
A Cut-and-Branch Algorithm for

the Quadratic Knapsack Problem

Franklin Djeumou Fomeni∗ Konstantinos Kaparis†

Adam N. Letchford‡

To appear in Discrete Optimization

Abstract

The Quadratic Knapsack Problem (QKP) is a well-known NP-hard
combinatorial optimisation problem, with many practical applications.
We present a ‘cut-and-branch’ algorithm for the QKP, in which a
cutting-plane phase is followed by a branch-and-bound phase. The
cutting-plane phase is more sophisticated than the existing ones in the
literature, incorporating several classes of cutting planes, two primal
heuristics, and several rules for eliminating variables and constraints.
Computational results show that the algorithm is competitive.

Keywords: knapsack problems, cutting planes, integer programming.

1 Introduction

The Quadratic Knapsack Problem (QKP) takes the form:

max
n∑

i=1

n∑
j=1

qijxixj

s.t.
n∑

i=1
wixi ≤ c (1)

x ∈ {0, 1}n, (2)

where n is the number of items, c is the (positive and integral) capacity,
the wi are the (positive and integral) weights, and the qij are the (integral)

∗Department of Management and Technology, University of Quebec in Montreal, CIR-
RELT, Montreal, Canada. E-mail: franklin@aims.ac.za
†Department of Business Administration, University of Macedonia, Egnatia Street,

54636 Thessaloniki, Greece. E-mail: k.kaparis@uom.edu.gr
‡Department of Management Science, Lancaster University, Lancaster LA1 4YX,

United Kingdom. E-mail: A.N.Letchford@lancaster.ac.uk

1

profits. The QKP includes as a special case the standard (linear) knapsack
problem (KP), which is obtained when qij = 0 for all i 6= j.

The QKP, introduced in Gallo et al. [13], has applications in finance,
logistics and telecommunications. It is NP-hard in the strong sense, by
reduction from the maximum clique problem [5]. For good surveys of appli-
cations, bounding procedures, heuristics and exact algorithms, see [19, 22].
At present, the most effective exact algorithms are the ones in [5,23], which
are based on Lagrangian relaxation.

The main contribution of this paper is a ‘cut-and-branch’ framework for
the QKP. This framework incorporates four families of cutting planes, two
primal heuristics, and several rules for eliminating variables and constraints.
We also present the results of some extensive computational experiments.
As well as testing our algorithm on standard QKP instances, such as those
used in [5,23], we also test it on some hard special cases of the QKP, namely,
the dispersion problem [23], the densest sub-graph problem [23] and the hid-
den clique problem [27]. All of these were recently shown to be extremely
challenging for existing QKP algorithms [27]. Our computational results
show that our algorithm is competitive with the best existing algorithms.

The paper is structured as follows. In Section 2, we review the relevant
literature. In Section 3, we present several separation routines (i.e., routines
for generating cutting planes). In Section 4, we describe the other compo-
nents of the cut-and-branch algorithm. The computational results are given
in Section 5. Finally, some concluding remarks are made in Section 6.

Throughout the paper, we assume that the reader is familiar with the
basics of integer programming, including cutting planes, branch-and-bound
and separation algorithms (see [30] for an introduction). We also let N
denote {1, . . . , n} and E denote {S ⊂ N : |S| = 2}. (One can think of N and
E as the nodes and edges, respectively, of a complete undirected graph.)

2 Literature Review

Since the literature on the QKP is vast, we review here only results that are
of direct relevance, and refer the reader to the surveys [19,22].

2.1 Standard formulation of the QKP

Using a standard construction [14], one can formulate the QKP as a 0-1
linear program (0-1 LP). Let the x variables be defined as above. For all
{i, j} ∈ E, let yij be an additional binary variable, representing the product

2

xixj . The formulation is then:

max
∑

i∈N qiixi +
∑
{i,j}∈E(qij + qji)yij (3)

s.t. (1), (2)

yij ≤ xi
(
{i, j} ∈ E

)
(4)

yij ≤ xj
(
{i, j} ∈ E

)
(5)

yij ≥ xi + xj − 1
(
{i, j} ∈ E

)
(6)

y ∈ {0, 1}E .

This formulation is used in [2, 12, 16]. We will call the inequalities (4)–(6)
trivial inequalities.

2.2 Cutting planes for the KP

The convex hull of vectors x ∈ {0, 1}n satisfying the knapsack constraint
(1) is called the knapsack polytope, and has been studied in depth (see,
e.g., [1, 15,18,20,28,29]).

The most well-known valid inequalities for the knapsack polytope are the
lifted cover (LC) inequalities. A set C ⊂ N is called a cover if

∑
i∈C wi > c.

The cover is minimal if no proper subset of it is a cover. Balas [1] and
Wolsey [29] showed that, given any minimal cover C ⊂ N , there exists at
least one facet-defining LC inequality of the form:∑

i∈C
xi +

∑
i∈N\C

αixi ≤ |C| − 1

with αi ≥ 0 for all i ∈ N \ C.
Balas [1] defined a simple family of (not necessarily facet-defining) LC

inequalities. For a given cover C, let E(C) denote the set of items in N \C
that weigh at least as much as the heaviest item in C. Then one can simply
set αi to 1 if i ∈ E(C), and to 0 otherwise. The resulting LC inequality is
called an extended cover (EC) inequality.

2.3 Cutting planes for the QKP

The convex hull of pairs (x, y) ∈ {0, 1}N+E satisfying (1) and (4)–(6) is called
the quadratic knapsack polytope [16, 24, 25]. One key class of valid inequal-
ities, mentioned in [2, 16], is obtained via the reformulation-linearization
technique (RLT) of Sherali & Adams [26]. Take the knapsack constraint
(1) and multiply it by a variable xk or by its complement 1− xk, and then
replace any products of the form xixk with yij . This yields the following 2n
inequalities: ∑

i∈N\{k}wiyik ≤ (c− wk)xk (k ∈ N) (7)∑
i∈N\{k}wi(xi − yik) ≤ c− cxk (k ∈ N). (8)

3

We will call these RLT inequalities.
It is pointed out in [16] that one can apply the RLT to any valid inequal-

ity for the knapsack polytope, not only the knapsack constraint itself. So,
for example, given any LC inequality for the KP, one can derive 2n distinct
valid inequalities for the QKP. It is shown in [12] that, if the original inequal-
ity defines a facet of the knapsack polytope, then the resulting inequalities
define facets of the quadratic knapsack polytope, under mild conditions.

Another important class of inequalities for the QKP are the following
triangle inequalities:

xi + xj + xk ≤ yij + yik + yjk + 1
(
{i, j, k} ⊂ N

)
(9)

yik + yjk ≤ xk + yij
(
{i, j} ∈ E, k ∈ N \ {i, j}

)
. (10)

These inequalities are well known in the literature on 0-1 quadratic problems;
see, e.g., [8, 21]. They were applied to the QKP in [2, 16].

Finally, we mention the cover-tree (CT) inequalities [17]. Given a min-
imal cover C, let KC be a complete graph with vertex set C, and let T be
the set of edges in a spanning tree in KC . For all i ∈ C, let di denote the
degree of i in the tree. Then, the CT inequality takes the form:∑

{i,j}∈T

yij ≤
∑
i∈C

(di − 1)xi. (11)

Conditions for these to define facets are given in [24, 25]. Some weaker
inequalities, called matching-cover inequalities, were given in [16].

2.4 Algorithms for the QKP

Finally, we mention the main exact and heuristic algorithms for the QKP.
The exact algorithms are all of branch-and-bound type, the chief differ-

ence being the procedure that is used to compute the upper bounds at each
node. In [13], the upper bounds are obtained by solving KPs. In [3, 5, 6],
they are obtained via Lagrangian relaxation. In [2], they are obtained with a
cutting-plane algorithm, that uses the inequalities (1), (4)–(6), (7) and (9).
In [4], they are based on a compact linearisation with only O(n) variables.

Broadly speaking, the algorithm in [5] is the most effective, although the
algorithms in [3, 4] are competitive for very sparse instances (i.e., instances
in which the majority of the qij are zero). Pisinger et al. [23] presented an
enhanced version of the algorithm in [5]. The idea is to apply several proce-
dures for eliminating variables, and thereby reduce the size of the problem,
before calling the algorithm in [5].

As for heuristics, some good early examples can be found in [2, 6, 13].
More recently, two of the present authors presented a new heuristic [11],
which significantly outperformed the ones mentioned. It is based on the
construction of an initial solution via dynamic programming, followed by

4

the local search procedure from [13]. We will use this heuristic at the start
of our cut-and-branch algorithm, to obtain an initial lower bound.

3 Separation Routines

Our algorithm uses four different families of valid inequalities as cutting
planes: the RLT inequalities (7), (8), the triangle inequalities (9), (10), the
CT inequalities (11), and the inequalities obtained by applying the RLT to
LC inequalities, which we call “RLT-LC” inequalities. In this section, we
describe our separation routines for these four families.

Throughout this section, we let (x∗, y∗) denote the LP solution to be
separated, and we assume that (x∗, y∗) ∈ [0, 1]N+E . Given a valid inequality
αTx+βT y ≤ γ, the “violation” of the inequality is max

{
αTx∗+βT y∗−γ, 0

}
.

For a given family of inequalities, the “most-violated” inequality is the one
with maximum violation.

3.1 RLT inequalities

Since there are only 2n RLT inequalities, and each one has only O(n) non-
zero coefficients, the RLT separation problem can be solved exactly in O(n2)
time by mere enumeration. It often happens that there exist several violated
RLT inequalities. In that case, we add to the LP only the most-violated
inequality of the form (7), if any, and the most-violated inequality of the
form (8), if any. This is to prevent the LP from becoming too large.

3.2 Triangle inequalities

Since there are O(n3) triangle inequalities, and each one has only O(1)
non-zero coefficients, the triangle separation problem can be solved exactly
in O(n3) time by enumeration. Again, to prevent the LP from becoming
too large, we add to the LP only O(n2) violated inequalities in any given
cutting-plane iteration. Specifically, for a given {i, j} ∈ E, we add to the
LP only the most-violated triangle inequality of the form (9), if any, and the
most-violated triangle inequality of the form (10), if any.

3.3 Linearisation operator

For our remaining separation routines, we have found it helpful to begin by
mapping (x∗, y∗) onto [0, 1]N , i.e., onto the space of the standard (linear)
knapsack polytope. This is done by applying one of the following three
mappings:

• Just take x∗ itself.

5

• For each i ∈ N such that x∗i > 0, create a point x̄i ∈ [0, 1]N by setting
x̄ii := x∗i and setting x̄ij := y∗ij/x

∗
i for all j ∈ N \ {i}.

• For each i ∈ N such that x∗i < 1, create a point x̃i ∈ [0, 1]N by setting
x̃ii := x∗i and setting x̃ij := (x∗j − y∗ij)/(1− x∗i) for all j ∈ N \ {i}.

In this way, we obtain up to 2n+1 points in the x-space. The idea underlying
the second and third steps is that, in a feasible QKP solution, xj = yij/xi
when xi = 1, and (xj − yij)/(1− xi) when xi = 0. So there is a chance that
at least some of the points will lie close to the boundary of the knapsack
polytope.

We call this whole approach the linearisation operator. Note that it takes
O(n2) time. The following two subsections explain how it is used.

3.4 CT inequalities

A simple separation heuristic for the CT inequalities, based on building the
tree greedily, is presented in [17]. We, however, use a completely different
heuristic, in which we first generate a list of candidate covers, and then
compute the best tree for each candidate.

To generate the covers, one can simply take each of the fractional points
generated by the linearisation operator, and feed it into any exact or heuris-
tic separation algorithm for cover inequalities. It is important to note that,
even if a cover inequality generated in this way is not violated, the associated
cover could still lead to a violated CT inequality.

Now, the separation problem for CT inequalities, for a fixed minimal
cover C, is easy. Re-write the CT inequality as:∑

{i,j}∈T

(xi + xj − yij) ≥
∑
i∈C

xi.

There exists a violated CT inequality for the given cover C, if and only if
there exists a tree T ∗ such that:∑

{i,j}∈T

(x∗i + x∗j − y∗ij) <
∑
i∈C

x∗i . (12)

Since the right-hand side of (12) is a constant for fixed C and x∗, it suffices
to find a tree T ∗ that minimises the left-hand side. This can be done by
finding a minimum weight spanning tree in the graph GC , where the weight
of each edge {i, j} is set to y∗ij − x∗i − x∗j . This spanning tree can be found

in O(|C|2) time using any of several well-known algorithms.
To generate the covers, we use the separation heuristic in [7], which runs

in O(n log n) time. Since the linearisation operator creates O(n) fractional
points, the time taken by this scheme is O(n2 log n) to create the covers,
plus O(n3) for the spanning tree computations. All violated CT inequalities
found, if any, are added to the LP.

6

3.5 RLT-LC inequalities

Finally, we consider separation for the RLT-LC inequalities. One simple
heuristic is to solve the separation problem for standard LC inequalities,
using x∗ as input, and then check the 2n corresponding RLT-LC inequali-
ties for violation. The running time is then determined by the time taken
by the LC separator, together with the time taken to check the RLT-LC
inequalities, which is O(n2).

A more interesting, but more time-consuming, heuristic is the following:
take each of the points created by the linearisation operator, and feed it
into an LC separator. Then, for each of the LC inequalities created in this
way, check the 2n corresponding RLT-LC inequalities for violation. This
increases the running time by a factor of n.

We found that, in the QKP context, it was usually enough to use only
the inequalities obtained by applying the RLT to EC inequalities. We call
the resulting inequalities RLT-EC inequalities. In our separation scheme,
we feed the points from the linearisation operator into the EC separation
heuristic described in Subsection 3.3 of [18]. That EC heuristic runs in
O(n2) time, which means that our RLT-EC heuristic runs in O(n3) time.
All violated RLT-EC inequalities found, if any, are added to the LP.

4 The Cut-and-Branch Algorithm

As stated in the introduction, we have devised a cut-and-branch algorithm
for the QKP. In addition to the separation routines described in the previ-
ous section, the algorithm includes two primal heuristics and several rules
for eliminating y variables. A high-level description of the algorithm is as
follows:

1. Run the primal heuristic described in [11], yielding an initial lower bound L.

2. Solve an initial LP relaxation, and let U be the resulting upper bound.

3. Call the LP-based primal heuristic. If an improved primal solution is found,
update L.

4. Call some separation routines. If any violated inequalities are found, go to
step 5. Else go to step 12.

5. Add the inequalities to the LP and re-optimise via dual simplex.

6. If the upper bound has decreased, update U .

7. Call the LP-based primal heuristic. If an improved primal solution is found,
update L.

8. If L = bUc, output the optimal solution and stop.

9. If any of Lemmas 1 to 3 apply (see Subsection 4.5), then mark the corre-
sponding y variables for elimination (but don’t actually delete them).

7

10. Delete any cutting planes whose slack exceeds some threshold.

11. Go to step 4.

12. Delete any cutting planes whose dual price is zero.

13. Eliminate all marked y variables from the formulation.

14. Change all x variables to binary and solve the resulting 0-1 LP via branch-
and-bound.

The key components of this algorithm are described in more detail in
the following subsections. As in the previous section, (x∗, y∗) denotes the
optimal solution to the current LP relaxation.

4.1 Initial LP relaxation

The initial LP relaxation consists of the objective function (3) and the con-
straints (1) and (4)–(6) (plus non-negativity as usual). We do not include
the upper bounds of 1 on the variables in the relaxation, either explicitly
or implicitly, since (a) they are implied by the constraints (4)–(6) and non-
negativity, and (b) their inclusion would substantially increase the amount
of degeneracy present in the LP.

4.2 Separation order

We use four different classes of inequalities in the cutting-plane phase of
our algorithm: RLT, triangle, CT and RLT-EC inequalities. Of these, the
triangle inequalities are the sparsest, but they also tend to create primal
degeneracy. Moreover, the CT and RLT-EC inequalities are being separated
heuristically rather than exactly. For these reasons, the order in which the
inequalities are separated can substantially affect the number of cutting-
plane iterations, the time taken to solve each LP, the quality of the bounds
obtained, the number of eliminated y variables, and the total computing
time.

In some preliminary computational experiments, we tried several differ-
ent combinations and orderings of the separation routines, in order to choose
the best. (Details can be found in Appendix 1.) In the end, we decided to
call RLT separation first. Then, if no violated RLT inequalities are found,
we call triangle separation. If that fails, we call RLT-EC separation. Finally,
if that fails too, we call CT separation.

4.3 Cut deletion

To prevent the LP from getting too large, we delete some cutting planes after
each re-optimisation of the LP. More precisely, we delete all RLT, triangle,
CT and RLT-EC inequalities whose slack exceeds a certain threshold. We
do not delete the constraints (1) or (4)–(6), however, since those are part of
the 0-1 LP formulation itself.

8

4.4 LP-based primal heuristic

Each time the current LP relaxation is solved, we call a primal heuristic that
attempts to construct a good QKP solution using the information contained
in the LP solution. This is a simple greedy heuristic that proceeds as follows.
Sort the items in N in non-increasing order of x∗ value. Start with an empty
knapsack, and then examine each item in the sorted list. If there is sufficient
remaining space in the knapsack for the item, then place the item in the
knapsack.

For example, suppose that n = 5, c = 100, w = (50, 40, 30, 20, 10)T

and x∗ = (0.6, 0.5, 0.2, 0.4, 0.3)T . The sorted list of items is (1, 2, 4, 5, 3).
Initially, the available capacity is 100, so we insert item 1. The remaining
capacity is 50, so we insert item 2. The remaining capacity is 10, so we
cannot insert item 4. We can however insert item 5. The knapsack is now
full, so we terminate with items 1, 2 and 5 in the knapsack.

4.5 Reduction procedures

After each major iteration of the cutting-plane algorithm, it helps to apply
reduction procedures, that eliminate variables and constraints from the LP
without causing any optimal solutions to be lost. One simple reduction
procedure, usually attributed to Crowder et al. [7], is reduced-cost fixing :
any variable that takes a zero value at (x∗, y∗), and has a reduced cost
larger than U − L, can be permanently fixed to 0, and therefore removed
from the problem. Our reduction procedures are more sophisticated.

Recall that, at any stage of the cutting-plane phase, the LP relaxation
will always include the inequalities (4)–6 For any pair {i, j} ∈ E, we let
λ1ij , λ

2
ij and λ3ij denote the dual prices of the constraints (4), (5) and (6),

respectively. Also, for any i ∈ N , we let ρi denote the reduced cost of xi.
Finally, for any pair {i, j} ∈ E, we let φij be the reduced cost of yij .

Our reduction procedure is then based on the following three lemmas:

Lemma 1 If, for some {i, j} ∈ E, we have ρi + ρj + φij > U − L, then
we can permanently remove yij from the problem (or, equivalently, fix yij
to zero). Moreover, we can replace the constraints (4)–(6) with the single
constraint xi + xj ≤ 1.

Proof. From the definition of reduced costs, it follows that, if we added
to the LP the constraints xi ≥ 1, xj ≥ 1 and yij ≥ 1, then the optimal
profit would decrease by at least ρi +ρj +φij . Under the stated assumption,
the profit would drop below L, thus showing that no optimal solution of
the QKP could have xi = xj = yij = 1. As a result, yij must be zero in
an optimal QKP solution. Setting yij to 0 and simplifying the constraints
(4)–(6) yields the constraint xi + xj ≤ 1. �

9

Lemma 2 If, for some ordered pair (i, j), we have ρi + λ1ij > U − L, then
we can replace yij with xi everywhere in the formulation. Moreover, we can
replace the constraints (4)–(6) with the constraints xi ≤ xj ≤ 1.

Proof. Similar to that of Lemma 1. �

Lemma 3 If, for some pair {i, j} ∈ E, we have λ3ij > U − L, then we can
replace yij with xi +xj−1 everywhere in the formulation. In particular, the
constraints (4)–(6) can be replaced with the constraints xi ≤ 1, xj ≤ 1 and
xi + xj ≥ 1.

Proof. Similar to that of Lemma 1. �

The computational results given later show that a substantial proportion
of the y variables can be eliminated in this way. Moreover, even a relatively
small amount of elimination can be highly beneficial in the branch-and-
bound phase, because, each time a y variable is eliminated, the correspond-
ing constraints (4)–(6) are eliminated and/or simplified as well.

4.6 Final 0-1 LP formulation

Once the cutting-plane algorithm has terminated and y variables have been
eliminated, we take the LP, re-optimise it, and then delete all RLT, triangle,
CT and RLT-EC inequalities that have zero dual price. This is to make
the final LP as small as possible, while maintaining the quality of the upper
bound. Then we add the condition that all variables must be binary, yielding
a 0-1 LP formulation of the QKP. This formulation is then fed into a branch-
and-bound solver.

5 Computational Results

In this section, we present our computational results. All our routines were
coded in the C programming language and compiled with gcc 4.6 . All the
results were obtained by running our code on a single cluster node of the
super computer of Compute Canada1 with processor at 2.26 GHz and 24
GB of RAM while requiring only 8 GB for our code. The LP relaxations
and the final 0-1 LPs were solved respectively, with the simplex and MIP
solvers of CPLEX version 12.5.

5.1 Test instances

Until recently, the “standard” scheme for creating test instances for the QKP
was the one proposed by Gallo et al. [13]. For a given value of n, each weight

1www.computecanada.ca

10

wi is an integer uniformly distributed between 1 and 100. The knapsack
capacity c is an integer uniformly distributed between 50 and

∑
i∈N wi.

Finally, for a given choice of density parameter ∆%, each profit term qij is
set to zero with probability (100 − ∆)%, and set to an integer uniformly
distributed between 1 and 100 with probability ∆%.

For each value of n ∈
{

10, 20, . . . , 100
}

and ∆ ∈
{

25%, 50%, 75%, 100%
}

,
we created 10 random standard instances. We call the resulting 400 instances
“small”. These small instances were used only to explore the effect of dif-
ferent separation orders (see Appendix 1). To test our overall algorithm,
we used much larger standard instances. In detail, we created 10 random
standard instances for each combination of n ∈

{
50, 100, 150, . . . , 800

}
and

∆ ∈
{

25%, 50%, 75%, 100%
}

. This makes an additional 640 instances, which
we call “large”.

As pointed out in [23,27], standard instances are relatively easy for mod-
ern exact algorithms. Therefore, we also consider several other families of
instances, as described in the following subsections.

5.1.1 Dispersion problem instances

The dispersion problem consists of locating q facilities at n possible locations,
while maximising the sum of the pairwise distances between facilities. The
QKP formulation of this problem is as follows [23]:

max
n∑

i=1

n∑
j=1

dijxixj

s.t.
n∑

i=1
xi = q

x ∈ {0, 1}n,

where dij is the distance between locations i and j. Several variants of this
problem, which differ by the distribution of the dij , are proposed in [23]:

• GEO (Geometrical problems): the n locations are randomly located in
a 100×100 square, and dij is the Euclidean distance between locations
i and j.

• WGEO (Weighted geometrical problems): the locations are again ran-
domly located in a square, but each location i is assigned a weight αi

in the interval [5, . . . , 10]. The distance dij is then αiαj times the
Euclidean distance between locations i and j.

• EXPO (Exponential problems): for each pair {i, j} of locations, dij is
randomly drawn from a negative exponential distribution with mean
50.

11

• RAN (Random problems): for each pair {i, j}, dij is uniformly dis-
tributed in [1, . . . , 100].

For all these instances, dii = 0 for i = 1, . . . , n, and the number of facilities
q is randomly chosen in [2, . . . , n− 2].

Pisinger et al. [23] also presented a knapsack-like version of the four
above-mentioned problem types. These are obtained by generating a weight

wi (randomly in [1, . . . , 100]) for each location i, setting q to b1
2

n∑
i=1

wic,

and changing the knapsack constraint accordingly. These instances will be
denoted KP − {EXPO,GEO,WGEO,RAN}.

We generated ten instances for each combination of problem type and
n ∈ {25, 50, 100, 200, 400}, for a total of 400 instances.

5.1.2 Densest subgraph instances

The densest subgraph problem was also formulated as a QKP by Pisinger et
al. [23]. Given a graph G = (V,E), this problem amounts to finding a set of
nodes U ⊆ V of cardinality q for which the induced subgraph contains the
most possible edges. Variants of this problem are obtained by varying the
density of G. We experimented with the following settings:

• DSUB25: Here dij = 1 with probability 25%, dij = 0 otherwise.

• DSUB50: Here dij = 1 with probability 50%, dij = 0 otherwise.

• DSUB75: Here dij = 1 with probability 75%, dij = 0 otherwise.

• DSUB90: Here dij = 1 with probability 90%, dij = 0 otherwise.

Again, dii = 0, i = 1, . . . , n and the number of nodes q is randomly chosen
in [2, . . . , n− 2].

We generated ten instances for each combination of problem type and
n ∈ {25, 50, 100, 200, 400}, for a total of 200 instances.

5.1.3 Planted-clique instances

To further test the limits of our procedure, we also created some “planted
clique” (PC) instances. Instances of this type were recently introduced by
Schauer [27], who showed that they are very challenging for existing exact
and heuristic QKP algorithms. For a given n, one generates a random (so-
called Erdős-Rényi) graph, in which each edge is present with probability
1/2. One then “plants” a clique in it, by selecting a random set of bnc nodes,
and adding edges, where necessary, so that those nodes form a clique. The
knapsack capacity is then set to bnc. The weight of each vertex is 1, its
linear profit is 0 and the quadratic profit is 1 whenever an edge occurs
in the graph, and 0 otherwise. The optimal solution value is then almost

12

surely
1

2
bnc
(
bnc − 1

)
. We generated 10 PC instances for each value of

n ∈ {20, 40, 60, . . . , 200}, making 100 in total.

5.2 Results for the standard instances

As mentioned above, we used the “small” standard instances only to ex-
plore the effect of different separation orders. Table 1 shows the perfor-
mance of our cut-and-branch algorithm on the “large” standard instances.
In this table, we report the percentage gap of the upper bound found by our
cutting-plane algorithm, the time taken to compute this upper bound, the
percentage gap of the lower bound, the number of branch-and-bound nodes,
and the total computing time. The number of y variables reduced reported
here is the average over the instances that were not already solved during
the cutting-plane phase. All the other values are averages over 10 instances.
(More detailed statistics are presented in Appendix 2.) For the branch-
and-bound phase, we used the standard MIP solver of CPLEX, with default
settings, except that all internal cutting-plane generators were switched off.

The results in Table 1 are interesting for several reasons. First, the
upper bounds found by our algorithm are within 0.5% of optimality for
almost all instances. Second, the primal heuristic consistently produces
solutions within 0.1% of optimality. These tight bounds lead to a significant
proportion of y variables being eliminated. This in turn eases the burden
on the branch-and-bound solver, as evidenced by the relatively low number
of branch-and-bound nodes required. Finally, looking at the last column of
Table 1, it is apparent that all 640 large instances could be solved within
a five-hour time limit. In fact, more than 50% of the instances were solved
within one hour. Overall, it is clear that our algorithm is capable of solving
QKP instances with up to 800 items, regardless of their density, within a
reasonable amount time.

5.3 Results for the dispersion and densest subgraph instances

Next, we apply our algorithm to instances of the dispersion and densest sub-
graph problems. The results are reported in Table 2. Moreover, we report
the total time spent in the cutting-plane algorithm (3rd column), the total
CPU time including both the cutting-plane and branch-and-bound phases
(4th column), the upper bound gap at the root node (5th column), the lower
bound gap from the heuristic (6th column), the number of instances out of
10 that were solved in the cutting-plane phase (7th column). Note that we
set a time limit of 3 hours for all the instances, and the number of instances
out of ten that were solved by the overall cut-and-branch algorithm are re-
ported in the 8th column. For instances that could be solved within the time
limit, we calculated the upper bound and lower bound gaps with respect to
the best upper bound obtained by the MIP solver.

13

Cutting UB Gap LB Gap BnB Reduction Total
∆(%) n Time (s) (%) (%) Nodes (%) Time (s)

50 1.91 0.39 0.11 22 28.35 3.68
100 42.04 0.22 0.08 33 26.66 58.24
150 491.03 0.03 0.07 93 15.05 779.86
200 3368.64 0.14 0.02 518 9.72 5338.38
250 1507.48 0.04 0.01 210 12.34 2388.08
300 3675.79 0.03 0.06 359 3.03 5342.42
350 6454.23 0.03 0.05 394 15.97 10890.19
400 6407.30 0.01 0.01 27 14.77 8054.03

25 450 6709.94 0.01 0.00 266 6.91 8509.11
500 6397.59 0.12 0.00 51 11.53 10590.97
550 9629.05 0.01 0.00 40 17.09 11206.73
600 7109.43 0.00 0.00 0 17.77 10664.14
650 6646.07 0.00 0.00 458 7.10 9969.10
700 6366.09 0.00 0.00 0 19.89 9549.14
750 6314.09 0.01 0.01 77 0.02 12454.92
800 3701.10 0.02 0.05 41 0.01 5551.64

50 0.72 0.28 0.29 15 32.01 1.92
100 11.58 0.16 0.02 23 22.76 26.42
150 251.99 0.10 0.01 85 6.21 398.33
200 872.90 0.04 0.01 132 6.46 1576.72
250 1683.50 0.03 0.02 51 11.73 2482.08
300 6493.80 0.04 0.00 1402 6.21 9435.95
350 12552.06 0.01 0.00 109 6.40 15947.56
400 7051.79 0.01 0.00 1270 10.05 9143.78

50 450 8803.78 0.00 0.00 112 14.18 10560.85
500 8072.94 0.00 0.00 5 14.93 12109.41
550 5892.19 0.05 0.02 20 4.94 8307.77
600 10101.32 0.00 0.00 25 1.76 11847.15
650 10396.68 0.00 0.00 0 60.03 10396.68
700 9768.79 0.00 0.00 50 3.51 11215.08
750 6289.28 0.00 0.00 261 0.03 9433.92
800 8585.88 0.01 0.00 51 0.02 10313.07

50 0.37 0.23 0.00 3 30.31 0.59
100 5.06 0.06 0.00 0 26.75 6.69
150 136.31 0.21 0.01 66 1.93 247.49
200 207.91 0.13 0.01 342 0.43 866.09
250 567.83 0.08 0.00 65 25.48 1232.04
300 1857.38 0.02 0.00 61 23.02 2614.41
350 2043.55 0.07 0.00 595 19.54 3907.94
400 4378.30 0.02 0.00 0 63.34 5004.30

75 450 4910.31 0.02 0.00 1036 13.20 7194.18
500 4834.58 0.01 0.00 155 2.33 7394.69
550 8205.37 0.04 0.00 303 28.68 14391.89
600 9051.54 0.02 0.00 35 49.75 12561.62
650 6689.55 0.03 0.00 1 72.78 10034.33
700 8898.24 0.03 0.00 190 67.28 11656.54
750 9136.86 0.03 0.01 22 80.83 11792.41
800 8697.62 0.00 0.00 30 43.61 13046.44

50 0.86 0.06 0.00 0 54.32 1.26
100 19.11 0.10 0.01 0 36.37 28.86
150 63.70 0.03 0.00 12 19.92 81.27
200 92.01 0.04 0.00 93 23.10 237.20
250 449.76 0.13 0.00 85 12.27 832.60
300 1358.03 0.00 0.00 1 31.14 1465.88
350 2625.03 0.03 0.00 74 19.95 4105.06
400 2511.12 0.05 0.00 176 18.34 3612.41

100 450 5839.82 0.00 0.00 0 12.04 7441.90
500 5947.79 0.01 0.00 16 13.45 8273.26
550 5135.90 0.01 0.00 107 44.77 6408.54
600 7346.82 0.00 0.00 72 44.27 9037.06
650 8642.65 0.01 0.00 42 38.81 11110.36
700 6944.93 0.09 0.00 589 53.73 10417.39
750 7259.71 0.07 0.00 397 60.64 9402.97
800 7852.13 0.15 0.00 350 78.52 9972.48

Table 1: Results for the standard QKP instances
14

The table reveals that of the 600 instances tested, 194 instances (nearly
1/3) were solved during the cutting-plane phase. Moreover, a total of 484 in-
stances were solved within the time limit. In general, our algorithm struggles
with the “plain” dispersion and densest subgraph instances, but it was able
to solve all instances of the knapsack-like dispersion problem (KP-EXPO,
KP-GEO, KP-WGEO and KP-RAN) in less than 1 hour.

5.4 Results for the planted clique instances

Finally, we consider the planted clique (PC) instances. Figure 1 shows the
upper and lower bound gaps, the CPU time at the root node, and the CPU
time at the end of the whole algorithm. It can be seen in Figure 1a that the
upper bound gaps obtained by our algorithm are of great quality (almost
always zero in fact). The lower bounds on the other hand are very poor. This
is however to be expected, since the weakness of existing QPK heuristics for
PC instances was already noted in [27].

As for the branch-and-bound phase, Figure 1b shows that it was very
time consuming for these instances. This is almost certainly due to the poor
lower bounds. Despite this, however, our algorithm is capable of finding the
optimal solution to PC instances with up to 200 items within five hours. This
can be seen as a milestone, since the state-of-the-art algorithm of Caprara
et al. [5] failed to do so, according to [27].

6 Conclusion

We have presented a new exact ‘cut-and-branch’ algorithm for the QKP.
Our algorithm incorporates a cutting-plane phase, primal heuristics, rules
for eliminating variables and constraints, and a branch-and-bound phase.
Our computational results show that our algorithm is capable of solving
much larger “standard” QKP instances than those solvable by the algo-
rithm of Caprara et al. [5]. More precisely, our algorithm is capable of
solving standard QKP instances with up to 800 items within a five hour
time limit. Additionally, our algorithm performs fairly well on both the dis-
persion problem and the densest sub-graph instances of Pisinger et al. [23].
Indeed, almost a third of these instances are solved within the cutting plane
phase, while a large majority is solved within a 3 hour time limit. For
the much more difficult planted-clique instances, our proposed algorithm is
able to find the optimal solution for instances with up to 200 items within
five hours. Moreover, for these instances, the upper bounds found by the
cutting-plane phase are almost always optimal.

For future research, one could of course derive new inequalities and/or
separation algorithms (see for example [9,10]) and implement a full branch-
and-cut algorithm. It would also be very worthwhile trying to use an “ag-
gressive reduction” scheme similar to that of Pisinger et al. [23] as a “pre-

15

Instance Cutting Total UB Gap LB Gap # Cutting Total
Type n Time (s) Time (s) (%) (%) Solved Solved

25 0.07 0.09 0.00 1.07 8 10
50 0.99 2.18 0.01 0.09 7 10

DSUB25 100 451.94 11962.83 1.22 9.96 0 7
200 7948.49 8525.80 0.00 8.54 3 3
400 2973.87 2973.87 0.00 0.00 1 1

25 0.09 2.14 0.23 0.56 6 10
50 0.97 1.39 0.00 0.86 6 10

DSUB50 100 925.75 7158.64 1.12 7.94 3 7
200 4366.20 7871.98 0.00 9.70 5 6
400 14385.08 14719.58 0.09 0.19 1 3

25 0.07 0.64 0.50 1.09 8 10
50 0.51 0.87 0.00 0.34 7 10

DSUB75 100 148.27 4353.53 0.77 3.67 5 6
200 7755.13 13758.79 0.00 4.93 2 4
400 10122.23 13685.08 0.02 1.59 2 4

25 0.04 0.04 0.00 0.00 10 10
50 1.17 2.08 0.01 0.15 8 10

DSUB90 100 49.92 2852.10 0.77 2.70 5 8
200 4702.18 6307.91 0.00 1.89 6 9
400 9157.49 9157.49 0.00 0.00 5 5

25 0.10 1.07 0.20 0.17 7 10
50 3.72 67.72 1.61 0.43 1 10

EXPO 100 357.44 10539.74 3.91 3.76 1 4
200 1391.47 7769.38 1.34 8.45 2 5
400 4083.09 4083.09 0.00 0.00 1 1

25 0.07 3.25 1.78 0.14 6 10
50 0.66 12.68 5.36 0.00 5 10

GEO 100 69.27 3159.24 1.82 0.42 5 8
200 499.12 2499.29 0.24 2.22 7 9
400 3166.45 6668.17 0.43 5.48 3 3

25 0.08 1.63 0.28 0.00 7 10
50 0.73 2.67 0.13 0.02 5 10

WGEO 100 2.66 15.85 0.07 0.00 4 8
200 94.74 114.61 0.02 0.00 4 9
400 2808.82 2935.16 0.00 0.00 3 7

25 0.11 1.94 0.85 0.50 6 10
50 5.47 345.49 3.92 0.42 1 10

RAN 100 343.84 12160.68 2.82 8.21 0 2
200 5737.27 12757.59 0.34 4.88 2 3
400 12949.48 13431.56 0.38 13.92 0 1

25 0.13 1.50 0.46 0.00 8 10
50 1.10 18.35 0.45 0.00 0 10

KP-EXPO 100 3.61 96.43 0.14 0.00 0 10
200 474.20 2202.49 0.06 0.00 0 10
400 2382.81 4361.97 0.04 0.00 0 10

25 0.07 2.18 0.44 0.00 4 10
50 0.76 11.80 0.39 0.00 2 10

KP-GEO 100 4.23 79.91 0.20 0.00 0 10
200 35.24 625.64 0.05 0.00 0 10
400 1205.51 3841.88 0.02 0.00 0 10

25 0.08 7.57 0.71 0.00 2 10
50 0.44 5.34 0.58 0.00 0 10

KP-WGEO 100 3.59 69.56 0.17 0.00 0 10
200 35.93 237.64 0.05 0.00 0 10
400 1097.65 1555.66 0.01 0.00 2 10

25 0.06 2.69 0.15 0.00 6 10
50 3.07 14.94 0.33 0.00 0 10

KP-RAN 100 33.42 260.39 0.23 0.00 0 10
200 1248.97 1556.26 0.05 0.00 0 10
400 913.94 1056.82 0.01 0.00 2 10

Table 2: Results for the dispersion problem and densest sub-graph problem
instances

16

(a) Upper bound and lower bound gaps

(b) CPU times

Figure 1: Summary results for planted clique instances

processor”, and then running our algorithm on the reduced problem. We
believe that this approach would enable one to solve even larger instances.

References

[1] E. Balas (1975) Facets of the knapsack polytope. Math. Prog., 8, 146–
164.

[2] A. Billionnet & F. Calmels (1996) Linear programming for the 0–1
quadratic knapsack problem. Eur. J. Oper. Res., 92, 310–325.

[3] A. Billionnet & E. Soutif (2004) An exact method based on Lagrangian
decomposition for the 0-1 quadratic knapsack problem. Eur. J. Oper.
Res., 157, 565–575.

17

[4] A. Billionnet & E. Soutif (2004) Using a mixed-integer programming
tool for solving the 0-1 quadratic knapsack problem. INFORMS J.
Comp., 16, 188–197.

[5] A. Caprara, D. Pisinger & P. Toth (1998) Exact solution of the
quadratic knapsack problem. INFORMS J. Comput., 11, 125–137.

[6] P. Chaillou, P. Hansen & Y. Mahieu (1986) Best network flow bound
for the quadratic knapsack problem. In B. Simeone (ed.) Combinatorial
Optimization, pp. 225–235. Lecture Notes in Mathematics, vol. 1403.
Berlin: Springer.

[7] H. Crowder, E. Johnson & M. Padberg (1983) Solving large-scale 0-1
linear programming problems. Oper. Res., 31, 803–834.

[8] M.M. Deza & M. Laurent (1997) Geometry of Cuts and Metrics. Berlin:
Springer-Verlag.

[9] F. Djeumou Fomeni (2017), A new family of facet defining inequalities
for the maximum edge-weighted clique problem. Optim. Lett., 11(1),
47-54

[10] F. Djeumou Fomeni, K. Kaparis & A. N. Letchford (2015) Cutting
planes for first-level RLT relaxations of mixed 0-1 programs. Math.
Program., 151, 639–658.

[11] F. Djeumou Fomeni & A.N. Letchford (2014) A dynamic programming
heuristic for the quadratic knapsack problem. INFORMS J. Comput.,
26, 173–183.

[12] A. Faye & O. Boyer (2003) Construction of facets of the 0-1 quadratic
knapsack polytope (in French). RAIRO Oper. Res., 37, 249–271.

[13] G. Gallo, P.L. Hammer & B. Simeone (1980) Quadratic knapsack prob-
lems. Math. Program. Study, 12, 132–149.

[14] F. Glover & E. Woolsey (1974) Converting the 0-1 polynomial program-
ming problem to a 0-1 linear program. Oper. Res., 22, 180–182.

[15] Z. Gu, G.L. Nemhauser & M.W.P. Savelsbergh (2000) Sequence-
independent lifting in mixed integer programming. J. Comb. Optim.,
4, 109–129.

[16] C. Helmberg, F. Rendl & R. Weismantel (2000) A semidefinite program-
ming approach to the quadratic knapsack problem. J. Comb. Optim.,
4, 197–215.

[17] E.L. Johnson, A. Mehrotra & G.L. Nemhauser (1993) Min-cut cluster-
ing. Math. Program., 62, 133–151.

18

[18] K. Kaparis & A.N. Letchford (2010) Separation algorithms for 0-1 knap-
sack polytopes. Math. Program., 124, 69–91.

[19] H. Kellerer, U. Pferschy & D. Pisinger (2004) Knapsack Problems.
Berlin: Springer.

[20] A.N. Letchford & G. Souli (2019) On lifted cover inequalities: a new
lifting procedure with unusual properties. Oper. Res. Lett., 47, 83–87.

[21] M.W. Padberg (1989) The Boolean quadric polytope: some character-
istics, facets and relatives. Math. Program., 45, 139–172.

[22] D. Pisinger (2007) The quadratic knapsack problem — a survey. Discr.
Appl. Math., 155, 623–648.

[23] D. Pisinger, A.B. Rasmussen & R. Sandvik (2007) Solution of large
quadratic knapsack problems through aggressive reduction. INFORMS
J. Comput., 19, 280–290.

[24] D.J. Rader (1997) Valid inequalities and facets of the quadratic 0-1
knapsack polytope. RUTCOR Research Report 16–97, Rutgers Univer-
sity.

[25] D.J. Rader (1997) Lifting results for the quadratic 0-1 knapsack poly-
tope. RUTCOR Research Report 17–97, Rutgers University.

[26] H.D. Sherali & W.P. Adams (1990) A hierarchy of relaxations between
the continuous and convex hull representations for zero-one program-
ming problems. SIAM J. Discr. Math., 3, 411–430.

[27] J. Schauer (2016) Asymptotic behavior of the quadratic knapsack prob-
lem. Eur. J. Oper. Res., 255, 357–363.

[28] R. Weismantel (1997) On the 0-1 knapsack polytope. Math. Program.,
77, 49–68.

[29] L.A. Wolsey (1975) Faces for a linear inequality in 0-1 variables. Math.
Program., 8, 165–178.

[30] L.A. Wolsey (1998) Integer Programming. New York: Wiley.

Appendix 1: Effect of Separation Order

After coding our cutting-plane algorithm, we were interested in exploring
the effect that the separation order (i.e., the sequence in which the cutting
planes are separated and added) had on performance. To do this, we let the
cutting-plane algorithm run to completion, without terminating even if the
condition L = bUc held. The results obtained with the four most promising

19

separation orders, on the “small” standard instances, are presented in Table
3 and Table 4. The values in the tables are the averages over 10 instances.
For each ordering, we present the percentage gap between the upper bound
and the optimum, the time needed to compute that bound, in seconds, and
the percentage of y variables eliminated from the problem.

It can be seen from the results of these tables that our cutting-plane
algorithm can consistently produce upper bounds within 1% of optimality,
in reasonable computing times. The number of y variables reduced is also
quite remarkable. It is hard to say anything conclusive about the effect of the
separation order on the quality of the results. For the harder QKP instances,
we settled on the fourth separation order, as mentioned in Subsection 4.2.

20

RLT+CT+RLT-EC+T RLT+RLT-EC+CT+T

∆ n Gap (%) Time (s) Red. (%) Gap (%) Time (s) Red. (%)

25 10 1.67 0.01 60.45 1.67 0.00 59.56
20 0.29 0.04 60.74 0.16 0.14 60.95
30 0.80 0.28 49.47 0.78 1.14 47.72
40 1.90 0.53 31.74 1.91 0.53 31.18
50 0.99 2.62 44.96 0.99 4.98 48.10
60 0.86 5.70 36.32 0.54 4.29 37.93
70 0.23 5.27 29.33 0.20 5.07 34.94
80 0.26 32.41 32.13 0.26 39.06 31.53
90 1.63 422.52 22.69 1.65 132.19 22.91
100 0.15 46.87 32.15 0.15 58.93 36.55

50 10 0.00 0.01 85.78 0.02 0.01 65.78
20 1.22 0.05 52.42 1.07 0.07 58.95
30 0.23 0.66 44.78 0.22 0.84 44.41
40 0.65 1.61 28.87 0.65 1.23 32.33
50 0.11 5.27 46.14 0.07 4.31 53.26
60 0.21 11.82 53.21 0.23 5.95 46.85
70 0.28 27.90 23.79 0.20 22.12 35.68
80 0.08 23.19 32.44 0.09 17.70 43.60
90 0.14 50.45 32.81 0.13 50.83 26.64
100 0.18 44.51 18.95 0.18 40.76 19.21

75 10 0.00 0.01 47.11 0.00 0.00 44.00
20 1.26 0.05 47.37 1.27 0.05 46.32
30 0.18 0.82 73.75 0.17 0.53 73.75
40 0.39 1.83 38.33 0.38 0.99 38.90
50 0.14 2.49 41.88 0.11 2.52 52.56
60 0.38 11.58 28.67 0.38 11.59 33.42
70 0.75 2.58 14.81 0.75 3.79 15.00
80 0.25 37.29 19.20 0.24 9.75 23.73
90 0.13 37.65 23.47 0.14 25.41 21.84
100 0.10 11.96 26.09 0.10 10.41 29.14

100 10 0.00 0.01 74.22 0.00 0.01 58.67
20 2.07 0.08 56.53 1.99 0.06 71.26
30 2.35 0.24 62.81 0.59 0.30 76.78
40 0.08 1.02 62.62 0.08 1.06 67.64
50 0.04 1.57 40.85 0.02 2.29 51.74
60 0.10 5.00 29.30 0.07 7.69 52.53
70 0.15 17.55 28.92 0.14 13.88 23.82
80 0.06 2.89 35.40 0.05 8.18 42.77
90 0.19 5.89 11.10 0.19 5.22 19.88
100 0.02 64.39 45.16 0.02 63.45 46.67

Table 3: Cutting-plane results (part I)

21

RLT+RLT-EC+T+CT RLT+T+RLT-EC+CT

∆ n Gap (%) Time (s) Red. (%) Gap (%) Time (s) Red. (%)

25 10 1.81 0.01 59.56 1.67 0.00 60.44
20 0.29 0.09 58.74 0.32 0.05 58.84
30 0.78 0.44 47.36 0.78 0.24 49.43
40 2.12 0.36 30.20 1.67 0.67 30.87
50 1.00 2.07 42.94 1.00 2.92 49.86
60 0.73 3.26 32.29 0.69 2.83 31.99
70 0.23 12.41 28.48 0.22 23.51 29.44
80 0.27 24.77 31.37 0.27 24.38 32.38
90 1.66 116.52 21.07 0.15 68.55 22.75
100 0.15 42.29 36.92 0.15 42.97 37.34

50 10 0.00 0.00 66.22 0.00 0.01 70.67
20 1.27 0.03 50.63 1.13 0.04 51.58
30 0.24 0.29 42.25 0.23 0.23 45.24
40 0.70 1.00 30.08 0.77 0.85 20.13
50 0.08 3.06 52.16 0.10 2.04 53.41
60 0.25 5.50 44.79 0.24 4.60 37.95
70 0.23 24.53 33.87 0.27 12.04 32.16
80 0.09 16.22 42.48 0.08 15.73 39.67
90 0.14 23.05 25.48 0.14 18.04 28.54
100 0.16 62.24 24.93 0.18 25.23 19.00

75 10 0.00 0.00 44.00 0.00 0.00 47.55
20 1.34 0.04 46.53 1.38 0.04 44.42
30 0.21 0.28 69.88 0.21 0.21 73.06
40 0.39 0.99 38.82 0.61 0.48 31.05
50 0.13 2.30 50.17 0.19 1.20 48.33
60 0.38 8.71 33.71 0.38 6.57 25.90
70 0.77 3.07 15.62 0.75 2.08 14.78
80 0.36 5.07 19.10 0.26 43.79 19.42
90 0.16 17.39 13.21 0.15 19.56 15.20
100 0.10 10.73 28.08 0.10 10.91 27.49

100 10 0.00 0.01 58.67 2.07 0.01 65.33
20 2.02 0.04 69.37 2.05 0.05 68.84
30 0.59 0.23 74.21 0.60 0.27 75.54
40 0.05 0.77 70.21 0.05 0.57 70.62
50 0.02 1.73 52.12 0.02 1.72 52.16
60 0.03 5.63 66.29 0.06 10.45 61.36
70 0.14 6.76 23.47 0.14 6.28 32.30
80 0.05 6.78 51.59 0.05 8.96 51.92
90 0.19 4.60 19.88 0.19 3.93 19.65
100 0.02 62.91 44.78 0.02 61.66 23.94

Table 4: Cutting-plane results (part II)

22

Appendix 2: More Results for Large Standard QKP
Instances

(a) Upper bound gaps

(b) Lower bound gaps

Figure 2: Upper and lower bound gaps for the standard QKP instances

23

(a) Time in the Cutting plane algorithm

(b) Total time

Figure 3: Summary of the CPU time for the standard QKP instances

Figure 4: Summary of the percentage of y variables reduced

24

