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a b s t r a c t

We consider a fundamental integer programming (IP) model for cost–benefit
analysis and flood protection through dike building in the Netherlands, due to
Zwaneveld and Verweij (2017). Experimental analysis with data for the IJsselmeer
shows that the solution of the linear programming relaxation of the IP model is
integral. This naturally leads to question whether the polytope associated to the
IP is always integral.

In this paper we first give a negative answer to this question by proving the
non-integrality of the polytope. Secondly, we establish natural conditions that
guarantee the linear programming relaxation of the IP model is integral. We show
that these conditions are indeed satisfied by the recent data on flood probabilities,
damage and investment costs of IJsselmeer. Finally, we show that the IP model can
be solved in polynomial time when the number of dike segments, or the number
of feasible barrier heights, are bounded.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Protection against increasing sea levels is an important issue around the world, including the Netherlands.
Optimal dike heights are of crucial importance to the Netherlands as almost 60% of its surface is under threat
of flooding from sea, lakes, or rivers. This area is protected by more than 3500 kilometers of dunes and dikes,
which require substantial yearly investments of more than one billion Euro [1].
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Recently, Zwaneveld et al. [1,2] presented an integer programming (IP) model for a cost–benefit analysis
to determine optimal dike heights that allows highly flexible input parameters for flood probabilities, damage
costs and investment costs for dike heightening. Their model improves upon an earlier model by Brekelmans
et al. [3], who presented a dedicated approach without guaranteed optimality, and which was, in turn,
an improvement of the original model by van Dantzig [4] from 1956. The latter was introduced after a
devastating flood in the Netherlands in 1953, with the goal of designing a long-lasting cost-efficient layout
for a dike ring.

This paper considers an IP model for cost–benefit analysis and flood protection through dike building
in the Netherlands. This model is based on the work of Bos and Zwaneveld [5], Zwaneveld and Verweij [6]
and recent work by Zwaneveld and Verweij [2]. In the latter, the authors study the problem of economically
optimal flood prevention in a situation in which multiple barrier dams and dikes protect the hinterland to
both sea level rise as well as peak river discharges.

Current optimal flood prevention methods, e.g., by Kind [7], Brekelmans et al. [3], Zwaneveld, Verweij,
and van Hoesel [1], only consider single dike ring areas with no interdependency between dikes. However,
the assumption that the failure probability of a dike ring may not depend on the strength of other dikes or
barrier dams “is clearly not valid for many [...] dike ring areas in The Netherlands” [2]. This fact motivated
the Dutch ministry of Infrastructure and the Environment to ask for a model that is capable of assessing
these interdependencies. Only such interdependencies are powerful enough to model the complex interactions
that can be observed on real-life instances; for instance, Eijgenraam et al. [8] state that “if one is interested
in an optimal investment policy (i.e., when, how much, and where to heighten dikes), then the model [...] for
nonhomogeneous dike rings [should be used]”. The first such model being capable of meeting the ministry’s
demands was presented by Zwaneveld and Verweij [2,6]. They present a graph-based IP model for a cost–
benefit analysis to determine optimal dike heights with multiple interdependencies between dikes and barrier
dams. Zwaneveld and Verweij [6] identify several solution approaches (e.g. a dynamic programming heuristic
and branch-and-cut), and they also show that it can be solved quickly using a branch-and-cut approach for
real world problem instances.

Zwaneveld and Verweij [2] made the interesting observation that their branch-and-cut approach yields,
on all instances they tested, an integer optimal solution without any branching. Thus, on those instances,
solving the linear programming (LP) relaxation of their IP model gives the optimal solution for the IP model.
A natural question arising from this observation is:

Question 1. Does the LP relaxation of the Zwaneveld–Verweij IP model always admit an integral optimal
solution?

The question was posed explicitly by the Netherlands Bureau for Economic Policy Analysis (CPB) at the
2017 Study Group Mathematics with Industry in Amsterdam, The Netherlands. A positive answer would
have practical relevance, as it would imply that the computational cost of solving the IP is always reasonable
regardless of the objective function (by using the LP relaxation of the problem). A negative answer to the
question would imply that, for certain objective functions, the computational cost of solving the IP may
increase significantly.

1.1. Our contribution

The contributions of the paper are as follows.
Our first contribution is a negative answer to Question 1. This implies that despite what the experiments

might suggested, the polytope related to the LP relaxation of the integer problem of model of Zwaneveld
and Verweij [2,6] is not integral. We provide details in Section 3.
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Second, we derive sufficient conditions on costs that ensure the LP relaxation to be integral (see
Proposition 2 and Corollary 1). Thus, the IP model can be solved using the linear relaxation when the
conditions in Proposition 2 and Corollary 1 are met. Moreover, we experimentally verify that such conditions
hold on numerous data related to the case we are considering. For that, we use recent data on flood
probabilities, damage and investment costs that are currently used by the Dutch government. This shows
that the conditions derived in Proposition 2 and Corollary 1 are of practical importance. Details can be
found in Section 3.

Third, in Section 4 we propose two alternative approaches to solve the problem, by means of dynamic
programming and by shortest-path computations. Those approaches lead to polynomial-time algorithms of
the related IP model when some natural problem parameters – such as the number of dike segments, or the
number of feasible barrier dam heights – are bounded.

Finally, in Section 5 we present a natural abstract version of the dike height problem, which allows for
several variations and open problems.

In Section 6 we present the conclusions of this work.

2. The Zwaneveld–Verweij integer programming model

In this section we present the IP model formulated by Zwaneveld and Verweij [2]. Before going into the
details of the IP model, we introduce some important terminology. A dike is a natural or artificial slope
or wall that regulates water levels to protect a region from flooding, and a dike segment is a part of a
dike. Several dike segments may jointly protect the same area, in which case they form a dike ring. In the
Netherlands, around the IJselmeer, dike ring areas and smaller dikes lie beneath the Afsluitdijk which is the
outermost dike located in the north. The Afsluitdijk separates the North Sea and the IJsselmeer, an artificial
lake. The Afsluitdijk is thus a barrier dam (or simply a barrier) that stops or restricts the flow of water.

The IP model uses the following data:

• T is the set of time periods at which changes to a dike segment can be made. Without loss of generality,
we assume that T = {0, 1, . . . , Tmax}. The time period between time t and time t + 1 can be either one
year or any other number of years.

• D is the set of dike segments. We identify D with the first |D| positive integers D = {1, . . . , |D|}.
• HD is the set of possible heights for a dike segment. For ease of notation, we do not let HD depend on

the dike segment, i.e., all dike segments have the same set of possible heights. The heights might receive
an upgrade, and go from height h1 at time t − 1, to a height h2 at time t. We denote the height of
the previous year (parameter in time T being equal to t − 1) by h1, and that of the current year by h2

(parameter in time T being equal to t).
• Likewise, HB is the set of possible heights for the barrier and we denote the height of the barrier in the

previous year by hB
1 , and that of the current year by hB

2 .

The decision variables are:

• B(t, hB
1 , hB

2 ) is a binary variable taking value 1 if the barrier is updated from height hB
1 at time t − 1 to

height hB
2 at time t. If hB

1 = hB
2 then the barrier is not strengthened in period from t−1 to t and remains

at its previous height. This decision variable is used for bookkeeping investment (and maintenance) costs,
flood probabilities, and related expected damage costs of the barrier.

• CY(t, d, h1, h2) is a binary variable taking value 1 if dike ring segment d is updated from height h1 at
time t − 1 to height h2 at time t. If h1 = h2 then the dike ring segment d is not strengthened in the
time period from t − 1 to t and remains at its previous height. This decision variable is used for tracking
investment (and maintenance) ‘costs’, hence the chosen name.
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The following are auxiliary variables:

• DY(t, d, h2, hB
2 ) is a binary variable taking value 1 if at time t the barrier has height hB

2 , and dike
segment d is of height h2. Alternatively, this variable can be seen as a linearization of the 0-1 variable(∑

h1
CY(t, d, h1, h2)

) (∑
hB

1
B(t, hB

1 , hB
2 )

)
: DY(t, d, h2, hB

2 ) takes value 1 if both
(∑

h1
CY(t, d, h1, h2)

)
and

(∑
hB

1
B(t, hB

1 , hB
2 )

)
are 1. This variable is used to connect investments in dike segments (and the

barrier) to expected damages. Indeed, the total cost depends not only on the individual heights of the
barrier and the dike, but also on the combined pairs of heights of both (barrier height, dike d heights);
the values of DY are forced by the constraints once B and CY values are chosen. The name DY reflects
the ‘dummy’ nature of the variable.

The input parameters are:

• Dcost(t, d, h1, h2) is the cost for investment and maintenance if the dike segment d is strengthened from
height h1 at time t − 1 to height h2 at time t. If h1 = h2, the dike segment is not strengthened and these
costs only represent maintenance costs.

• Dexpdam(t, d, h2, hB
2 ), is the expected damage, i.e.,

Dexpdam(t, d, h2, hB
2 ) = prob(t, d, h2, hB

2 ) × damage(t, d, h2, hB
2 ),

where prob(t, d, h2, hB
2 ) and damage(t, d, h2, hB

2 ) are the probability of failure and the expected damage
cost (the latter given that there is a flooding) at time t given the height of segment h2 and the height
of the barrier hB

2 . Note that it is assumed that both the probability of failure and the expected damage
upon failure of dike segment d only depend on the height of the dike segment d, on the height of the
barrier and on the time t.

• Bcost(t, d, hB
1 , hB

2 ) is the cost for investment and maintenance if the barrier is strengthened from height
hB

1 at time t − 1 to height hB
2 at time t. If hB

1 = hB
2 , the barrier is not strengthened and these costs only

represent maintenance costs.
• Bexpdam(t, hB

2 ) is the expected damage of a flooding of the barrier, i.e.,

Bexpdam(t, hB
2 ) = prob(t, hB

2 ) × damage(t, hB
2 ).

Here, prob(t, hB
2 ) and damage(t, hB

2 ) are the probability of failure and the expected damage cost (the
latter given that there is a flooding), in period t given the height of the barrier hB

2 . Both prob(t, hB
2 )

and damage(t, hB
2 ) depend only on the height of the barrier and on the time t.

The values of the input parameters (costs) are estimated for every year and then discounted to a present
value, which is actually set at the year 2020. Thus, the cost estimate is a present net value calculation.

All in all, the IP model, which we refer to as the Zwaneveld–Verweij IP model, then reads as follows:

min
∑
t∈T

∑
d∈D

∑
h1∈HD

∑
h2≥h1

Dcost(t, d, h1, h2) · CY(t, d, h1, h2) (1)

+
∑
t∈T

∑
d∈D

∑
h2∈HD

∑
hB

2

Dexpdam(t, d, h2, hB
2 ) · DY(t, d, h2, hB

2 ) (2)

+
∑
t∈T

∑
hB

1 ∈HB

∑
hB

2 ≥hB
1

(
Bcost(t, hB

1 , hB
2 ) + Bexpdam(t, hB

2 )
)

· B(t, hB
1 , hB

2 ) (3)

subject to

CY(0, d, 0, 0) = 1, CY(0, d, h1, h2) = 0 ∀d ∈ D, h1, h2 ∈ HD ⊂ N, h2 ≥ h1 and h2 > 0 (4)∑
h1≤h2

CY(t − 1, d, h1, h2) =
∑

h3≥h2

CY(t, d, h2, h3) ∀t ∈ T \ {0}, d ∈ D, h2 ∈ HD (5)
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∑
h1≤h2

CY(t, d, h1, h2) =
∑
hB

2

DY(t, d, h2, hB
2 ) ∀t ∈ T, d ∈ D, h2 ∈ HD (6)

B(0, 0, 0) = 1, B(0, hB
1 , hB

2 ) = 0 ∀hB
1 , hB

2 ∈ HB ⊂ N, hB
2 ≥ hB

1 and hB
2 > 0 (7)∑

hB
1 ≤hB

2

B(t − 1, hB
1 , hB

2 ) =
∑

hB
3 ≥hB

2

B(t, hB
2 , hB

3 ) ∀t ∈ T\{0}, d ∈ D, hB
2 ∈ HB (8)

∑
hB

1 ≤hB
2

B(t, hB
1 , hB

2 ) =
∑
h2

DY(t, d, h2, hB
2 ) ∀t ∈ T, d ∈ D, hB

2 ∈ HB (9)

CY(t, d, h1, h2) ∈ {0, 1} ∀t ∈ T, d ∈ D, h1, h2 ∈ HD, h2 ≥ h1 (10)
DY(t, d, h2, hB

2 ) ∈ {0, 1} ∀t ∈ T, d ∈ D, h2 ∈ HD, hB
2 ∈ HB (11)

B(t, hB
1 , hB

2 ) ∈ {0, 1} ∀t ∈ T, d ∈ D, hB
1 , hB

2 ∈ HB , hB
2 ≥ hB

1 (12)

The objective function (1) + (2) + (3) gives the total expected cost for a given sequence of height
upgrades, both for the dam barrier and dike segments, considering the costs of upgrading the dikes as well
as the expected damages upon dike failure. Eqs. (6) and (9) are the linking constraints between the barrier
and the dike segments using the variables DY. We shall observe that the heights of the dikes, or the barrier,
are not allowed to decrease, so the variables CY(t, d, h1, h2) and B(t, h1, h2) exist only when h1 ≤ h2. The
remaining constraints are explained in the following section.

2.1. Graph representation of the Zwaneveld–Verweij IP model

The IP problem can be modeled as a directed graph (see Fig. 1 for how to represent Example 1 detailed
in Section 3.1.)

Such graph can be built as a union of bipartite graphs, one for each dike segment G1, . . . , G|D| and one
for the barrier GB . Each of these bipartite graphs has |T | stable vertex sets, and each of these stable sets
contains either |HD| (for G1, . . . , G|D|) or |HB | (for GB) vertices. Hence the vertices are the triplets (t, d, h)
with t ∈ T , h ∈ HD and d ∈ D, while the vertex set of GB contains all the pairs (t, hB) with t ∈ T and
hB ∈ HB . As a consequence, the vertex set for the graph of the IP problem is the union of the vertex sets
for Gi, i ∈ D, and the vertex set for GB .

The edges in the graph correspond, one-to-one, to variables in the IP problem. Each graph Gd for d ∈ D,
contains an edge corresponding to the variable CY(t, d, h1, h2), from the vertex (t − 1, d, h1) (in the stable
set corresponding to the time t − 1) to the vertex (t, d, h2) (in the stable set corresponding to the time t).
The graph GB contains an edge from the vertex (t − 1, hB

1 ) (in the stable set t − 1) to the vertex (t, hB
2 ) (in

the stable set t) whenever there is a corresponding variable B(t, hB
1 , hB

2 ). Additionally, for d ∈ D there is an
undirected edge between the vertex (t, d, h2) in Gd and the vertex (t, hB

2 ) in GB for each connecting variable
DY(t, d, h2, hB

2 ).

2.2. Explanation of the constraints and of the Zwaneveld–Verweij IP model

With the above representation, Eqs. (5) and (8) can be seen as flow constraints on the graphs G1, . . . , G|D|
and GB , respectively. However, the presence of the linking constraints (6) and (9) implies that the whole
problem cannot be seen as a minimum-cost flow problem on directed graphs. Eqs. (4) and (7) are the initial
and boundary conditions. Eqs. (10)–(12) are integrality constraints. The heights of the dike segments and
the barrier heights never decrease.

Observe that, by the initializations (4), (7) and the constraints (5), (8) the following equalities also hold:∑
hB

1 ≤hB
2

B(t, hB
1 , hB

2 ) = 1, and
∑

h1≤h2

CY(t, d, h1, h2) = 1, for all t ∈ T, d ∈ D.
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Fig. 1. Example of a non-integral point of the polytope associated with the Zwaneveld–Verweij IP model. The 0-valued variables are
either omitted or dashed. The edges between the vertices for t = 2 are crossing. The initialization and contour variables from (4) and
(7) are omitted.

Intuitively speaking, the above model consists of many smaller models corresponding to the heightening of
each dike segment, which are joined together into a big model by the barrier (which can be also heightened
and which interacts with the dike segments). This joining together is the source of the model’s difficulty and
is characteristic for flood protection problems which often involve ‘small measures’ affecting a single area,
and ‘big measures’ affecting multiple areas. The complexity results that we derive in the following sections
are logical since they state that, essentially, the per-dike problem is simple but it is the joining of all dikes
that makes it difficult.

2.3. Comparison with other models

Other models to solve the problem of determining the heights of the dikes have been considered, e.g., by
Brekelmans et al. [3], Eijgenraam et al. [8]. Those models consider the dike heights as continuous decision
variables. In general, a continuous optimization model may not be convex, and therefore the solution found
may be a local minimum. In contrast, the Zwaneveld–Verweij IP model presented in the previous section
considers a discretization of these decisions (when to update the heights and by how much). As a benefit,
the problem is now linear and the optimal solution is a global optimum. As a drawback, when the problem
is discretized the number of decision variables increases, the problem must be solved over the integers, and
some information might be lost due to the used discretization. Indeed, the discretization may not capture the
global optimum of the original problem (for instance if the coordinates of the optimal solution are irrational
numbers). The latter can be addressed by considering a refined discretization.

In Postek et al. [9], the authors use an integer programming model as the Zwaneveld–Verweij IP model
from Section 2 to determine the minimal cost for determining the height of the dikes in a dike system.
They introduce the possibility of uncertainty in the calculations for some of the costs, probabilities, and
safety parameters (for instance, due to the uncertainty in the sea level rise in the next 30 years). Their
model allows to consider interactions between the dikes and a barrier (through what in [9] is referred to as
large-scale measures). The model from [9] assumes a certain required safety level, and aims to minimize the
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Table 1
Values of the variables for the vertex p of P1 from Example 1 taking non-zero values; all
omitted variables take value zero.

(t, h1, h2) or (t, h2, hB
2 ) (0, 0, 0) (1, 0, 1) (1, 0, 0) (2, 1, 1) (2, 0, 0) (1, 1, 0) (1, 0, 1)

CY(t, h1, h2) 1 1/2 1/2 1/2 1/2 0 0
B(t, h1, h2) 1 1/2 1/2 1/2 1/2 0 0
DY(t, h2, hB

2 ) 1 0 0 1/2 1/2 1/2 1/2

total cost of updating the dikes subject to such conditions. In contrast, the Zwaneveld–Verweij IP model
focuses on making a cost–benefit analysis, and as such, the required safety levels in [9] exist through the
expected costs involved if a failure occurs; the uncertainty allowed in the computations by [9] ought to be
linked to the probability of failure in the Zwaneveld–Verweij IP model.

3. On the integrality of the polytope

3.1. The polytope is non-integral

In this section, we follow the definitions and conventions of Schrijver [10]. All polytopes considered are
convex polytopes. Recall that a polytope in Rk is said to be non-integral if it has a vertex (facet of dimension
0) with at least one coordinate that is not an integer. Additionally, every vertex in the polytope defined by
the constraints can be obtained as the optimal solution of a linear program with an adequate objective
function.

The Zwaneveld–Verweij IP model from Section 2 defines a family of integer linear programs, one
for each choice of sets D, HB , HD, T and objective function (1)+(2)+(3). In its linear relaxation, the
integer variables (10)–(12) taking values in {0, 1} are allowed to vary in the interval [0, 1]. Therefore,
the constraints of the linear relaxation of the integer linear program define a polytope in R#{variables} =

R
|T |

(
|D|(|HD |+1

2 )+(|HB |+1
2 )

)
, by identifying the coordinates of each element of the polytope with the variables

in the linear program. We call the IP model non-integral if there exist sets D, HB , HD, T for which the
polytope induced by the constraints of the linear relaxation is non-integral.

Our main result in this section is as follows:

Proposition 1. The Zwaneveld–Verweij IP model from Section 2 is non-integral.

We will provide two different proofs of Proposition 1, one in Section 3.1.1 and one in Section 3.1.2.
The sets from the following example induce a polytope that has a non-integral vertex.

Example 1.

• T = {0, 1, 2}, that is, three time periods.
• D = {1}, that is, one dike segment. Since there is only one dike segment, we omit the corresponding

indices (for instance, CY(t, d, h1, h2) simplifies to CY(t, h1, h2)).
• HD = H = {0, 1}, HB = {0, 1}. That is, two different heights for the barrier and for the dikes.

The number of variables in the example is 21. We denote by P1 the polytope induced by the linear
relaxation of Example 1. The values of the variables for some non-integral vertex p of P1 are indicated
in Table 1. In Fig. 1 we consider a visual representation of the vertex p as a solution of a flow problem on
graphs; the variables and their values are indicated near the edge that represents them.

One can check that p is a feasible solution of the LP relaxation (a point in the polytope). Indeed, the
flow conditions are satisfied, as are the equations linking the dummy variables DY and the CY’s and B’s
(Eqs. (6) and (9)). Next, we will prove that p is indeed a vertex of the polytope P1.
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3.1.1. p is a vertex of P1. First proof of Proposition 1
Our goal is to show that p is a vertex of P1. Each convex polytope P is defined by a finite set of linear

inequalities Ax ≤ 0. Each vertex v of P is defined as the unique solution of the relations from Ax ≤ 0 that
are satisfied with equality in Av = 0. In particular, the row vectors of the relations satisfied with equality
in Av ≤ 0 span the space of solutions Rdim(x) = R#{variables}.

Thus, for Example 1, if we want to show that p is a vertex of the polytope P1, we shall show that the
span of the row vectors of the matrix A coming from Eqs. (5), (6), (8), (9), (4), (7), and the linear relaxation
of (10), (11), (12), that are satisfied with equality in Ap ≤ 0 span R21.

Notice that some rows of A are vectors ei = (0, . . . , 0, 1, 0, . . . , 0), (that is, vectors of the canonical base
of R21). Since we want to show that some row vectors span R21, both the rows containing these canonical
vectors ei, as well as the columns indexed by the corresponding unique non-zero coordinate i, may be omitted
from our considerations. This submatrix of the rows A that are satisfied with equality at p is indicated in
Fig. A.7.

Now, using Gaussian elimination, the matrix from Fig. A.7 is row-equivalent to that in Fig. A.8. Since⎛⎜⎜⎝
1 1 0 0
1 0 −1 0
0 1 0 −1
1 1 0 0
0 1 −1 0
1 0 0 −1

⎞⎟⎟⎠ ∼

⎛⎜⎜⎝
1 1 0 0
0 −1 −1 0
0 1 0 −1
0 0 0 0
0 1 −1 0
0 −1 0 −1

⎞⎟⎟⎠ ∼

⎛⎜⎜⎝
1 1 0 0
0 −1 −1 0
0 0 1 −1
0 0 0 0
0 0 −2 0
0 0 1 −1

⎞⎟⎟⎠ ∼

⎛⎜⎜⎝
1 1 0 0
0 −1 −1 0
0 0 0 −1
0 0 0 0
0 0 −2 0
0 0 0 0

⎞⎟⎟⎠
we show that the vectors induced by the equations that are satisfied with equality for the evaluation given

by Fig. 1 span R#{variables} = R21, and hence the point p is a vertex of the polytope.

3.1.2. p is a vertex of P1. Second (alternative) proof of Proposition 1
Again, our goal is to show that p is a vertex of P1. To argue that the point p, given by the values from

Table 1, is indeed a vertex of the polytope P1, we shall show that for every line with non-zero direction vector
x⃗ = (x⃗1, . . . , x⃗21) and for every ε > 0, either p + εx⃗ or p − εx⃗ is outside the polytope. Every coordinate x⃗i

of x⃗ corresponds, uniquely, to a variable B, CY, or DY.
First observe that if x⃗i is the coordinate related to a variable that is either 0 or 1 in p, then x⃗i = 0,

as otherwise, for any ε > 0, either p + εx⃗ or p − εx⃗ would be outside of the polytope P1. Hence, the only
coordinates x⃗i that may be non-zero are those for which the coordinate i in p is in the open interval (0, 1).

The argument proceeds by contradiction. It assumes a sign on a non-zero coordinate of x⃗, say x⃗i. By a
chain of implications we conclude that another coordinate x⃗j is non-zero and has the same sign as x⃗i. By a
different chain of implications we also conclude that x⃗j has a different sign than x⃗i, reaching a contradiction.
Thus, initially the coordinate x⃗i is zero. Furthermore, the fact that initially the coordinate x⃗i is zero will
imply that the coefficients used in the chains of implications are also zero. The details of the concrete
argument are given below.

Remark 1. In Example 1, every equation from (5), (6), (8), (9) involves at most 2 variables on each side
of the equality, one of them being either 0 or 1.

This observation forces the implications written below.
Assume, for instance, that the coefficient x⃗i corresponding to B(2, 1, 1) in x⃗ is negative. The following

chain of implications can be drawn:

by the flow constraints (8), the coefficient of B(1, 0, 1) is negative;

then, by the flow constraints (8), the coefficient of B(1, 0, 0) is positive;

then, by the flow constraints (8), the coefficient of B(2, 0, 0) is positive.
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Now, using Eqs. (9) that link the variables B and DY, B(2, 0, 1) + B(2, 1, 1) = DY(2, 1, 1) + DY(2, 1, 0),
we obtain that the coefficient of DY(2, 1, 1) is negative, which implies that

the coefficient of CY(2, 1, 1) in x⃗ is negative;

then, by flow constraints (5), the coefficient of CY(1, 0, 1) is negative;

then, by flow constraints (5), the coefficient of CY(1, 0, 0) is positive;

then, by flow constraints (5), the coefficient of CY(2, 0, 0) is positive.

This implies that the coefficient of DY(2, 0, 0) has to be positive. However, let us now look at the coefficients
of DY(1, 0, 1) and the one corresponding to DY(1, 1, 0).

If we use Eqs. (9), the linking constraints between the variables DY and B, the coefficients x⃗i′ and x⃗i′′

corresponding to the variables DY(1, 0, 1) and DY(1, 1, 0) in x⃗ have to be negative and positive, respectively.
However, if we look at the constraints (6) linking the variables DY and CY, the coefficients should have the
opposite sign (positive and negative, respectively). Thus we reach a contradiction, which shows that the
coefficient x⃗i corresponding to B(2, 1, 1) is 0.

The fact that the coefficient x⃗i corresponding to B(2, 1, 1) is 0 implies, by again applying the same
arguments as above using Remark 1, that all the other coefficients involved in the chains of implications
have to be zero. This shows that no such non-zero vector x⃗ exists.

3.2. Sufficient conditions for integrality of the optimal solution of the linear relaxation

Our findings in Section 3.1 show that the polytope is, in general, non-integral. Thus, a natural next step is
to find some conditions on the objective function (1)+(2)+(3) that guarantee that either the linear relaxation
of the integer program finds an integral point as a solution, or that there is an integral point in the optimal
face of the convex polytope and a procedure to find it. Such conditions are presented in Proposition 2 and
Corollary 1.

Proposition 2. Consider the Zwaneveld–Verweij IP model from Section 2, and assume that the coefficients
of the objective function (1)+(2)+(3) satisfy:

(i) for every t, d, h2, h′
2, hB

2 , h′B
2 such that h2 ≤ h′

2 and hB
2 ≤ h′B

2 ,

Dexpdam(t, d, h′
2, hB

2 ) + Dexpdam(t, d, h2, h′B
2 )

≥ Dexpdam(t, d, h2, hB
2 ) + Dexpdam(t, d, h′

2, h′B
2 ) (13)

(ii) for every t, hB
1 , h′B

1 , hB
2 , h′B

2 such that hB
1 ≤ h′B

1 and hB
2 ≤ h′B

2 ,

Bcost(t, hB
1 , h′B

2 ) + Bcost(t, h′B
1 , hB

2 )
≥ Bcost(t, hB

1 , hB
2 ) + Bcost(t, h′B

1 , h′B
2 ) (14)

(iii) for every t, d, h1, h′
1, h2, h′

2 such that h1 ≤ h′
1 and h2 ≤ h′

2,

Dcost(t, d, h1, h′
2) + Dcost(t, d, h′

1, h2)
≥ Dcost(t, d, h1, h2) + Dcost(t, d, h′

1, h′
2) . (15)

Then, there is an optimal solution of the LP relaxation of the Zwaneveld–Verweij IP model with integer
coordinates.
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Note that the term involving Bexpdam(t, hB
2 ) from (3) does not appear in condition (ii) of Proposition 2

as it appears on both sides of the inequality.
The conditions (i)–(iii) are satisfied by a wide range of reasonable cost functions. Observe that all

inequalities that appear in conditions (i)–(iii) from Proposition 2 are of a similar form: for a ≤ a′ and
b ≤ b′ we have that some function c(·, ·) satisfies c(a, b) + c(a′, b′) ≤ c(a, b′) + c(a′, b). Such an inequality for
c is naturally satisfied (in fact with equality) if c is of the form c(x, y) = f(y) − f(x) + c0 for some function
f and constant c0. In the context of conditions (ii) and (iii) from Proposition 2, such a form is somewhat
reasonable to expect: the cost of rising a dike from level x to y compares to the cost of rising the dike from
level 0 to y, minus the effort already made to rise it from 0 to x, plus perhaps some extra cost c0.

Moreover, assuming an exponential economical growth, it seems reasonable to assume that if we want to
protect an area by increasing the height of a dike, we will try to protect the same area in the future even
more. Thus, the increments in the dike heights are absolutely ordered up to a point where the costs are
higher than the benefits, and hence there is a unique optimum path.

From a technical perspective, each of the condition sets (i), (ii) and (iii) from Proposition 2 independently
provides structural information on the feasible set which help towards finding the integer solution of the
IP problem (see Steps 1, 2 and 3 in the proof of Proposition 2). Indeed, conditions (i)–(iii) guarantee the
optimal solution of the LP relaxation to be integral via the following argument: the conditions (i)–(iii) induce
an ordering on the possibly fractional solutions of the barrier and the dikes.

The partial solutions of the barrier can be paired with the partial solutions of the dikes in a way compatible
with the ordering. This compatibility permits us to view the problem as a min-cost flow problem (and it is
known that the solution to the LP relaxation of the min-cost flow problem is integral.) Both the ordering
of the partial solutions and the mentioned pairing can be achieved without altering the optimality of the
solution thanks to the conditions (i)–(iii).

Analogous arguments apply to conditions (ii), (iii) and (iv) of Corollary 1.

Proof of Proposition 2. The Zwaneveld–Verweij IP model can be thought of as several min-cost flow
problems, one for each dike and one for the barrier. However, these problems are not independent; they are
linked to each other using the variables DY. An example of this interpretation can be seen in Fig. 1. The
graph G that codifies the IP problem is the one constructed in Section 2.1. We use the same notation in
this proof. Observe that, for each d ∈ D and t ∈ T , the vertices {(t, d, h)}h∈HD

can be ordered using the
height h:

v = (t, d, h) <v u = (t, d, h′) if and only if h < h′.

This induces a partial order on the vertices of Gd for d ∈ D. The vertices in GB can be similarly partially
ordered.

The problem is translated as follows. Variables B(0, 0, 0) and D(0, d, 0, 0) at t = 0 represent a flow input
of 1. Eqs. (5), together with initializations (4) get translated into the property that, for each d ∈ D, there
is a flow of one unit through Gd (the graph induced by each of the dikes). Eqs. (8), together with the
initializations (7), get translated into the following property: there is a flow of 1 unit through GB (the graph
induced by the barrier). Recall that the flow through a vertex v is the sum of the inflows of the edges attached
to the vertex v. Eqs. (6) and (9) make the variables DY behave as pairing variables: if DY(t, d, h, hB) = f

then a flow of f through the vertex (t, d, h) is paired with a flow of f through the vertex (t, hB). Finally,
((1)+(2)+(3)) is the linear objective function for this intertwined min-cost flow problem. Now, any solution
of the IP gives a flow, and vice-versa: each of the variables B and CY indicates the amount of flow through
the corresponding edge, and the quantity DY indicates the amount paired between the two ends of the edge.
See Section 5 for further details.
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Fig. 2. Flow path v0v1v3 is above flow path v0v1v2 and they form a layered flow. Flow paths u0u1u4 and u0u2u3 do not form a
layered flow. Note that edges u1u4 and u2u3 form a crossing.

Let x⃗ be a solution satisfying Eqs. (5), (6), (8) and (9) (satisfying the equations of an intertwined flow
problem). Then edges e1 = u1v1 and e2 = u2v2 are said to form a crossing in the solution x⃗ if the pairs of
vertices (u1, u2) and (v1, v2) are comparable, and u1 <v u2 and v1 >v v2, and the value of both e1 and e2

in x⃗ is non-zero. If both edges e1 and e2 belong to the same group of variables, say B, CY, or DY, then we
say that e1 and e2 form a B-crossing, a CY-crossing or a DY-crossing, respectively. For an illustration, in
Fig. 1, edges DY(1, 1, 0) and DY(1, 0, 1) form a DY-crossing if we order the vertices in each layer (t, d, ·) by
its height h or hB .

The proof of Proposition 2 consists of three steps:

Step 1 First, we reroute the flow in the graph (modifying the variables B and CY) to obtain a “layered”
flow (see the definition below). The first step will be completed without increasing the total cost due
to conditions (ii) and (iii).

Step 2 In the second step we modify the variables DY while keeping B and CY constant. For the second
step we utilize condition (i) to see that the solution can be modified while not increasing the total cost.

Step 3 In the third step we use standard flow-rerouting arguments in graphs to find the desired integral
solution (while not increasing the total cost) using a Ford–Fulkerson-algorithm-type argument.

Step 1 and Step 2 are the preparation for Step 3, which uses the properties of the solution in Step 1 and
Step 2 to finish the argument. Namely, we first create a layered flow (Step 1), then do the uncrossings of the
DY in conjunction with the layered flow (Step 2). Afterwards we pair up the flow paths: top path (of the
barrier) with top path (from the dikes) and bottom path with bottom path; We use the fact that the DY
variables are not crossing to iteratively redirect the flow into a single path (Step 3).

In what follows, we give the details of the above steps.

Step 1 Consider a graph G′. A path p = (v1, e1, v2, e2, . . . , vn) in G′, with vertices v1, v2, . . . , vn and
edges e1, e2, . . . , en−1, is a flow path when the amount of flow through each edge of the path is the
same (that is, there is a valid flow through p from v1 to vn, even though the edges in G′ of the
path may carry a different flow). If the vertices of the graph have a partial order <v, then a flow
path p2 = v1, e1, v2, e2, . . . , vn through the vertices v1, v2, . . . , vn is said to be above a flow path
p1 = w1, e′

1, w2, e′
2, . . . , wn on the vertices w1, w2, . . . , wn when vi ≥v wi for all i, and we denote it

by p1 <a p2. The above relation, <a, induces a partial order on the set of paths. A flow in a graph G′

is said to be layered if there exist a positive integer ℓ and flow paths p1, . . . , pℓ that are totally ordered
(pi <a pj for i < j) and that decompose the flow: the addition of the flows through the flow paths
p1, . . . , pℓ is the original flow. See Fig. 2 for an example.

Claim 1. For each feasible solution y⃗0 of the IP, and under the assumptions of Proposition 2, there exists
a feasible solution y⃗1 for which
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• for each i ∈ D ∪ {B}, the flow induced in Gi by y⃗1 is layered,
• the value of the objective at y⃗1 is not larger than at y⃗0,
• restricted to the variables DY, the values of y⃗0 and y⃗1 are equal.

In particular, some optimal solution induces a layered flow on each induced graph Gi, i ∈ D ∪ {B}.

Proof of Claim 1. Let us begin by showing the statement for the graphs induced by the dikes Gd. The
modifications to the argument for the case of the barrier GB are discussed towards the end of the proof.

For each dike d, and each time t, let ht,d denote the maximum height in HD for which the vertex (t, d, ht,d)
in Gd has a non-zero flow through it:

ht,d = max

⎧⎨⎩h , subject to: h ∈ HD and
∑

h1≤h

CY(t, d, h1, h) > 0

⎫⎬⎭ .

Note that
∑

h1≤h CY(t, d, h1, h) > 0 indicates that there is a non-zero flow through the vertex (t, d, h). Let
pℓ,d be a flow path with vertices {(t, d, ht,d)}t∈T and with flow

fl(pℓ,d) = min
t∈T

⎧⎨⎩ ∑
h1≤ht,d

CY(t, d, h1, ht,d) > 0

⎫⎬⎭ .

That is, the value of the flow in pℓ,d is restricted by the flow of the vertex in pℓ,d having the minimum amount
of flow among the vertices of pℓ,d. The flow path pℓ,d contains the edges CY(t, d, ht−1,d, ht,d) between vertices
(t − 1, d, ht−1,d) and (t, d, ht,d); thus, a flow of fl(pℓ,d) through pℓ,d is allowed by the feasible solution y⃗0 if
and only if, for each t ∈ T ,

CY(t, d, ht−1,d, ht,d) ≥ fl(pℓ,d). (16)

If a flow fl(pℓ,d) through pℓ,d is allowed by y⃗0 (conditions (16) are satisfied), then we subtract a flow of fl(pℓ,d)
from the edges of pℓ,d, inducing a valid [1 − fl(pℓ,d)]-valued flow through the graph Gd. The same procedure
is then applied to this new flow in Gd. If conditions (16) are satisfied for the new [1 − fl(pℓ,d)]-flow through
Gd, then the procedure can be repeated. Since the number of vertices with flow through it strictly decreases
from one step to the next, the procedure is guaranteed to eventually finish.

Repeating this procedure i ≥ 0 times – so (16) is satisfied at each of the i steps – we obtain flow i paths
pℓ,d, . . . , pℓ−i+1,d such that pℓ−i+1,d <a pℓ−i+2,d <a · · · <a pℓ,d. If after finding i ≥ 0 flow paths, conditions
(16) are not satisfied, then by a pigeonhole argument we can find a CY-crossing between the variables
CY(t, d, h1, ht,d) and CY(t, d, ht−1,d, h2). That is, there exist t, h1, h2 with h1 < ht−1,d and h2 < ht−1,d,
for which either

0 < CY(t, d, h1, ht,d) ≤ CY(t, d, ht−1,d, h2) < 1 (17)

or
1 > CY(t, d, h1, ht,d) ≥ CY(t, d, ht−1,d, h2) > 0 . (18)

Then we modify the feasible solution y⃗0 via one of the following transformations (see illustration in Fig. 3),
if (17) occurs, then (→ indicates “turns into”)⎧⎪⎪⎪⎨⎪⎪⎪⎩

CY(t, d, h1, h2) → CY(t, d, h1, h2) + CY(t, d, h1, ht,d)
CY(t, d, h1, ht,d) → CY(t, d, h1, ht,d) − CY(t, d, h1, ht,d) = 0
CY(t, d, ht−1,d, h2) → CY(t, d, ht,d, h2) − CY(t, d, h1, ht,d)
CY(t, d, ht−1,d, ht,d) → CY(t, d, ht−1,d, ht,d) + CY(t, d, h1, ht,d);

(19)
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Fig. 3. Assuming (18), thus using (20) to undo a CY (or B) crossing.

if (18) occurs, then⎧⎪⎪⎪⎨⎪⎪⎪⎩
CY(t, d, h1, h2) → CY(t, d, h1, h2) + CY(t, d, ht−1,d, h2)
CY(t, d, h1, ht,d) → CY(t, d, h1, ht,d) − CY(t, d, ht−1,d, h2)
CY(t, d, ht−1,d, h2) → CY(t, d, ht−1,d, h2) − CY(t, d, ht−1,d, h2) = 0
CY(t, d, ht−1,d, ht,d) → CY(t, d, ht−1,d, ht,d) + CY(t, d, ht−1,d, h2).

(20)

This transformation provides a new feasible solution y⃗1 not worse than y⃗0. Indeed, the value of the
objective function at y⃗1 has not increased with respect to the value of the objective function at y⃗0 by
condition (15). Feasibility of y⃗1 follows from three facts.

The first fact is that, if there is a crossing between CY(t, d, h1, ht,d) and CY(t, d, ht−1,d, h2), then ht−1,d ≤
h2. By definition of ht−1,d we have h1 ≤ ht−1,d; hence h1 ≤ h2 and CY(t, d, h1, h2) is a valid variable and
hence an edge of the graph. Since CY(t, d, h1, ht,d) and CY(t, d, ht−1,d, h2) are assumed to be crossing, and
by definition of ht,d we have h2 ≤ ht,d, then h2 < ht,d and also ht−1,d < ht,d; thus CY(t, d, ht−1,d, ht,d) is
also a valid variable and hence an edge of the graph. This fact guarantees that the operations in (19) or (20)
are allowed (the variables are defined).

The second fact is that the sums
∑

h1≤h CY(t − 1, d, h1, h) and
∑

h1≥h CY(t, d, h, h1) are equal for both
y⃗0 and y⃗1 (the same value is added and subtracted to these sums); then, since the variables DY and the B’s
remain constant, all Eqs. (4), (5), (6), (7), (8), (9) are satisfied. Moreover, the linear relaxations of (11) and
of (12), are also satisfied (the variables DY and B have not been modified).

The third and final fact states that the linear relaxation of (10) is also satisfied. Indeed, if (17) holds, then
the variables are modified by transformation (19), and all variables CY remain non-negative (some are not
modified, and those from which something is subtracted, their non-negativity is preserved). In case of (18)
being satisfied, the conclusion on the non-negativity of CY holds as well. Moreover, values of the variables
CY remain below 1 as the total flow through Gd is 1, and we have already shown that the flow through each
edge is positive (non-negative), while the flow equations for Gd are satisfied by y⃗1, hence the flow through
each edge is between 0 (non-negative) and 1 (the maximum total flow). This shows that (10) is also satisfied
for y⃗1.

After feasibility and the fact that the value of the objective function at y⃗1 is as good as the value of the
objective function at y⃗0 has been established, we continue with the main argument. The flow induced by y⃗1
in Gd contains one less CY-crossing. After all CY-crossings have been eliminated using the transformations
(19) and (20), condition (16) is satisfied and a new flow path pℓ−i,d can be found. Thus, for G1, . . . , G|D| we
obtain layered flows.

This procedure can be applied analogously to the barrier; in this case we shall use condition (14) instead
of (15) to undo the B-crossings without increasing the cost (while remaining a feasible solution), and hence
finding a layered flow for the graph GB of the barrier. This completes the proof of Claim 1, as the ’in
particular’ part of the statement is an immediate consequence of the main part of the claim. □
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Fig. 4. On the left: crossing of (h, hB), (h′, h′B) is on top of crossing (h, hB), (h′′, h′′B) which is on top of the crossing (h′, h′B),
(h′′, h′′B). Crossing of (h, hB), (h, h′B) is the topmost one. On the right, we undo the topmost crossing using (21) or (22); other
crossings are created but they are below the original one.

Step 2 Let us now move to the second step.

Claim 2. If y⃗0 is a feasible solution of the linear relaxation, and under the assumptions of Proposition 2,
then either y⃗0 contains no DY-crossing, or there exists another feasible solution y⃗1 such that

• y⃗1 has no DY-crossings,
• the vector y⃗1, restricted to the variables B and CY, equals y⃗0,
• the value of the objective function for y⃗1 is not larger than the value of the objective function for y⃗0.

In particular, an optimal solution can be assumed to have no DY-crossings by modifying only the values of
the variables DY.

Proof of Claim 2. Let <v be a partial order on the vertices. The crossing formed by the edges e1 = u1v1
and e2 = u2v2 is said to be on top of the crossing formed by e3 = u3v3, e4 = u4v4 if (v1, v2, u2, u1) (with
v1 >v v2) is larger than (v3, v4, u4, u3) (with v3 >v v4) in the lexicographical order: each coordinate of
(v1, v2, u2, u1) can be compared with the corresponding coordinate in (v3, v4, u4, u3) and the value of the
first coordinate in which they differ, is strictly larger in (v1, v2, u2, u1) (either v1 >v v3, or if v1 = v3 then
v4 >v v2, and so on). See Fig. 4 for an illustration.

To make the argument clearer, we shall assume that the vertices are ordered by non-decreasing height.
For each t ∈ T and d ∈ D, we undo all crossings between the edges DY(t, d, ·, ·). Let the topmost DY-

crossing be between the edges DY(t, d, h′, hB) and DY(t, d, h, h′B), with h < h′, hB < h′B . Then we can
modify the solution of the linear relaxation y⃗0 to obtain another feasible solution y⃗1 as follows. See Fig. 4
for an illustration of the procedure (from the left-hand figure, to the right-hand figure).

If DY(t, d, h′, hB) ≥ DY(t, d, h, h′B) then (→ indicates “turns into”)⎧⎪⎪⎪⎨⎪⎪⎪⎩
DY(t, d, h′, hB) → DY(t, d, h′, hB) − DY(t, d, h, h′B) ≥ 0
DY(t, d, h, h′B) → DY(t, d, h, h′B) − DY(t, d, h, h′B) = 0
DY(t, d, h, hB) → DY(t, d, h, hB) + DY(t, d, h, h′B)
DY(t, d, h′, h′B) → DY(t, d, h′, h′B) + DY(t, d, h, h′B).

(21)

If DY(t, d, h′, hB) < DY(t, d, h, h′B) then⎧⎪⎪⎪⎨⎪⎪⎪⎩
DY(t, d, h′, hB) → DY(t, d, h′, hB) − DY(t, d, h′, hB) = 0
DY(t, d, h, h′B) → DY(t, d, h, h′B) − DY(t, d, h′, hB) > 0
DY(t, d, h, hB) → DY(t, d, h, hB) + DY(t, d, h′, hB)
DY(t, d, h′, h′B) → DY(t, d, h′, h′B) + DY(t, d, h′, hB).

(22)

The cost of y⃗1 is at most y⃗0 due to (13). Furthermore, DY(t, d, h, h′B)DY(t, d, h′, hB) = 0, so DY(t, d, h′, hB)
and DY(t, d, h, h′B) do not cross in y⃗1.
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Even though some DY-crossing between edges DY(t, d, ·, ·) might have been created in y⃗1 with respect
to y⃗0, all are smaller in the lexicographical order. Indeed, all the crossings involving one edge from the set
{DY(t, d, h′, hB), DY(t, d, h, h′B)}, either do not exist as the variable has value 0 or the crossing is smaller
in the lexicographical order. The latter is shown by observing that the modified edges DY(t, d, h′, h′B)
and DY(t, d, h, hB) do not cross any edge from the set {DY(t, d, h′, hB), DY(t, d, h, h′B)}, and the crossings
involving one edge from the set {DY(t, d, h′, hB), DY(t, d, h, h′B)} already occur for y⃗0, but by assumption
we picked the topmost DY-crossing in y⃗0. This fact is argued in the following two paragraphs.

Each crossing involving the edge DY(t, d, h, hB) in y⃗1 is below the {DY(t, d, h′, hB), DY(t, d, h, h′B)}.
Indeed, if {DY(t, d, h′′, h′′B), DY(t, d, h, hB)} cross in y⃗1, and h′′B < hB , then the crossing (hB , h′′B , h′′, h)
is below (h′B , hB , h′, h) as, recall, h′B > hB . In the case that hB < h′′B , then h′′ < h and there is a
crossing {DY(t, d, h′, hB), DY(t, d, h′′, h′′B)} in y⃗0 (as h < h′ and h′B > hB) with (h′′B , hB , h′, h′′) being
larger than (h′′B , hB , h, h′′). So the {DY(t, d, h′′, h′′B), DY(t, d, h, hB)} crossing in y⃗1 is below the maximal
one in {DY(t, d, h′, hB), DY(t, d, h, h′B)} for y⃗0.

Now, assume that the edge DY(t, d, h′, h′B) creates a crossing with DY(t, d, h′′, h′′B) in y⃗1, and that is
larger in lexicographical order than the one between DY(t, d, h′, hB) and DY(t, d, h, h′B). If h′B < h′′B , then
h′′ < h′, and the edges DY(t, d, h′′, h′′B) and DY(t, d, h′, hB) also cross in y⃗0 while (h′′B , h′B , h, h′′) is larger
in the lexicographical order than (h′B , hB , h′, h), contradicting the maximality of the (h′B , hB , h′, h) cross
in y⃗0. Therefore, we should have h′′B < h′B and thus h′ < h′′ (as they are crossing). By the assumption
that (h′B , h′′B , h′′, h′) is larger in the lexicographical order than (h′B , hB , h′, h) we have h′′B ≥ hB . Hence,
the edges DY(t, d, h′′, h′′B) and DY(t, d, h, h′B) cross for y⃗0 (as h′′B < h′B and h < h′ < h′′) but then
(h′B , h′′B , h′′, h) is larger than (h′B , hB , h′, h) in the lexicographical order, contradicting the maximality of
the crossing between DY(t, d, h, h′B) and DY(t, d, h′, hB) in y⃗0. As this procedure that removes crossings can
be conducted in such a way that the topmost crossing in the lexicographical order strictly decreases from
one step to the next, the process finishes in a finite number of steps.

Additionally, the values on the variables B and CY have not been modified by the transformations (21)
or (22) in y⃗1 with respect to y⃗0. Furthermore, since the sums∑

h∈HD

DY(t, d, h, hB) and
∑

hB∈HB

DY(t, d, h, hB)

maintain its value in y⃗1 with respect to y⃗0, then y⃗1 is also a feasible solution of the linear relaxation.
Therefore, this process finishes and a feasible solution y⃗1 is found which is at least as good as y⃗0, with
no DY-crossings and with the same values as y⃗1 for the variables B and CY as claimed. This completes the
proof of Claim 2. □

Step 3 We can finally move to the third step.

Claim 3. If y⃗0 is a feasible solution of the linear relaxation, and under the assumptions of Proposition 2,
then there exists a feasible solution y⃗1 such that

• y⃗1 is integral
• the objective function at y⃗1 is not larger than the one for y⃗0.

Proof. By Claim 1 the flows induced by y⃗0 on each Gi, i ∈ D ∪ {B} can be assumed to be layered. Since
Claim 2 does not modify the edges CY, the edges DY can be assumed to be pairwise non-crossing. Hence
we have a layered flow with non-crossing edges DY in y⃗0.

Let p1,i, . . . , pℓi,i denote the flow paths of the layered flow in the graph Gi induced by y⃗0, with i ∈ D∪{B}.
Assume moreover that, for each i ∈ D ∪{B}, pj1,i is below pj2,i whenever j1 < j2 (recall that this is denoted
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by pj1,i <a pj2,i). Let L1, . . . , L|D| denote the (lower) flow paths p1,1, . . . , p1,|D|; that is, Ld is the minimal
non-zero flow path in Gd with respect to the <a ordering on the flow paths. Likewise, LB is the minimal flow
path for the graph GB , so LB = p1,B . Similarly, U1, . . . , U|D| denote the topmost flow paths pℓ1,1, . . . , pℓ|D|,|D|

of the layered flow; that is, Ui = pℓi,i. Likewise, UB = pℓB ,B , is the topmost flow path induced by y⃗0 in the
graph GB .

Assume y⃗0 is non-integral, whence at least a flow variable CY or B is non-integral, and there exists an
i ∈ D∪{B} for which Ui ̸= Li. The plan is to reroute as much flow as possible, either from [U1, . . . , U|D|, UB ]
to [L1, . . . , L|D|, LB ], or vice-versa, depending on the cost function; we say that a flow of value f is rerouted
from [U1, . . . , U|D|, UB ] to [L1, . . . , L|D|, LB ] if for each i ∈ D ∪ {B}, the flow through Ui is lowered by f ,
and the flow through Li is increased by f .

Consider ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lin := mini∈D∪{B}{1 − fl(Li)} max. flow the lower paths can take

lout := mini∈D∪{B}{fl(Li)} max. flow the lower paths can give

uin := mini∈D∪{B}{1 − fl(Ui)} max. flow the upper paths can take

uout := mini∈D∪{B}{fl(Ui)} max. flow the upper paths can give.

Since (1)+(2)+(3) is linear, we can determine whether rerouting from [U1, . . . , U|D|, UB ] to [L1, . . . , L|D|, LB ]
does not increase the value of the objective function, or vice-versa. Assume the first case. Then we reroute a
flow of through-flow trfl = min{uout, lin} from [U1, . . . , U|D|, UB ] to [L1, . . . , L|D|, LB ]. That is, consider the
flow paths with edges

Ui = (1, i, h0,ui
, h1,ui

), . . . , (|T |, i, h|T |−1,ui
, h|T |,ui

),

Li = (1, i, h0,ui
, h1,li), . . . , (|T |, i, h|T |−1,li , h|T |,li), i ∈ D ∪ {B};

then a feasible solution y⃗1 with cost value at most that of y⃗0, is obtained from y⃗0 by updating the variables
as follows (→ indicates “turns into”):{

CY(t, d, ht−1,ud
, ht,ud

) → CY(t, d, ht−1,ud
, ht,ud

) − trfl for d ∈ D, t ∈ T

B(t, ht−1,uB
, ht,uB

) → B(t, ht−1,uB
, ht,uB

) − trfl for t ∈ T
(23)

{
CY(t, d, ht−1,ld , ht,ld) → CY(t, d, ht−1,ld , ht,ld) + trfl for d ∈ D, t ∈ T

B(t, ht−1,lB , ht,lB ) → B(t, ht−1,lB , ht,lB ) + trfl for t ∈ T
(24)

DY(t, d, ht,ud
, ht,uB

) → DY(t, d, ht,ud
, ht,uB

) − trfl for d ∈ D, t ∈ T (25)

DY(t, d, ht,ld , ht,lB ) → DY(t, d, ht,ld , ht,lB ) + trfl for d ∈ D, t ∈ T (26)

The variables that do not appear in (23), (24), (25), (26) are not modified. Some variables that appear may
be untouched when Li = Ui at a particular edge.

Let us show that the updated vector y⃗1 is a feasible solution. It is clear that y⃗1 satisfies (4), (5), (6), (7),
(8), (9). It remains to show that it also satisfies the linear relaxations of (10), (11) and (12).

Since the flow is layered, and by the definition of trfl, each variable represented in (23) is non-negative,
and each variable represented in (24) is at most 1.

Since the total flow through Gd, d ∈ D and GB is 1, it suffices to show that the new variables in
(25) are non-negative in order to prove that the new variables in (26) are at most 1 as well. Let us



Please cite this article as: A. Abiad, S. Gribling, D. Lahaye et al., On the complexity of solving a decision problem with flow-depending costs: The case
of the IJsselmeer dikes, Discrete Optimization (2019) 100565, https://doi.org/10.1016/j.disopt.2019.100565.

A. Abiad, S. Gribling, D. Lahaye et al. / Discrete Optimization xxx (xxxx) xxx 17

proceed by contradiction and assume that there is a negative variable due to the operation (25); denote
by (t, d, ht,ud

, ht,uB
) the variable for which DY(t, d, ht,ud

, ht,uB
) − trfl < 0. By the relations (6) and (9), and

since there is a flow of at least trfl through the vertices (t, d, ht,ud
) and (t, ht,uB

) in the original solution y⃗0,
we have ∑

h∈HD

DY(t, d, h, ht,uB
) ≥ trfl and

∑
hB∈HB

DY(t, d, ht,ud
, hB) ≥ trfl .

By a pigeonhole argument, and since we are considering the uppermost flow paths UB and Ud, if
DY(t, d, ht,ud

, ht,uB
) − trfl < 0 then there exist hB

0 < ht,uB
and h0 < ht,ud

with DY(t, d, ht,ud
, hB

0 ) > 0
and DY(t, d, h0, ht,uB

) > 0 for the solution y⃗0. Thus there is a DY-crossing between DY(t, d, ht,ud
, hB

0 ) and
DY(t, d, h0, ht,uB

), which is a contradiction as y⃗0 was assumed to have no DY-crossings.
An analogous argument shows that rerouting an amount of min{lout, uin} from the L’s to the U ’s also

creates a feasible solution.
After applying this argument once, either the total number of flow paths is reduced by at least 1, either

because the flow through a path has been reduced to 0, or the flow through another flow path has been
increased to 1. Since the total number of flow paths is finite, this procedure finishes and all the flow is
rerouted towards a single flow path for each Gd and GB . Due to the linearity of the objective function, this
flow rerouting can be achieved without increasing the value of the objective function. This finishes the proof
of Claim 3. □

The proof of Proposition 2 is finished after observing that Claim 3 directly shows its statement. □

Next, we show that condition (i) in Proposition 2 can be replaced by condition (iv) in Corollary 1 to
obtain the same conclusion.

Corollary 1. Assume that conditions (ii), (iii) from Proposition 2 hold. Assume further that the following
conditions on the coefficients of the objective function (1)+(2)+(3) hold:

(iv) for each dike d ∈ D, either

Dexpdam(t, d, h′
2, hB

2 ) + Dexpdam(t, d, h2, h′B
2 )

≤ Dexpdam(t, d, h2, hB
2 ) + Dexpdam(t, d, h′

2, h′B
2 ) (27)

for every t, h2, h′
2, hB

2 , h′B
2 such that h2 ≤ h′

2 and hB
2 ≤ h′B

2 , or

Dexpdam(t, d, h′
2, hB

2 ) + Dexpdam(t, d, h2, h′B
2 )

≥ Dexpdam(t, d, h2, hB
2 ) + Dexpdam(t, d, h′

2, h′B
2 ) (28)

for every t, h2, h′
2, hB

2 , h′B
2 such that h2 ≤ h′

2 and hB
2 ≤ h′B

2 .

Then the linear relaxation of the Zwaneveld–Verweij IP model from Section 2 admits an integral optimal
solution.

An important observation is that (iv) is more general than condition (i): if (i) are satisfied, then (iv) are
also satisfied. The arguments of the proof of Claim 1, however, are easily reduced to those used in the proof
of Proposition 2.
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Proof. We modify the argument of the proof of Proposition 2, as follows. For t ∈ T and d ∈ D, we modify
the order on the vertices of Gd as follows:

(t, d, h) <v (t, d, h′) ⇐⇒

{
h < h′ if (28) is satisfied for d,

h > h′ if (27) is satisfied for d.
(29)

That is, we consider the usual ordering on heights of Gd when (28) is satisfied ((i) in Proposition 2), and
the reversed order (so the largest height is considered as the minimum element in the new order) when (27)
is satisfied. The order of the vertices on the barrier is the same as in Proposition 2.

Mimicking Step 1, we obtain a layered path decomposition as well, as the conditions (ii) and (iii) from
Proposition 2 are maintained. Even though the ordering on the vertices might have changed, the flow path
decomposition is the same but the order might be reversed: if for dike d, (27) is satisfied instead of condition
(i), then the lowermost path in the flow path decomposition with the new ordering of the vertices is the
topmost one from Proposition 2.

Mimicking Step 2, we want to avoid the DY-crossings and the same argument goes through, but,
importantly, with the updated version of the ordering on the vertices. This updated ordering (29) allows
us to claim that undo the crossings does not increase the value of the objective function.

Then mimicking Step 3, we reroute flow from [U ′
1, . . . , U ′

|D|, UB ] to[L′
1, . . . , L′

|D|, LB ] or vice-versa, with{
L′

d = Ld and U ′
d = Ud if (28) is satisfied for the dike d,

L′
d = Ud and U ′

d = Ld if (27) is satisfied for the dike d,

where Ld and Ud denote, respectively, the lowermost and the uppermost paths in the argument of
Proposition 2 (where the ordinary ordering by height on all the vertices (t, d, ·) is considered), and where L′

d

and U ′
d denote the lowermost and the uppermost flow paths in the new ordering. □

3.3. Computational results

Recall that the original problem that we wish to solve is the integer program from Section 2. In order to
solve it, we first implement and solve the LP relaxation, and within a few minutes we obtain a solution that
turns out to be integer. Therefore, with the set of parameter data that we have (Dcost, Dexpdam, etc.), all
the variables can be continuous.

In this section we test whether conditions of Corollary 1, which include conditions (iv) found in Corollary 1
and conditions (ii) and (iii) from Proposition 2 are satisfied by the most recent data on flood probabilities,
damage and investment costs. Our findings show that most of the tested instances indeed satisfy these
conditions.

It is worth noting that we check conditions (iv) from Corollary 1 and conditions (ii) and (iii) from
Proposition 2 separately, since, in light of the proofs of Proposition 2 and Corollary 1, each of them provides
structural information in the solution set.

The details of our findings are given in Figs. A.9 and A.10. In each table, the first column specifies the
years that we used in our study: 5-year periods until the year 2100, and 10-year periods after the year 2100.
In the first row we specify each of the dike rings. The description of the dike rings around the IJsselmeer
and the IJsseldelta is as follows (the numbers are also used in Fig. 5):

zwf = Zuid-West Friesland = 6–4 nop = Noord-Oost Polder = 7–1
nfl = Noord-Oost Flevoland = 8–1 wfn = West-Friesland Noord = 13-2
wie = Wieringen = 12–1 ijd = IJsseldelta = 11–1
mas = Mastenbroek = 10–1 vol = Vollenhove = 9–1
sal = Salland = 53–1 ovl = Oost-Veluwe = 52–1
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Fig. 5. Dike rings around the IJsselmeer and the IJsseldelta in the Netherlands.

3.3.1. Remarks on Fig. A.9
In this table, we summarize how many instances in our real data do satisfy condition (iv) in Corollary 1.
As height levels we included 14 levels (that is |HD| = 14) for the dike rings and also 14 levels for the

Afsluitdijk (that is, |HB | = 14). As a result, for each dike ring 14 + 13 + · · · + 1 = 1
2 · 14 · 15 = 105

combinations of height, with h ≤ h′, levels for both the dike rings and the Afsluitdijk could be evaluated.
Hence, in total we tested 105 · 105 = 11025 instances (numbers in row immediately below the names). The
rest of numbers in the tables correspond to the number of instances that fulfill the corresponding condition
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and are calculated for all dike rings (listed in the first row by its short name) and year (listed in the first
column) combinations.

Note that the year 2020 is the initial year considered, thus the conditions of Corollary 1 and Proposition 2
are trivially satisfied for each dike ring (zwf, nop, nfl, wfn, wie, ijd, mas, vol, sal, ovl) and barrier (Afsluitdijk);
the “2020” row is hence added for comparison purposes.

3.3.2. Remarks on Fig. A.10
Fig. A.10 contains the summary of the number of constraints that satisfy conditions (ii) and (iii) in

Proposition 2; (ii) for the barrier and (iii) for the dikes. The conditions are analogous for the dikes and
the barrier.

There are
(15

2
)

pairs h ≤ h′ where each height h has 14 options. However, from all the possible
((15

2 )
2

)
pairs of pairs ((h1, h2), (h3, h4)) with h1 ≤ h2, h3 ≤ h4, h2 ≤ h4, we shall only consider those where
h1 ≤ h2 ≤ h3 ≤ h4; there are

(14+3
4

)
= 2380 of those.

Indeed, if h3 < h2, then there is no edge CY(t, d, h3, h2). Alternatively, the cost of decreasing the dike
height d can be thought of being unreasonably high, making (iii) in Proposition 2 obviously true.

We shall observe that in both cases, the number of instances being satisfied does not depend on the
year. Indeed, by a usual assumption in water safety research, the cost of updating and maintaining the
dike (or the barrier) is independent of the year. That is to say, the only effect on the cost is the rates
used to bring the cost to a present day value calculation, which for a fix year, is a constant multiplicative
factor on the costs for a given year; this makes the satisfaction of (ii) and (iii) independent of the
year.

3.3.3. Implementation
Regarding the practical implementation of the Zwaneveld–Verweij IPmodel, there was the option to install

pumps on the Afsluitdijk as an additional strengthening measure or not installing them.1 As the installation
of pumps affects the cost, we ran the simulation twice: once considering the installation of pumps on the
Afsluitdijk and once considering it without. It turns out that the minimum cost was achieved by installing
the pumps.

We implemented the IP model in GAMS and solved the model with CPLEX. No preprocessing techniques
and default GAMS and CPLEX settings were used. The tested problem instances could be solved to
optimality within a few minutes.

4. Alternative approaches

A feasible solution to the IP presented in Section 2 can be interpreted as a choice of height hd(t)
for each dike segment at each time period t, and a height hB(t) of the barrier. Abstractly, the cost of
these height series can be written as a sum of cost terms which depend only on the ‘upgrade’ done in
period t to segment d (i.e., a heightening of the dike, or merely the maintenance cost); we denote this by
costd(hd(t−1), hd(t), t) for segment d, and by costB(hB(t−1), hB(t), t) for the barrier. Finally, there is also an
expected damage cost for upgrading the dike and barrier to heights hd(t) and hB(t) in period t, denoted by
damd,B(hB(t), hd(t), t).

1 Water is dislodged from the IJselmeer by gravity; when the sea water level is below the IJselmeer water level, sluices allow
the water to flow from the IJselmeer to the sea. These sluices prevent the water from the sea to enter into the mere when
the sea water level is high, such as in high tide. The installation of pumps allows to increase the water flow capacity and to
dislodge water from the IJselmeer even during high tide; these pumps are additional strengthening measures meant to prevent,
for instance, flooding in some areas around the IJselmeer in events of exceptionally high tide. Therefore the installation of pumps
affects the costs of the problem.
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The Zwaneveld–Verweij IP model can thus be written as follows:

min
∑
t∈T

[
costB(hB(t − 1), hB(t), t)

+
∑
d∈D

[
costd(hd(t − 1), hd(t), t)

+ damd,B(hB(t), hd(t), t)
]]

s.t. hd(t) ∈ HD, hB(t) ∈ HB for d ∈ D, t ∈ T

hd(t) ≥ hd(t − 1) for d ∈ D, t ∈ T

hB(t) ≥ hB(t − 1) for t ∈ T

(30)

Next, we provide two algorithms which solve problem (30) to optimality. The first algorithm is a dynamic
program, which runs in polynomial time for bounded |D|. The second algorithm enumerates all possible
height profiles of the barrier, and for each profile solves shortest path problems on small graphs.

4.1. Dynamic programming

There are two key observations to be made. First, the second part of the objective function decomposes
naturally into a sum of |D| terms, each of which depends only on the barrier height and one segment.
Secondly, for each time period the cost only depends on the dike/barrier heights at times t−1 and t. Together
this allows us to solve the problem using a dynamic program. The recursion will be on the time period. We
maintain a table which stores values opt(hB , h⃗d, t) for all t ∈ T, hB ∈ HB , h⃗d ∈ (HD)D. Their interpretation
is as that opt(hB , h⃗d, t) is equal to the minimum cost made, up to time t, when the barrier and segments
are of height hB and h⃗d at time period t respectively. We can compute the entries of this table by means of
the following recursion:

opt(hB , h⃗d, t) = min
{

opt(hB − iB , h⃗d − i⃗d, t − 1) + costB(hB − iB , hB , t)+

cost(⃗hd − i⃗d, h⃗d, t) + dam(hB , h⃗d, t) :

hB − iB ∈ HB , h⃗d − i⃗d ∈ (HD)|D|
}

It follows that each entry of the table can be computed in time O(|HB ||HD||D|). Hence, all entries of the
table can be filled in time O

(
(|HB ||HD||D|)2 · |T |

)
. Using the interpretation of opt(hB , h⃗d, t), it follows that

the optimum of (30) is equal to
min

hB∈HB ,⃗hd∈(HD)|D|
opt(hB , h⃗d, t).

This shows the following result:

Theorem 1. The optimal value of (30) can be found in time O
(
(|HB ||HD||D|)2 · |T |

)
.

4.2. Shortest paths

We now present an algorithm that runs in polynomial time when the number of possible barrier heights
is bounded. The algorithm computes the optimal value of (30) in time

O

⎛⎜⎜⎝
# segments

|D| · (|T | · |HD|)2  
complexity shortest path

·

# barrier height profiles  
|T ||HB |

⎞⎟⎟⎠ .
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Fig. 6. Incoming and outgoing arcs of a node (t, h2) are sketched for some 0 < t < Tmax and h2 ∈ HD.

The algorithm is based on shortest paths computations. To illustrate the basic idea we first discuss the
algorithm for the setting of one dike segment and no barrier. Thereafter, a barrier is added, and from that
the generalization to multiple dike segments and barriers easily follows.

4.2.1. One dike segment, no barrier
First consider the situation with only one dike segment and no barrier. In this case the problem of

minimizing the cost at time period t becomes equivalent to finding a shortest p-q path in the following
graph. The source p = (0, 0) is the initial height of the dike at time 0. Then, for each time t ∈ {1, . . . , Tmax}
and each possible height of the dike h, we create a node (t, h). Finally we define a sink node q. The edges are
defined as follows. We first add an edge between (0, 0) and (1, h) for each h ∈ HD, with weight cost(0, h, 1),
similarly for each t ∈ {1, . . . , Tmax} and height pair h1 ≤ h2 there is an edge from (t − 1, h1) to (t, h2) with
weight cost(h1, h2, t) equal to the financial cost associated to the decision of raising the dike segment from
height h1 to h2 in time period t. Notice that since there is no barrier, we can assume that the expected
damage cost dam(t, h) is incorporated in cost(h1, h2, t). Finally, the nodes (t, h) are all connected to the
sink q. In Fig. 6, the incoming and outgoing arcs of a node (t, h2) are sketched for some 0 < t < Tmax and
h2 ∈ HD.

One observes that, indeed, any shortest p-q path corresponds to an optimal strategy of heightening this
dike segment.

Recall that a shortest p-q path in a graph G = (V, E) with non-negative edge weights can be found in
time O(|V |2) using Dijkstra’s algorithm.

4.2.2. One dike segment, a barrier
We now consider the case of a single dike segment and a barrier. The observation we need to make is that

the total financial costs incurred by upgrading the dike segment from height h1 to height h2 in time period
t no longer only depend on the dike segment, they also depend on the height of the barrier at time point t.
This means that we cannot solve a shortest path problem for the barrier and dike segment separately: the
costs on the dike segment graph depend on the path chosen in the barrier graph.

The key idea is that if we fix the height of the barrier at each time t, then we reduce to the previous
setting where all the costs are known. Hence, the optimal value of (30) can be found by minimizing over
the possible height profiles hB(t) of the barrier over time, the minimum cost of a p-q path in the network
defined in the previous section (using the costs associated to hB(t)) plus the cost of implementing height
profile hB(t). The outer minimization over the possible height profiles hB(t) is performed by enumeration,
which takes time O(|T ||HB |). This means that the optimal investment strategy for both the dike segment
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and barrier can be found in time

O
(

(|T | · |HD|)2 ·
(

|T |
|HB |

))
= O

(
(|T | · |HD|)2 · |T ||HB |

)
.

4.2.3. Multiple dike segments and a barrier
The approach of the previous section easily generalizes to the setting of multiple dike segments and a

barrier. Once a height profile hB(t) of the barrier is fixed, the optimal height profiles of each of the different
dike segments can be computed independently. Hence the problem of finding the optimal investment strategy
for multiple dike segments and a barrier can be solved in time

O
(

|D| · (|T | · |HD|)2 · |T ||HB |
)

.

This approach generalizes to the setting of multiple barriers and dike segments (where the costs of a dike
segment at time t may depend on the height of several barriers). The complexity will be of the form

O
(

|D| · (|T | · |HD|)2 · |T ||HB ||B|
)

,

where |B| is the number of barriers. One should note that the above approach assumes the same discretiza-
tion in time of the barrier and dike segments. It seems reasonable to assume a coarser discretization for the
barrier of say TB steps, this would reduce the above-mentioned formula to

O
(

|D| · (|T | · |HD|)2 · |TB ||HB ||B|
)

.

5. An abstraction of the dike heightening problem

In this section we present a natural abstract version of the dike heightening problem, which allows for
several variations and questions, which we believe have not been considered in the literature before. We
believe that studying these variations may shed additional light on the complexity of the dike height problem.

In the dike height problem we essentially have two directed graphs where each path in one of the two
graphs (the one modeling the height of the barrier) influences the cost of arcs in the other graph. It is not
difficult to show that if we were to allow any kind of influence of the path from one of the graphs on the
cost of arcs in the other graph, the problem would become NP-hard. Indeed, one can easily show that in
this case the problem contains the problem of finding two vertex disjoint paths in a directed graph, which
is NP-complete [11].

For this reason, we consider the following restricted problem.

Definition 1. For k ∈ N, a digraph D with vertex set V and arc set A is k-layered if its vertex set V (D)
can be partitioned into layers V (D) = V0 ∪ V1 ∪ · · · ∪ Vk ∪ Vk+1 such that each a ∈ A is from Vi to Vi+1 for
some i = 0, . . . , k, where V0 and Vk+1 both consist of a single vertex and |V1| = |V2| = · · · = |Vk|. We denote
the arcs between Vi and Vi+1 by A[Vi, Vi+1] and refer to |V1| as the partition size.

With this in mind, we define the Minimum Intertwined Cost Path problem as follows. The problem
takes as input k-layered graphs G1 = (V 1, A1), . . . , Gd+1 = (V d+1, Ad+1) with partitions V j = V

(j)
0 ∪ V

(j)
1 ∪

· · · ∪ V
(j)

k+1,
⏐⏐⏐V (j)

0

⏐⏐⏐ =
⏐⏐⏐V (j)

k+1

⏐⏐⏐ = 1, and cost functions cj : Aj → R≥0 for j = 1, . . . , d + 1, and for each
i = 1, . . . , k and t = 2, . . . , d + 1 maps mt

i : V
(t)

i × A1[V 1
i−1, V 1

i ] → R≥0.
For j = 1, . . . , d + 1 let P j = (vj

0, aj
1, vj

1, aj
2, vj

2, . . . , aj
k, vj

k, aj
k+1, vj

k+1) be a path from V
(j)

0 to V
(j)

k+1 with
aj

i = (vj
i−1, vj

i ) for j = 1, . . . , d + 1. Define the cost of the (d + 1)-tuple (P 1, . . . , P d+1) as

cost(P 1, . . . , P d+1) =
k+1∑
i=1

d+1∑
t=1

ct(at
i) +

k+1∑
i=1

d+1∑
t=2

mt
i(vt

i , a1
i ).
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The objective is to compute a (d + 1)-tuple of paths (P 1∗, . . . , P d+1∗) with minimum cost over all such
(d + 1)-tuples.

In the Minimum Intertwined Cost Path problem, the dependence of cost(P 1, . . . , P d+1) on the paths
P 2, . . . , P d+1 is linear in the edges of P 2, . . . , P d+1. Note that the Zwaneveld–Verweij IP model is the specific
case of the Minimum Intertwined Cost Path problem where the barrier acts as P 1, each of the dikes
is represented by one path P j , j = 2, . . . , d + 1, and the cost functions mt

i only depend on the vertices
mt

i(vt
i , a1

i ) = mt
i(vt

i , v1
i ), in addition to the edges between Vi and Vi+1 being restricted (only connecting

vertices of non-decreasing heights).
This particular fact allowed us in Section 4.2.2 to give an algorithm for the problem, which runs in

polynomial time if we consider the size of the sets in the partition of the vertices of G1 as a constant. If
the bipartite graphs between V

(1)
i and V

(1)
i+1 are complete, the cost factor |T ||HB | turns into |HB ||T | and

then this dynamic programming approach will not work. It would be interesting to find out if some other
approach may yield an efficient algorithm.

We end this section with some concrete questions.

Question 2. Is the Minimum Intertwined Cost Path problem NP-hard if the number of possible heights
is unbounded?

We do not have an answer for Question 2, but we remark the following: with an appropriate cost function
on the updating of the heights of one dike, instances of the Knapsack problem can be seen as optimizing
the height of one dike. Indeed, the decision of updating the height of a dike at time t ∈ N corresponds to
the decision of adding a certain number of copies of an item to the knapsack; the total height of the dike
at time t corresponds to the accumulated weight of the chosen items (counting multiplicities) to be carried
among the first t items. The cost function of upgrading the height at time t by kwt units corresponds to the
profit of adding k copies of the item t, whose weight is wt. The cost function of upgrading the dikes is such
that once the capacity of the knapsack is exceeded by a set of items, then the cost of keeping or upgrading
the dike height is unreasonable high. With this correspondence, we observe that the optimal solution of the
Knapsack problem corresponds to the optimal solution of the dike height. Computing an optimal solution
to the Knapsack problem is well-known to be NP-hard. One of the inputs of the Knapsack problem is
the logarithm of the total weight of the knapsack bag. Thus the dynamic program proposed in Section 4.1
is an exponential time algorithm. Note that Question 2 asks whether Minimum Intertwined Cost Path
is NP-hard with respect to the input “the total weight of the knapsack bag”, instead of its logarithm.

If Question 2 has a positive answer, the problem becomes hard to solve in general, and hence it makes
sense to consider the following more restricted configurations.

Question 3. Under which conditions on the bipartite graphs Gj [V (j)
i , V

(j)
i+1], (j = 1, 2, i = 1, . . . , k) can the

Minimum Intertwined Cost Path problem be solved in polynomial time?

Question 4. Suppose the partition size of G1 is constant. Under which conditions on the bipartite graphs
Gj [V (j)

i , V
(j)

i+1] (j = 1, 2, i = 0, . . . , k) is the Minimum Intertwined Cost Path problem polynomial-time
solvable?

6. Conclusions

In this work we considered the Zwaneveld–Verweij IP model, detailed in Section 2, for cost–benefit analysis
and flood protection through dike building in the Netherlands. The contributions of this paper are as follows:
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Fig. A.7. Relevant submatrix of inequalities satisfied with equality at p.

Fig. A.8. Row reduced matrix from Fig. A.7.

• we show that despite what is suggested by experiments, the polytope related to the LP relaxation of the
integer problem is not integral;

• we formulate conditions on costs in this integer program for the polytope to be integral and check that
such conditions hold on numerous data related to the case the authors consider;

• the above condition satisfaction seems to explain why just with the LP relaxation we already obtain an
integer solution to the original IP from Section 2;

• in the end, we provide a theoretical result on the polynomial-time solution to the related IP model when
some parameters (number of dike segments, or the number of feasible barrier heights) are constant, and
provide a complexity-theoretic abstraction of the considered model.

To sum up, we resolve issues related to solving the above mentioned model efficiently. Roughly speaking,
the model consists of many “smaller models” corresponding to heightening of each dike segment, which are
joined together into a big model by the barrier (which can be also heightened and which interacts with
the dike segments). This joining together is the source of the model’s difficulty and is characteristic for
flood protection problems which often involve “small measures” affecting a single area, and “big measures”
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Fig. A.9. Output of the numerical experiment: checking whether conditions (iv) from Corollary 1 hold. In parenthesis, the percentage.

Fig. A.10. Output of the numerical experiment: checking whether conditions (iii) from Proposition 2 hold for the dikes and
conditions (ii) from Proposition 2 for the barrier (afsluitdijk).
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affecting multiple areas. On that angle, our complexity results demonstrate that, essentially, the per-dike
problem is simple, but linking the dikes makes the problem difficult.
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