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Abstract

We generalise polyhedral projection (Fourier-Motzkin elimination) to integer programming
(IP) and derive from this an alternative perspective on IP that parallels the classical theory.
We first observe that projection of an IP yields an IP augmented with linear congruence
relations and finite-domain variables, which we term a generalised IP. The projection algo-
rithm can be converted to a branch-and-bound algorithm for generalised IP in which the
search tree has bounded depth (as opposed to conventional branching, in which there is
no bound). It also leads to valid inequalities that are analogous to Chvátal-Gomory cuts
but are derived from congruences rather than rounding, and whose rank is bounded by the
number of variables. Finally, projection provides an alternative approach to IP duality.
It yields a value function that consists of nested roundings as in the classical case, but in
which ordinary rounding is replaced by rounding to the nearest multiple of an appropriate
modulus, and the depth of nesting is again bounded by the number of variables.
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Abstract

We generalise polyhedral projection (Fourier-Motzkin elimination) to integer pro-
gramming (IP) and derive from this an alternative perspective on IP that parallels the
classical theory. We first observe that projection of an IP yields an IP augmented with
linear congruence relations and finite-domain variables, which we term a generalised
IP. The projection algorithm can be converted to a branch-and-bound algorithm for
generalised IP in which the search tree has bounded depth (as opposed to conventional
branching, in which there is no bound). It also leads to valid inequalities that are anal-
ogous to Chvátal-Gomory cuts but are derived from congruences rather than rounding,
and whose rank is bounded by the number of variables. Finally, projection provides
an alternative approach to IP duality. It yields a value function that consists of nested
roundings as in the classical case, but in which ordinary rounding is replaced by round-
ing to the nearest multiple of an appropriate modulus, and the depth of nesting is again
bounded by the number of variables.

1 Introduction

We propose an alternative perspective on integer programming that is based on projection.
It begins with the observation that the projection of an integer programming (IP) problem
is not an IP problem. More precisely, the projection of an IP problem’s feasible set onto
a subset of variables is not the feasible set of an IP. It is the feasible set of a system of
linear integer inequalities and congruence relations, where the congruence relations define
a sublattice of the integer lattice. This suggests that an IP problem can be viewed more
generally as an inequality constrained problem over a sublattice of the integer lattice, rather
than exclusively over the entire integer lattice as in conventional IP. We will call this a
generalised IP problem.

The projection problem for generalised IP can be solved by introducing integer auxiliary
variables with finite domains, and taking advantage of a generalised Chinese Remainder
Theorem. The auxiliary variables are not, generally, the same as slack/surplus variables.
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By projecting out all the original variables, the optimization problem can be transformed
to one that minimises over a system of congruence relations that involve only the auxiliary
variables. A problem of optimising over possibly infinite domains is therefore transformed
to one of optimising over finite domains.

This perspective leads to an alternative theory of cutting planes, branching algorithms,
and IP duality. The projection algorithm yields valid inequalities that are analogous to
Chvátal-Gomory cuts, except that they are derived from congruences rather than rounding,
and their rank is bounded by the number of variables. This contrasts with the classical
classical Chvátal rank, which has no bound related only to the number of variables [4]. In
addition, the projection algorithm can be converted to a branching algorithm that branches
on integer auxiliary variables rather than the original integer variables, and in which the
possible branches are defined by congruence relations. The depth of the tree is again
bounded by the number of variables, whereas a conventional branching tree has unbounded
depth. Finally, by applying the projection algorithm to an IP problem with general right-
hand sides, one can obtain a value function that is analogous to a Chvátal function [1] in
that it contains nesting rounding operations. However, rather than rounding to the nearest
integer, one rounds to the nearest multiple of an appropriate modulus. Unlike a Chvátal
function, the depth of nesting (which is analogous to cutting plane rank) is bounded by the
number of variables, and the function can be obtained by one pass through the model.

We begin with a brief review of projection and duality in linear programming (LP), to
clarify how it is generalised for the IP case. We then show by example how to project a
generalised IP and prove the correctness of the projection method. We also interpret the
projection method as generating cuts analogous to Chvátal-Gomory cuts. We then modify
the projection method to produce a branching method that is easily augmented to a branch-
and-cut method by solving relaxations. Finally, we show how to construct a value function
and prove its correctness.

2 LP Projection

A polyhedron can be projected onto a subspace using Fourier-Motzkin elimination [2, 6].
We will suppose the polyhedron is described by the constraint set of an LP in the following
form, where A is an m× n integral matrix and b is integral:

min z

subject to −cx ≥ −z

Ax ≥ b

x ∈ R
n

(1)

We assume that any nonnegativity constraints on the variables are represented in the above
constraints. Fourier-Motzkin elimination relies on the following elementary lemma, which
we prove to allow comparison with a parallel result (Theorem 3) that we will prove for IP
projection.
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Lemma 1 Suppose aij, akj > 0 for all i ∈ I, k ∈ K. Then

(a) There exists xj ∈ R such that aijxj ≥ fi and −akjxj ≥ gk for all i ∈ I, k ∈ K

if and only if

(b) akjfi + aijgk ≤ 0 for all i ∈ I, k ∈ K.

Proof. (a) ⇒ (b). This is obtained by taking a linear combination of each pair of
inequalities aijxi ≥ fi, −akjxi ≥ gk, using multipliers 1/aij and 1/akj , respectively.

(a) ⇐ (b). The inequalities in (a) can be written fi/aij ≤ xj ≤ −gk/akj for all i, k. But
from (b) we have that fi/aij ≤ −gk/akj for all i, k. We can therefore let xj = maxi{fi/aij}
(or mink{−gk/akj}), and the inequalities in (a) are satisfied. �

The lemma implies that any variable xj can be eliminated from (1) by removing each pair
of inequalities that have the form aijxj ≥ fi, −akjxj ≥ gk with aij , akj > 0, and replacing
each pair with the inequality akjfi + aijgk ≤ 0. The variables xj can be successively
eliminated, in any order, until the constraints of (1) are replaced by inequalities of the form
z ≥ ℓ. The minimum value of z can be immediately read from these. It can be shown [3, 7]
that after the elimination of r variables, any resulting inequality that depends on more than
r + 1 of the original inequalities is redundant (implied by the other inequalities).

Note that projecting out any subset of variables from an LP results in another LP. We
will see that an analogous property does not hold for integer programming. In general,
projecting out variables from an IP results in a disjunction of IPs.

We can illustrate projection with a small example (Fig.1).

min z

subject to −x2 ≥ −z C0

2x1 + x2 ≥ 13 C1

−5x1 − 2x2 ≥ −30 C2

−x1 + x2 ≥ 5 C3

x1, x2 ∈ R

(2)

The optimal solution is (x1, x2, z) = (22
3 , 7

2
3 , 7

2
3 ), with binding constraints C1 and C3.

Eliminating x1 yields z ≥ x2, x2 ≥ 5, and x2 ≥ 72
3 . Eliminating x2 from this yields z ≥ 5

and z ≥ 72
3 . This confirms the optimal value 72

3 .
Suppose now that we perturb the right-hand sides of (2) as follows:

min z

−x2 ≥ −z C0

2x1 + x2 ≥ 13 + ∆1 C1∆

−5x1 − 2x2 ≥ −30 + ∆2 C2∆

−x1 + x2 ≥ 5 + ∆3 C3∆

x1, x2 ∈ Z

(3)
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Figure 1: Illustration of a linear (integer) programming problem. Black dots are integer
feasible solutions, with (x1, x2) = (2, 9) optimal. The small open circle is the optimal
solution of the LP.

We can perform the same projection operations while carrying through the perturbations.
This yields z ≥ 5 + 5∆1 + 2∆2 and z ≥ 72

3 + 1
3∆1 +

10
3 ∆3. From this we can write a value

function
v(∆1,∆2,∆3) = max

{

5 + 5∆1 + 2∆2, 7
2
3 + 1

3∆1 +
2
3∆3

}

that gives the optimal value as a function of the perturbations. The coefficient of each ∆i in
the larger argument of the max when ∆1 = ∆2 = ∆3 = 0 is a dual multiplier corresponding
to constraint i. Because the second term is larger when the ∆ = 0, the dual multipliers are
(13 , 0,

2
3). They can be interpreted as marginal costs or shadow prices.
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3 IP Projection

In analogy with the LP case, we consider an IP in the following form:

min z

subject to −cx ≥ −z

Ax ≥ b

x ∈ Z
n

(4)

A generalised IP can be written

min z

subject to −cx− hu ≥ −z

Ax+Bu ≥ b

rix+ siu ≡ ρi (mod mi), i ∈ I

x ∈ Z
n

uj ∈ Dj ⊂ Z≥0, j = 1, . . . , p

(5)

where u = (u1, . . . , up) are auxiliary variables restricted to finite domains D1, . . . ,Dp.
When projecting out an integer variable xj, we can no longer infer fi/aij ≤ xj ≤ −gk/akj

as in the proof of Lemma 1. However, we can project out integer variables by strengthening
the resultant inequalities. The idea can be illustrated using the example (2) with integer
variables x1, x2. This is a classical IP with no congruence relations, but we will see that the
same method applies to generalised IPs.

Step 1. We first project out x1. We obtain the following from the constraint pairs
shown:

5(−x2 + 13) ≤ 5 · 2x1 ≤ 2(−2x2 + 30) from C1,C2

−x2 + 13 ≤ 2x1 ≤ 2(x2 − 5) from C1,C3
(6)

Because the middle term of the first line is divisible by 5·2, we can increase the term −x2+13
on the left to the nearest multiple of 2 (unless it is already a multiple of 2) without violating
the inequality. We do this by introducing an integer auxiliary variable u1 ∈ {0, 1}. This
yields the system on the left below, which implies the system on the right:

5(−x2 + 13 + u1) ≤ 5 · 2x1 ≤ 2(−2x2 + 30) ⇒ x2 ≥ 5 + 5u1

−x2 + 13 + u1 ≡ 0 (mod 2), u1 ∈ {0, 1} x2 ≡ u1 + 1 (mod 2), u1 ∈ {0, 1}

The congruence relation −x2+13+u1 ≡ 0 (mod 2) reflects the fact that −x2+13+u1 is a
multiple of 2. (We could have just as well introduced a surplus variable on the right.) We
similarly strengthen the second line of (6) to obtain:

−x2 + 13 + u1 ≤ 2x1 ≤ 2(x2 − 5) ⇒ 3x2 ≥ 23 + u1

−x2 + 13 + u1 ≡ 0 (mod 2), u1 ∈ {0, 1} x2 ≡ u1 + 1 (mod 2), u1 ∈ {0, 1}

7



Putting these together, we have the projected system

−x2 ≥ −z C0

x2 ≥ 5 + 5u1 C12

3x2 ≥ 23 + u1 C13

x2 ≡ u1 + 1 (mod 2), u1 ∈ {0, 1}

(7)

Step 2. We now wish to project out x2 from the system (7). The system is now a
generalised IP with a congruence relation, which requires an extension of the above idea.
We first obtain the following by pairing inequalities, as before:

5 + 5u1 ≤ x2 ≤ z from C0, C12

23 + u1 ≤ 3x2 ≤ 3z from C0, C13
(8)

Because x2 ≡ u1 + 1 (mod 2), we can increase the left-hand term in the first line until it is
congruent to u1 + 1 (mod 2). Introducing an auxiliary variable u12, we obtain the system
on the left below:

5 + 5u1 + u12 ≤ x2 ≤ z ⇒ z ≥ 5 + 5u1 + u12

5 + 5u1 + u12 ≡ u1 + 1 (mod 2), u12 ∈ {0, 1} u12 ≡ 0 mod 2, u12 ∈ {0, 1}

It is clearly desirable that only one congruence in the system (7) contain x2, so that we can
use this kind of reasoning. We indicate below how this can be achieved in general. The
second line of (8) gives

23 + u1 + u13 ≤ 3x2 ≤ 3z ⇒ z ≥ 1
3 (23 + u1 + u13)

23 + u1 + u13 ≡ 3u1 + 3 (mod 6) 4u1 + u13 ≡ 4 (mod 6), u13 ∈ {0, . . . , 5}

Note that u12 can be fixed to zero and dropped from the problem. We therefore have the
projected system

z ≥ 5 + 5u1

z ≥ 1
3(23 + u1 + u13)

4u1 + u13 ≡ 4 (mod 6), u1 ∈ {0, 1}, u13 ∈ {0, . . . , 5}

(9)

Step 3. We have reduced the original IP to the problem of minimising z subject to a
system (9) of inequalities and congruences that involve only z and the auxiliary variables
u1, u13. We can solve the problem, in principle, by enumerating solutions of the congruence
in (9), and taking note of the minimum value of z in each. The two solutions are listed in
Table 1, where the tightest bound on z in each scenario is shown in boldface. The minimum
of these is the optimal value of z, namely z = 9, corresponding to (u1, u13) = (0, 4). Since
the bound of 9 comes from C0 and C13, we have 23 + u1 + u13 = 3x2 from C13, or x2 = 9.
Since C13 comes from C1 and C3, we have 5(−x2 + 13 + u1) = 5 · 2x1 from C1, or x1 = 2.
The optimal solution is therefore (x1, x2, z) = (2, 9, 9).

8



Table 1: Solution of the projected system.

u1 u13 5 + 5u1
1
3(23 + u1 + u13)

0 4 5 9
1 0 10 8

When the variable xj to be projected out occurs in several congruences, we wish to
replace the congruences with an equivalent single congruence containing xj. This can be
accomplished as follows using a generalised Chinese Remainder Theorem (GCRT). Without
loss of generality, we suppose the congruences have the form αxj ≡ ds (mod ms) for s ∈ S.
The GCRT can then be stated as follows.

Theorem 2 (Generalised Chinese Remainder) Consider a system of congruences
C = {αxj ≡ ds (mod ms) | s ∈ S}, and let M = lcm{ms | s ∈ S} and m′

s = M/ms. Then
we have: (i) ds ≡ dt (mod gcd(ms,mt)) for all s, t ∈ S, (ii) there is a set of integers λs

satisfying
∑

s λsm
′
s = 1, and (iii) integer xj solves C if and only if it solves

αxj ≡
∑

s∈S

λsm
′
sds (mod M) (10)

The multipliers λs can be obtained using the well-known Euclidean algorithm.

Proof. Claim (i) can be obtained by subtracting the congruences of C in pairs. Claim (ii)
is a well-known consequence of the Euclidean algorithhm. To show (iii), suppose first that
integer xj satisfies the congruences in C. Taking a linear combination of the congruences
in C with multipliers λsm

′
s, we obtain (10). Conversely, suppose xj satisfies (10). Because

ds ≡ dt (mod gcd(ms,mt)) for all s, t ∈ S, we have
∑

s∈S

λsm
′
sds ≡

∑

s

λsm
′
sdt (mod gcd

s∈S
{λsm

′
s gcd(ms,mt)})

for any t ∈ S, which implies
∑

s∈S

λsm
′
sds ≡

∑

s

λsm
′
sdt (mod gcd

s∈S
{m′

s gcd(ms,mt)}) (11)

But gcds∈S{m
′
s gcd(ms,mt)} = mt because m

′
s = M/ms. Given this and (ii), (11) simplifies

to
∑

s∈S

λsm
′
sds ≡ dt (mod mt) (12)

Also (10) implies

αxj ≡
∑

s∈S

λsm
′
sds (mod mt)

which, together with (12), implies αxj ≡ dt (mod mt). Since t ∈ S is arbitrary, xj satisfies
the congruences in C. �

The general projection method relies on the following theorem.
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Theorem 3 Suppose aij, akj > 0 for all i ∈ I, k ∈ K. Then

(a) There exists xj ∈ Z such that aijxj ≥ fi and −akjxj ≥ gk for all i ∈ I, k ∈ K, and
such that αxj ≡ d (mod m),

if and only if

(b) d ≡ 0 (mod β), where β = gcd(α,m); there exist λα, λm ∈ Z satisfying λαm+λmα = β;
and there exists ui ∈ {0, 1, . . . , aijm/β − 1} such that akj(fi + ui) + aijgk ≤ 0 for all
i ∈ I, k ∈ K, and fi + ui ≡ λmaijd/β (mod aijm/β) for all i ∈ I.

Proof. (a) ⇒ (b). We can write the inequalities in (a) as

akjαfi ≤ aijakjαxj ≤ −aijαgk (13)

for all i, k. From the congruence in (a), aijakjαxj ≡ aijakjd (mod aijakjm). Thus if
we let y = aijakjαxj , we obtain y ≡ 0 (mod aijakjα) and y ≡ aijakjd (mod aijakjm).
Applying part (i) of the GCRT to these two congruences, we get d ≡ 0 (mod β). From
part (ii), there are integers λα, λs for which λαlcm(α,m)/α + λmlcm(α,m)/m = 1. Since
lcm(α,m)/m = α/β, this is equivalent to λαm+λmα = β, as claimed in (b). From part (iii),
we have y ≡ λmaijakjlcm(α,m)d/m (mod aijakjlcm(α,m)), which implies the congruence
y ≡ λmaijakjαd/β (mod aijakjlcm(α,m)), again because lcm(α,m)/m = α/β. So from
(13) we have

akjαfi − λmaijakjαd/β ≤ γ ≤ −aijαgk − λmaijakjαd/β (14)

where γ is an integer multiple of aijakjlcm(α,m). Since d ≡ 0 (mod β), β divides d, and
the leftmost expression in (14) is an integer multiple of akjα. So we can add akjαui to the
left-hand side of (14), and we have

akjα(fi + ui) ≤ γ + λmaijakjαd/β ≤ −aijαgk (15)

and
akjα(fi + ui)− λmaijakjαd/β ≡ 0 (mod aijakjlcm(α,m)) (16)

Inequality (15) implies the inequality in (b). Congruence (16) simplifies to

fi + ui − λmaijd/β ≡ 0 (mod aijm/β)

which implies the congruence in (b). We can also restrict ui to {0, 1, . . . , aijm/β − 1}. For
if ui were greater than aijm/β−1 then the original inequalities and congruences would still
be valid if aijm/β − 1 were subtraced from ui.

(a) ⇐ (b). The inequalities in (b) can be written

−
gk
akj

≥
fi + ui
aij

(17)
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for all i, k. From (b) we have that d ≡ 0 (mod β), so that d/β is integral. Also from (b),

fi + ui ≡ λmaijd/β (mod aijakjm/β) (18)

Because d/β and m/β are integral, this implies fi+ui is an integer multiple of aij . We can
therefore let

xj = max
i

{

fi + ui
aij

}

(19)

and xj is integral. This and (17) imply −gk/akj ≥ xj , or −gk ≥ akjxj. To show aijxj ≥ fi,
we note that

aijxj ≥ aij
fi + ui
aij

≥ fi

because ui ≥ 0. Finally, we show αxj ≡ d (mod m). From (19), we have that xj =
(fi + ui)/aij for some i. So (18) implies that xj ≡ λmd/β (mod m/β), and therefore
αxj ≡ λmαd/β (mod m/β). This implies the following due to λαm+ λmα = β in (b):

αxj ≡ (d− λαmd/β) (mod m/β)

which implies αxj ≡ d (mod m/β). But this implies αxj ≡ d (mod m) because it is given
in (b) that β divides d. �

We now describe a step of the projection algorithm as it applies to a generalised IP
problem. We suppose that the current system (S, C) consists of a set S of inequalities and a
set C of congruences in variables z, xj , and ui, and finite domains u ∈ D. We then project
out variable xj as follows. We first apply the GCRT to all congruences in C containing xj
to obtain a single congruence that can be written αxj ≡ d (mod m). We then consider all
pairs of inequalities in S of the form aijxi ≥ fi and −akjxj ≥ gk for which aij, akj > 0. We
introduce an auxiliary variable ui for each i, and for each pair we generate the inequality
akj(fi + ui) + aijgk ≤ 0 along with the congruence fi + ui ≡ λmaijd/β (mod aijm/β) as
given in Theorem 3. The multiplier λm can be obtained by using the Euclidean algorithm
to find multipliers λα, λm for which λαlcm(α,m)/α + λmlcm(α,m)/m = 1. Finally, we
update the system (S, C) by removing from S all inequalities containing xj , adding to S
all generated inequalities, adding to C all the associated congruence relations, and adding
ui ∈ {0, . . . , aijm/β − 1} to the domains.

To solve a generalised IP problem, we suppose the problem is given in the form (S, C)
with domains u ∈ D, as above. It can be viewed as an optimization problem subject to the
inequalities S in variables xj, over the integer sublattice defined by the congruence relations
in C. In a conventional IP problem, the congruences in C are simply xj ≡ 0 (mod 1), which
require integrality, and there are no variables ui. We sequentially project out variables
x1, . . . , xn, which yields a system (S ′, C′) in which S ′ contains only z and variables ui, and
C′ contains only uis. The inequalities in S ′ have the form z ≥ vt(u), and the optimal
value of the problem is minu {maxt{vt(u)} | C, u ∈ D}. The original problem is therefore
transformed to one in which the variables ui have finite domains.

The above results follow from those of an earlier paper [5], while the results to follow
are new.

11



4 Projection Cuts

Projection supplies the information necessary to derive valid inequalities for IP as it does
for LP. Like Chvátal-Gomory cuts, the inequalities can be derived by a linear combination
and strengthening operation in which the multipliers are obtained from projection steps.
However, the strengthening operation relies on a congruence relation rather than rounding,
and the desired congruence relation is likewise obtained from a projection step. We will
refer to valid inequalities derived in this fashion as projection cuts.

This can be illustrated by the example (2). In step 1 of the projection, C1 and C2 were
combined to yield the projection cut C12. This cut can be obtained by a linear combination
of these inequalities in which the multipliers (given on the left below) are those used to
combine C1 and C2 in (6).

(5) 2x1 + x2 ≥ 13 + u1 C1′

(2) −5x1 − 2x2 ≥ −30 C2

x2 ≥ 5 + 5u1 C12

Before taking the linear combination, C1 is strengthened to obtain C1′ using the same
integer auxiliary variable u1 that was used in computing the projection. The cut is valid
when x2 ≡ u1 + 1 (mod 2) and u1 ∈ {0, 1}, which are the same conditions under which the
auxiliary variable was added in the projection step.

Projection cut C13 is similarly derived from step 1 of the projection. Step 2 of the
projection yields two projection cuts from which x1, x2 have been eliminated. One cut is
z ≥ 5 + 5u1, where u1 ∈ {0, 1}, from which we can conclude only that z ≥ 5. The second
is z ≥ 1

3(23 + u1 + u13), where 4u1 + u13 ≡ 4 (mod 6), u1 ∈ {0, 1}, and u13 ∈ {0, . . . , 5}.
Because the congruence relation has two solutions (u1, u13) = (0, 4), (1, 0), we can conclude
from this cut only that z ≥ 8.

Thus each cut is associated with a system of congruence relations and a variable domain
under which it is valid. The projection algorithm allows one to derive cuts from which all
xjs have been eliminated. The optimal value of the original problem is the minimum of z
subject to these cuts and congruence relations considered simultaneously. In the example,
the two bounds on z yield a bound of 9 when (u1, u13) = (0, 4) and 10 when (u1, u13) = (1, 0).
The optimal value is therefore 9.

In general, we can define a projection cut as a nonnegative linear combination of two
valid inequalities, one of which is strengthened. To make this precise, we define a concept
of rank analogously with Chvátal-Gomory cuts. Let S be a system of linear inequalities in
variables x = (x1, . . . , xn) ∈ Z

n, and let C be a system of congruences in variables x and
u = (u1, . . . , ut) ∈ D ⊂ Z

t
≥0. A rank 1 projection cut for (S, C) is any nonnegative linear

combination of aijxj ≥ fi + ui and an inequality in S, where aijxj ≥ fi belongs to S and a
congruence of the form αxj ≡ d (mod m) belongs to C. The rank 1 cut is associated with
the congruence relation

α(fi + ui) ≡ aijd (mod aijm) (20)
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and domain ui ∈ {0, . . . , aijm − 1}. The cut is valid when all (x, u) satisfying (S, C),
congruence (20), u ∈ D, and ui ∈ {0, . . . , aijm− 1} also satisfy the cut.

A rank k projection cut for (S, C) is a rank 1 cut for some system (S ′, C′) consisting of
cuts of rank k− 1 or less for (S, C) and their associated congruences and domains, provided
it is not a rank 1 cut for any such system of cuts with rank less than k − 1. A projection
cut is any rank k projection cut for finite k.

Theorem 4 Any projection cut for (S, C) is valid for (S, C).

Proof. It is enough to show that any rank 1 cut for (S, C) is valid, because then it follows
by induction than any rank k cut is valid. Because a nonnegative linear combination of valid
inequalities is valid, we can show that a rank 1 cut is valid by showing that aijxj ≥ fi + ui
is valid for (S, C) when aijxj ≥ fi is in S, (20) holds, u ∈ D, and ui ∈ {0, . . . , aijm − 1}.
Equivalently, we wish to show

αaijxij − aijd ≥ α(fi + ui)− aijd (21)

is valid under these conditions. However, we know that αaijxij − aijd ≥ αfi − aijd is valid,
because aijxij ≥ fi belongs to S. Also the congruence αxj ≡ d (mod m) implies that the
left-hand side of (21) is multiple of aijm. The inequality (21) is therefore valid if ui is the
smallest nonnegative integer for which the right-hand side is a multiple of aijm. For this,
it suffices that (20) hold and ui ∈ {0, . . . , aijm− 1}. �

We can also show that projection yields projection cuts.

Theorem 5 Each step of the integer projection method produces rank 1 projection cuts for
the system (S, C) from which the cuts are derived.

Proof. Each inequality generated by projection has the form

akj(fi + ui) + aijgk ≤ 0 (22)

and is derived from aijxj ≥ fi, −akjxj ≥ gk ∈ S. We wish to show that (22) is a rank 1
projection cut for (S, C). We first note that (22) is a linear combination of aijxj ≥ fi + ui
and −akjxj ≥ gk, using multipliers akj, aij > 0, respectively. Because αxj ≡ d (mod m) is
in C, it remains only to show that ui ∈ {0, . . . , aijm−1} and that (20) holds. The projection
step yields the congruence relation

α(fi + ui) ≡ αλmaijd/β (mod aijm/β) (23)

where λαm+ λmα = β. Substituting β − λαm for λmα, this becomes

α(fi + ui) ≡ aijd/β (mod aijm/β)

This implies (20) since β divides d. Also, the projection step yields ui ∈ {0, . . . , aijm/β−1},
which implies ui ∈ {0, . . . , aijm− 1}. �

13
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(u12, u13) = (0, 4)
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(u12, u13) = (0, 0)

Feasible solution
z = 9

Feasible solution
z = 10

Figure 2: Projection-based branching tree for example (2).

Projection cuts of sufficiently large (but finite) rank can prove optimality, in a manner
somewhat parallel to Chvátal-Gomory cuts. Let S be the set of inequalities in the IP
problem (4). Let (S ′, C′) be a system of projection cuts for (S, ∅), and u ∈ D the associated
domains. We will say that (S ′, C′) and u ∈ D prove that solution value z∗ is optimal for (4)
when S ′ contains only variables z and u, and z∗ is the minimum of z subject to (S ′, C′) and
u ∈ D. Theorem 3 allows us to conclude that projection cuts of finite rank prove optimality
for any given IP problem. In particular,

Corollary 6 If S is the constraint set for the IP problem (4), some system of projection
cuts for (S, ∅) with rank at most n, together with their associated congruences and domains,
proves the optimal value of (4).

The optimal value 9 of the example (2) is proved by the projection cuts z ≥ 5+5u1 and
z ≥ 1

3 (23 + u1 + u13), together with the congruence 4u1 + u13 ≡ 4 (mod 6) and domains
u1 ∈ {0, 1} and u13 ∈ {0, . . . , 5}.

5 Solution by Branching

The above analysis of integer projection leads to a branching algorithm for the generalised
IP problem (S, C), u ∈ D. Each time a variable xj is projected out, we branch on the
auxiliary variables ui created during the projection step. This means that no auxiliary
variables appear in the branches. The process is repeated at each branch, until none of the
original variables xj remain. If the original problem contains variables ui, we branch on
them (as well as the auxiliary variables) at the root node.

This can be illustrated using the example (2), for which the branching tree appears in
Fig. 2. At the root node of the tree, we carry out step 1 above, which yields the projected
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system (7). Now, rather than branch on x1, we branch on u1 ∈ {0, 1}.

Left branch, u1 = 0. Here (7) simplifies to

−x2 ≥ −z

x2 ≥ 5

3x2 ≥ 23

x2 ≡ 1 mod 2

(24)

We now project out x2, which yields

5 + u12 ≤ x2 ≤ z ⇒ z ≥ 5 + u12

23 + u13 ≤ 3x2 ≤ 3z z ≥ 1
3 (23 + u13)

5 + u12 ≡ 1 (mod 2), u12 ∈ {0, 1} u12 ≡ 0 (mod 2), u12 ∈ {0, 1}

23 + u13 ≡ 3 (mod 6), u13 ∈ {0, . . . , 5} u13 ≡ 4 (mod 6), u13 ∈ {0, . . . , 5}

Only one branch (u12, u13) = (0, 4) satifies the congruence. In this branch, the problem is
to minimise z subject to z ≥ 5 and z ≥ 9, yielding the bound z ≥ 9.

Right branch, u1 = 1. Here (7) simplifies to

−x2 ≥ −z

x2 ≥ 10

3x2 ≥ 24

x2 ≡ 0 mod 2

(25)

Projecting out x2, we get

10 + u12 ≤ x2 ≤ z ⇒ z ≥ 10 + u12

24 + u13 ≤ 3x2 ≤ 3z z ≥ 8 + 1
3u13

10 + u12 ≡ 0 (mod 2), u12 ∈ {0, 1} u12 ≡ 0 (mod 2), u12 ∈ {0, 1}

24 + u13 ≡ 0 (mod 6), u13 ∈ {0, . . . , 5} u13 ≡ 0 (mod 6), u13 ∈ {0, . . . , 5}

Only one branch (u12, u13) = (0, 0) is possible, at which the problem is to minimise z subject
to z ≥ 10 and z ≥ 8, yielding the bound z ≥ 10.

The optimal solution occurs at the left leaf node, with z = 9 and (u1, u12, u13) = (0, 0, 4).

We can introduce a branch-and-bound mechanism by solving a relaxation at each node.
The solution of the relaxation can also indicate how to branch, as in traditional branch
and bound, because we can branch on a variable xj that violates its associated congruence
xj ≡ d (mod m). The simplest relaxation is an LP relaxation obtained by dropping the
congruences.
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(u12, u13) = (0, 4)

Problem (22)

LP: (x2, z) = (10, 10)

Prune

Feasible solution
z = 9

Figure 3: Projection-based branch-and-bound tree for example (2).

For example, the LP relaxation of (2) at the root node has solution (x1, x2, z) =
(22

3 , 7
2
3 , 7

2
3 ) (Fig. 3). Because x1 and x2 must satisfy the implicit congruence xj ≡ 0 (mod 1)

for j = 1, 2, we can project out either variable and branch on the corresponding auxiliary
variable. We choose to project out x1 and branch on u1. Solving the LP relaxation of (24)
in the left branch yields (x2, z) = (72

3 , 7
2
3 ). Because x2 violates x2 ≡ 1 (mod 2), we must

project out x2. The LP relaxation of (25) in the right branch has solution (x2, z) = (10, 10).
Because 10 is greater than the incumbent value of 9, it is unnecessary to project out x2
and branch further. In addition, x2 satisfies x2 ≡ 0 (mod 2), which in itself obviates the
necessity of further branching.

Note that it may be necessary to branch even when all the variables xj are integral in
the LP solution. The relevant criterion is whether they satisfy their respective congruences.

6 A Value Function and Dual Solution

We can obtain a value function by applying the projection algorithm to inequalities with
perturbed right-hand sides. To illustrate the idea, consider the constraint C1 in example
(2), which is 2x1 + x2 ≥ 13. While projecting out x1 we used the strengthened inequality

−x2 + 13 + u1 ≤ 2x1 (26)

where
−x2 + 13 + u1 ≡ 0 (mod 2) (27)

and u ∈ {0, 1}. Suppose we now perturb the right-hand side of C1 to obtain the constraint
2x1 + x2 ≥ 13 + ∆, so that (26) becomes −x2 + 13 + ∆+ u1 ≤ 2x1. This inequality is not
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generally valid, given congruence (27). However, we can strengthen C1 in a different way
by adding ∆ + mod2(u1 −∆) rather than u1:

−x2 + 13 +∆+ mod2(u1 −∆) ≤ 2x1 (28)

where modm(a) is the remainder after dividing a by m. This has the same effect as (26)
when ∆ = 0. To ensure validity, we need the congruence

−x2 + 13 +∆+ mod2(u1 −∆) ≡ 0 (mod 2) (29)

However, this is equivalent to congruence (27), because u1 ≡ ∆+ modm(u1 −∆) (mod m)
due to the obvious fact that u1 −∆ ≡ modm(u1 −∆) (mod m). It is easy to show that

∆ +modm(u1 −∆) = u1 + ⌈∆ − u1⌉m (30)

where ⌈a⌉m = m⌈a/m⌉ is a rounded up to the nearest multiple of m. So (28) can be written

−x2 + 13 + u1 + ⌈∆− u1⌉2 ≤ 2x1

By incorporating this idea into the projection algorithm, we can derive a value function.
Consider again the perturbed example (3).

Step 1. To project out x1, we combine C1∆ and C2∆ to obtain

5(−x2 + 13 + u1 + ⌈∆1 − u1⌉2) ≤ 5 · 2x1 ≤ 2(−2x2 + 30)

This yields
x2 ≥ 5 + 5u1 + 5⌈∆1 − u1⌉2 + 2∆2 C12∆

where x2 ≡ u1 + 1 (mod 2) as before. We combine C∆1 and C∆3 to obtain

3x2 ≥ 23 + u1 + ⌈∆1 − u1⌉2 + 2∆3 C13∆

Step 2. To eliminate x2, we combine C0 and C12∆ to obtain

5 + 5u1 + u12 + 5 ⌈⌈∆1 − u1⌉2 + 2∆2 − u12⌉2 ≤ x2 ≤ z

This yields
z ≥ 5 + 5u1 + u12 + ⌈5⌈∆1 − u1⌉2 + 2∆2 − u12⌉2 (31)

where u12 ≡ 0 (mod 1) and x12 ∈ {0}. Note the nesting of functions ⌈·⌉m, which is analogous
to the nesting of rounding operations in a Chvátal function. Because u12 = 0 and ⌈∆1−u1⌉2
is even, the bound (31) simplifies to

z ≥ 5 + 5u1 + 5⌈∆1 − u1⌉2 + ⌈2∆2⌉2 C012∆

We similarly combine C0 and C13∆ to obtain

3z ≥ 23 + u1 + u13 + ⌈⌈∆1 − u1⌉2 + 2∆3 − u13⌉6 C013∆
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Table 2: Lower bounds for perturbations in individual constraints i.

Bound from C012∆ Bound from C013∆
u1 u13 i = 1 2 3 i = 1 2 3

0 4 5 + 5⌈∆1⌉2 5 + ⌈2∆2⌉2 5 9 + 1
3⌈∆1 − 4⌉6 9 9 + 2

3⌈∆3 − 2⌉3

1 0 10 + 5⌈∆1 − 1⌉2 10 + ⌈2∆2⌉2 10 8 + 1
3⌈∆1 − 1⌉6 8 8 + 2

3⌈∆3⌉3

where 4u1 + u13 ≡ 4 (mod 6) and u13 ∈ {0, . . . , 5}.

Step 3. We now have a value function from C012∆ and C013∆:

v(∆1,∆2,∆3) = min
u1,u13

{

max

{

5 + 5u1 + 5⌈∆1 − u1⌉2 + ⌈2∆2⌉2,
1
3 (23 + u1 + u13 + ⌈⌈∆1 − u1⌉2 + 2∆3 − u13⌉6 )

}}

where the minimum is taken over u1, u13 satisfying u12 ≡ 0 (mod 2), 4u1+u13 ≡ 4 (mod 6),
u1 ∈ {0, 1}, and u13 ∈ {0, . . . , 5}. In this case, the congruences have only two solutions
(u1, u13) = (0, 4), (1, 0).

The function simplifies when we analyze perturbations of one constraint at a time:

v(∆1) = min
(u1,u13)=(0,4),(1,0)

{

max

{

5 + 5u1 + 5 ⌈∆1 − u1⌉2 ,
1
3(23 + u1 + u13 + ⌈⌈∆1 − u1⌉2 − u13⌉6)

}}

v(∆2) = min
(u1,u13)=(0,4),(1,0)

{

max

{

5 + 5u1 + ⌈2∆2⌉2,
1
3(23 + u1 + u13)

}}

v(∆3) = min
(u1,u13)=(0,4),(1,0)

{

max

{

5 + 5u1
1
3(23 + u1 + u13 + ⌈2∆3 − u13⌉6)

}}

The resulting bounds in for the two solutions (u1, u13) = (0, 4), (1, 0) of the congruences
appear in Table 2. These bounds are graphed in Figs. 4–6.

As in the case of an LP value function, the coefficient of ∆i in the term that governs when
∆ = 0 can be interpreted as a dual multiplier. There are two differences from LP, however.
One is that we take a minimum over a maximum rather than simply a maximum. For
example, when ∆ = 0, the expression for v(∆1) becomes min{max{5, 9},max{10, 8}} = 9,
so that the minimising value of (u1, u13) is (0, 4) and the second term 9+ 1

3⌈∆1− 4⌉6 of the
max governs.

The second difference is that marginal cost can be a discontinuous function of ∆i. In the
LP case, the dual multiplier for ∆1 is 1

3 when ∆ = 0, meaning that optimal cost increases
linearly with ∆1 (at rate 1

3) in some neighborhood of ∆1 = 0. In the IP case, the dual
multiplier is again 1

3 when ∆1 = 0, but the change in cost is 1
3⌈∆1 − 4⌉6 rather than 1

3∆1.
This means that there is no change until ∆1 − 4 reaches a multiple of 6, at which point the
cost changes by 1

3 · 6. The dual multiplier can therefore be interpreted as a “jerky” shadow
price. It indicates the average marginal cost, but the actual cost function is a step function.

18



0

10

20

30

40

50

60

-10 -5 0 5 10

∆∆∆∆
1

Figure 4: Value function v(∆1) for constraint 1.
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Figure 5: Value function v(∆2) for constraint 2.

Of course, the shadow price changes when a different term of the value function begins to
govern, as in the case of LP.

To show that projection creates a value function for an general IP problem, we must
extend Theorem 3 to deal with perturbed right-hand sides. Interestingly, the perturbations
do not affect the congruences, and the perturbation terms ∆i appear only in the generated
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Figure 6: Value function v(∆3) for constraint 3.

inequalities. The inequalities aijxj ≥ fi and −akjxj ≥ gk in Theorem 3 are replaced with
aijxj ≥ fi+∆̄i and −akjxj ≥ gk+∆̄k to account for the effect of perturbations on generated
inequalities. Thus ∆̄i = ∆̄k = 0 when all the perturbations are zero.

Theorem 7 Suppose aij, akj > 0 for all i ∈ I, k ∈ K. Then

(a) There exists xj ∈ Z such that aijxj ≥ fi + ∆̄i and −akjxj ≥ gk + ∆̄k for all i ∈ I,
k ∈ K, and such that αxj ≡ d (mod m),

if and only if

(b) d ≡ 0 (mod β), where β = gcd(α,m); there exist λα, λm ∈ Z satisfying λαm+λmα = β;
and there exists ui ∈ {0, 1, . . . , aijm/β − 1} such that

akj(fi + ui + ⌈∆̄i − ui⌉aijm/β) + aij(gk + ∆̄k) ≤ 0 (32)

for all i ∈ I, k ∈ K, and fi + ui ≡ λmaijd/β (mod aijm/β) for all i ∈ I.

Furthermore, if ∆̄i = ∆̄k = 0, then inequality (32) reduces to akj(fi + ui) + aijgk ≤ 0.

Proof. We first note that if ∆̄i = ∆̄k = 0, then in (32) we round −ui up to the
nearest multiple of aijm/β, which is zero because 0 ≤ ui < aijm/β. Thus (32) reduces to
akj(fi + ui) + aijgk ≤ 0.

(a) ⇒ (b). We can write the inequalities in (a) as

akjα(fi + ∆̄i) ≤ aijakjαxj ≤ −aijα(gk + ∆̄k) (33)
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for all i, k. If we let y = aijakjαxj , then we can show as in the proof of Theorem 3
that d ≡ 0 (mod β), λαm + λmα = β for some λα, λm ∈ Z, and the congruence relation
y ≡ λmaijakjαd/β (mod aijakjlcm(α,m)) holds. From the congruence relation and (33),
we have

akjα(fi + ∆̄i)− λmaijakjαd/β ≤ γ ≤ −aijα(gk + ∆̄k)− λmaijakjαd/β (34)

where γ is an integer multiple of aijakjlcm(α,m). Since β divides d, the leftmost expression
in (34) is an integer multiple of akjα. So we can add the term

akjα(−∆̄i + ui + ⌈∆̄i − ui⌉aijm/β) (35)

to the left-hand side of (34), where the expression si = −∆̄i + ui + ⌈∆̄i − ui⌉aijm/β takes a
value in {0, . . . , aijakj lcm(α,m)/(akjα)− 1} = {0, . . . , aijm/β − 1}. We therefore have

akjα(fi + ui + ⌈∆̄i − ui⌉aijm/β) ≤ γ + λmaijakjαd/β ≤ −aijα(gk + ∆̄k) (36)

where

akjα(fi + ui + ⌈∆̄i − ui⌉aijm/β)− λmaijakjαd/β ≡ 0 (mod aijakj lcm(α,m)) (37)

Inequality (36) implies (32). Congruence (37) simplifies to

fi + ui + ⌈∆̄i − ui⌉aijm/β − λmaijd/β ≡ 0 (mod aijm/β)

which implies the congruence in (b) because ⌈∆̄i−ui⌉aijm/β is a multiple of aijm/β. Finally,
si = mod aijm/β(ui−∆̄i) due to (30). Because we need only consider values 0, . . . , aijm/β−1
for si, we generate the required values by restricting ui to {0, . . . , aijm/β − 1}.

(a) ⇐ (b). The inequalities in (b) can be written

−
gk + ∆̄k

akj
≥

fi + ui + ⌈∆̄i − ui⌉aijm/β

aij
(38)

for all i, k. From (b) we have that d ≡ 0 (mod β), so that d/β is integral. Also from (b),

fi + ui ≡ λmaijd/β (mod aijakjm/β)

Because d/β and m/β are integral, this implies fi+ui is an integer multiple of aij. We also
have that ⌈∆̄i − ui⌉aijm/β is a multiple of aijm/β and therefore aij. So we can let

xj = max
i

{

fi + ui + ⌈∆̄i − ui⌉aijm/β

aij

}

and xj is integral. This and (38) imply −(gk + ∆̄k)/akj ≥ xj, or −gk ≥ akjxj + ∆̄k. To
show that aijxj ≥ fi + ∆̄i, we note that

aijxj ≥ aij
fi + ui + ⌈∆̄i − ui⌉aijm/β

aij
≥ fi + ∆̄i
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because ui + ⌈∆̄i − ui⌉aijm/β = ∆̄i + modaijm/β(ui − ∆̄i) ≥ ∆̄i due to (30). Finally, it can
be shown as in the proof of Theorem 3 that αxj ≡ d (mod m). �

We can now describe, in general, a step of the projection method applied to an IP
(4) with perturbed right-hand sides bi + ∆i. If xj is to be eliminated from the current
system (S, C), we apply the GCRT to the congruences in C containing xj to obtain a single
congruence αxj ≡ d (mod m). We then consider all pairs of inequalities in S of the form
aijxj ≥ fi + ∆̄i, −akjxj ≥ gk + ∆̄k for which aij , akj > 0. When projecting out the first
variable, ∆̄i = ∆i and ∆̄k = ∆k. We generate the inequality (32) and associate it with the
congruence fi + ui ≡ λmaijd/β (mod aijm/β) and the domain ui ∈ {0, . . . , aijm/d − 1}.
The multiplier λm can be obtained by using the Euclidean algorithm as before. We then
update the system (S, C) by removing from S all inequalities containing xj , adding to S
all generated inequalities, adding to C all the associated congruence relations, and adding
ui ∈ {0, . . . , aijm/β − 1} to the domains. If xℓ is the next variable to be eliminated
from a generated inequality (32), we write (32) in the form aijxℓ ≥ fℓ + ∆̄ℓ, where ∆̄ℓ =
akj⌈∆̄i − ui⌉aijm/β + aij∆̄k.

When all variables xj have been eliminated, the result is a system (S ′, C′) and domains
u ∈ D such that S contains only z and uis, and C contains only uis. The inequalities in S
provide bounds of the form z ≥ vt(u,∆). Due to Theorem 7, this describes the projection
onto z, and the function

v(∆) = min
u

{

max
t

{vt(u,∆)}
∣

∣

∣
C, u ∈ D

}

is therefore the optimal value of the perturbed IP problem (4). In other words, v(∆) is a
value function for (4). It is clear from the form of (32) that v(∆) contains nested roundings
⌈·⌉m. Because n variables are eliminated, the depth of the nesting is at most n.

7 Conclusion

We generalised LP projection (Fourier-Motzkin elimination) to IP projection. This leads
to a new branching algorithm in which the depth of the tree is bounded by the number of
variables in the IP, in contrast to conventional IP branch-and-bound methods, where there
is no bound. It also leads to a complete family of cutting planes where the maximum rank is
also bounded by the number of variables in the original IP. Finally, a value function for an
IP is produced, in which the optimal objective value is given as a function of the right-hand
sides. This provides a duality result for IP analogous to that for LP.

Some related results for the more general case of mixed integer/linear programming
(MILP) appear in [9]. These results lead to an analytic solution of the MILP when applied
only to the constraints binding in the LP relaxation; that is, when applied to an MILP over
a cone.
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