by $\Delta^{+}(D)$. The in-neighborhood of v, denoted $N^{-}(v)$, is the set of all vertices u adjacent to v in D; that is, $N^{-}(v)=\{u \mid(u, v) \in A(D)\}$. The in-degree of v is given by $d^{-}(v)=\left|N^{-}(v)\right|$. The closed in-neighborhood of v is the set $N^{-}[v]=N^{-}(v) \cup\{v\}$. The maximum in-degree among the vertices of D is denoted by $\Delta^{-}(D)$.

1.2 Known Results

We shall need the following inequality chain established in [7].

Theorem 2 ([7]) For every graph G on n vertices, $\gamma(G) \leq \alpha(G) \leq \Gamma_{d}(G) \leq n-\alpha^{\prime}(G)$.

2 The Greedy Partition Lemma and its Applications

In this section we present our key lemma, which we call the Greedy Partition Lemma, and its applications. The Greedy Partition Lemma is a generalization of earlier results by Caro [5, 6], Caro and Tuza [8], and Jensen and Toft [20].

First we introduce some additional termininology. Let G be a hypergraph and let P be a hypergraph property. Let $P(G)=\max \{|V(H)|: H$ is an induced subhypergraph of G that satisfies property $P\}$. Let $\chi(G, P)$ be the minimum number q such that there exist a partition $V(G)=\left(V_{1}, V_{2}, \ldots, V_{q}\right)$ such that V_{i} induces a subhypergraph having property P for all $i=1,2, \ldots, q$. For example, if P is the property of independence, then $P(G)=\alpha(G)$, while $\chi(G, P)=\chi(G)$. If P is the property of edge independence, the $P(G)=\alpha^{\prime}(G)$, while $\chi(G, P)=\chi^{\prime}(G)$. If P is the property of being d-degenerate (recall that a d-degenerate graph is a graph G in which every induced subgraph of G has a vertex with degree at most d), then $P(G)$ is the maximum cardinality of a d-degenerate subgraph and $\chi(G, P)$ is the minimum partition of $V(G)$ into induced d-degenerate graphs. For a subhypergraph H of a hypergraph G, we let $G-H$ be the subhypergraph of G with vertex set $V(G) \backslash V(H)$. We are now in a position to state the Greedy Partition Lemma.

Lemma 3 (Greedy Partition Lemma) Let \mathcal{H} be a class of hypergraphs closed under induced subhypergraphs. Let $t \geq 2$ be an integer and let $f:[t, \infty) \rightarrow[1, \infty)$ be a positive nondecreasing continuous function. Let P be a hypergraph property such that for every hypergraph $G \in \mathcal{H}$ the following holds.
(a) If $|V(G)| \leq t$, then $\chi(G, P) \leq|V(G)|$.
(b) If $|V(G)| \geq t$, then $|V(G)| \geq P(G) \geq f(|V(G)|)$.

Then for every hypergraph $G \in \mathcal{H}$ of order n,

$$
\chi(G, P) \leq t+\int_{t}^{\max (n, t)} \frac{1}{f(x)} d x
$$

Proof. We proceed by induction on n. We first observe that the value of the given integral is always non-negative. If $n \leq t$, then by condition (a), $\chi(G, P) \leq n \leq t$, and the inequality holds trivially. This establishes the base case. For the inductive hypothesis, assume the inequality holds for every hypergraph in \mathcal{H} with less then n vertices and let $G \in \mathcal{H}$ of order n. As observed earlier, if $n \leq t$, then the inequality holds trivially. Hence we may assume that $n>t$. Let $P(G)=z=|V(H)|$ be the cardinality of the largest induced subhypergraph H of G that has property P. By condition (b), $z \geq f(n)$. If $z \geq n-t+1$, then $n-z=|V(G) \backslash V(H)| \leq t-1$, and so by condition (a), $\chi(G-H, P) \leq t-1$. Hence, $\chi(G, P) \leq \chi(G-H, P)+1 \leq t$ and the inequality holds trivially. Therefore we may assume that $z \leq n-t$, and so $|V(G) \backslash V(H)| \geq t$. Thus applying the inductive hypothesis to the induced subhypergraph $G-H \in \mathcal{H}$, and using condition (b), we have that

$$
\begin{aligned}
\int_{t}^{n} \frac{1}{f(x)} d x & =\int_{t}^{n-z} \frac{1}{f(x)} d x+\int_{n-z}^{n} \frac{1}{f(x)} d x \\
& \geq \chi(G-H, P)-t+\int_{n-z}^{n} \frac{1}{f(x)} d x \\
& \geq \chi(G-H, P)-t+\int_{n-z}^{n} \frac{1}{f(n)} d x \\
& =\chi(G-H, P)-t+z / f(n) \\
& \geq \chi(G, P)-1-t+1 \\
& \geq \chi(G, P)-t
\end{aligned}
$$

which completes the proof of the Greedy Partition Lemma.
We next discuss several applications of the Greedy Partition Lemma. For this purpose, we shall need the following lemma. Recall that $d_{\mathrm{av}}(G)$ denotes the average degree in a graph G.

Lemma 4 For $k \geq 1$ an integer, let G be a graph with $k \geq \alpha(G)$ and let D be an orientation of G. Let H be an induced subgraph of G of order $n_{H} \geq k$ and size m_{H}, and let D_{H} be the orientation of H induced by D. Then the following holds.
(a) $m_{H} \geq n_{H}\left(n_{H}-k\right) / 2 k$.
(b) $\Delta^{+}\left(D_{H}\right) \geq\left(n_{H}-k\right) / 2 k$.

Proof. Since H is an induced subgraph of G, every independent set in H is an independent set in G. In particular, $k \geq \alpha(G) \geq \alpha(H)$. Thus applying the Caro-Wei Theorem (see [4, [25]), we have

$$
k \geq \alpha(H) \geq \sum_{v \in V(H)} \frac{1}{d_{H}(v)+1} \geq \frac{n_{H}}{d_{\mathrm{av}}(H)+1}=\frac{n_{H}}{\left(2 m_{H} / n_{H}\right)+1}=\frac{n_{H}^{2}}{2 m_{H}+n_{H}}
$$

or, equivalently, $m_{H} \geq n_{H}\left(n_{H}-k\right) / 2 k$. This establishes part (a). Part (b) follows readily from Part (a) and the observation that

$$
n_{H} \cdot \Delta^{+}\left(D_{H}\right) \geq \sum_{v \in V\left(D_{H}\right)} d_{D_{H}}^{+}(v)=m_{H}
$$

2.1 Independence Number

Using the Greedy Partition Lemma we present an upper bound on the directed domination number of a graph in terms of its independence number. First we introduce some additional notation. Let $\alpha \geq 1$ be an integer and let \mathcal{G}_{α} be the class of all graphs G with $\alpha \geq \alpha(G)$. Since every induced subgraph F of $G \in \mathcal{G}_{\alpha}$ satisfies $\alpha \geq \alpha(G) \geq \alpha(F)$, the class \mathcal{G}_{α} of graphs is closed under induced subgraphs.

Theorem 5 For $\alpha \geq 1$ an integer, if $G \in \mathcal{G}_{\alpha}$ has order $n \geq \alpha$, then

$$
\Gamma_{d}(G) \leq \alpha(1+2 \ln (n / \alpha))
$$

Proof. If $\alpha=1$, then $G=K_{n}$ and by Theorem 1, $\Gamma_{d}(G) \leq \log (n+1) \leq 1+2 \ln n=$ $\alpha(1+2 \ln (n / \alpha))$. Hence we may assume that $\alpha \geq 2$, for otherwise the desired bound holds. We now apply the Greedy Partition Lemma with $t=\alpha$ and with $f(x)$ the positive nondecreasing continuous function on $[\alpha, \infty)$ defined by $f(x)=(x-\alpha) / 2 \alpha+1$ where $x \geq$ $[\alpha, \infty)$. Let $P(G)=1+\min \left\{\Delta^{+}(D)\right\}$, where the minimum is taken over all orientations D of G. Then, $\Gamma_{d}(G) \leq \chi(G, P)$. To show that the conditions of the Greedy Partition Lemma are satisfied, we consider an arbitrary graph $H \in \mathcal{G}_{\alpha}$, where H has order $|V(H)|=n_{H}$. If $|V(H)| \leq \alpha$, then $\Gamma_{d}(H) \leq \chi(H, P) \leq \alpha$ since in this case H may be the empty graph on α vertices. Thus condition (a) of Lemma 3 holds. If $|V(H)| \geq \alpha$ and D is an arbitrary orientation of H, then by Lemma 4. $\Delta^{+}(D) \geq\left(n_{H}-\alpha\right) / 2 \alpha$, and so $|V(H)| \geq P(H) \geq$
$\left(n_{H}-\alpha\right) / 2 \alpha+1=f\left(n_{H}\right)$. Therefore condition (b) of Lemma 3 holds. Hence by the Greedy Partition Lemma,

$$
\begin{aligned}
\Gamma_{d}(G) & \leq \alpha+\int_{\alpha}^{n} \frac{1}{(x-\alpha) / 2 \alpha+1} d x \\
& =\alpha+2 \alpha \int_{\alpha}^{n} \frac{1}{x+\alpha} d x \\
& =\alpha+2 \alpha \ln ((n+\alpha) / 2 \alpha) \\
& \leq \alpha+2 \alpha \ln (n / \alpha) \\
& =\alpha(1+2 \ln (n / \alpha))
\end{aligned}
$$

Observe that for every graph G of order n, we have $\chi(G) \geq n / \alpha(G)$ and $d_{\text {av }}(G)+1 \geq$ $n / \alpha(G)$. Hence as an immediate consequence of Theorem 5, we have the following bounds on the directed domination number of a graph.

Corollary 1 Let G be a graph of order n. Then the following holds.
(a) $\Gamma_{d}(G) \leq \alpha(G)(1+2 \ln (\chi(G)))$.
(b) $\Gamma_{d}(G) \leq \alpha(G)\left(1+2 \ln \left(d_{\mathrm{av}}(G)+1\right)\right)$.

2.2 Degenerate Graphs

A d-degenerate graph is a graph G in which every induced subgraph of G has a vertex with degree at most d. The property of being d-degenerate is a hereditary property that is closed under induced subgraphs, as is the property of the complement of a graph being d-degenerate. For $d \geq 1$ an integer, let \mathcal{F}_{d} be the class of all graphs G whose complement is a d-degenerate graph. Thus the class \mathcal{F}_{d} of graphs is closed under induced subgraphs. We shall need the following lemma.

Lemma 6 For $d \geq 1$ an integer, let $G \in \mathcal{F}_{d}$ and let H be an induced subgraph of G of order n_{H}. If D is an orientation of G and D_{H} is the orientation of H induced by D, then $\Delta^{+}\left(D_{H}\right)>\left(n_{H}-1\right) / 2-d$.

Proof. Since $G \in \mathcal{F}_{d}$, the graph G is the complement of a d-degenerate graph \bar{G}. Let G have order n and size m, and let \bar{G} have size \bar{m}. It is a well-known fact that we can label the vertices of the d-degenerate graph \bar{G} with vertex labels $1,2, \ldots, n$ such that each vertex with label i is incident to at most d vertices with label greater than i, implying that $\bar{m} \leq d n-d(d+1) / 2$. Therefore, $m \geq n(n-1) / 2-d n+d(d+1) / 2$. This is true for every graph G whose complement is a d-degenerate graph. In particular, this is true for the induced subgraph H of G. Therefore if H has size m_{H}, we have $\sum_{v \in V(H)} d_{D_{H}}^{+}(v)=m_{H} \geq$ $n_{H}\left(n_{H}-1\right) / 2-d n_{H}+d(d+1) / 2$. Hence, $\Delta^{+}\left(D_{H}\right)>\left(n_{H}-1\right) / 2-d$.

Theorem 7 For $d \geq 1$ an integer, if $G \in \mathcal{F}_{d}$ has order n, then

$$
\Gamma_{d}(G) \leq 2 d+1+2 \ln (n-2 d+1) / 2 .
$$

Proof. We apply the Greedy Partition Lemma with $t=2 d+1$ and with $f(x)=(x-$ 1) $/ 2-d+1$ where $x \geq[2 d+1, \infty)$. Let $P(G)=1+\min \left\{\Delta^{+}(D)\right\}$, where the minimum is taken over all orientations D of G. Then, $\Gamma_{d}(G) \leq \chi(G, P)$. To show that the conditions of the Greedy Partition Lemma are satisfied, we consider an arbitrary graph $H \in \mathcal{F}_{d}$, where H has order $|V(H)|=n_{H}$. If $|V(H)| \leq 2 d+1$, then $\Gamma_{d}(H) \leq \chi(H, P) \leq 2 d+1$ since in this case H may be the empty graph on $2 d+1$ vertices. Thus condition (a) of Lemma 3 holds. If $|V(H)| \geq 2 d+1$ and D is an arbitrary orientation of H, then by Lemma 6, $\Delta^{+}(D) \geq\left(n_{H}-1\right) / 2-d$, and so $|V(H)| \geq P(H) \geq\left(n_{H}-1\right) / 2-d+1=f\left(n_{H}\right)$. Therefore condition (b) of Lemma 3 holds. Hence by the Greedy Partition Lemma,

$$
\begin{aligned}
\Gamma_{d}(G) & \leq 2 d+1+\int_{2 d+1}^{n} \frac{1}{(x-1) / 2-d+1} d x \\
& =2 d+1+\int_{2 d+1}^{n}\left(\frac{2}{x-2 d+1}\right) d x \\
& =2 d+1+2 \int_{2}^{n-2 d+1} \frac{1}{x} d x \\
& \leq 2 d+1+2 \ln (n-2 d+1) / 2
\end{aligned}
$$

$2.3 K_{1, m}$-Free Graphs

In this section, we establish an upper bound on the directed domination number of a $K_{1, m^{-}}$ free graph. We first recall the well-known bound for the usual domination number γ, which was proved independently by Arnautov in 1974 and in 1975 by Lovász and by Payan.

Theorem 8 (Arnautov [1], Lovász [21, Payan [23]) If G is a graph on n vertices with minimum degree δ, then $\gamma(G) \leq n(\log (\delta+1)+1) /(\delta+1)$.

We show that the above bound on γ is nearly preserved by the directed domination number Γ_{d} when we restrict our attention to $K_{1, m}$-free graphs. For this purpose, we shall need the following result due to Faudree et al. [15].

Theorem 9 ([15]) If G is $a G$ is a $K_{1, m}$-free graph of order n with $\delta(G)=\delta$ and $\alpha(G)=\alpha$, then $\alpha \leq(m-1) n /(\delta+m-1)$.

We shall prove the following result.

Theorem 10 For $m \geq 3$, if G is a $K_{1, m}$-free graph of order n with $\delta(G)=\delta$, then

$$
\Gamma_{d}(G)<(2(m-1) n \ln (\delta+m-1)) /(\delta+m-1)
$$

Proof. If $\delta<(\sqrt{e}-1)(m-1)$, where e is the base of the natural logarithm, then $\delta<m-1$ and so $(2(m-1) n \ln (\delta+m-1)) /(\delta+m-1)>n \ln (\delta+m-1)>n$. Hence we may assume that $\delta \geq(\sqrt{e}-1)(m-1)$, for otherwise the desired upper bound holds trivially. By Theorem 9, $\alpha \leq(m-1) n /(\delta+m-1)$. Substituting $\delta \geq(\sqrt{e}-1)(m-1)$ into this inequality, we get $\alpha \leq(m-1) n /((\sqrt{e}-1)(m-1)+m-1)=(m-1) n /(\sqrt{e}(m-1)=n / \sqrt{e}$. Since the function $x(1+2 \ln (n / x))$ is monotone increasing in the interval $[1, n / \sqrt{e}]$, we get, by Theorem 5, that

$$
\begin{aligned}
\Gamma_{d}(G) & \leq \alpha(1+2 \ln (n / \alpha)) \\
& \leq((m-1) n /(\delta+m-1))(1+2 \ln (n(\delta+m-1) /(m-1) n)) \\
& =((m-1) n /(\delta+m-1))(1+2 \ln ((\delta+m-1) /(m-1))) \\
& =2(m-1) n(1 / 2+\ln ((\delta+m-1) /(m-1))) /(\delta+m-1) \\
& =2(m-1) n(\ln \sqrt{e}+\ln ((\delta+m-1) /(m-1))) /(\delta+m-1) \\
& <(2(m-1) n \ln (\delta+m-1)) /(\delta+m-1)
\end{aligned}
$$

as $\sqrt{e}<m-1$.

We observe that as a special case of Theorem 10, we have that if G is a claw-free graph of order n with $\delta(G)=\delta$, then $\Gamma_{d}(G) \leq(4 n(\log (\delta+2))) /(\delta+2)$.

2.4 Nordhaus-Gaddum-Type Bounds

In this section we consider Nordhaus-Gaddum-type bounds for the directed domination of a graph. Let \mathcal{G}_{n} denote the family of all graphs of order n. We define

$$
\begin{aligned}
\mathrm{NG}_{\min }(n) & =\min \left\{\Gamma_{d}(G)+\Gamma_{d}(\bar{G})\right\} \\
\mathrm{NG}_{\max }(n) & =\max \left\{\Gamma_{d}(G)+\Gamma_{d}(\bar{G})\right\}
\end{aligned}
$$

where the minimum and maximum are taken over all graphs $G \in \mathcal{G}_{n}$. Chartrand and Schuster [11] established the following Nordhaus-Gaddum inequalities for the matching number: If G is a graph on n vertices, then $\lfloor n / 2\rfloor \leq \alpha^{\prime}(G)+\alpha^{\prime}(\bar{G}) \leq 2\lfloor n / 2\rfloor$.

Theorem 11 The following holds.
(a) $c_{1} \log n \leq \mathrm{NG}_{\min }(n) \leq c_{2}(\log n)^{2}$ for some constants c_{1} and c_{2}.
(b) $n+\log n-2 \log (\log n) \leq \mathrm{NG}_{\max }(n) \leq n+\lceil n / 2\rceil$.

Proof. (a) By Ramsey's theory, for all graphs $G \in \mathcal{G}_{n}$ we have $\max \{\alpha(G), \alpha(\bar{G})\} \geq c \log n$ for some constant c. Hence by Theorem 2(a), $\Gamma_{d}(G)+\Gamma_{d}(\bar{G}) \geq \alpha(G)+\alpha(\bar{G}) \geq c_{1} \log n$
for some constant c_{1}. Further by Ramsey's theory there exists a graph $G \in \mathcal{G}_{n}$ such that $\max \{\alpha(G), \alpha(\bar{G})\} \leq d \log n$ for some constant d. Hence by Theorem 5, $\Gamma_{d}(G)+\Gamma_{d}(\bar{G}) \leq$ $2 d \log n(1+2 \log (n / d \log n)) \leq c_{2}(\log n)^{2}$ for some constant c_{2}. This establishes Part (a).
(b) By Theorem 1, $\Gamma_{d}\left(K_{n}\right)+\Gamma_{d}\left(\bar{K}_{n}\right) \leq n+\log n-2 \log (\log n)$. Hence, $\mathrm{NG}_{\max }(n) \geq$ $n+\log n-2 \log (\log n)$. By Theorem 2(b) and by the Nordhaus-Gaddum inequalities for the matching number, we have that $\Gamma_{d}(G)+\Gamma_{d}(\bar{G}) \leq 2 n-\left(\alpha^{\prime}(G)+\alpha^{\prime}(\bar{G})\right) \leq 2 n-\lfloor n / 2\rfloor=$ $n+\lceil n / 2\rceil$.

3 Two Generalizations

In this section, we present two general frameworks of directed domination in graphs.

3.1 Directed Multiple Domination

For an integer $r \geq 1$, a directed r-dominating set, abbreviated DrDS, in a directed graph $D=(V, A)$ is a set S of vertices of V such that for every vertex $u \in V \backslash S$, there are at least r vertices v in S with v directed to u. The directed r-domination number of a directed graph D, denoted by $\gamma_{r}(D)$, is the minimum cardinality of a DrDS in D. An DrDS of D of cardinality $\gamma_{r}(D)$ is called a $\gamma_{r}(D)$-set. The directed r-domination number of a graph G, denoted $\Gamma_{d, r}(G)$, is defined as the maximum directed r-domination number $\gamma_{r}(D)$ over all orientations D of G; that is, $\Gamma_{d, r}(G)=\max \left\{\gamma_{r}(D) \mid\right.$ over all orientations D of $\left.G\right\}$. In particular, we note that $\Gamma_{d}(G)=\Gamma_{d, 1}(G)$.

Theorem 12 Let $r \geq 1$ be an integer. Let G be a graph of order n with $\alpha(G)=\alpha$. Then the following holds.
(a) $\Gamma_{d, r}\left(K_{n}\right) \leq r \log (n+1)$.
(b) $\Gamma_{d, r}(G) \leq r \alpha(1+2 \ln (n / \alpha))$.

Proof. (a) By Theorem 1, $\Gamma_{d}\left(K_{n}\right) \leq \log (n+1)$. Let D_{1} be an orientation of K_{n} and let S_{1} be a $\gamma\left(D_{1}\right)$-set. Then, $\left|S_{1}\right| \leq \log (n+1)$. We now remove the vertices of the DDS S_{1} from D_{1} to produce an orientation D_{2} of $K_{n_{1}}$ where $n_{1}=n-|S|$. Let S_{2} be a $\gamma\left(D_{2}\right)$-set. By Theorem 1, $\left|S_{2}\right| \leq \log \left(n_{1}+1\right)<\log (n+1)$. We now remove the vertices of the DDS S_{2} from D_{2} to produce an orientation D_{3} of $K_{n_{2}}$ where $n_{3}=n-\left|S_{1}\right|-\left|S_{2}\right|$ and we let S_{3} be a $\gamma\left(D_{3}\right)$-set. Continuing in this way, we produce a sequence $S_{1}, S_{2} \ldots, S_{r}$ of sets whose union is a DrDS of K_{n} of cardinality $\sum_{i=1}^{r}\left|S_{i}\right| \leq r \log (n+1)$. This is true for every orientation D of K_{n}. Hence, $\Gamma_{d, r}\left(K_{n}\right) \leq r \log (n+1)$. This establishes Part (a).
(b) By Theorem 5, $\Gamma_{d}(G) \leq \alpha(1+2 \ln (n / \alpha))$. We first consider the case when $\alpha \geq n / \sqrt{e}$. Then, $r \alpha(1+2 \ln (n / \alpha))>n$ for $r=2$. However the function $x(1+2 \ln (n / x))$ is monotone increasing in the interval $[1, n / \sqrt{e}]$ and we may therefore assume that $\alpha \leq n / \sqrt{e}$, for otherwise the desired result holds trivially.

Let D_{1} be an arbitrary orientation of G and let S_{1} be a DDS of G. We now remove the vertices of S_{1} from D_{1} to produce an orientation D_{2} of the graph $G_{1}=G-S_{1}$ where G_{1} has order $n_{1}=n-|S|$. Let $\alpha\left(G_{1}\right)=\alpha_{1}$. Since G_{1} is an induced subgraph of G, we have $\alpha_{1} \leq \alpha$. By Theorem 5, $\Gamma_{d}\left(G_{1}\right) \leq \alpha_{1}\left(1+2 \ln \left(n_{1} / \alpha_{1}\right)\right)<\alpha_{1}\left(1+2 \ln \left(n / \alpha_{1}\right)\right)$. Since $\alpha_{1} \leq \alpha \leq n / \sqrt{e}$, the monotonicity of the function $x(1+2 \ln (n / x))$ in the interval $[1, n / \sqrt{e}]$ implies that $\alpha_{1}\left(1+2 \ln \left(n / \alpha_{1}\right)\right) \leq \alpha(1+2 \ln (n / \alpha))$. Hence, $\Gamma_{d}\left(G_{1}\right)<\alpha(1+2 \ln (n / \alpha))$.

Let S_{2} be a $\gamma\left(D_{2}\right)$-set, and so $\left|S_{2}\right|<\alpha(1+2 \ln (n / \alpha))$. We now remove the vertices of the DDS S_{2} from D_{2} to produce an orientation D_{3} of $G_{2}=G_{1}-S_{2}$ where $n_{2}=n-\left|S_{1}\right|-\left|S_{2}\right|$ and we let S_{3} be a $\gamma\left(D_{3}\right)$-set. Continuing in this way, we produce a sequence $S_{1}, S_{2} \ldots, S_{r}$ of sets whose union is a DrDS of G of cardinality $\sum_{i=1}^{r}\left|S_{i}\right| \leq r \alpha(1+2 \ln (n / \alpha))$. This is true for every orientation D of G. Hence, $\Gamma_{d, r}(G) \leq r \alpha(1+2 \ln (n / \alpha))$. This establishes Part (b).

3.2 Directed Distance Domination

Let $D=(V, A)$ be a directed graph. The distance $d_{D}(u, v)$ from a vertex u to a vertex v in D is the number of edges on a shortest directed path from u to v. For an integer $d \geq 1$, a directed d-distance dominating set, abbreviated DdDDS, in D is a set U of vertices of V such that for every vertex $v \in V \backslash U$, there is a vertex $u \in U$ with $d_{D}(u, v) \leq d$. The directed d distance domination number of a directed graph D, denoted by $\gamma(D, d)$, is the minimum cardinality of a DdDDS in D. The directed d-distance domination number of a graph G, denoted $\Gamma_{d}(G, d)$, is defined as the maximum directed d-distance domination number $\gamma_{d}(D, d)$ over all orientations D of G; that is, $\Gamma_{d}(G, d)=\max \{\gamma(D, d) \mid$ over all orientations D of $G\}$. In particular, we note that $\Gamma_{d}(G)=\Gamma_{d}(G, 1)$.

An independent set U of vertices in D is called a semi-kernel of D if for every vertex $v \in V(D) \backslash U$, there is a vertex $u \in U$ such that $d_{D}(u, v) \leq 2$. For the proof of our next result we will use the following theorem due to Chvátal and Lovász [13].

Theorem 13 (Chvátal, Lovász [13]) Every directed graph contains a semi-kernel.

Theorem 14 For every integer $d \geq 2, \gamma_{d}(G, d)=\alpha(G)$.

Proof. Let S be a maximum independent set in G and let D be an orientation obtained from G by directing all edges in $[S, V \backslash S]$ from S to $V \backslash S$ and directing all other edges arbitrarily. Every directed d-distance dominating set must contain S since no vertex of S is reachable in D from any other vertex of $V(D)$. Hence, $\Gamma_{d}(G, d) \geq|S|=\alpha(G)$. However if D^{*} is an arbitrary orientation of the graph G, then by Theorem 13 the oriented graph D^{*} has a semi-kernel S^{*}. Thus, $\gamma(D, d) \leq\left|S^{*}\right| \leq \alpha(G)$. Since this is true for every orientation of G, we have that $\Gamma_{d}(G, d) \leq \alpha(G)$. Consequently, $\gamma_{d}(G, d)=\alpha(G)$.

References

[1] V. I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie Vyp. 11 (1974), 3-8, 126.
[2] S. Arumugam, K. Jacob, and L. Volkmann, Total and connected domination in digraphs. Australas. J. Combin. 39 (2007), 283-292.
[3] A. Bhattacharya and G. R. Vijayakumar, Domination in digraphs and variants of domination in graphs. J. Combin. Inform. System Sci. 30 (2005), 19-24.
[4] Y. Caro, New results on the independence number. Tech. Report, Tel-Aviv University (1979).
[5] Y. Caro, On the covering number of combinatorial structures. Ars Combin. 29A (1990), 111-124.
[6] Y. Caro, Colorability, frequency and Graffiti-119. J. Combin. Math. Combin. Comput. 27 (1998), 129-134.
[7] Y. Caro and M. A. Henning, Directed domination in oriented graphs, manuscript 2010.
[8] Y. Caro and Z. Tuza, Decomposition of partially ordered sets into chains and antichains of given size. Order 5 (1988), 245-255.
[9] G. Chartrand, P. Dankelmann, M. Schultz, and H.C. Swart, Twin domination in digraphs. Ars Combin. 67 (2003), 105-114.
[10] G. Chartrand, F. Harary, and B. Quan Yue, On the out-domination and in-domination numbers of a digraph. Discrete Math. 197/198 (1999), 179-183.
[11] G. Chartrand and S. Schuster, On the independence numbers of complementary graphs. Transactions of the New York Academy of Sciences 36 (1974), 247-251.
[12] G. Chartrand, D. W. VanderJagt and B. Quan Yue, Orientable domination in graphs. Congr. Numer. 119 (1996), 51-63.
[13] V. Chvátal, L. Lovász, Every directed graph has a semi-kernel, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, pp. 175.
[14] P. Erdös, On Schütte problem. Math. Gaz. 47 (1963), 220-222.
[15] R. J. Faudree, R. J. Gould, M. S. Jacobson, L. M. Lesniak. and T. E. Lindquester, On independent generalized degree and independence in $K(1, m)$-free graphs. Discrete Math. 103 (1992), 17-24.
[16] Y. Fu, Dominating set and converse dominating set of a directed graph. Amer. Math. Monthly 75 (1968), 861-863.
[17] J. Ghosal, R. Laskar and D. Pillone, Domination in digraphs. In: Domination in Graphs, Advanced Topics. (T.W. Haynes, S.T. Hedetniemi and P.J. Slater, eds.). Marcel Dekker, New York (1998), 401-437.
[18] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[19] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[20] T. R. Jensen and B. Toft, Graph coloring problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1995. xxii+295 pp.
[21] L. Lovász, On the ratio of optimal integral and fractional covers. Discrete Math. 13 (1975), 383-390.
[22] C. Lee, Domination in digraphs. J. Korean Math. Soc. 35 (1998), 843-853.
[23] C. Payan, Sur le nombre dabsorption dun graphe simple, Cahiers Centre Études Recherche Opér. 17 (1975), no. 2-4, 307-317, Colloque sur la Théorie des Graphes (Paris, 1974).
[24] K. B. Reid, A. A. McRae, S. M. Hedetniemi, and S. T. Hedetniemi, Domination and irredundance in tournaments. Australas. J. Combin. 29 (2004), 157-172.
[25] V. K. Wei, A lower bound on the stability number of a simple graph. Bell Lab. Tech. Memo. No. 81-11217-9 (1981).

[^0]: *Research supported in part by the South African National Research Foundation

