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Abstract

Courcelle’s Theorem states that every problem definable in Monadic Second-
Order logic can be solved in linear time on structures of bounded treewidth,
for example, by constructing a tree automaton that recognizes or rejects a tree
decomposition of the structure. Existing, optimized software like the MONA
tool can be used to build the corresponding tree automata, which for bounded
treewidth are of constant size. Unfortunately, the constants involved can become
extremely large – every quantifier alternation requires a power set construction
for the automaton. Here, the required space can become a problem in practical
applications.

In this paper, we present a novel, direct approach based on model checking
games, which avoids the expensive power set construction. Experiments with
an implementation are promising, and we can solve problems on graphs where
the automata-theoretic approach fails in practice.

Courcelle’s celebrated theorem essentially states that every problem defin-
able in Monadic Second-Order logic (MSO) can be solved in linear time on
graphs of bounded treewidth [1]. However, the multiplicative constants in the
running time, which depend on the treewidth and the MSO-formula, can be
extremely large [2].

Theorem 1 ([1, 2]). Let P be an MSO problem and w be a positive integer.
There is an algorithm A and a function f : N×N → N such that for every graph
G = (V,E) of order n := |V | and treewidth at most w, A solves P on input G
in time f(‖ϕ‖, w) · n, where ϕ is the MSO formula defining P and ‖ϕ‖ is its
length. Furthermore, unless P = NP, the function f cannot be upper bounded
by an iterated exponential of bounded height in terms of ϕ and w.

This result has been generalized by Arnborg, Lagergren, and Seese to Ex-
tended MSO [3], and by Courcelle and Mosbah to Monadic Second-Order evalu-
ations using semiring homomorphisms [4]. In both cases, an MSO-formula with
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free set variables is used to describe a property, and satisfying assignments to
these set variables are evaluated in an appropriate way.

Courcelle’s Theorem is usually proved as follows: In time only dependent
on ϕ and the treewidth w, a tree automaton A is constructed that accepts a tree
decomposition of width w if and only if the corresponding graph satisfies the
formula. This construction can either be done explicitly, by actually construct-
ing the tree automaton (see, e.g., [3, 5, 6, 7, 8, 9, 10]), or implicitly via auxiliary
formulas obtained by applying the Feferman–Vaught Theorem [11] extended to
MSO [1, 12] (see, e.g., [1, 13, 14, 15, 10]).

In a practical setting, the biggest strength of Courcelle’s Theorem is at the
same time its largest weakness: MSO logic has extremely large expressive power,
and very short formulas can be used to encode NP-hard problems. This is used
in [2] to prove non-elementary worst-case lower bounds for the multiplicative
constants in the linear running time. Even worse, these lower bounds already
hold for the class of trees, i.e., graphs of treewidth one.

On the other hand, these are worst-case lower bounds for very special classes
of formulas and trees, and thus there is a good chance that in practice problems
can be solved much faster. In fact, existing software like the MONA tool [16, 17]
for Weak Second-Order logic on two successors (WS2S) is surprisingly successful
even though it is subject to the same theoretical lower bounds.

The automata-theoretic approach is therefore a promising starting point for
practical applications of Courcelle’s Theorem, particularly since advanced and
optimized tools like MONA can be used as a black box for the majority of the
work, and techniques like minimizing tree automata are very well understood.

There are, however, some cases where the automata-theoretic approach is
infeasible in practice, i.e., when the automata (or set of auxiliary formulas) are
too large to be practically computable. This can even happen when the final
minimal automata are small, but intermediate automata cannot be constructed
in reasonable time and space (note that each quantifier alternation requires an
automaton power set construction).

In his thesis [18], Soguet has studied the sizes of tree automata corresponding
to various problems for small clique-width [19].1 The automata were generated
using MONA, and in many cases, the corresponding automata were surpris-
ingly small, thanks to the well-understood minimization of tree automata. On
the other hand, even for graphs of clique-width three, MONA was unable to
construct the corresponding tree automata for the classical 3-Colorability

problem. Even worse, the same happened for simple problems such as deciding
whether the graph is connected or if its maximum degree is two.

These negative results are somewhat unsatisfying because the respective
algorithm already fails in the first phase, when the automaton is constructed.

1Both, treewidth and clique-width, can be defined in terms of graph grammars (hyperedge
replacement grammars for treewidth, and vertex replacement grammars for clique-width; see
e.g. a recent survey [20]), and in both cases, tree automata can be used to recognize parse
trees of graphs.
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The first phase, however, only depends on the treewidth (or clique-width in
above cases) and the formula (i.e., the problem), but is independent of the
actual input graph. On the other hand, when running the tree automaton on
most graphs arising from practical problems, only few states are actually visited.

Recently, there have been a few approaches to this problem, see, e.g., [21, 22,
23, 24]. For example, the approach of [23, 24] avoids an explicit construction of
the tree automaton. Instead, the state-transition function is computed on-the-
fly. Experiments indicate practical feasibility. Courcelle [25] introduces special
tree-width, where the corresponding automata are easier to construct.

In this paper, we present a novel, game-theoretic approach, where the input
structure is taken into account from the beginning via model checking games
(cf., [26, 27, 28]). Therefore, only the amount of information is stored that is
needed by the algorithm to solve the problem on this explicit input, and, in some
sense, transitions between nodes of the tree decompositions are as well computed
on-the-fly. We particularly avoid the expensive power set construction.

We hope that the approach can be used in those cases, where the automata
are too large to be constructed in practice, but the input graphs itself are simple
enough. In fact, first experiments are promising. Using the generic approach,
we can, for example, solve the 3-Colorability problem on grids of size 6× 33
(treewidth 6) in about 21 seconds and with 8 MB memory usage on standard
PC hardware, and the Minimum Vertex Cover problem on the same graph in
less than a second and only 1 MB of memory usage. We note that the automata
construction using MONA in [18] already failed for 2×n grids (clique-width 3).

Related Work

We briefly survey other approaches to Courcelle’s Theorem. We already men-
tioned that, given the MSO formula ϕ, one can construct a finite-state bottom-
up tree automaton that accepts a tree decomposition of the input graph G if and
only if G |= ϕ. This is sometimes called the automata theoretic approach. A
direct construction of the tree automata is described in, e.g., [9] or [10, Chapter
6]. In [29, 6] a Myhill-Nerode type argument is used to show that the treewidth
parse tree operators admit a right congruence with finitely many congruence
classes. The method of test sets can then be used to construct the tree automa-
ton. One can also use a reduction to the classical model checking problem for
MSO on labeled trees [3, 7, 8]. It is well-known [30, 31] that this problem can
be solved by constructing suitable finite-state tree automata. This approach is
favorable if one likes to use existing software such as the MONA tool [16].

A model theoretic approach is based on variants of the Feferman–Vaught
Theorem [11]: If a graph G can be decomposed into components G1 and G2,
then from the input formula ϕ one can construct a suitable reduction sequence
consisting of Boolean combinations (and, or, not) of finitely many formulas
that hold in G1 and G2 if and only if ϕ holds in G (cf., [1, 12, 14, 10]). One
can therefore use dynamic programming on the tree decomposition to compute
the q-theory of G, i.e., set of formulas of quantifier rank at most q that hold
in G (cf., [13, 15, 14]). Similarly, one can also inductively compute the set of
satisfying assignments to the input formula [4].

3



We are not aware of any implementations of Courcelle’s Theorem based
on the Feferman–Vaught approach. The construction of all possible reduction
sequences for MSO formulas “obviously is not practical” [14, Section 1.6]. The
algorithms presented in [13, 14] are therefore infeasible in practice. However,
from [4] we get that computing the particular reduction sequence for the input
formula ϕ suffices. Some lower bounds are known for the necessary conversions
into disjunctions [32], but it would still be interesting to see how this approach
behaves in practice.

A few authors studied practical aspects of the automata theoretic approach.
It is mentioned in [6] that a Myhill–Nerode based program has been imple-
mented as part of an M.Sc. thesis, which unfortunately does not seem to be
publicly available. The MONA tool [16] is a well-known and optimized imple-
mentation for the tree automata construction. The space required to construct
the automata with MONA still turns out to cause severe problems in practical
applications [18, 22]. One idea [10, Chapter 6] is to use precomputed automata
for commonly used predicates such as Conn(X) expressing that the set X is

connected. Note however that the Conn(X) automaton requires 22
Θ(k)

states
for graphs of clique-width k [10, Chapter 6]. An automatic translation into
Monadic Datalog is proposed in [22]. Some experiments indeed suggest feasibil-
ity in practice; their prototype implementation was, however, obtained by man-
ual construction and not by an automatic transformation from the underlying
MSO formula. In [23, 24] the power set construction is avoided by considering
existential formulas only. The automata thus remain non-deterministic, but of
course standard methods to simulate runs of the automata apply. Since the
state transition function is given only implicitly, the automaton is essentially
computed on-the-fly while recognizing a clique-decomposition. Experiments
have been conducted on graphs of comparably high clique-width and the ap-
proach is quite promising. In fact, the lack of feasible algorithms to compute
the necessary clique-width parse trees seems to be the major limitation. To
ease the specification of such fly-automata, Courcelle [25, 33] introduces spe-
cial tree-width. Special tree-width lies between path-width and treewidth, but
the automata are significantly smaller and easier to construct than those for
treewidth.

In this article, we present a new approach that neither uses automata the-
oretic methods nor uses a Feferman–Vaught style splitting theorem. Instead,
we essentially evaluate the input formula on the graph using a simple recursive
model checking algorithm. In what follows, we shall outline this approach.

Overview

Our starting point is the model checking game for MSO (Definition 3), a
pebble game between two players called the verifier and the falsifier also known
as the Hintikka game [26]. The verifier tries to prove that the formula holds on
the input structure, while the falsifier tries to prove the opposite. In the game,
the verifier moves on existential formulas (∨, ∃), while the falsifier moves on
universal formulas (∧, ∀).
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This game can in a natural way be identified with a simple algorithm that
evaluates the formula on the input structure in a recursive manner. If, for
example, the formula is ∃Rψ(R) for a set variable R, the algorithm checks
whether ψ(U) holds for all sets U . In this sense, the computation tree of this
simple algorithm can be interpreted as the unfolding (cf., [34]) of the model
checking game. On a structure with n elements, this straight-forward recursive
model-checking algorithm takes time O((2n + n)q) for a formula of quantifier
rank q. By dynamic programming on the tree decomposition, we can improve
this to time linear in n on structures of bounded treewidth.

This works as follows: We traverse the tree decomposition of the input
structure A bottom-up. At each node of the tree decomposition we preliminary
try to evaluate the formula ϕ on A using the model checking game on the
“current” substructure A

′ of A . To this end, we allow “empty” assignments
x := nil to first order variables x. Such empty assignments correspond to objects
in A that are not contained in A ′ and are to be assigned in later steps. Then,
two things may happen:

• We can already now determine whether A |= ϕ or A 6|= ϕ.

If, for instance, the formula 3col encodes the 3-Colorability problem
and even A

′ is not three-colorable, it locally violates 3col and we can
derive A 6|= 3col .

• We cannot yet determine whether A |= ϕ or A 6|= ϕ.

For example, if the formula encodes Dominating Set problem, then
a vertex v in the “current” bag might be undominated in the current
subgraph, but we do not know whether in the “future” another vertex
might dominate v.

The first case is formalized in Lemma 4 and Lemma 6. In the second case,
we found a “witness,” i.e., a subgame that we were unable to evaluate. We then
will re-visit those undetermined subgames during the course of the dynamic
programming until we finally arrive in the root of the tree decomposition, where
all subgames become determined.

The next crucial observation is that MSO and FO formulas with bounded
quantifier rank have limited capabilities to distinguish structures (formally cap-
tured in the ≡q-equivalence of structures, cf. [35]). We exploit this fact and
show that we can delete redundant equivalent subgames (cf., Algorithm 3) for
a suitable definition of equivalence (cf., Definition 5). We can then show that,
assuming a fixed formula and bounded treewidth, the number of reduced, non-
equivalent games is bounded by a constant (Lemma 8), which allows us to obtain
running times linear in the size of the tree decomposition.

While this game-theoretic approach is subject to the same non-elementary
lower bounds as the other approaches, the actual number of ways to play the
model checking game highly depends on the input graph. For example, if the
graph does not contain, say, a triangle, then the players will never move to a
set of nodes that induce a triangle, while a tree automaton must work for all
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graphs. This observation is reflected in practical experiments, where the actual
number of entries considered is typically much smaller than the corresponding
worst-case bound.

1. Preliminaries

The power set of a set U is denoted by P(U). The disjoint union of two
sets U1, U2 is denoted by U1 ⊎U2. We assume that trees are rooted and denote
the root of a tree T by root(T ). For every t ∈ N, expt(·) is a t-times iterated

exponential, i.e., exp0(x) = x and expt(x) = 2exp
t−1(x).

For a set U and object x, we let (x ∈ U) be defined as

(x ∈ U) =

{

0 if x /∈ U

1 if x ∈ U .

To avoid cluttered notation, we may, for elements s1, . . . , sl and t1, . . . , tm,
abbreviate s̄ := {s1, . . . , sl}, (s̄, s′) := s̄ ∪ {s′}, and (s̄, t̄) := s̄t̄ := s̄ ∪ t̄.

1.1. Structures

We fix a countably infinite set of symbols. Each symbol S has an arity r =
arity(S) ≥ 0. We distinguish between nullary symbols with arity zero and
relation symbols that have arity greater than zero. Relation symbols with arity
one are called unary. For convenience, we shall denote relation symbols by
capital letters and nullary symbols by lower case letters.

A vocabulary τ is a finite set of symbols. We denote by null(τ) the set of
nullary symbols in τ , by rel(τ) the set of relation symbols in τ , and by unary(τ)
the set of unary relation symbols in τ . Let arity(τ) = max{ arity(R) | R ∈
rel(τ) } be the maximum arity over all relation symbols in τ . If null(τ) = ∅, we
call τ relational.

Let τ be a vocabulary. A structure A over τ (or τ -structure) is a tuple
A =

(

A, (RA )R∈rel(τ), (c
A )c∈null(τ)

)

, where A is a finite set called the universe

of A , and (RA )R∈rel(τ) and (cA )c∈null(τ) are interpretations of the τ -symbols

in A . Here, RA ⊆ Aarity(R) for each relation symbol R ∈ rel(τ). For a nullary
symbol c ∈ null(c) we either have cA ∈ A and say that c is interpreted in A , or
we write cA = nil and say that c is uninterpreted. The set of nullary symbols
interpreted in A is denoted by interpreted(A ). If all symbols are interpreted,
we say the structure is fully interpreted, and partially interpreted otherwise. We
note that a related concept of partially equipped signatures has been used in,
e.g., [29, 6, 36].

The set of all τ -structures is denoted by ST R(τ). We shall always denote
structures in script letters A ,B, . . . and in roman letters A,B, . . . their corre-
sponding universes. If the universe is empty, then we say that the structure is
empty. Structures over a relational vocabulary τ are called relational structures.

For a structure A , we denote by vocabulary(A ) the vocabulary of A .
For sets R̄ = {R1, . . . , Rl} ⊆ rel(τ) and c̄ = {c1, . . . , cm} ⊆ null(τ), we let
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R̄A := {RA | R ∈ R̄ }, and c̄A := { cA | c ∈ c̄ ∩ interpreted(A ) } be their
corresponding interpretations.

Example 1. A graph (V,E) can in a natural way be identified with a structure G

over the vocabulary τGraph = (adj ), where adj represents the binary adjacency

relation. The universe of G is V , and we interpret adj as adj G = E in G .

Let τ be a vocabulary and {R1, . . . , Rl, c1, . . . , cm} be a set of symbols, each
of which is not contained in τ . The vocabulary τ ′ = (τ, R1, . . . , Rl, c1, . . . , cm) is
called an expansion of τ . Similarly, if A is a τ -structure and A ′ is a τ ′-structure
that agrees with A on τ , i.e., RA = RA

′

for each R ∈ rel(τ) and cA = cA
′

for
each c ∈ null(τ), then we call A ′ a τ ′-expansion of A . If A is a τ -structure,
and U1, . . . , Ul are relations over A, such that Ui ⊆ Aarity(Ri), 1 ≤ i ≤ l, and
u1, . . . , um ∈ A ∪ {nil}, we write A ′ = (A , U1, . . . , Ul, u1, . . . , um) to indicate
that A ′ is a τ ′-expansion of A , such that RA

′

i = Ui, 1 ≤ i ≤ l, and cA
′

j = uj ,
1 ≤ j ≤ m.

Let A be a τ -structure and ā = {a1, . . . , am} ⊆ A. Then A [ā] is the
substructure of A induced by ā, where A [ā] has universe ā, for each relation
symbol R ∈ τ we have RA [ā] = RA ∩ āarity(R), and nullary symbols c are
interpreted as cA [ā] = cA if cA ∈ ā and become uninterpreted otherwise.

Two τ -structures A and B over the same vocabulary τ are isomorphic,
denoted by A ∼= B, if there is an isomorphism h : A→ B, where h is a bijection
between A and B and

• c ∈ interpreted(A ) if and only if c ∈ interpreted(B) for all c ∈ null(τ),

• h(cA ) = cB for every nullary symbol c ∈ interpreted(τ), and

• for every relation symbol R ∈ τ and a1, . . . , ap ∈ A, where p = arity(R),

(a1, . . . , ap) ∈ RA iff (h(a1), . . . , h(ap)) ∈ RB.

Definition 1 (Compatibility, Union). We call two τ -structures A1 and A2

compatible, if for all nullary symbols c ∈ interpreted(A1) ∩ interpreted(A2) we
have cA1 = cA2 and the identity x 7→ x is an isomorphism between A1[A1 ∩A2]
and A2[A1 ∩ A2].

In this case, we define the union of A1 and A2, denoted by A1 ∪ A2, as
the τ -structure with universe A := A1 ∪ A2 and interpretations RA1∪A2 :=
RA1 ∪ RA2 for every relation symbol R ∈ τ . Nullary symbols c ∈ null(τ) with
cA1 = cA2 = nil remain uninterpreted in A1 ∪ A2; otherwise c

A1∪A2 = cAi if
c ∈ interpreted(Ai) for some i ∈ {1, 2}.

1.2. Treewidth and Tree Decompositions

Tree decompositions and treewidth were introduced by Robertson and Sey-
mour [37] in their works on the Graph Minors Project, cf. [6, 8, 38].

A tree decomposition of a relational τ -structure A is a tuple (T ,X ), where
T = (T, F ) is a rooted tree and X = (Xi)i∈T is a collection of subsets Xi ⊆ A,
such that
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•
⋃

i∈T Xi = A,

• for all p-ary relation symbols R ∈ τ and all (a1, . . . , ap) ∈ RA , there is an
i ∈ T such that {a1, . . . , ap} ⊆ Xi, and

• for all i, j1, j2 ∈ T , if i is on the path between j1 and j2 in T , then
Xj1 ∩Xj2 ⊆ Xi.

The sets Xi are called bags. The width of a tree decomposition is the size of
its largest bag minus one, and the treewidth of a structure A is the minimum
width of all tree decompositions of A .

Without loss of generality, we assume that each tree decomposition we con-
sider is nice. Nice tree decompositions are directed, where each edge in F has
a direction away from the root, and have the following properties: Each node
i ∈ T has at most two children. For leafs i ∈ T , we have Xi = ∅. If i has exactly
one child j, then there is a ∈ A such that either Xi = Xj∪{a} or Xi = Xj \{a}.
In the former case, we say i is an introduce node, in the latter case we call i
a forget node of the tree decomposition. Finally, if a node i has two children
j1 and j2, then we require Xi = Xj1 = Xj2 and call such nodes join nodes.
If i → · · · → j is a directed path in T pointing away from the root, we say j
appears below i in T .

With every node i ∈ T of a (nice) tree decomposition of a τ -structure A we
associate a substructure Ai defined as follows: Let Ai ⊆ A be the set of objects
in Xi or in bags Xj for nodes j below i in the tree decomposition. Then we let
Ai := A [Ai] be the substructure of A induced by Ai.

Computing the treewidth of a graph is NP-complete [39]. However, the al-
gorithms in this paper rely on a given tree decomposition of the input structure.
For graphs G, there is a fixed-parameter tractable algorithm [40, 6] with a run-

ning time of 2O(tw(G)3)|G|, whose dependence on the treewidth might become
a problem in practical applications. In a practical setting, heuristics seem to
work well and often nearly optimal tree decompositions can be computed [41].
Using Gaifman graphs, one can also compute tree decompositions of arbitrary
structures, cf., [8, Section 11.3]. In the following, we therefore just assume a tree
decomposition is given as part of the input. For more information on treewidth,
we refer the reader to surveys such as [42, 43].

1.3. MSO Logic

MSO logic over a vocabulary τ , denoted by MSO(τ), is simultaneously de-
fined over all vocabularies τ by induction. Firstly, for every p-ary relation
symbol R ∈ τ and any nullary symbols c1, . . . , cp ∈ τ , MSO(τ) contains the
atomic formula R(c1, . . . , cp). If R is unary, we may abbreviate R(c) as c ∈ R.
Secondly:

• If ϕ, ψ are in MSO(τ), then ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ are in MSO(τ),

• If ϕ ∈ MSO(τ ∪ {c}) for some nullary symbol c, then both, ∀cϕ and ∃cϕ
are in MSO(τ). This is called first order or object quantification.
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• If ϕ ∈ MSO(τ ∪ {R}) for a unary relation symbol R, then both, ∀Rϕ and
∃Rϕ are in MSO(τ). The corresponding case is called second order or set
quantification.

Note that we do not distinguish between “basic” symbols (contained in a
certain “base” vocabulary such as τGraph), and symbols that are used as variables
subject to quantification. Let τ be a vocabulary and ϕ ∈ MSO(τ) be a formula.
Let τ ′ ⊆ τ be the smallest vocabulary with ϕ ∈ MSO(τ ′). Then we call the
symbols in unary(τ ′) ∪ null(τ ′) the free symbols of ϕ. Let ‖ϕ‖ be the size of a
suitable encoding of ϕ.

If ϕ ∈ {∀cψ, ∀Rψ,ψ1∧ψ2} for some c, R, ψ, ψ1, and ψ2, we call ϕ universal.
Similarly, we call ϕ existential if ϕ ∈ {∃cψ, ∃Rψ,ψ1 ∨ ψ2}.

If ϕ does not contain set quantifiers, then we say ϕ is first order and con-
tained in FO(τ). Note that in particular all atomic formulas of MSO(τ) are first
order. The quantifier rank qr(ϕ) of a formula ϕ ∈ MSO(τ) denotes the max-
imum number of nested quantifiers in ϕ, counting both first order and second
order quantifiers, and is defined by induction over the structure of ϕ as

• qr(ϕ) = 0 if ϕ is an atomic formula,

• qr(ϕ) = qr(¬ϕ),

• qr(ϕ) = max{qr(ψ1), qr(ψ2)} if ϕ ∈ {ψ1 ∧ ψ2, ψ1 ∨ ψ2}, and

• qr(ϕ) = qr(ψ) + 1 if ϕ ∈ {∀Rψ, ∃Rψ, ∀cψ, ∃cψ}.

Without loss of generality, we assume throughout the paper that every for-
mula is in negation normal form, i.e., the negation symbol ¬ only occurs in front
of atomic formulas. This can be achieved by a simple rewriting of the formula.

For a fully interpreted τ -structure A and a formula ϕ ∈ MSO(τ), we write
A |= ϕ if and only if ϕ holds in A or is true in A in the classical sense,
cf. [44, 35]. We shall do not specify this further, since we will switch to a
game-theoretic characterization in the remainder of this paper, cf., Section 2.

In [3], Extended MSO was introduced. Here, an MSO-formula over a re-
lational vocabulary is given together with an evaluation or optimization goal
over the unary relation symbols (set variables). This principle was furthermore
generalized to semiring homomorphisms in [4], where satisfying interpretations
of the free relation symbols are to be translated into an appropriate semiring.

In this paper, we shall consider MSO-definable linear optimization problems,
also called LinMSO-definable optimization problems. It is not hard to see that
the methods in this paper extend to other classes of MSO-definable problems,
such as counting and enumeration problems. See, e.g., [10, Chapter 6] for an
overview of MSO-definable problems and their algorithmic applications.

Definition 2 (LinMSO-definable Optimization Problem). Let τ be a relational
vocabulary, R̄ = {R1, . . . , Rl} ⊆ τ be a set of unary relation symbols, ϕ ∈
MSO(τ), and τ ′ = τ \ R̄. Let α1, . . . , αl ∈ Z and min ∅ := ∞.
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Then we call the problem of, given a τ ′-structure A , computing

min

{

l
∑

k=1

αk|Uk|

∣

∣

∣

∣

∣

Ui ⊆ A, 1 ≤ i ≤ l, and (A , U1, . . . , Ul) |= ϕ

}

a LinMSO-definable optimization problem.

Example 2. Consider the following formulas:

vc(R) = ∀x∀y(¬adj (x, y) ∨ x ∈ R ∨ y ∈ R) ∈ MSO(τGraph ∪ {R})

ds(R) = ∀x(x ∈ R ∨ ∃y(y ∈ R ∧ adj (x, y))) ∈ MSO(τGraph ∪ {R})

3col = ∃R1∃R2∃R3

(

∀x

( 3
∨

i=1

(x ∈ Ri) ∧
∧

i6=j

(¬x ∈ Ri ∨ ¬x ∈ Rj)

)

∧

∀x∀y

(

¬adj (x, y) ∨
3
∧

i=1

(¬x ∈ Ri ∨ ¬y ∈ Ri)

)

)

∈ MSO(τGraph)

Then, given a τGraph-structure G ,

min
{

|C|
∣

∣ C ⊆ A ∧ (G , C) |= vc
}

,

min
{

|D|
∣

∣ D ⊆ A ∧ (G , D) |= ds }, and

min
{

0
∣

∣ G |= 3col
}

encode the well known graph problems Minimum Vertex Cover, Minimum

Dominating Set, and 3-Colorability, respectively.

2. Model Checking Games

The semantics of MSO in the classical sense (cf. [44, 35]) can be characterized
using a two player pebble game, called the Hintikka game or model checking
game, cf. [26, 27, 28].

A pebble game G = (P,M,P0, P1, p0) between two players, say Player 0 and
Player 1, consists of a finite set P of positions, two disjoint sets P0, P1 ⊆ P
assigning positions to the two players, an initial position p0 ∈ P , and an acyclic
binary relation M ⊆ P × P , which specifies the valid moves in the game. We
only allow moves from positions assigned to one of the two players, i.e., we
require p ∈ P0 ∪ P1 for all (p, p′) ∈ M . On the other hand, we do allow that
positions without outgoing moves are assigned to players. Let |G| := |P | be the
size of G.

For p ∈ P , we let nextG(p) = { p′ ∈ P | (p, p′) ∈ M } be the set of positions
reachable from p via a move in M . For any position p ∈ nextG(p0) we let
subgameG(p) = (P,M,P0, P1, p) be a subgame of G, which is issued from the
new initial position p. The set of all subgames of G is denoted by subgames(G).
If G is clear from the context, we usually omit the subscript and write next(p)
and subgame(p).
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A play of G is a maximal sequence (p0, . . . , pl) of positions p0, . . . , pl−1 ∈
P0∪P1, such that between any subsequent positions pi and pi+1 there is a valid
move, i.e., (pi, pi+1) ∈M for 0 ≤ i ≤ l− 1. Such a play is said to have l rounds
and to end in position pl.

The rules of the game are that in the ith round of the play, where 1 ≤ i ≤
l − 1, the player assigned to position pi has to place a valid move, i.e., has to
choose the next position pi+1 ∈ next(pi). If no such position pi+1 exists, or
the position pi is not assigned to either of the players, the play ends. If the
play ends in a position pl with pl ∈ Pi, where i ∈ {0, 1}, then the other player,
Player (1 − i), wins the play. If, however, the play ends in a position pl with
pl /∈ P0 ∪ P1, then there is a draw and none of the players wins the play. The
goal of game is to force the other player into a position where they cannot move.

We say that a player has a winning strategy on G, if and only if they can
win every play of the game irrespective of the choices of the other player. For
instance, Player 0 has a winning strategy on G if and only if either

• p0 ∈ P0 and there is a move (p0, p1) ∈M such that Player 0 has a winning
strategy on subgameG(p1); or

• p0 ∈ P1 and Player 0 has a winning strategy on subgameG(p1) for all moves
(p0, p1) ∈M . Note that this includes the case that Player 1 cannot move
at all.

A game G is said to be determined or well-founded if either one of the players
has a winning strategy on G, otherwise G is undetermined.

We fix two special games ⊥ and ⊤ on which the first player and the second
player, respectively, have winning strategies. One can efficiently test whether
one of the player has a winning strategy on a game G, cf., [27, 28]. Algorithm 1
determines whether one of the players has a winning strategy on a game G and
returns either ⊥ or ⊤ if this is the case. If none of the players has a winning
strategy, the algorithm returns a corresponding “proof”, a list of all the plays
of G that ended with a draw.

In the case of the model checking game, we call the two players the falsifier
and the verifier. The verifier wants to prove that a formula is true on a structure
(or, the structure satisfies the formula), while the falsifier tries to show that it is
false (or, the structure does not satisfy the formula). The reader may therefore
call ⊤ “true” and ⊥ “false”.

Definition 3 (Model Checking Game). The (classical) model checking game
MC(A , ϕ) = (P,M,P0, P1, p0) over a fully interpreted τ -structure A and a
formula ϕ ∈ MSO(τ) is defined by induction over the structure of ϕ as follows.
Let p0 = (A [c̄A ], ϕ), where c̄ = null(τ). If ϕ is an atomic or negated formula,
then MC(A , ϕ) = ({p0}, ∅, P0, P1, p0), where

• p0 ∈ P0 if and only if

– ϕ = R(c1, . . . , cp) and (cA1 , . . . , c
A
p ) ∈ RA , or

– ψ = ¬R(c1, . . . , cp) and (cA1 , . . . , c
A
p ) /∈ RA .
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Algorithm 1 Evaluating a game.

Algorithm eval (G)
Input: A game G = (P,M,P0, P1, p0).

if G ∈ {⊤,⊥} then return G
Let P ′ = {p0}, M

′ = ∅, P ′
0 = P0 ∩ {p0}, and P

′
1 = P1 ∩ {p0}.

for p′ ∈ next(p0) do
Let (P ′′,M ′, P ′′

0 , P
′′
1 , p

′′
0) = eval (subgameG(p

′)).
Update P ′ := P ′ ∪ P ′′ and P ′

0 := P ′
0 ∪ P

′′
0 , P

′
1 := P ′

1 ∪ P
′′
1 .

Update M ′ :=M ′ ∪M ′′ ∪ {(p′0, p
′′
0)} .

Let G′ = (P ′,M ′, P ′
0, P

′
1, p0) and compute subgames(G′).

if p0 ∈ P ′
0 then

if subgames(G′) = {⊤} or subgames(G′) = ∅ then return ⊤
if ⊥ ∈ subgames(G′) then return ⊥

if p0 ∈ P ′
1 then

if subgames(G′) = {⊥} or subgames(G′) = ∅ then return ⊥
if ⊤ ∈ subgames(G′) then return ⊤

return G′

• p0 ∈ P1 if and only if

– ϕ = R(c1, . . . , cp) and (cA1 , . . . , c
A
p ) /∈ RA , or

– ψ = ¬R(c1, . . . , cp) and (cA1 , . . . , c
A
p ) ∈ RA .

If ϕ ∈ {∀Rψ, ∃Rψ} for some relation symbol R, let AU = (A , U) for
U ⊆ A be the (τ, R)-expansion of A with RAU = U , and let MC(AU , ψ) =
(PU ,MU , P0,U , P1,U , pU ) be the corresponding model checking game over AU

and ψ. Then MC(A , ϕ) = (P,M,P0, P1, p0), where

• P = {p0} ∪
⋃

U⊆A PU ,

• M =
⋃

U⊆A(MU ∪ {(p0, pU )}),

• P0 = P ′
0∪
⋃

U⊆A P0,U , where P
′
0 = {p0} iff ϕ = ∀Rψ and P ′

0 = ∅ otherwise,

• P1 = P ′
1∪
⋃

U⊆A P1,U , where P
′
1 = {p1} iff ϕ = ∃Rψ and P ′

1 = ∅ otherwise.

If ϕ ∈ {∀cψ, ∃cψ} for some nullary symbol c, let Aa = (A , a) be the (τ, c)-
expansion of A with cAa = a ∈ A, and let MC(Aa, ψ) = (Pa,Ma, P0,a, P1,a, pa)
be the corresponding model checking game over Aa and ψ. Then MC(A , ϕ) =
(P,M,P0, P1, p0), where

• P = {p0} ∪
⋃

a∈A Pa,

• M =
⋃

a∈A(Ma ∪ {(p0, pa)}),

• P0 = P ′
0 ∪
⋃

a∈A P0,a, where P
′
0 = {p0} iff ϕ = ∀cψ and P ′

0 = ∅ otherwise,

• P1 = P ′
1 ∪
⋃

a∈A P1,a, where P
′
1 = {p1} iff ϕ = ∃cψ and P ′

1 = ∅ otherwise.
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If ϕ ∈ {ψ1 ∧ ψ2, ψ1 ∨ ψ2}, let MC(A , ψ) = (Pψ ,Mψ, P0,ψ, P1,ψ , pψ) be
the model checking game over A and ψ ∈ {ψ1, ψ2}. Then MC(A , ϕ) =
(P,M,P0, P1, p0), where

• P = {p0} ∪
⋃

ψ∈{ψ1,ψ2}
Pψ ,

• M =
⋃

ψ∈{ψ1,ψ2}
(Mψ ∪ {(p0, pψ)}),

• P0 = P ′
0 ∪

⋃

ψ∈{ψ1,ψ2}
P0,ψ, where P

′
0 = {p0} iff ϕ = ψ1 ∧ ψ2 and P ′

0 = ∅
otherwise,

• P1 = P ′
1 ∪

⋃

ψ∈{ψ1,ψ2}
P1,ψ, where P

′
1 = {p1} iff ϕ = ψ1 ∨ ψ2 and P ′

1 = ∅
otherwise.

Note that the falsifier is the universal player and moves on universal formu-
las, while the verifier is the existential player and moves on existential formulas.
Furthermore, if the structure A is empty, then, by definition, A |= ∀cψ and
A 6|= ∃cψ for all ψ. In the model checking game, this corresponds to the case
that there are no moves from the current position. Consequently, the play ends
and the player assigned to this position looses. On non-empty structures, each
play ends in an atomic or negated atomic formula. The goal of the verifier is to
make the play end in a position (A ′, ψ) with A ′ |= ψ, and conversely the goal
of the falsifier is to force the play into an ending position (A ′, ψ) with A ′ 6|= ψ.
It is well-known that the classical model checking game is well-founded [26] and
that the verifier has a winning strategy on MC(A , ϕ) if and only if A |= ϕ, see,
e.g., [27].

2.1. An Extension of the Classical Model Checking Game

We shall now consider an extension of the model checking game that has the
following two central properties:

• It is defined for partially interpreted structures; and

• it is “well-defined” under taking the union of structures in the sense that
if one of the players has a winning strategy on the game on A and ϕ, then
the same player has a winning strategy in the game on A ∪ B and ϕ for
all structures B compatible with A .

Before we give the formal definition of the new game, let us briefly mention
why we require these properties: Recall that we want to use the model checking
game MC(A , ϕ) to decide algorithmically whether a τ -structure A holds on a
formula ϕ ∈ MSO(τ). If ϕ contains set quantifiers, then there is a number of
positions in MC(A , ϕ) that grows exponentially with the size of A. In order
to avoid exponential running time on structures of bounded treewidth, a tree
decomposition (T ,X ) of A , where T = (T, F ), is traversed bottom-up by a
dynamic programming algorithm. At a node i ∈ T , we only consider the sub-
structure Ai of A . Let A ′ be some expansion of A . Then A [Ai] is in general
not fully interpreted, which explains the first requirement.
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For the second requirement, note that for each i ∈ T there is a τ -structure Bi,
such that A can be written as A = Ai ∪ Bi. The structure Bi is sometimes
called the “future” of Ai in the literature. Therefore, if one of the players has
a winning strategy in the game on Ai and ϕ, we require that the same player
has a winning strategy on A = Ai ∪ Bi and ϕ.

In order to make the inductive construction work, we additionally need to
distinguish the nodes in the “current” bag Xi of the tree decomposition. The
game therefore additionally depends on a given set X = Xi ⊆ A.

Definition 4 (Extended Model Checking Game). The extended model checking
game EMC(A , X, ϕ) = (P,M,P0, P1, p0) over a τ -structure A , a set X ⊆ A,
and a formula ϕ ∈ MSO(τ) is defined by induction over the structure of ϕ as
follows. Let p0 = (A [X ∪ c̄A ], X, ϕ), where c̄ = null(τ). If ϕ is an atomic or
negated formula, then EMC(A , ϕ) = ({p0}, ∅, P0, P1, p0), where

• p0 ∈ P0 if and only if either

– ϕ = R(c1, . . . , cp), such that {c1, . . . , cp} ⊆ interpreted(A ), and
(cA1 , . . . , c

A
p ) ∈ RA , or

– ϕ = ¬R(c1, . . . , cp), such that {c1, . . . , cp} ⊆ interpreted(A ), and
(cA1 , . . . , c

A
p ) /∈ RA .

• p0 ∈ P1 if and only if either

– ϕ = R(c1, . . . , cp), such that {c1, . . . , cp} ⊆ interpreted(A ), and
(cA1 , . . . , c

A
p ) /∈ RA , or

– ϕ = ¬R(c1, . . . , cp), such that {c1, . . . , cp} ⊆ interpreted(A ), and
(cA1 , . . . , c

A
p ) ∈ RA .

If ϕ ∈ {∀Rψ, ∃Rψ} for some relation symbol R, or ϕ ∈ {ψ1 ∧ ψ2, ψ1 ∨ ψ2},
then EMC(A , X, ϕ) is defined analogously to MC(A , ϕ).

If ϕ ∈ {∀cψ, ∃cψ} for some nullary symbol c, let Au = (A , u) be the
(τ, c)-expansion of A with cAu = u ∈ A ∪ {nil}, and let EMC(Au, X, ψ) =
(Pu,Mu, P0,u, P1,u, pu) be the corresponding extended model checking game
over Au and ψ. Then EMC(A , X, ϕ) = (P,M,P0, P1, p0), where

• P = {p0} ∪
⋃

u∈A∪{nil} Pu,

• M =
⋃

u∈A∪{nil}(Mu ∪ {(p0, pu)}),

• P0 = P ′
0 ∪

⋃

u∈A∪{nil} P0,u, where P ′
0 = {p0} iff ϕ = ∀cψ and P ′

0 = ∅
otherwise,

• P1 = P ′
1 ∪

⋃

u∈A∪{nil} P1,u, where P ′
1 = {p1} iff ϕ = ∃cψ and P ′

1 = ∅
otherwise.

For the games we consider throughout this paper, one can derive from a
position p ∈ P whether p ∈ P0 or p ∈ P1 (cf., the definitions of MC and EMC).
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∃Y

∀x

∀x

x ∈ Y

x ∈ Y

x ∈ Y

x ∈ Y

Y := ∅

Y := {a}

x := a

x := nil

x := a

x := nil

∃Y

⊥

∀x

⊤

x ∈ Y

Y := ∅

Y := {a}
x := a

x := nil

Figure 1: Top: simplified schematic of EMC(A , ∅, ϕ) for the structure A with universe A =
{a} and ϕ = ∃Y ∀x(x ∈ Y ). Bottom: eval(EMC(A , ∅, ϕ)). The lower branch witnesses a play
that ends with a draw.

To avoid cluttered notation, we shall therefore usually omit the sets P0 and P1

from the tuple (P,M,P0, P1, p0) and identify games with the triple (P,M, p0).
Figure 1 shows a simplified schematic of an extended model checking game and
the result after an application of the evaluation algorithm eval .

If A is a fully interpreted structure, MC(A , ϕ) can be embedded into
EMC(A , X, ϕ) such that for each play of MC(A , ϕ) there is a correspond-
ing, equivalent play of EMC(A , X, ϕ). Algorithm 2 effectively computes this
embedding (Lemma 1). Furthermore, if EMC(A , X, ϕ) is determined, then so
is MC(A , ϕ) (Lemma 3).

Lemma 1. Let A be a fully interpreted τ-structure, X ⊆ A, and ϕ ∈ MSO(τ).
Then, using Algorithm 2, we have

MC(A , ϕ) = convert(EMC(A , X, ϕ)).

Proof. The proof is an induction over the structure of ϕ. For atomic or negated
atomic formulas, the statement trivially holds by definition of MC(A , ϕ), since
subgames(EMC(A , X, ϕ)) = ∅. Let G = EMC(A , X, ϕ) = (P,M, p0).

Let ϕ ∈ {∀Rψ, ∃Rψ} or ϕ ∈ {ψ1∧ψ2, ψ1∨ψ2} and ψ ∈ {ψ1, ψ2} and consider
p = (H , X, ψ) ∈ nextG(p0). We have subgameG(p) = EMC(A ′, X, ψ), where
either A ′ = (A , U) is an (τ, R)-expansion of A for some U ⊆ A, or A ′ = A ,
respectively. Since A is fully interpreted, A ′ is fully interpreted, and we obtain
MC(A ′, ψ) = convert(EMC(A ′, X, ψ)) by the induction hypothesis.

If otherwise ϕ ∈ {∀cψ, ∃cψ}, consider p = (H , X, ψ) ∈ nextG(p0). By
definition, subgameG(p) = EMC(A ′, X, ψ), where A ′ is a (τ, c)-expansion of A
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Algorithm 2 Converting EMC to MC

Algorithm convert(G)
Input: A game G = (P,M, p0).

if G ∈ {⊤,⊥} then return G.
Let p0 = (H , X, ϕ) and c̄ = null(vocabulary(H )).
Let p′0 = (H [c̄H ], ϕ), P ′ = {p′0}, and M

′ = ∅.
for p1 = (H1, X, ψ) ∈ next(p0) s.t. H1 is fully interpreted do

Let (P ′
1,M

′
1, p

′
1) = convert(subgameG(p1)).

Update P ′ := P ′ ∪ P ′
1 and M ′ :=M ′ ∪M ′

1 ∪ {(p′0, p
′
1)}.

return (P ′,M ′, p′0)

with cA
′

∈ A ∪ {nil}. If all constant symbols are interpreted in H , then
cA

′

6= nil, i.e., A ′ is fully interpreted. By the induction hypothesis we get
MC(A ′, ψ) = convert(EMC(A ′, X, ψ)).

Together, the statement follows.

We now prove that if an extended model game is determined, then the
corresponding player can win the game without using any further “nil-moves”.
This will be useful in the proof of Lemma 3.

Lemma 2. Let A1 and A2 be τ-structures with A1 = A2 and c ∈ null(τ),
such that cA1 = nil, RA1 = RA2 for all R ∈ rel(τ) and dA1 = dA2 for all
d ∈ null(τ) \ {c}. Let ϕ ∈ MSO(τ).

If eval (EMC(A1, X, ϕ)) ∈ {⊤,⊥}, then A1 6= ∅ and

eval (EMC(A1, X, ϕ)) = eval(EMC(A2, X, ϕ)).

Before we give the formal proof, consider the following high-level argument:
Suppose that eval (EMC(A1, X, ϕ)) = ⊤. Then there is at least one play of the
game EMC(A1, X, ϕ) that is won by the verifier. Consider an arbitrary play
(p0, . . . , pl) won by the verifier and let pl = (H , X, ψ). Since pl is assigned
to the falsifier, all constant symbols occurring in ψ are interpreted and hence
different from c. The verifier can therefore win the game without depending on
formulas where c occurs.

Proof. The proof is an induction over the structure of ϕ.
Let eval(EMC(A1, X, ϕ)) ∈ {⊤,⊥}. If ϕ is an atomic or negated for-

mula, say ϕ = R(c1, . . . , cp), then {c1, . . . , cp} ⊆ interpreted(A1). Therefore,

A1 6= ∅ and for all 1 ≤ i ≤ p, we have c 6= ci and cA1

i = cA2

i , which implies
eval(EMC(A1, X, ϕ)) = eval (EMC(A2, X, ϕ)).

If ϕ ∈ {∀Rψ, ∃Rψ} for a relation symbol R, let U ⊆ A and A ′
1 , A ′

2 be the
(τ, R)-expansions of A1 and A2, respectively, with RA

′

1 = RA
′

2 = U . Then
by the induction hypothesis eval(EMC(A ′

1 , X, ψ)) = eval (EMC(A ′
2 , X, ψ)) if

eval(EMC(A ′
1 , X, ψ)) ∈ {⊤,⊥}.

Similarly, if ϕ ∈ {∀dψ, ∃dψ} for a nullary symbol d, let A
′
1 and A

′
2 be

(τ, d)-expansions of A1 and A2, respectively, such that dA
′

1 = dA
′

2 . Then
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by the induction hypothesis eval (EMC(A ′
1 , X, ψ)) = eval (EMC(A ′

2 , X, ψ)), if
eval(EMC(A ′

1 , X, ψ)) ∈ {⊤,⊥}.
Finally, if ϕ ∈ {ψ1∧ψ2, ψ1∨ψ2}, then from eval(EMC(A1, X, ψ)) ∈ {⊤,⊥},

where ψ ∈ {ψ1, ψ2}, we get eval (EMC(A ′
1 , X, ψ)) = eval(EMC(A ′

2 , X, ψ)).
Together, the statement of the lemma follows.

We can now prove that if some player has a winning strategy in the ex-
tended model checking game, then the same player has a winning strategy in
the classical model checking game.

Lemma 3. Let A be a fully interpreted τ-structure, X ⊆ A, and ϕ ∈ MSO(τ).
If eval (EMC(A , X, ϕ)) ∈ {⊤,⊥}, then

eval(MC(A , ϕ)) = eval (EMC(A , X, ϕ)).

Proof. The proof is an induction over the structure of ϕ.
Suppose eval (EMC(A , X, ϕ)) = ⊤ (the case ⊥ is shown analogously). If ϕ

is an atomic or negated atomic formula, then the statement clearly holds. If
ϕ = ψ1 ∧ ψ2, then for each ψ ∈ {ψ1, ψ2} we have eval (EMC(A , X, ψ)) = ⊤.
This implies eval (MC(A , ψ)) = ⊤ by the induction hypothesis, and there-
fore eval(MC(A , ϕ)) = ⊤.

Similarly, if ϕ = ∀Rψ for a relation symbol R, then eval(EMC(A ′, X, ψ)) =
⊤ for each (τ, R)-expansion A ′ of A , each of which is fully interpreted. We get
eval(MC(A ′, ψ)) = ⊤ by the induction hypothesis. Hence, eval (MC(A , ϕ)) =
⊤.

If ϕ = ∀cψ for a nullary symbol c, then eval(EMC(A ′, X, ψ)) = ⊤ for each
fully interpreted (τ, c)-expansion A ′ of A . This implies eval(MC(A ′, ψ)) = ⊤
by the induction hypothesis, and therefore eval (MC(A , ϕ)) = ⊤.

If ϕ = ψ1 ∨ ψ2, then there is ψ ∈ {ψ1, ψ2} with eval (EMC(A , X, ψ)) =
⊤. We get eval(MC(A , ψ)) = ⊤ by the induction hypothesis, and there-
fore eval(MC(A , ϕ)) = ⊤.

Similarly, if ϕ = ∃Rψ for a relation symbol R, then there is a (τ, R)-
expansion A ′ of A with eval(EMC(A ′, X, ψ)) = ⊤. Since A is fully in-
terpreted, A ′ is fully interpreted. Using the induction hypothesis, we have
eval(MC(A ′, ψ)) = ⊤ and therefore eval(MC(A , ϕ)) = ⊤.

Finally, if ϕ = ∃cψ for a nullary symbol c, then there is a (τ, c)-expansion A ′

of A with eval(EMC(A ′, X, ψ)) = ⊤. By Lemma 2, we can assume cA 6= nil.
Then A

′ is fully interpreted and we get eval (MC(A ′, ψ)) = ⊤ by the induction
hypothesis. Therefore eval(MC(A , ϕ)) = ⊤.

We can significantly strengthen this statement further: If EMC(A , X, ϕ) is
determined, then EMC(A ∪ B, X, ϕ) is also determined for all B compatible
with A . Note that the union A ∪ B arises on join or introduce nodes i of the
tree decomposition, where X = Xi is the current bag, cf., Figure 2.

Recall, for instance, the example 3-Colorability from the introduction:
If a subgraph A ′ of a graph A is not three-colorable, then clearly A is not
three-colorable either. The following lemma formalizes this observation.
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Let us give a brief high-level explanation before we state the lemma and
give its proof. Roughly speaking, if G = EMC(A , X, ϕ) is determined, then
moves to objects b ∈ B \ A in G′ = EMC(A ∪ B, X, ϕ) are either “irrelevant”
for a player’s strategy or already “sufficiently” captured by moves to nil (cf.,
Lemma 2). If therefore one of the players, say the falsifier, has a winning
strategy in G, then in some sense this winning strategy carries over to G′. In
the case of 3-Colorability, if A is not three-colorable, then the falsifier has a
winning strategy on EMC(A , X, 3col): No matter which three sets the verifier
chooses, either these sets are not a partition or not independent sets. In either
case there are witnessing vertices that the falsifier can choose. Thus, no matter
which subsets the verifier chooses in G′ = EMC(A ∪ B, X, 3col ), the falsifier
can then choose the same witnessing vertices to win each play of G′.

Lemma 4 (Introduce). Let A and B be compatible τ-structures with B =
A ⊎ {b}. Let X ⊆ A and ϕ ∈ MSO(τ). Let G = EMC(A , X, ϕ) and G′ =
EMC(B, X ∪ {b}, ϕ).

1. If eval (G) = ⊤, then eval (G′) = ⊤.

2. If eval (G) = ⊥, then eval (G′) = ⊥.

Proof. We prove the lemma by induction over the structure of ϕ. Let c̄ =
null(τ). Let G = (P,M, p0) and G′ = (P ′,M ′, p′0) with p0 = (H , X, ϕ) and
p′0 = (H ′, X ∪ {b}, ϕ), where H = A [X ∪ c̄A ] and H ′ = B[X ∪ {b} ∪ c̄B].
Suppose eval (G) = ⊤ (the second case eval(G) = ⊥ is proven analogously).

Let ϕ = R(c1, . . . , cp) or ϕ = ¬R(c1, . . . , cp) for a relation symbol R ∈ τ . We
have eval (G) = ⊤, and hence, by definition ci ∈ interpreted(A ) for all 1 ≤ i ≤ p.
Here, cHi = cAi = cBi = cH

′

i for all 1 ≤ i ≤ p, since A and B are compatible,

and therefore RH = RH
′

∩Hp, sinceH = H ′\{b}. Hence, (cH1 , . . . , cHp ) ∈ RH

if and only if (cH
′

1 , . . . , cH
′

p ) ∈ RH
′

, and thus eval (G′) = ⊤.
Assume now that ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2. By definition, for each

ψ ∈ {ψ1, ψ2} there is a subgame Gψ = EMC(A , X, ψ) ∈ subgames(G) and a
subgame G′

ψ = EMC(B, X ∪{b}, ψ) ∈ subgames(G′). By the induction hypoth-
esis, eval (G′

ψ) = ⊤ if eval(Gψ) = ⊤, and hence eval(G′) = ⊤ if eval (G) = ⊤.
If ϕ = ∀Rψ or ϕ = ∃Rψ, then for each U ⊆ A there is a subgame GU =

EMC((A , U), X, ψ)) ∈ subgames(G), and for each U ′ ⊆ B there is a subgame
G′
U ′ = EMC((B, U ′), X ∪ {b}, ψ)) ∈ subgames(G′).
If ϕ = ∀Rψ, consider an arbitrary U ′ ⊆ B and let U = U ′ \ {b}. We know,

by definition of eval (G), that eval (GU ) = ⊤. Furthermore, (A , U) and (B, U ′)
are compatible, and therefore, by the induction hypothesis, also eval (G′

U ′) = ⊤.
Therefore, eval (G′

U ′ ) = ⊤ for all U ′ ⊆ B, and hence eval(G′) = ⊤.
If otherwise ϕ = ∃Rψ, then there is some U ⊆ A such that eval(GU ) =

⊤. Since (A , U) and (B, U) are compatible, eval (G′
U ) = ⊤ by the induction

hypothesis. Therefore, eval(G′) = ⊤.
If ϕ = ∀cψ, consider an arbitrary (τ, c)-expansion B

′ of B and let A
′ :=

B[A]. Note that if cB
′

6= b, then cA
′

= cB
′

∈ A, and if cB
′

= b or cB
′

= nil,
then cA

′

= nil. In either case, A ′ and B′ are compatible. We know, by
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Figure 2: Introduce (left): If A and B are such that A = B[A], then winning strategies
for EMC(A ,X, ϕ) carry over to EMC(B, X ∪ {b}, ϕ). Join/union (right): If A and B are
compatible, then winning strategies for EMC(A ,X, ϕ) carry over to EMC(A ∪ B,X, ϕ).

definition of eval(G), that eval(EMC(A ′, X, ψ)) = ⊤. Hence, by the induction
hypothesis, eval (EMC(B′, X ∪ {b}, ψ)) = ⊤. All in all, eval(G′) = ⊤.

Assume now that ϕ = ∃cψ. Since eval(G) = ⊤, we know that there is a
(τ, c)-expansion A

′ of A , such that eval (EMC(A ′, X, ψ)) = ⊤. Let B
′ the

(τ, c)-expansion of B with cB
′

= cA
′

. Then A ′ and B′ are compatible, and
using the induction hypothesis as above, we obtain eval(G′) = ⊤.

Corollary 1. Let A and B be compatible τ-structures with A ⊆ B. Let X ⊆ A
and ϕ ∈ MSO(τ). Let G = EMC(A , X, ϕ) and G′ = EMC(B, X ∪ (B \A), ϕ).

1. If eval (G) = ⊤, then eval (G′) = ⊤.
2. If eval (G) = ⊥, then eval (G′) = ⊥.

Proof. We use Lemma 4 and induction over |B \A|. Let eval(G) ∈ {⊤,⊥}.
If B \A = ∅ and therefore A = B, the statement clearly holds. Otherwise,

consider b ∈ B \A and let A ′ = (A ∪ B)[A ∪ {b}]. From eval (G) ∈ {⊤,⊥} we
get eval (EMC(A ′, X ∪ {b}, ϕ) = eval (G) by Lemma 4.

We can now use the induction hypothesis on A ′, B and X ∪ {b}, since A ′

and B a compatible and |B \A′| < |B \A|, and obtain eval (G′) = eval(G).

The forget operation at a node i of a tree decomposition does not change
the underlying structure Ai. It is therefore not surprising that any winning
strategies carry over.

Lemma 5 (Forget). Let A be a τ-structure, X ′ ⊆ X ⊆ A and ϕ ∈ MSO(τ).
Let G = EMC(A , X, ϕ) and G′ = EMC(A , X ′, ϕ).

1. If eval (G) = ⊤, then eval (G′) = ⊤.
2. If eval (G) = ⊥, then eval (G′) = ⊥.

Proof. Let G = (P,M,P0, P1, p0) and G′ = (P ′,M ′, P ′
0, P

′
1, p

′
0). It is not hard

to see that G and G′ are almost identical, the only difference being slightly dif-
ferently labeled positions: By definition, p0 = (H , X, ϕ) and p′0 = (H ′, X ′, ϕ),
where H = A [X ∪ cA ] and H ′ = A [X ′ ∪ cA ]. In particular, p0 ∈ Pi if and
only if p′0 ∈ P ′

i , where i ∈ {1, 2}. By induction over the structure of ϕ, the claim
then easily follows.
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Finally we show that the same holds for join nodes of a tree decomposition.
Note that the corresponding operation on structures is the union.

Lemma 6 (Join/Union). Let A ,B be compatible τ-structures, X = A∩B, and
ϕ ∈ MSO(τ). Let G = EMC(A , X, ϕ) and G′ = EMC(A ∪ B, X, ϕ).

1. If eval (G) = ⊤, then eval (G′) = ⊤.

2. If eval (G) = ⊥, then eval (G′) = ⊥.

Proof. Let eval (EMC(A , X, ϕ)) ∈ {⊤,⊥}. By Corollary 1, eval(EMC(A ∪
B, X∪(B\A), ϕ)) = eval (EMC(A , X, ϕ)). The claim then immediately follows
by Lemma 5.

3. Reducing the Size of Games

In this section we show that for every game G = (P,M,P0) = EMC(A , X, ϕ)
one can construct a game G′ = (P ′,M ′, p0) such that eval (G) = eval(G′) if
eval(G) ∈ {⊤,⊥}, but P ′ ⊆ P and M ′ ⊆ M ′ are typically much smaller than
P and M . This will be crucial for obtaining the desired running times of our
algorithm. We first define a suitable notion of equivalence between games.

Definition 5 (Equivalent Games). We say that two positions p1, p2 are equiv-
alent, denoted by p1 ∼= p2 iff

• p1 = (H1, X, ϕ) and p2 = (H2, X, ϕ) for some formula ϕ and set X ⊆
H1 ∩H2,

• there is an isomorphism h : H1 → H2 between H1 and H2, such that
h(a) = a for all a ∈ X .

We say that two games G1 = (P1,M1, p1) and G2 = (P2,M2, p2) are equiva-
lent, denoted by G1

∼= G2, if p1 ∼= p2 and there is a bijection π : subgames(G1) →
subgames(G2), such that G′ ∼= π(G′) for all G′ ∈ subgames(G1).

We now define a reduce operation that significantly shrinks the size of a
game G (see Algorithm 3). Firstly, subgames won by the opponent player are
removed. If, for instance, the formula is universal, then the falsifier can safely
ignore subgames that evaluate as ⊤, i.e., for which the verifier has a winning
strategy. For example, it is easy to see that we can remove the two subgames
⊤ and ⊥ in Figure 1.

Secondly, we only need to keep one representation per equivalence class
under ∼= for all undetermined games. Here, we use the fact that eval (G1) ∼=
eval(G2) for any G1,G2 with G1

∼= G2. We will not explicitly prove this claim. If,
however, G1 = EMC(A1, X, ϕ) and G2 = EMC(A2, X, ϕ) for some τ -structures
A1 and A2, for X ⊆ A1 ∩ A2 and ϕ ∈ MSO(τ), then the bijection π in-
duced by the definition of ∼= yields a bisimulation between EMC(A1, X, ϕ) and
EMC(A2, X, ϕ). In particular, if both G1 and G2 are subgames of the same
game G , then it suffices to keep either subgame as “witness” for possible win-
ning positions for the respective player in the model checking game. Thus,
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Algorithm 3 Reducing a game.

Algorithm reduce(G)
Input: A game G = (P,M, p0) with p0 = (H , X, ϕ).

if G ∈ {⊤,⊥} then return G
if ϕ is an atomic or negated atomic formula then return eval (G)
Let P ′ := {p0} and M ′ := ∅.
for p ∈ next(p0) do

Let G′ = (P ′
1,M

′
1, p

′) := reduce(subgameG(p)).
if ϕ is universal and G′ = ⊥ then return ⊥
if ϕ is existential and G′ = ⊤ then return ⊤
if G′ /∈ {⊤,⊥} and G′ 6∼= G′′ for all G′′ ∈ subgames((P ′,M ′, p0)) then

Update P ′ := P ′ ∪ P ′
1 and M ′ :=M ′ ∪M ′

1 ∪ {(p0, p′)}.
if P ′ = {p0} then return eval((P ′,M ′, p0)).
return (P ′,M ′, p0)

removing equivalent subgames from a game G can be seen as a variant of taking
the bisimulation quotient (cf., [45, Chapter 7]) of G.

See Figures 3 and 4 in Section 6 for two examples.

Lemma 7. Let A be a τ-structure, X ⊆ A, and ϕ ∈ MSO(τ). Let G =
EMC(A , X, ϕ). Then

• eval (G) = ⊤, if and only if reduce(G) = ⊤, and

• eval (G) = ⊥, if and only if reduce(G) = ⊥.

Proof. Let G = (P,M, p0), where p0 = (H , X, ϕ). Without loss of generality, we
assume that G /∈ {⊤,⊥}. We only show the first case (⊤), the second statement
is proven analogously. The proof is an induction over the structure of ϕ. If ϕ
is an atomic or negated atomic formula or P = {p0}, then the statement holds
by definition of reduce(G). For the induction step, assume ϕ is not an atomic
or negated formula, and next(p0) 6= ∅.

Let Gp = subgameG(p) for all p ∈ next(p0) and let eval (G) = ⊤. If ϕ
is existential, then there is p ∈ next(p0) with eval(Gp) = ⊤. By the induction
hypothesis, reduce(Gp) = eval (Gp) = ⊤, and therefore reduce(G) = ⊤. Similarly,
if ϕ is universal, then eval(Gp) = ⊤ for all p ∈ next(p0). By the induction
hypothesis, reduce(Gp) = ⊤ for each p ∈ next(p0). Hence, we have P ′ = {p0}
after the for-loop. Since ϕ is universal, the call to eval((P ′,M ′, p0)) returns ⊤
by definition, and therefore reduce(G) = ⊤.

Conversely, let reduce(G) = ⊤. If ϕ is existential, then there must be
some p ∈ next(p0) with reduce(Gp) = ⊤. Assume for a contradiction that
reduce(Gp) = ⊥ for all p ∈ next(p0). Then P ′ = {p0} after the for-loop, which
implies eval ((P ′,M ′, p0)) = ⊥, a contradiction. Let therefore p be such a posi-
tion with reduce(Gp) = ⊤. Then, by the induction hypothesis, eval(Gp) = ⊤ for
this p, and therefore also eval (G) = ⊤. If ϕ is universal, then we know P ′ = {p0}
after the for-loop, as this is the only possibility how reduce(G) can return ⊤.
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Therefore, reduce(Gp) = ⊤ for all p ∈ next(p0), and hence eval (G) = ⊤ by the
induction hypothesis and definition of eval(G).

Now we prove an upper bound for the size of a reduced game. Since this is
a general upper bound for arbitrary formulas and structures, we cannot expect
better bounds than the known lower bounds (unless P = NP) [2].

Definition 6 (Equivalent Structures). Let τ be a vocabulary and ϕ ∈ MSO(τ).
Let A1,A2 be two τ -structures and X ⊆ A1 ∩ A2.

We call A1 and A2 equivalent with respect to ϕ and X , denoted by A1
∼=X,ϕ

A2, if reduce(EMC(A1, X, ϕ)) ∼= reduce(EMC(A2, X, ϕ)).
For an arbitrary set X of objects, we let

ST R(τ,X) = {A ∈ ST R(τ) | X ⊆ A }

be the set of all τ -structures that contain X , and ST R(τ,X)/∼=X,ϕ the set of
equivalence classes of ST R(τ,X) under ∼=X,ϕ. We let

NX,ϕ := |ST R(τ,X)/∼=X,ϕ|.

Lemma 8. Let τ be a vocabulary, ϕ ∈ MSO(τ), and X be a set of objects. Then

NX,ϕ ≤ expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)),

where ‖ϕ‖ is the length of an encoding of ϕ.

Proof. Without loss of generality, we assume τ is minimal such that ϕ ∈ MSO(τ)
and therefore ‖ϕ‖ ≥ max{|τ |, arity(τ)}. We prove the claim by induction over
the structure of ϕ.

If ϕ is an atomic or negated atomic formula, let c̄ = null(τ), and A ∈
ST R(τ,X). Let GA = reduce(EMC(A , X, ϕ)). Then either GA ∈ {⊤,⊥},
or GA = (P,M, p0), where p0 = (H , X, ϕ) and H = A [X ∪ cA ]. Hence,
NX,ϕ depends on the number of non-isomorphic structures on at most n :=
|X |+ |c̄A | ≤ |X | + |null(τ)| objects. For a fixed relation symbol R ∈ τ , there

are 2n
arity(R)

ways to choose the interpretation RH . The total number of non-
isomorphic τ -structures over at most n objects is therefore bounded by NX,ϕ ≤
expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)).

If ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2, then qr(ϕ) = max{qr(ψ1), qr(ψ2)} and
‖ψ1‖+ ‖ψ2‖ ≤ ‖ϕ‖. Furthermore, by the induction hypothesis we get NX,ψi ≤
expqr(ϕ)+1((|X | + 1)O(‖ψi‖)). We conclude that NX,ϕ = O(NX,ψ1 · NX,ψ2) ≤
expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)).

If ϕ ∈ {∀cψ, ∃cψ, ∀Rψ, ∃Rψ}, then qr(ψ) = qr(ϕ) − 1, ‖ψ‖ < ‖ϕ‖, and, by
the induction hypothesis, NX,ψ = expqr(ψ)+1((|X |+1)O(‖ψ‖)). Since reduce() ig-
nores equivalent subgames, the total numberNX,ϕ is upper-bounded by 2NX,ψ ≤
expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)).

Lemma 9. Let A be a τ-structure, X ⊆ A and ϕ ∈ MSO(τ). Then

|reduce(EMC(A , X, ϕ))| ≤ expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)),

where ‖ϕ‖ is the length of an encoding of ϕ.

22



Algorithm 4 Combining two games.

Algorithm combine(G1,G2)
Input: Two games Gi = (Pi,Mi, pi) with pi = (Hi, Xi, ϕ),

where H1 and H2 are compatible τ -structures,
Xi ⊆ Hi, and ϕ ∈ MSO(τ).

Let p0 := (H1 ∪ H2, X1 ∪X2, ϕ), P := {p0} and M := ∅.
for each (p′1, p

′
2) ∈ next(p1)× next(p2) do

Let p′1 = (H ′
1 , X1, ψ1) and p

′
2 = (H ′

2 , X2, ψ2).
if ψ1 = ψ2 and H ′

1 and H ′
2 are compatible then

Let (P ′,M ′, p′0) = combine(subgameG1
(p′1), subgameG2

(p′2)).
Update P := P ∪ P ′ and M :=M ∪M ′ ∪ {(p0, p′0)}.

return reduce((P,M, p0))

Proof. We use induction over the structure of ϕ. If ϕ is an atomic or negated
atomic formula, then G = EMC(A , X, ϕ) contains only a single position and
reduce(G) ∈ {⊤,⊥,G}.

If ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2, let, for i ∈ {1, 2}, be Gψi = EMC(A , X, ψi).
By the induction hypothesis, |reduce(Gψi)| = expqr(ϕ)+1((|X |+1)O(‖ψi‖)) where
qr(ψi) ≤ qr(ϕ) and ‖ψ1‖+ ‖ψ2‖ ≤ ‖ϕ‖, and therefore,

|reduce(G)| ≤ 1 + |reduce(Gψ1)|+ |reduce(Gψ2)|

≤ expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)).

If otherwise ϕ ∈ {∀cψ, ∃cψ, ∀Rψ, ∃Rψ}, then qr(ψ) = qr(ϕ) − 1 and ‖ψ‖ <
‖ϕ‖. Since equivalent subgames are ignored,

|reduce(G)| ≤ 1 +NX,ψ · expqr(ψ)+1((|X |+ 1)O(‖ψ‖))

≤ expqr(ϕ)+1((|X |+ 1)O(‖ϕ‖)).

4. Combining and Extending Games

In this section, we show how model checking games on structures can be
computed inductively. We will introduce two algorithms: Algorithm 4 will
be used when structures are combined, i.e., taking the union of two compatible
structures. This happens at join and introduce nodes of the tree decomposition.
Algorithm 5 will be used when objects are removed from the set X , which
happens at forget nodes of the tree decomposition. We first will study the case
of combining games. The next lemma is required for technical reasons.

Lemma 10. Let A1 and A2 be compatible τ-structures, ϕ ∈ MSO(τ) and let
X1 ⊆ A1 and X2 ⊆ A2 with A1 ∩ A2 = X1 ∩ X2. Let, for i ∈ {1, 2}, Ri =
reduce(EMC(Ai, Xi, ϕ)) /∈ {⊤,⊥} and Gi = (Pi,Mi, pi) ∼= Ri, where pi =
(Hi, Xi, ϕ). Then H1 and H2 are compatible.
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Proof. Let c̄ = null(τ). Since Gi ∼= Ri, we have, by Definition 5, Hi
∼= Ai[Xi ∪

c̄Ai ] for an isomorphism hi with hi(a) = a for all a ∈ Xi.
By definition, c̄Ai = { cAi | c ∈ c̄ ∩ interpreted(Ai) }, and therefore c ∈

interpreted(Ai) if and only if c ∈ interpreted(Hi).
If cHi ∈ H1 ∩ H2, then in particular cHi ∈ A1 ∩ A2 ⊆ Xi. Hence, cHi =

hi(c
Hi) = cAi . Since A1 and A2 are compatible, cA1 = cA2 for all cAi ∈ A1∩A2,

and therefore cH1 = cH2 for all cHi ∈ H1 ∩H2.
Accordingly, H1 and H2 are compatible.

We now prove that for a structure A with A = A1 ∪A2 the reduced model
checking game reduce(EMC(A , X, ϕ)) can, up to equivalence, be computed
from R1 = reduce(EMC(A1, X, ϕ)) and R2 = reduce(EMC(A2, X, ϕ)). Here,
combine(R1,R2) essentially computes the Cartesian product of plays in the
games over A1 and A2, respectively. This is possible because each set U ⊆ A can
be split into U ∩A1 and U ∩A2, such that (A1, U ∩A1)∪(A2, U ∩A2) = (A , U).
Similarly, each interpretation of a nullary symbol is either nil, or contained in
A1∩A2, in A1\A2, or in A2\A1 (cf., Figure 2). These cases can be reconstructed
from the respective subgames on A1 and A2.

Lemma 11. Let A1 and A2 be compatible τ-structures, ϕ ∈ MSO(τ) and let
X1 ⊆ A1 and X2 ⊆ A2 with A1 ∩ A2 = X1 ∩ X2. Let, for i ∈ {1, 2}, Ri =
reduce(EMC(Ai, Xi, ϕ)) /∈ {⊤,⊥} and Gi ∼= Ri. Then

reduce(EMC(A1 ∪ A2, X1 ∪X2, ϕ)) ∼= combine(G1,G2).

Proof. The proof is an induction over the structure of ϕ. Let A = A1∪A2, X =
X1∪X2, and c̄ = null(τ). LetR = (PR,MR, pR) = reduce(EMC(A , X, ϕ)) and
G = (PG ,MG , pG) = combine(G1,G2). Let, for i ∈ {1, 2}, Gi = (PGi ,MGi , pGi)
and pGi = (Hi, Xi, ϕ).

By Lemma 10, H1 and H2 are compatible. Furthermore, Ai[Xi∪ c̄
Ai ] ∼= Hi,

and thus A [X ∪ c̄A ] = A1[X1 ∪ c̄A1 ] ∪ A2[X2 ∪ c̄A2 ] ∼= H1 ∪ H2.
If R /∈ {⊤,⊥}, then pR = (A [X ∪ c̄A ], X, ϕ). Therefore,

pR = (A [X ∪ c̄A ], X, ϕ) ∼= (H1 ∪ H2, X1 ∪X2, ϕ) = pG .

Let ϕ be an atomic or negated atomic formula. If R /∈ {⊤,⊥} the lemma
already holds with above considerations. Therefore consider the case R ∈
{⊤,⊥}, say R = ⊤. Then eval (EMC(A , X, ϕ)) = R = ⊤ by Lemma 7.
Therefore, R = ⊤ if and only if the verifier wins the play (p0), where p0 is
the initial position of EMC(A [X ∪ c̄A ], X, ϕ). The claim then follows, since
p0 = (A [X ∪ c̄A ], X, ϕ) ∼= pG , where in particular A [X ∪ c̄A ] ∼= H1 ∪ H2 and
X = X1 ∪X2.

For the induction step, we distinguish the following cases.

Case ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2.
Let, for ψ ∈ {ψ1, ψ2}, Rψ = reduce(EMC(A , X, ψ)) and, for each i ∈ {1, 2},

be Ri,ψ = reduce(EMC(Ai, Xi, ψ)).
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Consider ψ ∈ {ψ1, ψ2} with Rψ /∈ {⊤,⊥} and suppose there was i ∈
{1, 2}, say i = 1, with R1,ψ ∈ {⊤,⊥}. Let U1,ψ = EMC(A1, X1, ψ) and
Uψ = EMC(A , X1 ∪ A2, ψ). By Lemma 7, eval(U1,ψ) ∈ {⊤,⊥}, and there-
fore by Corollary 1, eval(Uψ) ∈ {⊤,⊥}. Since X1 ∪ X2 ⊆ X1 ∪ A2, also
eval(A , X1 ∪X2, ψ) ∈ {⊤,⊥}. This contradicts Rψ /∈ {⊤,⊥} via Lemma 7.

Therefore, we have Ri,ψ /∈ {⊤,⊥} for each i ∈ {1, 2}, which implies Ri /∈
{⊤,⊥}. Since Gi ∼= Ri for i ∈ {1, 2}, there is Gi,ψ ∈ subgames(Gi) with Gi,ψ ∼=
Ri,ψ. The algorithm combine(G1,G2) will eventually call combine(G1,ψ,G2,ψ).
Then, by the induction hypothesis, subgames(combine(G1,G2)) contains the re-
quired subgame combine(G1,ψ,G2,ψ) ∼= Rψ.

Conversely, let ψ ∈ {ψ1, ψ2} and (G1,ψ,G2,ψ) ∈ subgames(G1)×subgames(G2)
such that combine(G1,G2) recursively calls combine(G1,ψ ,G2,ψ). From Gi ∼= Ri

we get Gi,ψ ∼= Ri,ψ . Then combine(G1,ψ ,G2,ψ) ∼= Rψ by the induction hypothe-
sis.

Together, the statement of the lemma follows.

Case ϕ = ∀Rψ or ϕ = ∃Rψ.
Consider an arbitrary U ⊆ A and let R′ = reduce(EMC(A ′, X, ψ)), where

A ′ = (A , U) with RA
′

= U . For i ∈ {1, 2}, let Ui = U ∩ Ai and R′
i =

reduce(EMC(A ′
i , Xi, ψ)), where A ′

i = (Ai, Ui). If R′ /∈ {⊤,⊥}, then R′
i /∈

{⊤,⊥} for each i ∈ {1, 2} by using a combination of Lemma 7 and Corol-
lary 1. Therefore, Ri /∈ {⊤,⊥}. Since Gi ∼= Ri, there is G′

i = (P ′
i ,M

′
i , p

′
i) ∈

subgames(Gi) with G′
i
∼= R′

i. Let p′i = (H ′
i , Xi, ψ). Since A ′

1 and A ′
2 are com-

patible and G′
i
∼= R′

i, we by Lemma 10 have that H ′
1 and H ′

2 are compatible.
Therefore, the algorithm eventually recursively calls combine(G′

1,G
′
2). By the

induction hypothesis, combine(G′
1,G

′
2)

∼= R′.
Conversely, assume the algorithm recursively calls combine(G′

1,G
′
2), where

G′
i = (P ′

i ,M
′
i , p

′
i) ∈ subgames(Gi) for each i ∈ {1, 2}. From Gi ∼= Ri we get

G′
i
∼= reduce(EMC(A ′

i , Xi, ψ)), where A ′
i = (Ai, Ui) for some Ui ⊆ Ai. Let

p′i = (H ′
i , Xi, ψ). Since H1 and H2 are compatible and A1 ∩ A2 ⊆ Xi ⊆ Hi,

also A ′
1 and A ′

2 are compatible. Therefore, the induction hypothesis implies
combine(G′

1,G
′
2)

∼= reduce(EMC(A ′, X, ψ)), where A ′ = (A , U1 ∪ U2) with
RA

′

= U1 ∪ U2.
Together, the statement of the lemma follows.

Case ϕ = ∀cψ or ϕ = ∃cψ.
Consider a (τ, c)-expansion A ′ of A and let R′ = reduce(EMC(A ′, X, ψ)).

Let, for i ∈ {1, 2}, A ′
i = A ′[Ai] be the (τ, c)-expansion of Ai with cA

′

i = cA
′

if cA
′

∈ Ai, and cA
′

i = nil otherwise. Let R′
i = reduce(EMC(A ′

i , Xi, ψ)). If
R′ /∈ {⊤,⊥}, then R′

i /∈ {⊤,⊥} by a combination of Lemma 7 and Corol-
lary 1. Therefore, Ri /∈ {⊤,⊥}. Since Gi ∼= Ri, there is G′

i = (P ′
i ,M

′
i , p

′
i) ∈

subgames(Gi) with G′
i
∼= R′

i. Let p′i = (H ′
i , Xi, ψ). Since A ′

1 and A ′
2 are com-

patible and G′
i
∼= R′

i, Lemma 10 implies that H ′
1 and H ′

2 are compatible. The
algorithm therefore eventually calls combine(G′

1,G
′
2). By the induction hypoth-

esis, combine(G′
1,G

′
2)

∼= R′.
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Algorithm 5 Forgetting an object.

Algorithm forget(G, x)
Input: A game G = (P,M, p0) with p0 = (H , X, ϕ) and x ∈ X

if there is c ∈ interpreted(H ) with cH = x then

let p′0 = (H , X \ {x}, ϕ)
else let p′0 = (H [H \ {x}], X \ {x}, ϕ).
Let P ′ = {p′0} and M ′ = ∅.
for each G′ ∈ subgames(G) do

Let (P ′′,M ′′, p′′0) = forget(G′).
Set P ′ := P ′ ∪ P ′′ and M ′ :=M ′ ∪M ′′.

return reduce((P ′,M ′, p′0))

Conversely, assume the algorithm recursively calls combine(G′
1,G

′
2), where

G′
i = (P ′

i ,M
′
i , p

′
i) ∈ subgames(Gi) for each i ∈ {1, 2}. From Gi ∼= Ri we get

G′
i
∼= reduce(A ′

i , Xi, ψ) for some (τ, c)-expansion A ′
i of Ai. Since H1 and H2

are compatible and A1 ∩ A2 ⊆ Xi ⊆ Hi, also A ′
1 and A ′

2 are compatible. By
the induction hypothesis, combine(G′

1,G
′
2)

∼= reduce(EMC(A ′, X, ψ)), where
A ′ = A ′

1 ∪ A ′
2 .

Together, the statement of the lemma follows.

Lemma 12. Let A be a τ-structure, X ⊆ A and x ∈ X. Let ϕ ∈ MSO(τ) and
G ∼= reduce(EMC(A , X, ϕ)) /∈ {⊤,⊥}. Then

reduce(EMC(A , X \ {x}, ϕ)) ∼= forget(G, x).

Proof. We use induction over the structure of ϕ. Let c̄ = null(τ), X ′ = X \{x},
R′ = (PR′ ,MR′ , pR′) = reduce(A , X \ {x}, ϕ). Let G = (PG , FG , pG) with
pG = (H , X, ϕ). Here, H ∼= A [X ∪ cA ], since G ∼= reduce(EMC(A , X, ϕ)).

If ϕ is an atomic or negated atomic formula and R′ /∈ {⊤,⊥}, the statement
holds since pR′ = (A [X ′ ∪ cA ], X ′, ϕ) by definition.

If otherwise ϕ is an atomic or negated atomic formula and R′ ∈ {⊤,⊥},
let H ′ = H [H \ {x}] if cH 6= x for all c ∈ interpreted(H ), and H ′ = H

otherwise. If R′ ∈ {⊤,⊥}, then eval(EMC(A , X ′, ϕ)) = R′ by Lemma 7. Since
H ′ ∼= A [X ′ ∪ cA ], we have eval (EMC(A , X ′, ϕ)) = eval (EMC(H ′, X ′, ϕ′))
and

eval (EMC(H ′, X ′, ϕ′)) = reduce(EMC(H ′, X ′, ϕ)) = forget(G, x).

For the induction step, let G′ ∈ subgames(G) be an arbitrary subgame of G.
Since G ∼= reduce(EMC(A , X, ϕ)), we know that G′ ∼= reduce(EMC(A ′, X, ψ))
for some expansion A

′ of A and subformula ψ of ϕ. By the induction hypoth-
esis,

forget(G′, x) ∼= reduce(EMC(A ′, X \ {x}, ψ)).

Conversely, if R′′ = reduce(EMC(A ′, X \ {x}, ψ)) is a subgame of R′, then
R′′ /∈ {⊤,⊥}. This implies reduce(EMC(A ′, X, ψ)) /∈ {⊤,⊥} by Lemmas 5
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and 7. Therefore, there is G′ ∈ subgames(G) with G′ ∼= reduce(EMC(A ′, X, ψ)).
By the induction hypothesis, R′′ ∼= forget(G′, x).

Together, the statement of the lemma follows.

Finally, we come back to Algorithm 2 and show that its correctness translates
to reduced games.

Lemma 13. Let A be a fully interpreted τ-structure, X ⊆ A, and ϕ ∈ MSO(τ).
Let G ∼= reduce(EMC(A , X, ϕ)). Then

eval(MC(A , ϕ)) = eval (convert(G)).

Proof. We prove the statement by induction over the structure of ϕ. Recall that
M = MC(A , X, ϕ) is determined and hence eval (M) ∈ {⊤,⊥}.

If G ∈ {⊤,⊥}, then G = convert(G). We get G = eval (EMC(A , X, ϕ)) from
Lemma 7 and therefore, using Lemmma 3 for the first equality,

eval(MC(A , ϕ)) = eval (EMC(A , X, ϕ)) = G = eval(G) = eval (convert(G)).

Let therefore G = (P,M, p0) /∈ {⊤,⊥} with p0 = (H , X, ϕ) and sup-
pose eval(MC(A , ϕ)) = ⊤ (the case ⊥ is shown analogously). For atomic
or negated atomic formulas, the statement holds since, by definition, G ∼=
reduce(EMC(A , X, ϕ)) = EMC(A , X, ϕ), and hence MC(A , ϕ) = convert(G)
by Lemma 1.

If ϕ ∈ {∀Rψ, ∃Rψ}, say ϕ = ∀Rψ, consider U ⊆ A and let A ′ = (A , U)
with RA

′

= U . If there is G′ ∈ subgames(G) with G′ ∼= reduce(EMC(A ′, X, ψ)),
then eval(MC(A ′, ϕ)) = eval(convert(G′)) by the induction hypothesis. If oth-
erwise there is no such G′ in subgames(G), then reduce(EMC(A ′, X, ψ)) = ⊤ by
definition of reduce(), since G /∈ {⊤,⊥}. By Lemmas 7 and 1, we then conclude
eval(MC(A ′, ψ)) = ⊤. Together, the lemma follows.

Similarly, if ϕ ∈ {ψ1 ∧ ψ2, ψ1 ∨ ψ2}, then for ψ ∈ {ψ1, ψ2} either there
is G′ ∈ subgames(G), such that G′ ∼= reduce(A , X, ψ), or there is no such G′

contained in subgames(G). In the former case we again obtain eval (MC, ψ) =
eval(convert(G′)) by the induction hypothesis, and in the latter case we can
again argue that G′ ∼= reduce(EMC(A , X, ψ)) ∈ {⊤,⊥}.

Finally, let ϕ ∈ {∀cψ, ∃cψ}. For any a ∈ A and A ′ = (A , a), where
cA

′

= a, we argue analogously to the previous cases that either there is G′ ∈
subgames(G), such that G′ ∼= reduce(A ′, X, ψ), or there is no such G′ contained
in subgames(G), which implies G′ ∼= reduce(EMC(A ′, X, ψ)) ∈ {⊤,⊥}.

Hence, consider the (τ, c)-expansion A ′ of A with cA
′

= nil. If there
is G′ = (P ′,M ′, p′0) ∈ subgames(G) with G′ ∼= reduce(EMC(A ′, X, ψ)), then
G′ /∈ {⊤,⊥}. In particular, G′ = (H ′, X, ψ), where H ′ is not fully inter-
preted. Therefore, convert(G) removes the subgame G′ from G. In either case,
convert(G) does only contain subgames where c has been interpreted as an ob-
ject in A, as considered above. Together, the statement of the lemma then
follows.
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5. Courcelle’s Theorem

We can now reprove Courcelle’s Theorem for LinMSO-definable optimization
problems. Throughout this section, we shall abbreviate reduce(A , X, ϕ) :=
reduce(EMC(A , X, ϕ)).

Theorem 2. Fix a relational vocabulary τ , a set R̄ = {R1, . . . , Rl} ⊆ unary(τ)
of unary relation symbols, and τ ′ = τ \ R̄. Let ϕ ∈ MSO(τ), and w,α1, . . . , αl ∈
Z be constants. Given a τ ′-structure A together with a tree decomposition
(T ,X ) of A having width at most w, where T = (T, F ) and X = (Xi)i∈T ,
one can compute

min

{

l
∑

k=1

αk|Uk|

∣

∣

∣

∣

∣

Ui ⊆ A, 1 ≤ i ≤ l, and (A , U1, . . . , Ul) |= ϕ

}

in time O(|T |).

The remainder of this section is devoted to the proof of this theorem. We give
an algorithm that essentially works as follows: In a first phase, the algorithm
uses dynamic programming on the tree decomposition (based on Lemmas 14–17)
to compute the reduced extended model checking games G ∼= reduce(A ′

i , ∅, ϕ)

and the values
∑l

k=1 αk|Uk| for all structures A ′
i = (A , U1, . . . , Ul) where Ui ⊆

A for 1 ≤ i ≤ l. Note that by the previous sections the algorithm does not need
to distinguish between equivalent games. In a second phase, the algorithm tests
whether the verifier has a winning strategy on convert(G), or, in other words
(Lemma 13), whether (A , U1, . . . , Ul) |= ϕ. The algorithm then collects the

values
∑l

k=1 αk|Uk| for all A ′
i = (A , U1, . . . , Ul) with A ′

i |= ϕ and outputs the
optimal one. Since most of the games considered are equivalent (Lemma 8), we
can obtain the desired run time bounds.

Without loss of generality, we assume Xroot(T ) = ∅. Recall that for each
i ∈ T , Ai is the substructure of A induced by those objects that appear at or
below i in the tree decomposition. Let, for i ∈ T ,

ARi = P(Ai)× · · · × P(Ai) = P(Ai)
l

be the set of possible interpretations of the free relation symbols (R1, . . . , Rl)
in Ai,

EXP i = { (Ai, U1, . . . , Ul) | (U1, . . . , Ul) ∈ ARi }

be the set of their corresponding τ -expansions of Ai, where for each 1 ≤ j ≤ l
the symbol Rj is interpreted as Uj , and

REDi = { reduce(A ′
i , Xi, ϕ) | A

′
i ∈ EXP i }

be the corresponding extended model checking games in their reduced form. We
let (U1, . . . , Ul) ∩Xi := (U1 ∩Xi, . . . , Ul ∩Xi) and

ARi ∩Xi = { (U1, . . . , Ul) ∩Xi | (U1, . . . , Ul) ∈ ARi }
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be the restriction of ARi to Xi, and let, for Ū = (U1, . . . , Ul) ∈ ARi ∩Xi,

EXP i(Ū) = {A
′
i ∈ EXP i | R

A
′

i

j ∩Xi = Uj for 1 ≤ j ≤ l }

be the set of τ -expansions of A that “match” Ū on Xi. Let

REDi(Ū) = { reduce(A ′
i , Xi, ϕ) | A

′
i ∈ EXP i(Ū) }

be the corresponding games, and, for arbitrary games R,

EXP i(Ū ,R) = {A
′
i ∈ EXP i(Ū) | R ∼= reduce(A ′

i , Xi, ϕ) }

and
REDi(Ū ,R) = {R′ ∈ REDi(Ū) | R ∼= R′ }.

Finally, we let, for Ū = (U1, . . . , Ul) ∈ ARi,

Ai(Ū) = (Ai, U1, . . . , Ul)[Xi],

where R
Ai(Ū)
i = Ui ∩Xi for each 1 ≤ i ≤ l, and

R(Ū) = reduce(Ai(Ū), Xi, ϕ).

5.1. The Algorithm

We use dynamic programming on the tree decomposition as follows. As
usual, we associate with each node i ∈ T of the tree decomposition a table Si
that contains feasible, partial solutions and their corresponding value val i under
the optimization function.

Formally, we let Si : ARi∩Xi → P(REDi\{⊥}) map tuples Ū ∈ ARi∩Xi to
sets of feasible games over Ai, i.e., games R with R 6= ⊥, and let val i : REDi →
Z∞ be the corresponding values, where Z∞ = Z ∪ {∞}.

Initially, we let Si(Ū) := ∅ for all Ū ∈ ARi ∩ Xi and val i(R) := ∞ for all
R ∈ REDi.

Phase 1. The algorithm traverses the tree decomposition bottom-up. Recall
that each node i ∈ T is either a leaf, or of one of the three types introduce,
forget, or join. The algorithm distinguishes these four cases as follows.

leaf Let Xi = {x}. For all Ū = (U1, . . . , Ul) ∈ ARi∩Xi the algorithm considers
R(Ū ) = reduce(Ai(Ū), Xi, ϕ). If R(Ū ) 6= ⊥, then the algorithm sets

Si(Ū) := {R(Ū)} and val i(R(Ū )) := 0.

introduce Let j be the unique child of i and Xi = Xj ∪ {x} for x /∈ Aj .

For each Ūj = (Uj,1, . . . , Uj,l) ∈ ARj∩Xj , and each Ūi = (Ui,1, . . . , Ui,l) ∈
ARi ∩Xi such that (Uj,1, . . . , Uj,l) = (Ui,1 ∩Xj , . . . , Ui,l ∩Xj), the algo-
rithm considers each Rj ∈ Sj(Ūj).
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Let

Ri =

{

⊤ if Rj = ⊤ and

combine(Rj ,R(Ūi)) otherwise.

If there is R′
i ∈ Si(Ūi) with R′

i
∼= Ri, then let Ri := R′

i instead.

If Ri 6= ⊥, the algorithm sets

Si(Ū) := Si(Ū) ∪ {Ri} and val i(Ri) := min{val i(Ri), val j(Rj)}.

forget Let j be the unique child of i and Xi ∪ {x} = Xj for x /∈ Ai.

For each Ūj = (Uj,1, . . . , Uj,l) ∈ ARj ∩ Xj the algorithm considers each
Rj ∈ Sj(Ūj). Let Ūi = (Ui,1, . . . , Ui,l) = (Uj,1 ∩Xi, . . . , Uj,l ∩Xi) and

Ri =

{

⊤ if Rj = ⊤ and

forget(Rj , x) otherwise.

If there is R′
i ∈ Si(Ūi) with R′

i
∼= Ri, then let Ri := R′

i instead. If now
Ri 6= ⊥, the algorithm sets Si(Ūi) := Si(Ūi) ∪ {Ri} and

val i(Ri) := min

{

val i(Ri), val j(Rj) +
l
∑

k=1

αk(x ∈ Ui,k)

}

.

where (x ∈ Uj,k) ∈ {0, 1} as defined in Section 1.

join Let j1, j2 be the children of i. Then Xi = Xj1 = Xj2 .

For each Ū = (U1, . . . , Ul) ∈ ARi ∩Xi the algorithm considers each pair
(Rj1 ,Rj2) ∈ Sj1(Ū)× Sj2(Ū). Let

Ri =

{

⊤ if Rj1 = ⊤ or Rj2 = ⊤ and

combine(Rj1 ,Rj2) otherwise.

If there is R′
i ∈ Si(Ūi) with R′

i
∼= Ri, then let Ri := R′

i instead. If now
Ri 6= ⊥, the algorithm sets Si(Ūi) := Si(Ūi) ∪ {Ri} and

val i(Ri) := min {val i(Ri), val j1(Rj1) + val j2(Rj2 )} .

Phase 2. Let r = root(T ) and

Ūr = (∅, . . . , ∅) ∈ ARr ∩Xr = ARr ∩ ∅.

The algorithm starts with OPT := ∞ and considers each Rr ∈ Sr(Ūr). If
eval(convert(Rr)) = ⊤, then the algorithm updates

OPT := min{OPT , valr(Rr)}.

Finally, the algorithm outputs OPT .
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5.2. Proofs

In order to show that the algorithm is correct and computes the optimal
solution, we use induction over the structure of the tree decomposition to show
the following invariant.

Invariant 1. After the algorithm has processed a node i ∈ T in Phase 1, for
each Ū = (U1, . . . , Ul) ∈ ARi ∩Xi we have that

(I) for each A
′
i ∈ EXP i(Ū) with R = reduce(A ′

i , Xi, ϕ) 6= ⊥ there is exactly
one R′ ∈ Si(Ū) with R′ ∼= R,

(II) for each game R ∈ Si(Ū) we have R 6= ⊥ and REDi(Ū ,R) 6= ∅, and

(III) for each R ∈ Si(Ū) we have

val i(R) = min

{

l
∑

k=1

αk|R
A

′

i

k \Xi|

∣

∣

∣

∣

∣

A
′
i ∈ EXP i(Ū ,R) ∧

reduce(A ′
i , Xi, ϕ) 6= ⊥

}

.

Here, (I) guarantees that Si is complete, i.e., Si(Ū) contains games for all
feasible partial solutions, (II) guarantees that all games in Si(Ū) do, in fact,
correspond to a reduced game over some τ -expansion of Ai, and (III) guar-
antees that we also compute the correct solution, i.e., val i(R) is optimal for
REDi(Ū ,R). Note that the “exactly one” in (I) is required for the claimed
running time, but not for the correctness of the solution.

Lemma 14. Invariant 1 holds for leafs of the tree decomposition.

Proof. Let i ∈ T be a leaf and Ū = (U1, . . . , Ul) ∈ ARi ∩Xi = ARi. Since i is
a leaf, we have

REDi(Ū) = {Ai(Ū) | Ū ∈ ARi ∩Xi },

such that (I) and (II) clearly hold. Furthermore, R
Ai(Ū)
j \ Xi = ∅ for all 1 ≤

j ≤ l, since Ai \Xi = ∅, and therefore val i(R) = 0 for all R ∈ REDi.

Lemma 15. Let i ∈ T be an introduce node of the tree decomposition and
j ∈ T be the unique child of i. If Invariant 1 holds for j before the algorithm
processes i, then it also holds for i.

Proof. Let Xi = Xj ∪ {x}, where x /∈ Aj . Let Ūi = (Ui,1, . . . , Ui,l) ∈ ARi ∩Xi

and Ūj = (Uj,1, . . . , Uj,l) ∈ ARj∩Xj with (Uj,1, . . . , Uj,l) = (Ui,1∩Xj , . . . , Ui,l∩
Xj).

Consider A ′
i ∈ EXP i(Ūi) and let A ′

j = A ′
i [Aj ]. If Ri = reduce(A ′

i , Xi, ϕ) 6=
⊥, then also Rj = reduce(A ′

j , Xj , ϕ) 6= ⊥ by Lemma 4 and Lemma 7. By

Invariant 1, Sj(Ūj) therefore contains exactly one game R′
j with R′

j
∼= Rj . If

R′
j = ⊤, then Ri = ⊤ by Lemma 4 and Lemma 7. Otherwise, the algorithm
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computes R′
i = combine(R′

j ,R(Ūi)). By Lemma 11, R′
i
∼= Ri, which implies

part (I) of the invariant.
Conversely, consider Ri ∈ Si(Ūi). Then either Ri = ⊤ and there is Rj ∈

Sj(Ūj) with Rj = ⊤, or there is Rj ∈ Sj(Ūj) with Ri
∼= combine(Rj ,Ri(Ūi)).

By the invariant for j, REDj(Rj) 6= ∅. From this we get there is R′
j ∈

REDj(Ūj ,Rj) such that R′
j
∼= Rj and R′

j = reduce(A ′
j , Xj , ϕ) for some A ′

j ∈

EXPj(Ūj). Let A ′
i ∈ EXP i(Ūi), chosen in a way such that (R

A
′

j

1 , . . . , R
A

′

j

l ) =

(R
A

′

i

1 ∩ Aj , . . . , R
A

′

i

l ∩ Aj).
IfRj = ⊤, then, by Lemma 4 and Lemma 7, reduce(A ′

i , Xi, ϕ) = ⊤ ∈ Si(Ūi).
Otherwise, reduce(Ai, Xi, ϕ) ∼= combine(Rj ,R(Ūi)) by Lemma 11. Either case
implies (II).

Finally, let Ri ∈ Si(Ūi) and Oi ∈ EXP i(Ūi,Ri) with reduce(Oi, Xi, ϕ) 6= ⊥
and

l
∑

k=1

αk|R
Oi
k \Xi| = min

{

l
∑

k=1

αk|R
A

′

i

k \Xi|

∣

∣

∣

∣

∣

A
′
i ∈ EXP i(Ūi,Ri) ∧ reduce(A ′

i , Xi, ϕ) 6= ⊥

}

.

Let Oj = Oi[Aj ]. By Lemmas 4 and 7, Rj = reduce(Oj , Xj , ϕ) 6= ⊥. Therefore,
either Rj = reduce(Oj , Xj , ϕ) = Ri = ⊤, or otherwise combine(Rj ,R(Ūi)) ∼=
reduce(Oj ∪ Ai(Ūi), Xi, ϕ) ∼= Ri by Lemma 11.

We need that Oj is optimal for EXPj(Ūj ,Rj). To this end, assume there
was A ′

j ∈ EXPj(Ūj ,Rj) with R′
j = reduce(A ′

j , Xj , ϕ), such that either R′
j = ⊤

or Ri
∼= combine(R′

j ,Ai(Ūi)), and furthermore

l
∑

k=1

αk|R
Oj

k \Xj | >
l
∑

k=1

αk|R
A

′

j

k \Xj |.

Since, R′
j
∼= Rj , we have, by Lemma 11,

R′
i
∼=

{

⊤ if Rj = ⊤ and

combine(Rj ,R(Ūi)) otherwise,

where R′
i = reduce(A ′

i , Xi, ϕ) and A ′
i = A ′

j ∪ Ai(Ūi). Therefore,

l
∑

k=1

αk|R
Oi
k \Xi| >

l
∑

k=1

αk|R
Ai
k \Xi|,

a contradiction to the minimality of Oi. We conclude that Oj is optimal for
EXPj(Ūj ,Rj). From this we get that

val j(Rj) =

l
∑

k=1

αk|R
Oj

k \Xj |

by the invariant for j, which implies (III).
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Lemma 16. Let i ∈ T be a forget node of the tree decomposition and j ∈ T be
the unique child of i. If Invariant 1 holds for j before the algorithm processes i,
then it also holds for i.

Proof. Let j be the unique child of i and Xi ∪ {x} = Xj for x /∈ Xi. Note that
Ai = Aj. Let Ūi = (Ui,1, . . . , Ui,l) ∈ ARi ∩Xi.

Consider A ′
i ∈ EXP i(Ūi) with Ri = reduce(A ′

i , Xi, ϕ) 6= ⊥ and let Ūj =

(Uj,1, . . . , Uj,l) = (R
A

′

i

1 , . . . , R
A

′

i

l )∩Xj ∈ ARj∩Xj and Rj = reduce(A ′
i , Xj, ϕ).

Then, by Lemma 4 and Lemma 7, Rj 6= ⊥. Therefore, by the invariant for j,
there is R′

j ∈ Sj(Ūj) with R′
j
∼= Rj . If R′

j = Rj = ⊤, then, by Lemma 5, also
Ri = ⊤. Otherwise, the algorithm computes R′

i = forget(R′
j , x)

∼= Rj . Either
case implies (I).

Conversely, consider Ri ∈ Si(Ūi). Then either Ri = ⊤ and there is Ūj ∈
ARj ∩ Xj and Rj ∈ Sj(Ūj) with Rj = ⊤ and Ūi = Ūj ∩ Xi, or there is
Ūj ∈ ARj∩Xj andRj ∈ Sj(Ūj), such that Ūi = Ūj∩Xi andRi

∼= forget(Rj , x).
By the invariant for j, in either case REDj(Rj) 6= ∅. Therefore, there is R′

j ∈

REDj(Ūj ,R), where R′
j
∼= Rj and R′

j = reduce(A ′
j , Xj, ϕ), for some A ′

j ∈

EXPj(Ūj).
Let A ′

i = A ′
j . If Rj = ⊤, then, by Lemmas 5 and 7, reduce(A ′

i , Xi, ϕ) =

⊤ ∈ Si(Ūi). Otherwise, reduce(A ′
i , Xi, ϕ) ∼= forget(Rj , x) ∼= Ri according to

Lemma 12. Either case implies (II).
Finally, consider Ri ∈ Si(Ūi) and let Oi ∈ EXP i(Ūi,Ri) such that

l
∑

k=1

αk|R
Oi
k \Xi| = min

{

l
∑

k=1

αk|R
A

′

i

k \Xi|

∣

∣

∣

∣

∣

A
′
i ∈ EXP i(Ūi,Ri) ∧ reduce(A ′

i , Xi, ϕ) 6= ⊥

}

and reduce(Oi, Xi, ϕ) 6= ⊥. Let Oj = Oi. Then, by Lemmas 5 and 7, Rj =
reduce(Oj , Xj , ϕ) 6= ⊥. By (II), there is R′

j ∈ Sj(Ūj) with R′
j
∼= Rj , where

Ūj = (R
Oj

1 ∩Xj , . . . , R
Oj

l ∩Xj). Analogue to the previous case, we obtain that
Oj is optimal in REDi(Ūj ,Rj). Therefore, by the induction hypothesis,

val j(Rj) =

l
∑

k=1

αk|R
Oj

k \Xj | =
l
∑

k=1

αk|R
Oj

k \Xi| −
l
∑

k=1

αk(x ∈ ROi
k \Xi),

which implies (III).

Lemma 17. Let i ∈ T be a join node of the tree decomposition with chil-
dren j1, j2 ∈ T . If Invariant 1 holds for j1 and j2 before the algorithm pro-
cesses i, then it also holds for i.

Proof. Note that Xi = Xj1 = Xj2 . Let Ū = (U1, . . . , Ul) ∈ ARi ∩ Xi =
ARj1 ∩Xj1 = ARj2 ∩Xj2 .
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Consider A ′
i ∈ EXP i(Ū) and let, for j ∈ {j1, j2}, be A ′

j = A ′
i [Aj ]. If Ri =

reduce(A ′
i , Xi, ϕ) 6= ⊥, then, for j ∈ {j1, j2}, also Rj = reduce(A ′

j , Xj , ϕ) 6= ⊥

by Lemma 6 and Lemma 7. By the invariant for j ∈ {j1, j2}, Sj(Ū) therefore
contains exactly one R′

j with R′
j
∼= Rj . If R′

j = ⊤, then Ri = ⊤ by Lemma 6
and Lemma 7. Otherwise, the algorithm computes R′

i = combine(Rj1 ,Rj2 ).
By Lemma 11, R′

i
∼= Ri, which implies (I).

Conversely, consider Ri ∈ Si(Ū). Then either Ri = ⊤ and there is j ∈
{j1, j2} and Rj ∈ Sj(Ū) with Rj = ⊤, or there is (Rj1 ,Rj2) ∈ Sj1(Ū)×Sj2(Ū),
such that Ri

∼= combine(Rj1 ,Rj2 ). By the invariant for j ∈ {j1, j2}, we have
REDj(Rj) 6= ∅, and therefore there is R′

j ∈ REDj(Ū ,Rj) with R′
j
∼= Rj and

R′
j = reduce(A ′

j , Xj , ϕ), where A ′
j = (Aj , R

Aj

1 , . . . , R
Aj

l ) ∈ EXPj(Ū). Let

A ′
i = (Ai, R

Ai
1 , . . . , RAi

l ) ∈ EXP i(Ū), such that RAi
k = R

Aj1

k ∪ R
Aj2

k for all
1 ≤ k ≤ l.

If ⊤ ∈ {Rj1 ,Rj2}, then, by Lemmas 6 and 7, reduce(A ′
i , Xi, ϕ) = ⊤ ∈ Si(Ū).

Otherwise, reduce(Ai, Xi, ϕ) ∼= combine(Rj1 ,Rj2) by Lemma 11. Either case
implies (II).

Now considerRi ∈ Si(Ū) and Oi ∈ EXP i(Ū ,Ri) with reduce(Oi, Xi, ϕ) 6= ⊥
and

l
∑

k=1

αk|R
Oi
k \Xi| = min

{

l
∑

k=1

αk|R
A

′

i

k \Xi|

∣

∣

∣

∣

∣

A
′
i ∈ EXP i(Ū ,Ri) ∧ reduce(A ′

i , Xi, ϕ) 6= ⊥

}

.

Let, for j ∈ {j1, j2}, Oj = Oi[Aj ]. Then, by Lemma 6 and Lemma 7, Rj =
reduce(Oj , Xj , ϕ) 6= ⊥. Therefore, either Rj = reduce(Oj , Xj, ϕ) = Ri = ⊤
for some j ∈ {j1, j2}, or combine(Rj1 ,Rj2)

∼= reduce(Oj1 ∪ Oj2 , Xi, ϕ) ∼= Ri by
Lemma 11.

Assume there were j ∈ {j1, j2}, say j = j1, and A ′
j ∈ EXPj(Ū ,Rj) with

R′
j = reduce(A ′

j , Xj , ϕ), such that

l
∑

k=1

αk|R
Oj

k \Xj| >
l
∑

k=1

αk|R
A

′

j

k \Xj |

and either R′
j = ⊤ or Ri

∼= combine(R′
j ,R

′
j2
) for some R′

j2
∈ REDj2(Ū ,Rj2 ).

Since Aj1 ∩ Aj2 = Xi, structures (A ′
j1
,A ′

j2
) ∈ REDj1(Ū) × REDj2(Ū) are

compatible. By the invariant, part (II), we have R′
j2

∼= reduce(A ′
j2
, Xj2 , ϕ) for

some A ′
j2

∈ EXPj2(Ū). Without loss of generality, we assume A ′
j2

= Oj2 , since
each A ′

j2
with

l
∑

k=1

αk|R
Oj2
k \Xj | ≥

l
∑

k=1

αk|R
A

′

j2

k \Xj |
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yields the same contradiction. Therefore, since R′
j
∼= Rj , we have

R′
i
∼=

{

⊤ if R′
j = ⊤ or Rj2 = ⊤ and

combine(R′
j ,Rj2) otherwise,

by Lemma 11, where R′
i = reduce(A ′

j ∪ Oj2 , Xi, ϕ). Therefore,

l
∑

k=1

αk|R
Oi
k \Xi| >

l
∑

k=1

αk|R
A

′

j

k \Xi|+
l
∑

k=1

αk|R
Oj2

k \Xi|

a contradiction to the minimality of Oi. Therefore, for j ∈ {j1, j2}, Oj is optimal
in EXP i(Ū ,Rj), and

val j(Rj) =

l
∑

k=1

αk|R
Oj

k \Xj |

by the invariant for j. By (II), there is R′
j ∈ Sj(Ū) with R′

j
∼= Rj , which then

implies (III).

Lemma 18. Let r = root(T ) be the root of the tree decomposition, where Xr =
∅, and let Invariant 1 hold for r. Let Ū = (∅, . . . , ∅) and

OPT = min

{

l
∑

k=1

αk|Uk|

∣

∣

∣

∣

∣

Ui ⊆ A, 1 ≤ i ≤ l, and (A , U1, . . . , Ul) |= ϕ

}

be an optimal solution for the LinMSO-problem. Then

OPT = min{ valr(R) | R ∈ Sr(Ū) ∧ eval (convert(R)) = ⊤}.

Proof. Note that A = Ar. Let A
′ be optimal, i.e., let A

′ be a τ -expansion
of A , such that A ′ |= ϕ and

l
∑

k=1

αk|R
A

′

k \Xr| =
l
∑

k=1

αk|R
A

′

k | = OPT .

Let R = reduce(A ′, Xr, ϕ). We have eval (MC(A ′, ϕ)) = ⊤ since A
′ |= ϕ, and

therefore
eval(convert(R)) = eval(MC(A ′, ϕ)) = ⊤

by Lemma 13. Note that Xr = ∅ and therefore ARr ∩ Xr = {(∅, . . . , ∅)}. By
Invariant 1, part (I), there is R′ ∈ Sj(Ū), such that R′ ∼= R, which implies
OPT = valr(R′) by part (III) and the optimality of A ′ for EXPr(Ū ,R). Since
eval(convert(R′)) = ⊤, we also have

OPT = val r(R
′) ≥ min{ valr(R

′′) | R′′ ∈ Sr(Ū) ∧ eval (convert(R′′)) = ⊤}.
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Conversely, let R ∈ Sr(Ū), such that eval (convert(R)) = ⊤ and

val r(R) = min{ valr(R
′) | R′ ∈ Sr(Ū) ∧ eval(convert(R′)) = ⊤}.

By part (II) of the invariant, there is a τ -expansion A ′′ of A , such that
R ∼= reduce(A ′′, Xr, ϕ). Since eval (convert(R)) = ⊤, we have A ′′ |= ϕ by
Lemma 13. Without loss of generality, we can assume by part (III), that A

′′ is

optimal for EXPr(Ū ,R), i.e., valr(R) =
∑l
k=1 αk|R

A
′′

k \Xr|. We then directly
conclude

val r(R) =

l
∑

k=1

αk|R
A

′′

k | ≥ OPT =

l
∑

k=1

αk|R
A

′

k |.

We can now prove Theorem 2.

Proof of Theorem 2. Using induction over the structure of the tree decompo-
sition and Lemmas 14–17 for the respective nodes, we know that Invariant 1
holds for the root node of the tree decomposition after the algorithm has finished
Phase 1. By Lemma 18, the algorithm outputs the correct solution in Phase 2.

For the running time, consider i ∈ T . We have |ARi∩Xi| = O(2|Xi|l), which
for constant l ≤ |τ | and |Xi| ≤ w+1 is a constant. For Ū ∈ ARi ∩Xi, consider
the set Si(Ū). Since the algorithm only inserts games into Si(Ū), if Si(Ū) does
not already contain an equivalent game,

|Si(Ū)| ≤ NXi,ϕ ≤ expqr(ϕ)+1((|Xi|+ 1)O(‖ϕ‖)),

by Lemma 8, which for bounded |Xi| is constant. Furthermore, by Lemma 9,
for each R ∈ Si(Ū),

|R| ≤ expqr(ϕ)+1((|Xi|+ 1)O(‖ϕ‖)),

again a constant. Finally, each position of each game is of the form (H , Xi, ψ),
where ‖ψ‖ ≤ ‖ϕ‖ and ‖H ‖ = O(|Xi| + ‖ϕ‖), where ‖H ‖ denotes the size
of a suitable encoding of H . All operations on games, i.e., reduce(), eval(),
combine(), forget(), and convert(), therefore take constant time.

In total, at a node i ∈ T , a constant number of entries or pairs, respectively,
is considered, and each operation takes constant time. The running time is
therefore O(|T |).

5.3. Extensions

Semiring Homomorphisms. Note that the algorithm implicitly used a homo-
morphism

h : (U1, . . . , Ul) 7→
l
∑

k=1

αk|Uk|

36



from the semiring (P(ARr), ⊎̂,∪, ∅̂, ∅) into the semiring (Z∞,+,min, 0,∞).
Here, P(ARr) is the set of all possible interpretations of the free relation sym-
bols (i.e., a set of tuples of sets), ⊎̂ is a component-wise, disjoint union with

neutral element ∅̂ = (∅, . . . , ∅), and ∪ is the regular union of sets. The extension
to other semiring homomorphisms, e.g., to count the number of interpretations
satisfying the MSO property ϕ, is rather straightforward. See [4] for a list of
many interesting semirings.

Many-sorted Structures. In this article, we considered one-sorted structures,
i.e., structures whose universe contains objects of a single sort only. The cor-
responding theory is also called MS1-theory in the literature and is strictly less
powerful than corresponding logics for multi-sorted structures. For instance, re-
call from Example 1 that a graph G = (V,E) can in a natural way be identified
with a structure over the vocabulary τGraph = (adj ), where V is identified with
the one-sorted universe of vertices, and adj is interpreted as E. The Hamilto-

nian Path problem for graphs cannot be expressed in MSO(τGraph), since this
requires the use of edge-set quantification (see [35], for instance).

Fortunately, this poses no restriction in algorithmic applications. Firstly,
it is not hard to extend the techniques in this paper to many-sorted struc-
tures. Courcelle’s original works [1, 5] were already proven for many-sorted
structures. Secondly, one can easily simulate many-sorted structures by intro-
ducing relation symbols that distinguish the respective objects in a common
universe accordingly. For example, one can consider the incidence graph of a
graph and introduce unary relation symbols V and E, which allow to distinguish
objects of sort “vertex” or “edge”, and a new binary relation symbol inc for the
incidence relation. Transforming a structure and a corresponding tree decom-
position accordingly can be done efficiently and does not increase the width of
the decomposition. Graphs with multi-edges can be represented similarly.

6. Solving Concrete Problems

In the analysis of the running time of the algorithm, we were rather pes-
simistic w.r.t. the constants hidden in the O(|T |). Recall that unless P = NP,
these cannot be bounded by an elementary function, i.e., the running time of
the algorithm cannot be O(f(‖ϕ‖, w)n) for a fixed function f : N×N → N that
is a nesting of exponentials of bounded depth [2].

The picture changes dramatically once we assume the problem is fixed, i.e.,
the problem description consisting of the vocabulary τ , a formula ϕ ∈ MSO(τ)
and the integers α1, . . . , αl ∈ Z are constants. Specialized and comparably effi-
cient algorithms exist for many problems, e.g., of running time O(2wpoly(w)n)
for the Minimum Vertex Cover problem, or of O(3wpoly(w)n) for Minimum

Dominating Set and 3-Colorability, cf. [46, 47], where poly(w) is a fixed
polynomial in w. Recent results furthermore indicate that better running times
are improbable [48]. Assuming small treewidth, such algorithms might still turn
out to be feasible in many practical applications, cf. [43].
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∀y

∀y

∨

∨

∨

y ∈ R

¬adj (x, y)

x ∈ R

¬adj (x, y)

x ∈ R

y ∈ R

¬adj (x, y)

x := a

x := nil

y := nil

y := a

y := nil

Figure 3: Simplified schematic of reduce(A ,X, vc), where A has universe A = {a}, X = A
and a /∈ RA . If any of the symbols x or y remains uninterpreted (cases x := nil and y := nil
in the figure), then some of the plays in EMC(A , ∅, vc) end with a draw and still persist in
the reduced game. If A = Ai and X = Xi for a node i of a tree decomposition, then this
essentially means that it is still open whether nodes in the “future” of i will be adjacent or
whether they will be contained in R.

In this section, we estimate the running times of our generic approach for
the three aforementioned problems. Let (T ,X ) be a tree decomposition of the
input graph structure A over τGraph, where T = (T, F ) and X = (Xi)i∈T with
|Xi| ≤ w for all i ∈ T , i.e., A has treewidth at most w − 1.

6.1. Minimum Vertex Cover

Recall from Example 2 that the formula

vc = ∀x∀y(¬adj (x, y) ∨ x ∈ R ∨ y ∈ R) ∈ MSO(τGraph ∪ {R})

is true on a (τGraph, R)-structure (G , U) if and only if U ⊆ G is a vertex cover
for the graph G . Using the notation from the previous section, we claim that for
each i ∈ T and for all Ū ∈ ARi ∩Xi, the set Si(Ū) contains at most one entry
R, and if R ∈ Si(Ū) for some Ū , then |R| = poly(w). To this end, consider
arbitrary Ū ∈ ARi ∩Xi and let A ′

i ∈ EXP i(Ū).

For any a ∈ Ai, such that a ∈ RA
′

i , the verifier has a winning strategy on
G = EMC(A ′′

i , Xi, ∀y . . .), where A ′′
i = (A ′

i , a) with x
A

′′

i = a, since the atomic
formula x ∈ R is always satisfied for all y. Therefore, eval(G) = reduce(G) = ⊤
and reduce() removes the subgame G from EMC(A ′

i , Xi, vc).
Consider now a subgame EMC(A ′′

i , Xi, ∀y . . .), where A ′′
i = (A ′

i , a) with

a /∈ RA
′′

i . If there is b ∈ Ai, such that (a, b) ∈ adjA
′′

i and b /∈ RA
′′

i ,
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then the falsifier has a winning strategy on EMC(A ′
i , Xi, vc) and consequently

reduce(A ′
i , Xi, vc) = ⊥. If otherwise for all b ∈ Ai either b ∈ RA

′′

i or (a, b) /∈

adjA
′′

i , then we get reduce((A ′
i , a, b), Xi, . . .)) = ⊤, and the corresponding sub-

game will be removed by reduce(). Therefore only the subgame on A ′′
i with

yA
′′

i = nil remains undetermined. We conclude EMC((A ′
i , b1), Xi, ∀y . . .) ∼=

EMC((A ′
i , b2), Xi, ∀y . . .) for all b1, b2 ∈ Ai \Xi.

Due to the symmetry of x and y in the vertex cover formula, we can argue
analogously for the cases where the roles of x and y have been interchanged.
Therefore, R1

∼= R2 for all R1,R2 ∈ REDi(Ū), from which we conclude
|Si(Ū)| ≤ 1. Each game is of size |R| = O(w), since by above considerations

|subgames(reduce(A ′′
i , Xi, ∀y . . .))| ≤

{

|Xi|+ 1 + 1 if xA
′′

i = nil

1 if xA
′′

i ∈ Ai

and |subgames(reduce(A ′
i , Xi, vc))| ≤ |Xi|+ 1 + 1: In both cases, we have |Xi|

subgames for the vertices in Xi, one subgame for all vertices in Ai \Xi (since all
of them are equivalent), and one subgame for the case that x and y, respectively,
remain uninterpreted. See Figure 3 for an example.

It is not hard to see that reduce(R), eval (R), convert(R), forget(R1) and
combine(R1,R2) can be implemented in a way such that they run in time
polynomial in |R| and |R1|+ |R2|. Hence, we immediately find that the generic
algorithm introduced in this article reaches, up to factors polynomial in w, the
running time of O(2wn) of the specialized algorithm, since |ARi ∩Xi| = 2|Xi|

for all i ∈ T .

6.2. Minimum Dominating Set

The formula

ds = ∀x(x ∈ R ∨ ∃y(y ∈ R ∧ adj (x, y))) ∈ MSO(τGraph ∪ {R})

holds in (G , U) if and only if U ⊆ G is a dominating set for the graph G . Let
for each i ∈ T and Ū = (U1) ∈ ARi ∩ Xi be k = |Xi| − |U1|. We claim that
|Sj(Ū)| ≤ 2k. To this end, let again A ′

i ∈ EXP i(Ū) andR = reduce(A ′
i , Xi, ds).

Let U ⊆ Ai be such that A ′
i = (Ai, U).

If U dominates a ∈ Ai, then either a ∈ U and reduce((Ai, a), Xi, x ∈ R) = ⊤,
or there is b ∈ U that is adjacent to a, and reduce((Ai, a), Xi, ∃y . . .) = ⊤. In
both cases we get R′ = reduce((Ai, a), Xi, x ∈ R ∨ ∃y . . .) = ⊤, and therefore
R′ /∈ subgames(R).

If a ∈ Ai is not dominated by U , then reduce((A ′
i , a), Xi, x ∈ R) = ⊥

and reduce(A ′′
i , Xi, y ∈ R ∧ adj (x, y)) = ⊥ for all A ′′

i with xA
′′

i = a and

yA
′′

i ∈ Ai. These games are therefore removed by reduce(). Only the game
reduce(A ′′

i , Xi, y ∈ R ∧ adj (x, y) with xA
′′

i = a and yA
′′

i = nil remains unde-
termined. Thus for all a1, a2 ∈ Ai \Xi that are not dominated by U we have
reduce((A ′

i , a1), Xi, x ∈ R ∨ ∃y . . .) ∼= reduce((A ′
i , a2), Xi, x ∈ R ∨ ∃y . . .).

For A
′′
i with xA

′′

i = nil the game reduce(A ′′
i , Xi, x ∈ R) remains undeter-

mined. For all b ∈ Ai \ U we have reduce((A ′′
i , b), Xi, y ∈ R ∧ adj (x, y)) = ⊥
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∧

∧

y ∈ R

adj (x, y)

adj (x, y)

y ∈ R
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x := a

x := nil

y := nil
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y := nil

Figure 4: Simplified schematic of reduce(A ,X, ds), where A has universe A = {a, b}, X = A,
and RA = {b}, such that a and b are not adjacent. Then a might still be dominated by a
“future” vertex; the corresponding plays (following the upper y := nil branch in the figure)
end with a draw and therefore persist in the reduced game. Similarly, the branch x := nil
corresponds to the case that “future” vertices are chosen as interpretations for x. Such vertices
can also be dominated by b, which is represented by the y := b branch in the figure.

due to the subformula y ∈ R; the corresponding subgame is therefore re-
moved from EMC(A ′′

i , Xi, ∃y . . .). For all b1, b2 ∈ Ai ∩ U we again have
reduce((A ′′

i , b1), Xi, y ∈ R∧adj (x, y)) ∼= reduce((A ′′
i , b2), Xi, y ∈ R∧adj (x, y)).

All in all, either two games R1,R2 ∈ REDi(Ū) only differ w.r.t. the sub-
set of undominated nodes in Xi. Since there are k nodes in Xi that are
not contained in U , this bounds |Sj(Ū)| ≤ 2k. For each of them, we have
|subgames(reduce(A ′′

i , Xi, ∀x . . .))| ≤ |Xi|+1+1 corresponding to at most |Xi|
undominated nodes in Xi, at most one undominated node in Ai\Xi and the sub-
game for A ′′

i with xA
′′

i = nil. Furthermore, |subgames(reduce(A ′′
i , Xi, x ∈ R ∨

∃y . . .))| = O(1) for A ′′
i with xA

′′

i 6= nil and |subgames(reduce(A ′′
i , Xi, x ∈ R ∨

∃y . . .))| ≤ |Xi| + 1 + 1. We conclude that |R| = O(|Xi|). See Figure 4 for an
example.

In total, at a node i ∈ T , there are therefore at most

w
∑

k=0

(

w

k

)

2k = 3w

entries stored, and each entry has size |R| = O(w). Nodes i ∈ T of type leaf,
forget are therefore processed in time O(3wpoly(w)). For join nodes i ∈ T with
children j1, j2, every pair in Sj1(Ū)× Sj2(Ū) is considered. Therefore, at most

∑

Ū∈ARi∩Xi

|Sj1(Ū)| · |Sj2(Ū)| ≤
w
∑

k=0

(

w

k

)

2k2k = 5w

entries are considered, which yields a running time of O(5wpoly(w)n). This does
not yet match the best specialized algorithm for the Minimum Dominating
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Set problem [47] with a running time of O(3wpoly(w)n), but is still faster than
combining all pairs with a running time of Θ(9wpoly(w)n). We note that both
the O(3wpoly(w)n) bound from [47] and the O(4wn) bound from [49] exploit a
certain “monotonicity” property of domination like problems, which does not
hold for all problems that are expressible in MSO (Independent Dominating

Set being an example).

6.3. 3-Colorability

The formula

3col = ∃R1∃R2∃R3

(

∀x

( 3
∨

i=1

(x ∈ Ri) ∧
∧

i6=j

(¬x ∈ Ri ∨ ¬x ∈ Rj)

)

∧

∀x∀y

(

¬adj (x, y) ∨
3
∧

i=1

(¬x ∈ Ri ∨ ¬y ∈ Ri)

)

)

∈ MSO(τGraph)

defining the 3-Colorability problem has no free symbols. Therefore ARi =
{()}, where () is the empty tuple, and the table Sj contains at most one en-
try R = reduce(Ai, Xi, 3col ). We estimate the size of R. For, let 3col =
∃R1∃R2∃R3ϕ, where ϕ = part ∧ is . Here, part = ∀x . . . expresses that the Ri
are a partition of the universe, and is = ∀x∀y . . . ensures that each Rj is an
independent set.

If Ū = (U1, U2, U3) ∈ P(Ai)
3 is not a partition of Ai, then the falsi-

fier wins EMC((Ai, U1, U2, U3), Xi, part), and therefore reduce((Ai, Ū), Xi, ϕ) /∈
subgames(R). Otherwise, EMC((Ai, Ū , a), Xi, part) = ⊤ for all a ∈ Ai and un-
determined when x remains uninterpreted. Using the same arguments as for the
similar vertex cover formula vc, we haveR1

∼= R2 for all Ūj = (Uj,1, Uj,2, Uj,3) ∈
P(Ai)

3 with Ū1 ∩ Xi = Ū2 ∩ Xi and Rj = reduce((Ai, Ūj , Xi, is) 6= ⊥, 1 ≤
j ≤ 2. This implies reduce((Ai, Ū1), Xi, ϕ) ∼= reduce((Ai, Ū2), Xi, ϕ). Thus,
subgames(R) contains at most O(3w) subgames Ri = reduce((Ai, Ū), Xi, . . .) 6=
⊥, which bounds |R| = O(3wpoly(w)).

Thus, assuming combine(R1,R2) requires time Θ(|R1| · |R2| · (‖ϕ‖+ |Xi|)),
we only can bound the total running time by O(9wpoly(n)). This can probably
be improved to O(3wpoly(n)) using a similar approach as for the tables Sj(Ū).

7. Practical Experiments and Conclusion

We started to implement the approach presented in this article in C++. The
current version works for graphs over the vocabulary τGraph = (adj ). At certain
places, the implementation varies from the algorithms presented in this paper
for increased efficiency. For instance, reduce() is usually not called explicitly
but computed directly where needed.

We list some running times and memory usage of the implementation when
solving the three problems discussed in the previous section. Input graphs are
randomly generated subgraphs of n×m grids and Erdős–Rényi random graphs.
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Minimum Vertex Cover

time in seconds memory in MB
dimension runs min max median min max median

1× 200 40 0.2 0.2 0.2 1 1 1
2× 100 40 0.3 0.4 0.3 1 1 1
3× 66 40 0.5 0.9 0.6 1 1 1
4× 50 40 0.1 1.0 0.1 1 1 1
5× 40 40 0.2 0.4 0.3 1 2 2
6× 33 40 0.3 0.9 0.5 2 3 2
7× 28 40 0.6 1.9 1.0 2 5 3
8× 25 40 1.2 4.6 2.3 3 9 5
9× 22 40 1.9 13.6 5.2 5 18 10
10× 20 40 4.4 41.4 13.7 9 36 19.5
11× 18 40 11.3 156.4 46.2 16 62 39
12× 16 40 28.2 642.4 185.2 27 128 76
13× 15 40 61.3 2644.9 679.4 42 268 145.5
14× 14 40 308.7 10257.3 3017.1 80 468 283

Minimum Dominating Set

time in seconds memory in MB
dimension runs min max median min max median

1× 200 40 0.3 0.3 0.3 1 1 1
2× 100 40 0.8 1.0 0.9 1 1 1
3× 66 40 0.2 0.3 0.2 1 1 1
4× 50 40 0.6 0.9 0.8 2 3 2.5
5× 40 40 2.2 3.2 2.8 4 6 6
6× 33 40 8.3 12.8 11.6 11 17 15
7× 28 40 40.3 85.4 71.0 27 47 42
8× 25 40 238.9 681.2 493.7 68 137 112
9× 22 35 1605.7 8588.2 5235.3 170 386 332

3-Colorability

time in seconds memory in MB
dimension runs min max median min max median

1× 200 20 0.5 0.6 0.5 1 1 1
2× 100 20 0.2 0.2 0.2 1 1 1
3× 66 20 0.7 1.6 0.9 2 2 2
4× 50 20 3.3 6.3 4.8 5 5 5
5× 40 20 15.3 38.3 29.3 10 15 14
6× 33 20 99.6 317.4 233.0 26 45 42
7× 28 20 771.6 2702.9 2262.0 70 139 123
8× 25 15 4029.2 26841.6 14032.5 146 373 268

Table 1: Running times and memory usage on random subgraphs of grids with about 200
vertices
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Minimum Vertex Cover

time in seconds memory in MB
width runs min max median min max median

1 387 0.5 0.8 0.6 2 3 2
2 179 0.1 1.0 0.8 2 4 3
3 68 0.1 0.3 0.2 3 4 3
4 74 0.2 0.5 0.3 3 4 4
5 69 0.4 1.3 0.7 3 4 4
6 62 0.9 2.3 1.4 4 6 5
7 38 1.5 5.5 3.1 5 11 9
8 36 2.5 14.0 6.3 8 20 15
9 45 7.4 34.9 16.6 18 40 27
10 29 24.8 121.6 56.8 30 78 56
11 28 55.8 382.1 156.8 56 138 103
12 29 164.6 1495.9 392.7 100 293 160

Minimum Dominating Set

time in seconds memory in MB
width runs min max median min max median

1 387 0.6 0.9 0.7 2 3 2
2 174 0.1 1.0 0.2 2 4 3
3 39 0.2 0.8 0.5 3 4 3
4 30 0.7 4.5 2.6 4 8 6
5 17 4.3 29.2 16.5 8 21 16
6 9 112.3 318.5 187.8 38 63 49
7 1 2403.9 2403.9 2403.9 162 162 162
8 3 35290.3 64922.8 51801.0 319 338 321
9 1 43228.4 43228.4 43228.4 347 347 347

3-Colorability

time in seconds memory in MB
width runs min max median min max median

1 387 0.1 0.2 0.1 2 3 2
2 174 0.2 0.8 0.5 2 4 3
3 39 0.8 3.6 2.2 3 6 5
4 30 4.1 22.2 15.0 7 16 13
5 17 35.3 156.9 99.9 19 52 37
6 9 485.8 1328.8 1168.8 81 150 125
8 2 33733.8 75099.9 54416.8 446 664 555

Table 2: Running times and memory usage for some random graphs on 200 vertices, grouped
by the width of the tree decomposition used.

43



All graphs have about 200 vertices and the probability to include an edge ranges
between 0.001 and 0.015. For the grid-subgraphs we used path decompositions
of width n. Tree decompositions for the random graphs were computed by a
triangulation heuristics (cf. [50]). The tests were done under Linux 2.6.32 on a
Intel Core 2 Quad CPU Q6600 (2.40GHz) with 4 GB RAM.

8. Conclusion

Motivated by a practical application, we present an alternative proof of
Courcelle’s Theorem. Our proof is based on model checking games and tries
to avoid expensive constructions such as the power set construction for tree
automata, which turned out to cause some problems in practice.

Let us mention that our approach could be made simpler if we applied it to
graphs of bounded clique-width. The union operation for join nodes of a tree
decomposition involves a “fusion” of elements and of interpretations of nullary
symbols. The clique-width parse trees do not use nullary symbols and the union
is replaced by a disjoint union, which simplifies many of the operations. On the
other hand, the lack of suitable algorithms to compute the mandatory clique-
width parse trees favors treewidth based techniques for practical applications.

First experiments with our approach do indeed indicate practical feasibility.
An implementation based on our proof can solve the 3-Colorability problem
for some graphs where the automata theoretic approach based on the well-
known MONA tool failed. The running times of our generic implementation
can still not compete with specialized, hand-written algorithms that can easily
solve problems such as, say 3-Colorability, for graphs of treewidth 15 and
beyond. We are confident that further optimization can improve the feasibility
of our generic approach in practical applications even more.
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E. Grädel (Eds.), Lectures in Game Theory for Computer Scientists, Cam-
bridge University Press, 2011, pp. 99–145.

[29] K. A. Abrahamson, M. R. Fellows, Finite automata, bounded treewidth,
and well-quasiordering, in: Graph Structure Theory, Contemporary Math-
ematics, Vol. 147, American Mathematical Society, 1993, pp. 539–564.

[30] J. W. Thatcher, J. B. Wright, Generalized finite automata theory with
an application to a decision problem of second-order logic, Mathematical
Systems Theory 2 (1) (1968) 57–81.

[31] J. Doner, Tree acceptors and some of their applications, J. Comput. Syst.
Sci. 4 (1970) 406–451.

[32] P. B. Miltersen, J. Radhakrishnan, I. Wegener, On converting cnf to dnf,
Theor. Comput. Sci. 347 (1-2) (2005) 325–335.

46



[33] B. Courcelle, On the model-checking of monadic second-order formulas with
edge set quantifications, Discrete Applied Mathematics, to appear.

[34] K. L. McMillan, A technique of state space search based on unfolding,
Form. Methods Syst. Des. 6 (1995) 45–65.

[35] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, 1999.

[36] R. Ganian, P. Hliněený, On parse trees and Myhill–Nerode–type tools for
handling graphs of bounded rank-width, Disc. App. Math. 158 (7) (2010)
851–867.

[37] N. Robertson, P. D. Seymour, Graph minors. II. Algorithmic aspects of
tree-width, J. Algorithms 7 (1986) 309–322.

[38] R. Diestel, Graph Theory, 4th Edition, Springer-Verlag, Heidelberg, 2010.

[39] S. Arnborg, D. G. Corneil, A. Proskurowski, Complexity of finding embed-
dings in a k-tree, SIAM J. Alg. Disc. Meth. 8 (1987) 277–284.

[40] H. L. Bodlaender, A linear time algorithm for finding tree-decompositions
of small treewidth, SIAM J. Comput. 25 (1996) 1305–1317.

[41] H. Bodlaender, A. M. C. A. Koster, Treewidth computations I. Upper
bounds, Inf. Comput. 208 (3) (2010) 259–275.

[42] H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11
(1993) 1–21.

[43] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth,
Theoretical Comput. Sci. 209 (1998) 1–45.

[44] A. Tarski, The semantic conception of truth, Philosophy and Phenomenlo-
logical Research 4 (1944) 13–47.

[45] C. Baier, J.-P. Katoen, Principles of Model Checking (Representation and
Mind Series), The MIT Press, 2008.

[46] J. A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems
on partial k-trees, SIAM Journal on Discrete Mathematics10 (4) (1997)
529–550.

[47] J. M. M. van Rooij, H. L. Bodlaender, P. Rossmanith, Dynamic program-
ming on tree decompositions using generalised fast subset convolution, in:
ESA, Vol. 5757 of Lecture Notes in Computer Science, Springer, 2009, pp.
566–577.

[48] D. Lokshtanov, D. Marx, S. Saurabh, Known algorithms on graphs of
bounded treewidth are probably optimal, Tech. Rep. abs/1007.5450, CoRR,
accepted for SODA’11 (Jul. 2010).

47



[49] J. Alber, R. Niedermeier, Improved tree decomposition based algorithms for
domination-like problems, in: Proceedings of the 5th Symposium on Latin
American Theoretical Informatics (LATIN), no. 2286 in Lecture Notes in
Computer Science, Springer, Cancun, Mexico, 2002, pp. 613–627.

[50] H. L. Bodlaender, Necessary edges in k-chordalisations of graphs, J. Comb.
Optim. 7 (3) (2003) 283–290.

48


	1 Preliminaries
	1.1 Structures
	1.2 Treewidth and Tree Decompositions
	1.3 MSO Logic

	2 Model Checking Games
	2.1 An Extension of the Classical Model Checking Game

	3 Reducing the Size of Games
	4 Combining and Extending Games
	5 Courcelle's Theorem
	5.1 The Algorithm
	5.2 Proofs
	5.3 Extensions

	6 Solving Concrete Problems
	6.1 Minimum Vertex Cover
	6.2 Minimum Dominating Set
	6.3 3-Colorability

	7 Practical Experiments and Conclusion
	8 Conclusion
	9 Acknowledgments

