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The weighted 2-metric dimension of trees

in the non-landmarks model

Ron Adar∗ Leah Epstein†

Abstract

Let T = (V,E) be a tree graph with non-negative weights defined on the vertices. A vertex
τ is called a separating vertex for u and v if the distances of τ to u and v are not equal. A
set of vertices L ⊆ V is a feasible solution for the non-landmarks model (NL), if for every pair
of distinct vertices, u, v ∈ V \ L, there are at least two vertices of L separating them. Such a
feasible solution is called a landmark set. We analyze the structure of landmark sets for trees
and design a linear time algorithm for finding a minimum cost landmark set for a given tree
graph.

1 Introduction

In this paper we study a generalization of the metric dimension problem, which is a problem of
finding a landmark set or a resolving set of a graph [21, 14, 2, 7, 18, 17, 5, 20, 19, 16, 9, 15]. A
landmark set is a subset of vertices L ⊆ V of an undirected graph G = (V,E), such that for any
u, v ∈ V (u 6= v), there exists τ ∈ L with d(u, τ) 6= d(v, τ), where d(x, y) denotes the number of
edges in a shortest path between x and y. In this case, τ is called a separating vertex for u and v.
Alternatively, it is equivalent to require for L to have a separating vertex for every pair u, v ∈ V \L.

This problem was introduced by Harary and Melter [14] and by Slater [21]. The problem was
studied in the combinatorics literature [2, 4, 5, 6], with respect to complexity [17, 3, 16, 15, 8, 9],
and with respect to design of polynomial time algorithms for certain graph classes (sometimes even
for the weighted version), and in particular for paths and trees [21, 14, 17, 5, 20, 9].

The k-metric dimension problem (for an integer k ≥ 2) [11, 1, 12, 22, 10, 13] is the problem of
finding a subset L that has at least k separating vertices for every pair of distinct vertices u and
v. If this is required for every u, v ∈ V , the model is called AP (all-pairs model) (introduced in
[11] and independently in [1]), and if this is required for every u, v ∈ V \ L, the model is called
NL (non-landmarks model), which was introduced in [1]. In all cases, a valid solution is called
a landmark set. In the weighted case, a non-negative rational cost is given for each vertex by a
function c : V → Q+. For a set U ⊆ V , c(U) =

∑
v∈Uw(v) is the total cost of vertices in U , and the

goal is to find a landmark set L with the minimum value w(L). For a given graph, the minimum
cardinality of any landmark set is called the k-metric dimension, while the minimum cost of any set
is called the weighted k-metric dimension. Yero, Estrada-Moreno, and Rodŕıguez-Velázquez [22]
showed that computing the k metric dimension of an arbitrary graph is NP-hard.
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In this paper we study the case of trees for k = 2, in the non-landmarks model (NL). In this
model, a landmark set always exists for any k as V is a landmark set. Let T = (V,E) be a tree
graph. Let n = |V | be the number of T ’s vertices. The case of a path graph was completely
analyzed in [1] (for all values of k and the two models, see also [10] for the all-pairs model), and
therefore we will assume that T has at least one vertex of degree greater than 2. It was shown in
[1] that a minimal cost landmark set for a path graph and k = 2 consists of two or three vertices.
Note that (by definition) every solution for AP is a solution for NL. Any subset of three vertices
of a path form a landmark set (for each of the models), the two endpoints of the path also for a
landmark set for both models. However, a solution consisting of the first two vertices of the path
or the last two vertices of the path are landmark sets for NL but not for AP. For the case k = 1,
trees were studied in [5, 14, 17, 21, 9].

Given a tree, a vertex of degree at least 3 is called a core vertex or a core. A vertex of degree 2
is called a path vertex, and a vertex of degree 1 is called a leaf. As paths were completely studied
in [1], we will consider trees that have at least one core. For a core v, we often consider the subtrees
creating by removing v from the tree, and call them the subtrees of its neighbors (one subtree for
each neighbor). We sometimes consider the BFS tree that is created by rooting the tree at v. A
subtree of a neighbor of a core v that is a path (without any cores) is called a leg (or a standard
leg) of v. If a leg consists of a single vertex (that is, v is connected to a leaf), we called it a short
leg, and otherwise it is called a long leg. For a leg ℓ of v which consists of j ≥ 1 vertices, the vertex
of position i, also denoted by ℓi (for 1 ≤ i ≤ j), is the vertex of the leg ℓ whose distance from v is
i. Khuller et al. [17] showed that a landmark set for k = 1 can be created by selecting all leaves
except for the leaf of one leg of each core. In [9], it was shown that a minimum cost landmark set
is created by selecting one vertex of each leg of a core except for one leg, such that the selected
vertices have total minimal cost.

Given a tree, we define a small core to be a core vertex that satisfies all the following conditions;
The core has a degree of exactly 3, it has at least two legs, one of which is a short leg. The second
leg of a small core may be either short or long, and the third subtree of a neighbor of v can be
a (short or long) leg or it can contain one or more cores. Other cores are called regular cores. If
the third subtree of a neighbor of v contains a core, the closest core to v, x, is connected to v by a
path consisting of path vertices. For a small core v, if the closest core, x, is a small core too, then
since x also has two legs (in addition to the subtree of a neighbor of x that contains v), the tree
has exactly two (small) cores and no regular cores (while in any other case, x is a regular core).
We will have two special cases. One special case is where the tree contains exactly two small cores
(and no regular cores). The other special case is where the tree has exactly one small core (and
no regular cores, that is, the tree consists of a core with three legs, at least one of which is short).
The two special cases will be considered separately after some properties will be discussed, while
all cases where the tree has at least one regular core will be treated together.

Next, we define a modified leg. For a core vertex v, a subtree of a neighbor of v that has exactly
one core, and this core is a small core, is called a modified leg (in this case v is the closest regular
core to at least one small core). That is, a modified leg of v consists of a path to a small core, a
small core, and the standard legs of the small core (where the small core has one short leg and one
leg that is short or long). A g-leg of a core v is a subtree of a neighbor of v that is either a standard
leg (short or long) or a modified leg (the terms short leg and long leg will refer only to standard
legs). A position on a modified leg ℓ is defined exactly as it is defined for a standard leg, but if
the small core (which is part of ℓ) is in position i ≥ 1, then there are two vertices with position
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i + 1 on ℓ, denoted by ℓa and ℓb, where ℓb is the unique vertex of a short leg of the small core (if
both its standard legs are short, the choice of which vertex of a short leg is ℓa and which one is ℓb

is done arbitrarily). As explained above, except for the special case treated later, if a small core u
that belongs to a modified leg of v, then v is a regular core.

A regular core is called minor if one of the two following conditions holds. The first condition
is that it has at most one g-leg (as its degree is at least 3, there are at least two other subtrees
of its neighbors that are neither standard legs nor modified legs, and each such subtree contains a
regular core). The second condition is that its degree is at least 4, it has no modified legs, it has
exactly two standard legs, one of which is short (the other leg is either short or long) and the other
(at least two) subtrees of its neighbors are not g-legs and contain regular cores. Thus, for a minor
core v, no matter which condition out of the two is satisfied, there are always at least two subtrees
of the neighbors of v which are not g-legs, and it either has at most one g-leg (which is standard or
modified), or it has two standard legs, at least one of which is short. If a regular core is not minor,
then we call it a main core.

In the AP (all pairs model), two separations in a landmark set L are required for any pair of
distinct vertices and not only for the vertices of V \ L. In this case, it is sufficient to analyze cores
(without splitting them into small cores and regular cores) and standard legs. The condition for
a set L ⊆ V to be a landmark set is defined on the sets of legs of cores. For each core, if there is
a leg that does not have any vertex in L, any other leg must have at least two vertices in L. In
particular, if a core has a single leg, it will not have any vertices in L in a minimum cost landmark
set (see [11, 12, 22]).

Figure 1: An example of a tree with seven core vertices a,b,c,d,e,f ,g. The vertices b and d are
small cores, c and e are minor cores, all other are main cores. Note that c is a core with a single
(modified) leg, while e is a core without any g-legs.
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2 Properties

In this section we analyze the structure of landmark sets. We prove a number of lemmas and claims
that determine the requirements of minimal landmark sets (with respect to cost or to set inclusion).
We will define required solution types for g-legs. This will allow us to design a relatively simple
algorithm for computing a minimum cost landmark set for a given tree in the next section.

Lemma 1 Consider a tree and a regular core v. Every subtree of a neighbor of v that has a regular
core must have a main core. In particular, a tree that has a minor core also has at least two main
cores, and every tree with a regular core has a main core.

Proof. Root the tree at v,and consider a subtree of v that has a regular core. Let x be a regular
core of a largest distance to v in this subtree (that is, a regular core of largest depth in the rooted
tree). The core x must have at least two children in the rooted tree, as its degree in the tree is
at least 3. If the degree of x in the tree is at least 4, x has at least three children in the rooted
three, and the subtrees of these children are g-legs, as these subtrees contain no regular cores (since
otherwise x is not a regular core of maximum depth). Since x has at least three g-legs, it is not a
minor core, and therefore it is a main core. Consider the case where the degree of x is 3 and it has
exactly two children in the rooted tree, where the subtrees of these children are g-legs. A minor
core of degree 3 only has one g-leg, and therefore this case is impossible. We find that x is a main
core.

Consider a minor core y. By definition, the subtrees of at least two neighbors of y are not g-legs,
each of them has a regular core and thus it also has main core, proving that there are at least two
main cores in the tree. Finally, consider a tree that has a regular core u. If u is a main core, we
are done. Otherwise, it is a minor core, and in this case there are at least two main cores in the
tree.

We define algorithms for finding subsets of vertices for g-legs of cores. We will call these sets
local sets. We will show that for trees with at least one regular core, a minimum weight landmark
set can be found by combining the local sets (in the two special cases of trees without regular cores,
the conditions will still be necessary but they will not always be sufficient). In the algorithms, we
will assume that a core with a set of g-legs is given. For a regular core this is simply the set of its
g-legs. The case of small cores is relevant only for the two special cases. If the tree has a single
core which is small, we consider the three standard legs of this core. In the case of a tree with two
small cores, each one of them can be seen as a core with two standard legs (one of which is small),
and one modified leg.

Each solution for the set of g-legs of one core v will consist of finding a solution for each g-leg
and combining such solutions, but the g-legs cannot be dealt with independently (and v will never
be selected as a part of a local set). We now define several types of solutions for standard legs and
for modified legs. For standard legs, the solution types are as follows. A type (s, 0) solution is an
empty set (that is, no vertices of the leg are selected). A type (s, 1) solution consists of one vertex
of the leg whose position on the leg is at least 2. A type (s, 2) solution consists of at least two
vertices of the leg. Notice that solutions of types (s, 1) and (s, 2) valid only for long legs. A type
(s, 3) solution consists of the vertex with position 1 in the leg. For a modified leg ℓ, whose small
core is at position i, the solution types are as follows. A type (m, 1) solution contains exactly one
vertex out of ℓa and ℓb, that is, the solution is either {ℓa} or it is {ℓb}. A type (m, 2) solution does
not have any of the vertices ℓa and ℓb, it consists of at least two vertices with positions i + 2 or
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larger, and possibly other vertices (whose positions are not i+1). A type (m, 3) solution contains at
least two vertices, one of which is either ℓa or ℓb (it is possible that it contains both these vertices).

A subset S of vertices of the g-legs of a core v, inducing solutions for the g-legs, is called a local
set if it satisfies the following conditions.

1. There is at most one standard leg whose solution is of type (s, 0), and the other standard legs
have solutions of types (s, 1), (s, 2), and (s, 3).

2. All modified legs have solutions of types (m, 1), (m, 2), and (m, 3).

3. If there is a standard leg whose solution is of type (s, 0), then no modified leg has a solution
of type (m, 1).

4. If there is a long leg ℓ whose solution is of type (s, 0), then every long leg except for ℓ has a
solution of type (s, 2).

5. If there is a short leg whose solution is of type (s, 0), then every long leg has a solution of
type (s, 2) or (s, 3).

As mentioned above, a short leg cannot have a solution of type (s, 1) or (s, 2). Thus, if some
standard leg ℓ has a solution of type (s, 0), then all short legs (expect for ℓ, if it is short) have
solutions of type (s, 3).

Lemma 2 Consider a landmark set L, and a core v. The set L contains a local set S of v as a
subset.

Proof. First, we show that if the vertices of a g-leg that are in L do not form any of the types
of solutions defined above, then L is not a landmark set. For standard legs, these types cover all
possible solutions, thus we consider modified legs. Consider a modified leg ℓ of a regular core v,
let u be its small core, and let i be the position of u on ℓ. Any solution that contains at least one
of ℓa and ℓb is either of type (m, 1) or of type (m, 3). If the solution does not contain any of the
vertices ℓa and ℓb, these two vertices cannot be separated by any vertex that is not on the legs of
u, as their paths to such vertices traverse u (or end at u), and their distances to u are equal. To
obtain two separations between ℓa and ℓb (if none of ℓa and ℓb is in L), L must contain at least two
vertices whose positions on ℓ are at least i+ 2 (these vertices are on the same standard leg of u as
ℓa). Thus, in this case the solution is of type (m, 2). This also proves the second condition of local
sets.

Consider two standard legs of v, ℓ1 and ℓ2. If none of the vertices ℓ11 and ℓ12 is in L, then they
can only be separated by vertices of ℓ1 ∪ ℓ2, as they have equal distances to v, and all paths from
ℓ11 and ℓ12 to vertices not in ℓ1 ∪ ℓ2 traverse v (or end at v). Thus, the case that both legs have type
(s, 0) solutions is impossible. This proves the first condition of local sets (and that expect for at
most one short leg with an (s, 0) type solution, the solutions of every short leg are of type (s, 3)).
Consider a standard leg without any landmarks, ℓ1, and a leg ℓ2 that is either long or modified. We
will show that ℓ2 has at least two landmarks unless ℓ1 is short and ℓ2 is long, in which case it may
have a type (s, 3) solution, and in all other cases the possible types of solutions are those having at
least two vertices, that is, (s, 2), (m, 2), and (m, 3) type solutions. Assume that ℓ2 has exactly one
landmark. The landmark of ℓ2 must be in the first position of ℓ2, as otherwise none of ℓ11 and ℓ12 is
in L, and there is just one separation between them (because only vertices of ℓ1 ∪ ℓ2 can separate
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them). If ℓ2 is a modified leg, then as the positions of ℓa2 and ℓb2 on ℓ2 are at least 2, this is not a
solution of type (m, 1), and since it has a single vertex, it is not a solution of type (m, 2) or (m, 3),
and we reach a contradiction. We are left with the case that ℓ2 is long, and its solution is of type
(s, 3). However, if ℓ1 is long as well, since ℓ21, ℓ

2
2 /∈ L (and ℓ1 has no vertices in L while ℓ2 only has

ℓ12 in L), these two vertices will only have one separation, showing that the solution is not valid.
This proves the last three conditions.

Lemma 3 Consider a set L ⊆ V . If for every core v, the subset of L that is restricted to the
vertices of the g-legs of v is a local set, then every pair of vertices x, y /∈ L with equal positions on
the g-legs of v has at least two separations in L.

Proof. If x and y are on the same g-leg of v, then this must be a modified leg ℓ of v, and
{x, y} = {ℓa, ℓb}. Since x, y /∈ L, the solution for ℓ must be of type (m, 2). In this case there are
two vertices of L on the leg that contains ℓa, the distance of each such vertex to ℓa is smaller than
its distance to ℓb, and there are at least two separations between x and y.

Consider the case where x and y are on different g-legs of v. We claim that any vertex z on
the leg of x is closer to x than it is to y. Let ℓ̃ be the leg of x. The path from y to z traverses
ℓ̃1, thus d(y, z) = d(y, v) + 1 + d(ℓ̃1, z) = d(x, v) + 1 + d(ℓ̃1, z) = d(x, ℓ̃1) + 2 + d(ℓ̃1, z). However,
d(x, z) ≤ d(x, ℓ̃1) + d(ℓ̃1, z), proving d(x, z) < d(y, z). Thus, if the two g-legs (of x and y) have
at least two vertices of L in total, then there are at least two separations between x and y. Any
modified leg has at least one vertex in any local set, and if there is a standard leg with a (s, 0) type
solution, then any modified leg has at least two vertices in any local set. We find that the only
case where the two g-legs have at most one vertex of L (together) is where both these g-legs are
standard legs, one leg have a type (s, 0) solution, and the other leg has a type (s, 3) solution. We
show such a solution is not possible. If at least one of the legs of x and y is short, then it only has
a vertex in position 1. Thus, the positions of x and y are equal to 1. This last case is impossible
as x, y /∈ L implies that none of these two legs has a type (s, 3) solution if the positions of x and
y are 1. We find that both these legs are long, but then the leg that does not have a type (s, 0)
solution must have a type (s, 2) solution, and the two legs have at least two vertices of L in total,
so this case is impossible too.

Lemma 4 A local set of a main core has at least two vertices.

Proof. Consider a main core v where the local set of its g-legs has at most one vertex. Any local
set of v contains at least one vertex on every g-leg except for possibly one g-leg, and it has at least
one vertex of every modified leg. Thus, v has at most two g-legs. If v has at most one g-leg, then
it is a minor core. If it has exactly two g-legs, then one of them has no vertices in the local set,
while the other one has one vertex in this set. The g-leg with one vertex in the local set cannot be
a modified leg, as in this case (where there is a standard leg with a (s, 0) type solution), it would
have at least two vertices in the local set, by property 3 of local sets. Thus, v has two standard
legs. If one them is short, then v is a minor core again. Otherwise, as a long leg has a type (s, 0)
solution, the other long leg has a type (s, 2) solution, and the local set has at least two vertices,
contradicting the assumption.

Claim 5 Consider a tree, a core v, and a set L ⊆ V that contains a local set for v. If x 6= y are
vertices of the subtree consisting of v and its g-legs such that x, y /∈ L and d(x, v) < d(y, v), then
any vertex of L expect, possibly, for the vertices on the g-leg of v that contains y separates them.
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Proof. Consider a vertex z ∈ L that is not on any g-leg of v that contains at least one of x and y
(note that y 6= v, as d(y, v) > 0, so y is on a g-leg of v). The vertex z separates x and y as their
paths to z traverse v (a path can start at v if x = v, or the paths can end at v if z = v), while x
and y have different distances to v. If x is on a g-leg that is not the g-leg of y, consider a vertex z′

on this g-leg. Since d(x, z′) ≤ d(x, v) + d(v, z′) < d(y, v) + d(v, z′) while d(y, z′) = d(y, v) + d(v, z′),
z′ also separates x and y.

Lemma 6 Consider a tree that has at least two regular cores, and a set L ⊆ V . If for every regular
core v, the subset of L that is restricted to the vertices of the g-legs of v is a local set, then for
every pair of vertices x, y /∈ L in the subtree consisting of v and its g-legs, there are two separations
between x and y.

Proof. By Lemma 1, a tree with a minor core also has at least two main cores. Thus, the tree has
at least two main cores in any case. If d(x, v) = d(y, v), then there are two separations between x
and y in the subset of L restricted to the g-legs of v, as it is a local set. Otherwise, the tree has at
least one additional main core u except for v, such that the vertices of L on the g-legs of u form a
local set for u, and therefore there are at least two such vertices, by Lemma 4. By Claim 5, x and
y are separated by the vertices of L that are in the local set which is the subset of L restricted to
the g-legs of u.

Lemma 7 Consider a tree with at least two regular cores, and a set L ⊆ V . If for every regular
core v, the subset of L that is restricted to the vertices of the g-legs of v is a local set, then L is a
landmark set.

Proof. Consider two vertices x 6= y, such that x, y /∈ L. If x and y are in the subtree consisting
of a regular core and its g-legs, then there are two separations between them due to Lemma 6.
Next, assume that x is a vertex of a subtree consisting of a main core v and its g-legs (that is,
x = v or x is on a g-leg of v), while y is not in this subtree. Let v′ be the neighbor of v on the
tree path from v to y. As the subtree of v′ is not a g-leg of v, it has at least one regular core and
therefore it has a main core, by Lemma 1. Let z denote such a core, let z1, z2 ∈ L be vertices of
the g-legs of z, and let v1, v2 ∈ L be vertices of the g-legs of v (all of which must exist by Lemma
4). Consider the case d(y, v) ≤ d(x, v). As d(y, zi) ≤ d(y, v′) + d(v′, zi) = d(y, v) − 1 + d(v′, zi),
while d(x, zi) = d(x, v) + 1 + d(v′, zi) ≥ d(y, v) + 1 + d(v′, zi), for i ∈ {1,2}, z1 and z2 separate
x and y. In the case d(y, v) > d(x, v), we find d(y, vi) = d(y, v) + d(v, vi), for i ∈ {1,2}, while
d(x, vi) ≤ d(x, v) + d(v, vi) < d(y, v) + d(v, vi), so v1 and v2 separate x and y. If x is a minor
core or on a g-leg of a minor core a, root the tree at a (we let a = x if x is a minor core). There
are at least two subtrees of a with main cores (by Lemma 1) and therefore, with at least two
vertices of L (in each). Since we assume that y is not a or on a g-leg of a, it is in one of these
subtrees. Let a′ be the neighbor of a that is the root of this subtree. If d(y, a) ≤ d(x, a), then
for every vertex u in the subtree of a′, d(x, u) = d(x, a) + 1 + d(a′, u) > d(y, a) + d(a′, u) and
d(y, u) ≤ d(y, a′) + d(a′, u) = d(y, a)− 1+ d(a′, u), thus every such vertex u separates x and y, and
there are two separations for this pair of vertices. Otherwise, d(y, a) > d(x, a), and for every vertex
w in the subtree of a different neighbor of a that has a main core (and thus at least two vertices of
L) in its subtree, d(x,w) = d(x, a) + d(a,w) and d(y,w) = d(y, a) + d(a,w), giving two separations
for x and y.

Finally, assume that none of x and y is a regular core or on a g-leg of a regular core (as all cases
where one of the two vertices satisfies this condition were considered). Root the tree at x. There
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are at least two subtrees (since a leaf must be a part of a g-leg), and each one must have a regular
core (otherwise x is a part of a g-leg). For any vertex b in the subtree that does not contain y,
d(y, b) = d(y, x) + d(x, b) > d(x, b), giving two separations between x and y again.

Lemma 8 Consider a tree with exactly one core v (that has at least three g-legs), and a set L ⊆ V
that contains a local set for v. In all the following cases L is a landmark set of the tree.

1. The set L contains at least one vertex of each g-leg of v.

2. The core v has at least four g-legs.

3. The core v has at least two g-legs that are modified legs.

4. The set L contains v.

Proof. In each one of the cases we consider two vertices x, y /∈ L. If d(x, v) = d(y, v), then x and
y have the same position in their g-legs and there are two separations between x and y since L is
a local set, by Lemma 3. Otherwise, assume without loss of generality that d(x, v) < d(y, v) (and
thus y 6= v).

In the first two cases, v has at least two additional g-legs except for the g-leg of y each having
at least one vertex of L. In the first case this holds as there are two additional g-legs, and every
g-leg has a vertex of L. In the second case, L contains a local set and every g-leg, except for at
most one, has a vertex of L. There are at least four g-legs in total, there are at least two g-legs
except for the g-leg of y and a g-leg with no vertices of L (if such a standard leg exists). Thus,
there are at least two separations between x and y as by Claim 5, any vertex of L separates x and
y possibly except for vertices on the g-leg of y.

In the third case, if every g-leg has a vertex of L, then the property follows from the first case.
Otherwise, there is a standard leg without any vertex of L, and therefore every g-leg, except for
this leg, has at least two vertices of L, by property 3 of local sets. Since at least two g-legs of v are
modified legs, there is a modified leg that is not the g-leg of y, and its vertices that belong to L
separate x and y.

In the fourth case, it is sufficient to consider a tree and a set L that do not satisfy any of the
conditions of the first three cases. Thus, v has three g-legs. As d(x, v) < d(y, v), v separates x and
y. At least one of the g-legs that are not the g-leg of y has at least one vertex in L, and this vertex
separates x and y as well.

Corollary 9 Consider a tree that has at least one regular core, and a set L ⊆ V . If for every
regular core v, the subset of L that is restricted to the vertices of the g-legs of v is a local set, then
L is a landmark set.

Proof. If the tree has at least two regular cores, this claim was proved in Lemma 7. Assume that
the tree has one regular core u. If u has at least four g-legs, or it has three g-legs, out of which
at least two g-legs are modified legs, then the claim was proved in Lemma 8 (the second and third
parts). Next, assume that u has three g-legs, out of which at most one is modified. If u has three
g-legs, such that all of them are standard, and at least one leg is short, then u is a small core (and
not regular). If u has one modified leg, and two standard legs, out of which at least one leg is
short, then u is a small core (in this case u is not regular either, the tree has two small cores and
no regular cores). Thus, we find that u has two long legs, and the third g-leg is either modified,
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or it is standard and long. If every leg of u contains a vertex of L, then the claim was proved in
Lemma 8 (the first part). Otherwise, u has a standard leg with no vertices of L. By the properties
of local sets, there are two g-legs with at least two vertices of L on each g-leg. In this case, for any
pair x, y /∈ L, if d(x, u) = d(y, u), then there are two separations between x and y as L contains a
local set for the g-legs of u, and if d(x, u) < d(y, u), then the two vertices of L that are on a g-leg
that does not contain y separate x and y.

Lemma 10 Consider a tree with no regular cores and a single small core v, such that v has three
standard legs. If L ⊆ V contains a local set for v and |L| ≥ 3, then L is a landmark set. If L ⊆ V
contains a local set for v and |L| ≤ 2, then L is a landmark set if and only if L consists of the two
vertices of two short legs of v.

Proof. Assume that |L| ≥ 3. By Lemma 8, if v ∈ L, or if every leg has a vertex of L, we are
done. Otherwise, consider a pair x, y /∈ L. If d(x, u) = d(y, u), then by Lemma 3 there are two
separations between x and y as L contains a local set for the g-legs of u. If d(x, u) < d(y, u), and
the two legs that are not the leg of y have at least two vertices of L, we are done too (by Claim 5).
As |L| ≥ 3, the remaining case is that the leg of y has at least two vertices in L, while one of the
other legs of u has one vertex of L, and it separates x and y. At most one vertex of the leg of y
can have equal distances to x and y, and therefore, any other vertex of the leg of y which is in L
separates them as well, and we assumed there is at least one such vertex for this case.

A local set cannot contain less than two vertices by its properties, and in this case there are
two legs with one vertex of L each, one standard leg without any vertices of L, and v /∈ L. Every
vertex of L separates every pair x, y /∈ L, as |L| = 2. For every leg ℓ, if ℓi ∈ L for i ≥ 1 then ℓ has
i vertices, as otherwise ℓi does not separate ℓi−1 and ℓi+1 if i ≥ 2, and it does not separate v and
ℓ2 if i = 1. As there is a leg with a type (s, 0) solution, the solution of ℓ is of type (s, 2) or (s, 3),
and since it has one vertex of L, the solution must be of type (s, 3). Thus, i = 1, and ℓ is short.
On the other hand, if L consists of two vertices of short legs, the remaining vertices are v and the
vertices of one leg ℓ̃, each having a different distance to the two vertices of L (this distance is 1 for
v, and i+ 1 for ℓ̃i).

Consider a tree with two small cores v and u, and no regular cores. The tree consists of a path
between u and v, and each of them has two standard legs, a short leg and another standard leg
which can be short or long. For each small core, the path to the other small core and its legs can
be seen as its modified leg.

Lemma 11 Consider a tree with no regular cores and two small cores v and u. A set L ⊆ V is a
landmark set if and only if it contains a local set for the three g-legs of v and it is a local set for
the three g-legs of u.

A minimal landmark set, with respect to set inclusion, will contain at most one vertex on the
path between u and v (excluding u and v), and at most two vertices of each long leg of u and v.

Proof. Since the tree can be seen as a core and its three g-legs in two way, L must contain a local
set for the g-legs of u and for the g-legs of v.

Assume now that L contains local sets for the two sets of g-legs. If for at least one small core,
each of its g-legs has a vertex of L, we are done by the first part of Lemma 8. Moreover, if u ∈ L
or v ∈ L, we are done by the fourth part of Lemma 8. Since a modified leg has at least one vertex
of a local set (by property 2 of local sets) we find that each of u and v has a standard leg without
any vertex of L, and every modified leg has at least two vertices of L.
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If L contains a vertex z on the path between u and v (excluding u and v), for the sake of the
proof we see z as having two g-legs (one containing u as a small core, and the other one containing
v as a small core). As each of u and v has a standard leg with at least one vertex in L, each g-leg
of z has at least one vertex of L. Consider two vertices x, y /∈ L. As z ∈ L, each of x and y is on
a g-leg of z. If x and y are on the same g-leg, assume (without loss of generality) that this is the
g-leg containing u. As the solution of one of the standard legs of u is of type (s, 0), its other leg has
either a type (s, 2) solution or a type (s, 3) solution. If d(x, z) = d(y, z), then d(x, u) = d(y, u) (as
the paths of x and y to z traverse u), x and y must be the vertices in position 1 on the standard
legs of u, and in this case the solution type of the standard leg of u with at least one vertex of L
cannot be (s, 3) (as x, y /∈ L). The two vertices of L of the long standard leg of u are closer to the
vertex of position 1 of that leg than to the vertex of position 1 of the short leg of u, and thus they
separate u and v. If d(x, z) 6= d(y, z), then one of x and y is closer to z than the other vertex, and
it is also closer to any vertex of L on the other g-leg of z. This results in at least two separations
between x and y. If x is on the g-leg of z containing u while y is on the g-leg of z containing v,
let u′ ∈ L be on the former g-leg of z and let v′ ∈ L be on the latter g-leg of z. We consider
the two cases again. Assume that d(x, z) ≤ d(y, z). We get d(x, u′) ≤ d(x, u) + d(u, u′) while
d(y, u′) = d(x, u) + d(u, u′), and d(x, u) < d(x, z) ≤ d(y, z), showing that u′ separates x and y. If
d(x, z) < d(y, z), z also separates x and y, and if d(x, z) = d(y, z), then d(y, v′) ≤ d(y, v) + d(v, v′)
while d(x, v′) = d(x, v) + d(v, v′), and d(y, v) < d(y, z) = d(x, z) < d(x, v), showing that v′ also
separates x and y.

We are left with the case that each modified leg has at least two vertices, and these vertices
are not on the path between u and v (and they are not u or v), and as one standard leg of each
small core has no vertices of L, each small core has one long leg with two vertices of L. In this case
consider two vertices x, y /∈ L. Each core has two g-legs with at least two vertices of L on each. If
d(x, u) = d(y, u), then there are two separations between x and y as L contains a local set for u
(by Lemma 3). Otherwise, if d(x, u) < d(y, u), there is a g-leg of u that is not the g-leg of y and
has two vertices of L, and these vertices separate x and y.

Next, consider a minimal landmark set L. If L has at least two vertices on the path between u
and v excluding the endpoints, then the modified legs of u and v (both containing this path) have
at least three vertices of L each (as each of u and v has at least one vertex of L on a standard leg).
Removing one vertex of the path between u and v does not change the type of solutions of modified
legs (a solution of type (m, 2) remains of type (m, 2) and a solution of type (m, 3) remains of type
(m, 3)). Next, assume that a leg of one small core has at least three vertices. Removing the vertex
of maximum distance to the small core of its standard leg does not change the type of solution of
this leg (the solution was of type (s, 2) and remains of this type).

We say that a local set is thrifty if solutions of types (s, 2), (m, 2) and (m, 3) consist of exactly
two vertices.

Lemma 12 1. Consider a landmark set L, such that the subset of vertices of L on the g-legs of
a regular core v is not a thrifty local set. Then, L is not minimal with respect to set inclusion.

2. Consider a landmark set L′ for a tree with a single core u that is small, such that the subset
of vertices of L′ on the standard legs of u is not a thrifty local set. Then, L′ is not minimal
with respect to set inclusion.

Proof. Let S′ = L′ \ {u}. If S′ is not thrifty, we find |S′| ≥ 4, as there is a leg ℓ′ with a type (s, 2)
solution consisting of at least three vertices, and at least one of the other two legs has at least one
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vertex in S′. Removing an arbitrary vertex of ℓ′ from S′ to obtain S′′ still results in a local set
with at least three vertices, and by Lemma 10, S′′ is a landmark set for the tree, showing that L′

is not minimal.
Let S be the subset of L restricted to the g-legs of v. By Lemma 2, S is a local set. Since S

is not thrifty, there is a g-leg ℓ that contains at least three vertices. If ℓ has a type (s, 2) solution,
remove an arbitrary vertex of ℓ from L to obtain L̃. If ℓ has a type (m, 2) or type (m, 3) solution,
remove a vertex of ℓ from L to obtain L̃, where the removed vertex is such that the solution remains
of the same type (if the small core has position i on ℓ, then for a type (m, 2) solution, remove a
vertex such that at least two vertices of positions i+ 2 or larger on ℓ are not removed. For a type
(m, 3) solution, remove a vertex whose position on ℓ is not i + 1). In all cases, the modification
does not change the local sets of other regular cores, and the subset of L̃ restricted to the g-legs
of v remains a local set, thus by Lemma 9, L̃ is a landmark set for the tree, showing that L is not
minimal.

The case of a tree with two cores that are small was not considered in the lemma as in this case
there can be a minimal landmark set L that is not thrifty.

3 The algorithm

The algorithm consists of two parts. In the first part, we detect the cores, and partition them into
regular cores and small cores. Every regular core will have a list of its neighbors whose subtrees
are g-legs. Finding such a list can be done by running DFS on the tree. In the second part (which
we describe in more detail below), if the tree has at least one regular core, the algorithm simply
finds a thrifty local set for each regular core. If the tree does not have any regular cores, then a
landmark set is computed by considering all possible solution types. The resulting running times
are linear.

In the case of a tree with at least one regular core u, the local sets are computed independently,
and moreover, the dependence between the g-legs is only in the sense that for a given g-leg of u,
only the types of solutions of the other g-legs are relevant, and not the specific solutions of the
other g-legs of u. Thus, for each g-leg, we search for a solution of minimum cost for a given solution
type. The case of a single small core is similar, as the identity of the vertex in a type (s, 1) solution
or the vertices in a type (s, 2) solution does not affect the validity of the local set as a landmark
set (this property only depends on number of vertices). In the case of two small cores, there are
several similar properties. If there is a vertex on the path between the two cores (excluding the
cores) in a landmark set, its exact identity is not important since replacing it with another vertex
of this path keeps the types of solutions of the modified legs as they were. Similarly, for a long leg
of one of the small cores, replacing one vertex whose position is at least 2 with another such vertex
does not change the solution type (neither for the long leg nor for the modified leg of the other
small core that contains this long leg).

Finding a minimum cost local set for a regular core. Consider a regular core v. At most
three solutions (which are thrifty local sets for the g-legs of v) will be considered, and a solution of
minimum cost will be given as the output. The solution kinds are based on the definitions of local
sets and thrifty local sets.

First, the different kinds of solutions for each g-leg are computed. For every standard leg
compute the minimum cost solutions of types (s, 1), (s, 2), and (s, 3) (by finding the minimum cost

11



vertex whose position is not 1, and the two minimum cost vertices, using linear time in the length
of the leg). For short legs there a unique solution is computed, which has type (s, 3). For every
modified leg l′ compute the minimum cost solutions of types (m, 1), (m, 2), and (m, 3) (if the small
core has position i on l′, find the minimum cost vertex b out of the two vertices of positions i+1 on
l′ , the two minimum cost vertices of positions i+2 or greater on l′, and a vertex of minimum cost
excluding b (to be combined with b in an output set), using linear time in the number of vertices
of the leg).

The first solution is computed independently for each g-leg. For every standard leg, select a
solution of minimum cost, out of the solutions computed for it. In the second solution, there will
be a short leg whose solution is of type (s, 0) (if there is no such leg of v, then no such solution
is computed). For each modified leg, select a minimum cost solution out of its already calculated
solutions of types (m, 2) and (m, 3). For each long leg, select a minimum cost solution out of its
already calculated solutions of types (s, 2) and (s, 3). Select a short leg whose (s, 3) type solution
has maximum cost and change its solution into type (s, 0). This completes the description of the
second solution. In the third solution, there will be a long leg of v whose solution is of type (s, 0) (if
there is no such leg, then no such solution is computed). For each modified leg, select a minimum
cost solution out of its already calculated solutions of types (m, 2) and (m, 3). For each short leg,
the solution is of type (s, 3). Find a long leg whose (s, 2) solution has the maximum cost. Define
the solution of this leg to be of type (s, 0), and any other long leg will have a type (s, 2) solution.

Finding a minimum cost landmark set for a tree with no regular cores and one small

core. Let v denote the small core of the tree. In this case we will consider solutions of several
kinds, and as not every local set with two vertices is a valid landmark set, we will consider local sets
of two vertices separately. As in the case of a regular core, the first step is to computed minimum
cost solutions of the three types ((s, 1), (s, 2), and (s, 3)) for each leg.

The first solution is computed as for regular cores, that is, a minimum cost solution out of the
three types is selected for each leg. Next, for each of the three legs, local sets where this leg has
a type (s, 0) solution are considered. Consider a leg ℓ whose solution will be of type (s, 0). If ℓ
is long, a type (s, 2) solution is selected for any long leg except for ℓ, and a type (s, 3) solution is
selected for any short leg. This is a landmark set as it either contains at least three vertices, or L
consists of two vertices the two of short legs, by Lemma 10. If ℓ is short, then there are (at most)
four additional solutions to be considered for the case where ℓ has a type (s, 0) solution, where any
short leg except for ℓ has a type (s, 3) solution, and any long leg has either a type (s, 2) solution
or a type (s, 3) solution. The only kind of solution with two vertices of the legs is the one where
two short legs have type (s, 3) solution, resulting in two selected vertices. In this case, v is added
to the solution if there is a long leg with a type (s, 3) solution. We found at most four solutions for
each leg, giving a constant number of solutions, where the output is a minimum cost solution out
of these solutions.

Finding a minimum cost landmark set for a tree with no regular cores and two small

cores. Recall that in this case the output may contain a local set that is not thrifty. Let the two
cores be denoted by u and v. Let auv denote a vertex of minimum cost on the path between u and v
excluding the endpoints. Let u1, u2, v1, v2 denote the four neighbors of u and v on theirs standard
legs (the vertices of position 1). Let b1 and b2 be two vertices of minimum costs on the long leg of
v that are not neighbors of v, and let b′1 and b′2 be two vertices of minimum cost on the long leg of
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u that are not neighbors of u (it is possible that some of the vertices b1, b2, b
′
1, and b′2 do not exist

if at least one of u and v does not have a long leg, or it has a long leg with two vertices). Consider
all subsets of {auv, u, v, u1, u2, v1, v2, b1, b2, b

′
1, b

′
2} . For each subset, test whether it is a local set

for u and a local set for v (or alternatively, test whether it is a landmark set, which can be done in
linear time by computing the distances from each of the eleven vertices to all vertices), and let the
sets satisfying this property be called valid solutions. As the set {u1, u2, v1, v2} contains a local set
for u and a local set for v, at least one valid solution is found. Return a subset of minimum cost
out of the valid solutions.
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