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Abstract

The benefits of transmission line switching are well-known in terms of reducing operational

cost and improving system reliability of power systems. However, finding the optimal power

network configuration is a challenging task due to the combinatorial nature of the underlying

optimization problem. In this work, we identify a certain “node-based” set that appears as

substructure of the optimal transmission switching problem and then conduct a polyhedral study

of this set. We construct an extended formulation of the integer hull of this set and present the

inequality description of the integer hull in the original space in some cases. These inequalities

in the original space can be used as cutting-planes for the transmission line switching problem.

Finally, we present the results of our computational experiments using these cutting-planes on

difficult test cases from the literature.

1 Introduction

The study of short-term electric power systems planning offers a wide range of interesting opti-

mization problems for the operations research community [9]. One of the fundamental optimization

problems from this area is called the alternating current optimal power flow (AC-OPF) problem.

The main goal in this problem is to determine a minimum cost flow across the power network that

satisfies demand while following physics laws such as the Ohm’s law and Kirchhoff’s law. However,

the AC-OPF problem is very challenging to solve since the power flow constraints are nonlinear

and nonconvex, the underlying networks are very large, and finally AC-OPF needs to be solved

rapidly for changing power demands. Therefore, the constraints are typically approximated by

direct current (DC) power equations, a linearization of the AC equations, as in [2], [1], [4], [15],

and the resulting model is called as the DC-OPF problem.

Because of the underlying physics of electricity, removing lines from a network may result

in improved network efficiency. It is therefore possible that switching off lines may reduce the
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generation cost [12]. In this way, we arrive at the optimal transmission switching (OTS) problem,

formalized by Fisher et al. [2]. The OTS problem is the AC-OPF problem modified by the additional

choice of switching lines off. With the DC approximation DC-OPF, OTS can be modeled as a

mixed-integer linear program (MILP), in which binary variables model the switching status of the

network lines; and power flow constraints are only applied to active lines. Henceforth, in the paper

we refer to the DC version of optimal switching problem as DC-OTS.

DC-OTS is NP-hard to solve [10, 8]. Since the linear relaxations are often weak (involving many

big-M constraints), DC-OTS model with many binary variables are often very hard for modern

computational integer programming software. To the best of our knowledge the only paper that

conducts a polyhedral study of a substructure of DC-OTS in order to improve the quality of linear

programming relaxation is [8]. We emphasize that finding high quality feasible solutions is also quite

difficult (see, for example, a large number of heuristics proposed for this problem [6, 11, 13, 3, 7]).

Therefore, the DC-OTS problem is a very challenging problem to solve exactly.

In this paper, we identify a certain “node-based” set that appears as substructure of the DC-OTS

problem and then conduct a polyhedral study of this set. We construct an extended formulation

of the integer hull of this set. Then, we present the inequality description of the integer hull in the

original space in some special (but commonly occurring in practice) cases. These inequalities in

the original space can be used as cutting-planes for the DC-OTS problem. Finally, we present the

results of our computational experiments using these cutting-planes on difficult test cases from the

literature.

The rest of the paper is organized as follows: In Section 2 we formally introduce the MILP

formulation of the DC-OTS problem. In Section 3, we identify the “node-based” set that appears

as substructure of the DC-OTS problem and show that optimizing on this set is NP-hard. Then in

Section 4, we present an extended formulation of the integer hull of the “node-based” set and identify

conditions under which this extended formulation is compact. Since the extended formulation is

exponential in size in general, we present a compact outer approximation of the integer hull in

Section 5. We then show that the outer approximation yields the convex hull in some special cases.

In Section 6, we present out computational results. Finally, we make some concluding remarks in

Section 7.

Notation: Given a set S, we denote its convex hull, (affine) dimension, set of extreme points

as conv(S), dim(S), extr(S), respectively. We will use [m : n] as a shorthand notation for the set

{m,m+ 1, . . . , n}, where m,n ∈ Z, the set of integers.

2 DC optimal transmission switching problem

A power network is a set of nodes called buses and edges called transmission lines within a power

system. Consider a power network N = (B,L), where B represents the node set and L represents

the edge set. The subset of buses G ⊆ B represents buses connected to generation units (power

generators), and we assume that every bus holds some electric demand, called load. The goal of
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DC-OTS is to satisfy demand at all buses with the minimum total production costs of generators

such that the solution obeys the physical laws (e.g., Ohm’s Law) and other operational restrictions

(e.g. transmission line flow limit constraints).

We now describe the parameters of the DC-OTS problem:

• For each bus i ∈ B, let pdi and be the real power load.

• For each generator located at bus i ∈ G, active output is restricted to be in the interval

[pmin
i , pmax

i ]. We set pmin
i = pmax

i = 0 for i ∈ B \ G.

• For each transmission line (i, j) ∈ L, the susceptance is denoted as Bij and the thermal limit

is denoted as sij .

We define the following decision variables to model the DC-OTS problem:

• For each bus i ∈ B, let θi and be the phase angle.

• For each generator located at bus i ∈ G, let pgi be its production output.

• For each transmission line (i, j) ∈ L, let pij be its real power flow and xij be its on/off status.

The DC-OTS problem is modeled as follows:

min
∑

i∈G

Ci(p
g
i ) (1a)

s.t. pgi − pdi =
∑

j∈δ(i)

pij i ∈ B (1b)

pij = [Bij(θi − θj)]xij (i, j) ∈ L (1c)

|pij| ≤ sijxij (i, j) ∈ L (1d)

pmin
i ≤ pgi ≤ pmax

i i ∈ B

xij ∈ {0, 1} (i, j) ∈ L

Here, objective function (1a) minimizes the total cost of production, where Ci is a linear or convex

quadratic cost function of generator i. Constraint (1b) enforces flow conservation at each bus i.

Real power across line (i, j), namely pij, is expressed in terms of the phase angles at buses i and j

through constraint (1c), which is an approximation of the true physical function. Finally, the flow

limit on line (i, j) is imposed by constraint (1d).

Note that constraint (1c) can be linearized using a big-M formulation to obtain a MILP formu-

lation of DC-OTS as follows:

pij ≤ [Bij(θi − θj)] + 2πBij(1− xij) (i, j) ∈ L

pij ≥ [Bij(θi − θj)]− 2πBij(1− xij) (i, j) ∈ L.

Here, we use an upper bound of 2π on θi − θj.
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3 A “node-based” substructure of DC-OTS

In this section, we start our polyhedral study of a “node-based” substructure of DC-OTS. Let

f̄j ∈ R+, f j
= −f̄j, for j ∈ [1 : n], f

0
≤ f̄0 and d ∈ R. For convenience, let x0 = 1. Consider the

set

S =

{

(x, f) ∈ {0, 1}n × R
n+1 :

n
∑

j=0

fj = d, f
j
xj ≤ fj ≤ f̄jxj j ∈ [0 : n]

}

. (2)

This mixed-integer set appears as a substructure in the DC-OTS problem as follows: Consider a

bus in the power network with a generator1 and n incident transmission lines. Let d represent the

load at node 0, f0 represent the dispatch variable with bounds f
0
and f0, fj represent the flow

variable of line j with a bound of f̄j, and xj represent the on/off status of line j, j ∈ [1 : n]. See

Figure 1 for an illustration.

0
1

2 3

4

5

(f1, x1)

(f2, x2) (f3, x3)

(f4, x4)

f0d

Figure 1: Illustration with n = 4.

Our aim is to understand the complexity of optimizing a linear function over the set S and to

study its polyhedral properties (e.g. obtain its convex hull or a tight polyhedral outer-approximation).

Proposition 1. Optimizing a linear function over the set S defined in (2) is NP-Hard.

Proof. Consider the following decision problem, which we will call DC− Node: Does there exist

(x, f) ∈ S such that α⊤x+ β⊤f ≤ γ? We claim that DC− Node is NP-Complete, from which the

statement of the proposition follows.

We prove the NP-Completeness of DC− Node by a reduction from Subset− Sum, which is

known to be NP-Complete [5]. Consider an instance of Subset− Sum as follows: Given a ∈ Z
n
++

and b ∈ Z++, does there exist a subset J ⊆ [1 : n] such that
∑

j∈J aj = b? We construct an instance

of DC− Node as below:

f
0
= f0 = 0, β0 = 0, d = b, γ = 0, f i = −f

i
= ai, αi = ai, βi = −1 i ∈ [1 : n].

1A bus without a generator can be simply modeled by setting f
0
= f0 = 0.
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We first note that the size of the DC− Node instance is polynomial in the size of the Subset− Sum

instance. We now verify that DC− Node is feasible if and only if Subset− Sum is feasible.

(⇒): Let (x̂, f̂) ∈ S such that aT x̂− eT f̂ ≤ 0 be a solution to DC− Node. Since ajx̂j − f̂j ≥ 0,

we obtain that f̂j = ax̂j for j ∈ [1 : n]. Now, set Ĵ = {j : x̂j = 1}. Since
∑

j∈Ĵ aj =
∑n

j=1 f̂j = b,

the set Ĵ is a feasible solution to Subset− Sum.

(⇐): Let Ĵ ⊆ [1 : n] be a solution to Subset− Sum. Then, one can construct a feasible solution

to DC− Node as (x̂j, f̂j) = (1, aj) if j ∈ Ĵ and (x̂j , f̂j) = (0, 0) otherwise.

We now present an important sub-family of instances for which the optimization can be per-

formed efficiently, since for this sub-family we will show the existence of a polynomial size extended

formulation of the integer hull. The proof of Theorem 1 is presented in the next section.

Theorem 1. Let κ̄ be a fixed positive integer. Consider the set S defined in (2) with f
0
= f0 = 0,

f̄j = κj f̄ where κj ∈ [1 : κ̄] for j ∈ [1 : n], f̄ ∈ R++ and d ∈ [0, f̄). Then there exists an algorithm

for optimizing a linear function over the set S whose running time is polynomial in the size of the

input.

Although the requirements of Theorem 1 might seem restrictive at first glance, we note that it

is quite common in a power network to have transmission line thermal limits which are multiples

of each other. Therefore, the assumptions of Theorem 1 are satisfied for the majority of the

substructures that appear in instances from the literature. For example, in 118-bus instances from

[8], the fraction of substructures with κ̄ = 3 is about 93% while 86% of the substructures in 300-bus

instances can be covered by κ̄ = 7.

4 Proof of Theorem 1 via extended formulation of convex hull of S

In this section, our aim is to obtain the convex hull of S as an extended formulation using disjunctive

arguments. We start our analysis by identifying the extreme points of a certain restricted polyhedral

set defined as

S(x̂) =

{

f ∈ R
n+1 :

∑

j∈J(x̂)

fj = d, f
j
≤ fj ≤ f̄j j ∈ J(x̂), fj = 0 j 6∈ J(x̂)

}

, (3)

where x̂ ∈ {0, 1}n and J(x̂) := {0} ∪ {j : x̂j = 1}.

Proposition 2. Consider the set S(x̂) defined in (3). Then, we have

extr (S(x̂)) =
⋃

k∈J(x̂)

{

f ∈ R
n+1 : fj ∈ { f

j
, f̄j}, j ∈ J(x̂) \ {k},

fk = d−
∑

j∈J(x̂)\{k}

fj, fk
≤ fk ≤ f̄k,

fj = 0, j 6∈ J(x̂)

}

.
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Proof. Observe that S(x̂) is a polyhedral set defined in R
n+1. Therefore, at an extreme point, there

must exist at least n + 1 linearly independent inequalities satisfied at equality [14]. Since the set

S(x̂) has already one equality in its definition, at least n of the bound constraints must be active.

Therefore, enumerating over each coordinate gives the desired result.

Now, we are ready to give the extreme points of conv(S).

Corollary 1. Consider the set S defined in (2). Then, we have

extr (conv(S)) = {(x, f) ∈ {0, 1}n × R
n+1 : f ∈ extr (S(x))}.

Proof. The result follows due to the fact that at any extreme point (x̂, f̂) of conv(S), we must have

x̂ ∈ {0, 1}n and using Proposition 2.

4.1 An extended formulation for conv(S)

Below, we describe a way to obtain conv(S) through an extended formulation via a special layered

network. To start with, let us define a set Vk, which contains the possible values the variable fk

can take between its bounds in one of the extreme points of conv(S), for k ∈ [0 : n]. In particular,

we have

Vk =

{

fk = d−
∑

j∈[0:n]\{k}

fj : fj ∈ Ej j ∈ [0 : n] \ {k}, f
k
≤ fk ≤ fk

}

,

for k ∈ [0 : n], where

Ej :=







{f
0
, f0} if j = 0

{−f̄j, 0, f̄j} if j ∈ [1 : n].

We note that each set Vk can be obtained via enumeration.

We now describe a way to obtain conv(S) through an extended formulation via a special network

with n+ 2 layers, denoted as N = (∪n
i=−1Ki, A). Here, Ki is the set of nodes in layer i and A is

the set of arcs. Layer −1 contains the source node and layer n contains the sink nodes. Each node

in the network is designated by a triplet (i, δ, S), where i is the layer index, δ is the amount of

demand satisfied until layer i and S is the set of coordinates selected so far that take value between

their respective bounds. The critical element in this construction is the fact that |S| ≤ 1 due to

Proposition 2 and Corollary 1. We use Algorithm 1 to construct this network, which we use to

represent the extreme points of conv(S) using source to sink paths. See Figure 2 for an illustration.
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Algorithm 1 Network construction for the extended formulation of conv(S).

Let K−1 = {(−1, 0, ∅)}, Ki = ∅, i = 0, . . . , n, and A = ∅.
for i = 0, . . . , n do

Set Bi = max{
∑i

j=0 f j
, d−

∑n
j=i+1 f̄j} and Bi = min{

∑i
j=0 f̄j, d−

∑n
j=i+1 f j

}.

for each (i− 1, δ, S) ∈ Ki−1 do

for each ϑ ∈ Ei do

if Bi ≤ δ + ϑ ≤ Bi then

Ki = Ki ∪ {(i, δ + ϑ, S)} and A = A ∪ {(i− 1, δ, S) → (i, δ + ϑ, S)}.
if S = ∅ then

for each ϑ ∈ Vi do

if Bi ≤ δ + ϑ ≤ Bi then

Ki = Ki ∪ {(i, δ + ϑ, {i})} and A = A ∪ {(i− 1, δ, ∅) → (i, δ + ϑ, {i})}.

−1, 0, ∅ ...
... · · · ...

...

Layer -1

(Source)
Layer 0 Layer 1

Layer

n − 1

Layer n

(Sinks)
· · ·

Figure 2: Illustration of the nodes of the layered network.

Let us define a set of binary variables Y(i−1,δ,S),(i,δ′,S′) which takes value 1 if the arc (i−1, δ, S) →

(i, δ′, S′) is traversed, and 0 otherwise. Consider the following system:

∑

η∈K0

Y(−1,0,∅),η = 1 (4a)

∑

η∈Ki−1

Yη,η′ =
∑

η′′∈Ki+1

Yη′,η′′ i ∈ [1 : n− 1], η′ ∈ Ki (4b)

xi = 1−
∑

(i−1,δ,S)∈Ki−1,(i,δ,S)∈Ki

Y(i−1,δ,S),(i,δ,S) i ∈ [1 : n] (4c)

fi =
∑

(i−1,δ,S)∈Ki−1,(i,δ′,S′)∈Ki

(δ′ − δ)Y(i−1,δ,S),(i,δ′,S′) i ∈ [0 : n]. (4d)

Proposition 3. Consider the set S defined in (2) and the layered network N = (∪n
i=−1Ki, A)

constructed using Algorithm 1. Then, we have that

conv(S) = {(x, f) ∈ [0, 1]n × R
n+1 : ∃Y ≥ 0 : (4)}.

Proof. First, we note that there is a one-to-one correspondence between extreme points of conv(S)

7



and source-to-sink paths in N . Also, the constraint matrix of (4) is totally unimodular in Y . This

is due to the fact that constraints (4a)-(4a) are defined by a network matrix, which is known to be

totally unimodular, and constraints (4c)-(4d) are simply the definitions of the x and f variables in

terms of the Y variable. Hence, the result follows.

4.2 Proof of Theorem 1: A special case when the extended formulation is compact

In the previous section, we constructed an extended formulation for conv(S). However, this for-

mulation can be of exponential-size in the worst case as optimizing a linear function over the set S

is NP-Hard due to Proposition 1. Now, we will consider an important sub-family of instances for

which the size of the extended formulation is polynomial in n with fixed parameter κ̄.

Proposition 4. Under the assumptions of Theorem 1, there exists a compact extended formulation

for conv(S) whose size is polynomial in n and κ̄.

Proof. First of all, we can assume without loss of generality that f̄ = 1 (otherwise, we can pass to

new variables f ′
j = fj/f̄). Consider the extended formulation given in Proposition 3 constructed

via Algorithm 1. It suffices to show that the number of nodes in the layered network is upper

bounded by a polynomial in n and κ̄.

Since f
j
, f j ∈ Z, we have that δ is either an integer or a number of the form p + d where

p ∈ Z. Notice also that nκ̄ ≤ Bi := max{
∑i

j=0 f j
, d −

∑n
j=i+1 f j}, since d ≥ 0 and −f

j
= f j =

κj ≤ κ̄. Similarly, nκ̄ + 1 ≥ Bi := min{
∑i

j=0 f j , d −
∑n

j=i+1 f j
}. Thus |Ki| ≤ 4nκ̄. Therefore,

∑n
j=−1 |Kj | ≤ 4n2κ, which is a polynomial in n, and κ̄ is a fixed integer.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The statement of the proposition follows from the facts that i) optimizing

a linear function over S is equivalent to optimizing the same function over conv(S), ii) there

is a compact polyhedral extended formulation for conv(S) due to Proposition 4, and iii) linear

programming is polynomially solvable.

5 An outer-approximation for convex hull of S

Since the size of the extended formulation for conv(S) can be of exponential-size, we explore the

possibility of obtaining a compact outer-approximation in this section.

5.1 A compact extended formulation

We start with the following proposition.

8



Proposition 5. Consider the set S defined in (2), and define

O =
n
⋃

k=0

{

(x, f) ∈ [0, 1]n×R
n+1 :

n
∑

j=0

fj = d, f
j
xj ≤ fj ≤ f̄jxj j ∈ [0 : n], fk ∈ conv(Vk), xk = 1

}

.

(5)

Then, we have conv(S) ⊆ conv(O).

Proof. The result follows since the extreme points of conv(S) are contained in the set O by con-

struction.

We note that the size of the polyhedral representation of conv(O) is on the order of O(n2).

5.2 A special case when the outer-approximation is exact

We will now discuss a special case for which i) conv(O) = conv(S) and ii) conv(S) can be described

in the original space.

Lemma 1. Let (f̄ , d′) ∈ R+×R such that d′ = κf̄ for some κ ∈ [−m+1 : m]. Then, the following

polytope is integral in x:

{

(x, f) ∈ [0, 1]m × R
m : d′ − f̄ ≤

m
∑

j=1

fj ≤ d′, −f̄xj ≤ fj ≤ f̄xj j ∈ [1 : m]

}

.

Proof. First of all, we can assume without loss of generality that f̄j = 1, j = 1, . . . ,m (otherwise,

we can pass to new variables f ′
j = fj/f̄). Suppose that there is a fractional extreme point of the

polytope, denoted by (x̂, f̂), with x̂i ∈ (0, 1) for some i. We will look at two cases:

Case 1. Suppose
∑m

j=1 f̂j = d′ holds (the case with
∑m

j=1 f̂j = d′ − 1 can be handled similarly).

First note that the point (x̂, f̂) with −x̂i < f̂i < x̂i cannot be extreme, since it can be written as a

convex combination of points with x̂i ± ǫ. Therefore, we must have that f̂i = ±x̂i. Let us assume

that f̂i = x̂i (the case with f̂i = −x̂i is similar). Since d′ is integer, there must exist another index

k such that f̂k ∈ (−1, 1). Now, we construct two new points (x±, f±) = (x̂± ǫei∓ ǫek, f̂ ± ǫei∓ ǫek)

with ǫ > 0 small enough such that (x±, f±) belong to the polytope (here, ei is the i−th unit vector).

However, this contradicts to the fact that (x̂, f̂) is an extreme point.

Case 2. Suppose d′ − f̄ <
∑m

j=1 f̂j < d′ holds. As before, we must have that f̂i = ±x̂i. Let

us assume that f̂i = x̂i (the case with f̂i = −x̂i is similar). Now, we construct two new points

(x±, f±) = (x̂ ± ǫei, f̂ ± ǫei) with ǫ > 0 small enough such that (x±, f±) belong to the polytope.

However, this contradicts to the fact that (x̂, f̂) is an extreme point.

Proposition 6. Consider the set S defined in (2) with f
0
= f0 = 0, f̄j = f̄ for j ∈ [1 : n], 0 ≤

d < f̄ , and the set O defined in (5). Then, we have conv(O) = conv(S).

Proof. Since f
0
= f0 = 0, f̄j = f̄ for j ∈ [1 : n], we have that Vk = {d,−f̄ + d} for k ∈ [1 : n].

Now, in order to prove that conv(O) = conv(S), it suffices to show that conv(O) is integral in x.

9



We first note that the following polytope in integral in x for f̂k ∈ Vk as a consequence of Lemma 1:

{

(x, f) ∈ [0, 1]n × R
n+1 :

n
∑

j=1

fj = d, −f̄xj ≤ fj ≤ f̄xj j ∈ [1 : n], fk ∈ [−f̄ + d, d], xk = 1

}

.

Since conv(O) is the convex hull of the disjunctive union of integral polytopes (see Equation (5)),

it follows that conv(O) is integral as well, and the result follows.

Note that the conditions under which the outer approximation conv(O) is equal to conv(S) are

a special case of conditions presented in Theorem 1 when we can show that the problem can be

solved in polynomial-time.

5.3 The description of conv(S) in the original space under the special case

In the setting of the previous subsection, it is also possible to obtain the convex hull description in

the original set of variables. Let us define the following inequalities:

∑

j∈J1

(f̄ − d)(f̄xj + fj) +
∑

j∈J2

(f̄ − d)dxj +
∑

j∈J3

d(f̄xj − fj) ≥ (f̄ − d)d,

(J1, J2, J3) is a partition of [1 : n].

(6)

Theorem 2. Under the assumptions of Proposition 6, the inequalities (6) are valid for conv(S).

Proof. We first prove the validity of inequalities (6) by checking them at each binary vector x̂ ∈

{0, 1}n. Let us define J ′
i := {j : x̂j = 1, j ∈ Ji}, i = 1, 2, 3. If J ′

2 6= ∅, i.e. there exists j∗ ∈ J ′
2 such

that xj∗ = 1, then inequality (6) is trivially valid since the expressions f̄xj + fj and f̄xj − fj are

nonnegative by the bound constraints. Now, suppose that J ′
2 = ∅. In this case, it suffices to show

that

∑

j∈J ′

1
∪J ′

3

fj = d, −f̄ ≤ fj ≤ f̄ , j ∈ J ′
1 ∪ J ′

3 =⇒
∑

j∈J ′

1

(f̄ − d)(f̄ + fj) +
∑

j∈J ′

3

d(f̄ − fj) ≥ (f̄ − d)d

⇐⇒
∑

j∈J ′

1

fj ≥ d− (f̄ − d)|J ′
1| − d|J ′

3|,

where the equivalence follows due to the linear equality. We will proceed by showing that

min
f

{

∑

j∈J ′

1

fj :
∑

j∈J ′

1
∪J ′

3

fj = d, −f̄ ≤ fj ≤ f̄ , j ∈ J ′
1 ∪ J ′

3

}

≥ d− (f̄ − d)|J ′
1| − d|J ′

3|, (7)

by examining two cases.

Case 1. |J ′
1| ≥ |J ′

3|: In this case, any optimal solution of the optimization problem in (7) satisfies
∑

j∈J ′

3
f∗
j = |J ′

3|f̄ and
∑

j∈J ′

1
f∗
j = d− |J ′

3|f̄ . Hence, we obtain that

∑

j∈J ′

1

f∗
j = d− |J ′

3|f̄ ≥ d− |J ′
3|f̄ − (f̄ − d)(|J ′

1| − |J ′
3|) = d− (f̄ − d)|J ′

1| − d|J ′
3|.

10



Case 2. |J ′
1| < |J ′

3|: In this case, any optimal solution of the optimization problem in (7) satisfies
∑

j∈J ′

1
f∗
j = −|J ′

1|f̄ and
∑

j∈J ′

3
f∗
j = d+ |J ′

1|f̄ . Hence, we obtain that

∑

j∈J ′

1

f∗
j = −|J ′

1|f̄ ≥ −|J ′
1|f̄ − d(|J ′

3| − |J ′
1| − 1) = d− (f̄ − d)|J ′

1| − d|J ′
3|.

Theorem 3. Let us define

X :=

{

(x, f) ∈ [0, 1]n ×R
n+1 : (6), f0 = 0,

n
∑

j=1

fj = d, −f̄jxj ≤ fj ≤ f̄jxj j ∈ [1 : n]

}

.

Under the assumptions of Proposition 6, we have conv(S) = X.

Proof. We first claim that dim(X) = dim(conv(S)) = 2n − 1. In fact, let us consider the set of

points

T =

{

(x, f) : (fj , xj) =







(d, 1), j = i

(0, 0), j 6= i
, j ∈ [1 : n]

}

∪

{

(x, f) : (fj , xj) =



















(d, 1), j = i

(1, 1), j = (i+ 1) mod n

(−1, 1), j = (i+ 2) mod n

}

.

Since |T | = 2n, the points of T are affinely independent and contained in S and X, we have that

dim(conv(S)) ≥ 2n− 1 and dim(X) ≥ 2n− 1. As the description of S and X contains an equation,

dim(S) ≤ 2n−1 and dim(X) ≤ 2n−1. Hence, we conclude that dim(X) = dim(conv(S)) = 2n−1.

Our proof strategy is to show that for any c = [cx, cf ] ∈ R
2n, all extreme optimal solutions of

the following problem

M(c) := argmin

{ n
∑

j=1

(cxjxj + cfj fj) : (x, f) ∈ conv(S)

}

, (8)

satisfy some inequality defining X at equality. One of the key results we repeatedly use in the

proof is the characterization of the extreme points of conv(S) established in Proposition 2 and

Corollary 1, which implies the following: In an extreme solution, we have that xk ∈ {0, 1} for all

k ∈ [n], and there exists i ∈ [1 : n] such that fi ∈ {d,−(1 − d)}, xi = 1 and fj = ±xj for all

j ∈ [1 : n] \ {i}.

We start the proof with the following simple fact.

Fact 1. Suppose that the cost vector [cx, cf ] has an index j ∈ [1 : n] such that cxj < 0. In this case,

all optimal solutions satisfy xj = 1.

Due to Fact 1, we focus on the non-trivial case in which cxj ≥ 0 for all j ∈ [1 : n] in the remainder
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of the proof. Now, let us define

I := argmin(cxi + cfi ), J := argmin(cxj − cfj ), and z := cxi + cfi + cxj − cfj , i ∈ I, j ∈ J .

We have three cases based on the sign of z.

Case 1. z > 0:

Claim 1 Consider any extreme point (x, f) ∈ conv(S) satisfying that there exist i, j ∈ [1 : n] such

that fi = 1, fj = −1. We claim that such an extreme point is not optimal when z > 0: Indeed, let

x∗k = xk, k 6∈ {i, j} and f∗
k = fk, k 6∈ {i, j}; and fk = xk = 0, k ∈ {i, j}. Then (x∗, f∗) is feasible,

and observe that

n
∑

i=1

(cxi x
∗
i + cfi f

∗
i ) + z ≤

n
∑

i=1

(cxi xi + cfi fi) ⇒
n
∑

i=1

(cxi x
∗
i + cfi f

∗
i ) <

n
∑

i=1

(cxi xi + cfi fi),

thus proving that (x, f) is not an optimal solution.

Let A = argmin(cxi + dcfi ), B = argmin(cxi + cfi ) = I, C = argmin(cxi − (1− d)cfi ); and let ã, b̃, c̃

be their respective values. Based on the above claim, it is easy to verify that all extreme points of

M(c) satisfy either:

(i) Exactly one arc i has xi = 1, and i ∈ A.

(ii) Exactly two arcs i, j exist such that their corresponding x is positive, and i ∈ B, j ∈ C.

Now, we consider three sub-cases:

• If ã < b̃+ c̃, then we are in situation (i) above, i.e., exactly one arc has xi = 1 and i is in set

A. Thus in any optimal solution (x, f) ∈ M(c) we have
∑

i xi = 1.

Therefore, we can assign J2 = [1 : n]; the associated constraint from (6) is satisfied at equality

for all points in M(c).

• If b̃+ c̃ < ã. We first verify that in this case B ∩C = ∅. Assume by contradiction that there

exists i ∈ B ∩ C. Observe then that

cxi + dcfi ≥ ã > b̃+ c̃ = cxi + cfi + cxi − (1− d)cfi =⇒ cxi < 0,

a contradiction to our assumption that cxi ≥ 0. Thus B ∩ C = ∅. Now it is clear that the

optimal solution is of the form (ii) above, i.e., exactly two arcs are active, one each from sets

B and C.

Assign J3 = B, J2 = [1 : n] \ B, and it is straightforward to verify that the corresponding

constraint from (6) is satisfied at equality for all points in M(c).

• Otherwise, ã = b̃+ c̃.
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– If B ∩ C = ∅, then we can assign J3 = B, J2 = [1 : n] \B. If we have a solution of type

(i) above with xi = 1 and fi = d for some i ∈ A, note that whether i ∈ J2 or i ∈ J3, the

inequality (6) is satisfied at equality. If we have a solution of type (ii) with xi, xj = 1,

fi = 1 and fj = d − 1 with i ∈ B and j ∈ C, then we have that i ∈ J3 and j ∈ J2 and

the inequality (6) is satisfied at equality.

– If B ∩ C 6= ∅. In this case we first verify that |B| = 1. Let i ∈ B ∩ C. Then

cxi + cfi + cxi − (1− d)cfi = 2cxi + dcfi = b̃+ c̃ = ã ≤ cxi + dcfi =⇒ cxi = 0. (9)

This implies b̃ = cxi + cfi = cfi . Now assume there exists j ∈ B where j 6= i. Then

0 < z ≤ cxj + cfj + cxi − cfi = b̃+ cxi − b̃ = cxi , which contradicts (9).

Again we can assign J3 = B, J2 = [1 : n] \ B. If we have a solution of type (i) above

with xi = 1 and fi = d for some i ∈ A, note that whether i ∈ J2 or i ∈ J3, the inequality

(6) is satisfied at equality. If |C| = 1, then we cannot have a solution of type (ii), since

from the above claim we have B = C with |B| = |C| = 1 (and therefore any solution of

type (ii) will have an objective function value strictly greater than b̃ + c̃). If |C| > 1,

then we have a solution of type (ii) with xi, xj = 1, fi = 1 and fj = d − 1 with i ∈ B

and therefore crucially j ∈ C \ B. Then we have that i ∈ J3 and j ∈ J2 and thus the

inequality (6) is satisfied at equality.

Case 2. z < 0:

Claim 2 We first claim that, if z < 0, then I ∩ J = ∅. If not, then suppose i ∈ I ∩ J . Then

0 > z = cxi + cfi + cxi − cfi = 2cxi ,

which contradicts the assumption that cxi ≥ 0.

We will consider two subcases: either |J | < |I| or |J | ≥ |I|.

• Suppose |J | < |I|. We will prove that xj = 1 for all j ∈ J for any (x, f) ∈ M(c). First

observe that ∀(x, f) ∈ M(c),∀i ∈ I, j ∈ J , xi + xj ≥ 1 (otherwise, set both to one for a

feasible solution with fi = 1 and fj = −1 which has a strictly smaller objective value). Now

suppose there exists (x, f) ∈ M(c) such that there exists j ∈ J with xj = 0 and xi = 1 for

all i ∈ I. Also let J̃ ⊆ J such that xj = 1 for j ∈ J̃ . Then observe:

– There does not exist i ∈ I such that fi = −1: If there exists i ∈ I such that fi = −1,

we obtain a better solution by setting xi = 0, fi = 0 and xj = 1 and fj = −1. Thus, we

cannot have fi = −1 for any i ∈ I for (x, y) ∈ M(c).

– There does not exist i ∈ I such that fi = d: If there exists i ∈ I such that fi = d

then (due to previous case) fu = 1 for all u ∈ I \ {i}. Since |J̃ | ≤ |J | − 1, we have
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|J̃ | ≤ |I \ {i}| − 1. Thus, there exists k ∈ [1 : n] \ (I ∪ J ) such that fk = −1, xk = 1,

and cxk − cfk > cxj − cfj , contradicting optimality.

– There does not exist i ∈ I such that fi = d − 1: Suppose there exists i ∈ I such that

fi = d − 1. Based on previous case, fu = 1 for all u ∈ I \ {i}. Consider a new solution

where we set xi = 1, fi = d, xj = 1 fj = −1 and all other variables have the same value.

Then observe that the change in the objective function value is:

cxi + dcfi + cxj − cfj − (cxi + (d− 1)cfi ) = cxj − cfj + cfi ≤ cxj − cfj + cxi + cfi = z < 0.

Thus, there does not exist i ∈ I such that fi = d− 1.

From the above we have that for all i ∈ I we have fi = 1. Now since |J̃ | ≤ |J | − 1, we

have |J̃ | ≤ |I| − 2. Thus, there exists k ∈ [1 : n] \ (I ∪ J ) such that fk = −1, xk = 1, and

cxk − cfk > cxj − cfj , contradicting optimality. Thus xj = 1 for all j ∈ J .

Since (x, f) ∈ M(c) we have xj = 1 for all j ∈ J . Thus select some j ∈ J and observe that

xj ≤ 1 is satisfied at equality for all (x, f) ∈ M(c).

• Otherwise, |I| ≤ |J |. We will prove that for all i ∈ I, xi = 1, for all (x, f) ∈ M(c). Again it

is true that ∀(x, f) ∈ M(c),∀i ∈ I, j ∈ J , xi + xj ≥ 1.

Assume there exists an index i ∈ I such that xi = 0. Then xj = 1, for all j ∈ J . Let Ĩ ⊆ I

such that xi = 1 for i ∈ Ĩ.

Then observe:

– There does not exist j ∈ J such that fj = 1: Otherwise, we obtain a better solution by

setting xj, fj = 0 and fi, xi = 1, contradicting optimality.

– There does not exist j ∈ J such that fj = d− 1: If there exists j ∈ J such that fj = d

then (due to previous case) fu = −1 for all u ∈ J \ {j}. Since |Ĩ | ≤ |I| − 1, we have

Ĩ ≤ |J \ {j}|. Thus, there exists k ∈ [1 : n] \ (I ∪ J ) such that fk = 1, xk = 1, and

cxk + cfk > cxi + cfi , contradicting optimality.

– There cannot exist j ∈ J such that fj = d: Suppose otherwise, for some j. Set

xi = 1, fi = 1, fj = −(1− d). Then the objective function change is

cxi + cfi + cxj − (1− d)cfj − cxj − dcfj = cxi + cfi − cfj = z − cxj < 0,

which contradicts optimality.

Finally, if for all j ∈ J , fj = −1, then there exists k ∈ [1 : n]\(I∪J ) such that fk = 1, xk = 1,

and cxk + cfk > cxi + cfi , contradicting optimality. Thus, for (x, f) ∈ M(c), we have xi = 1 for

all i ∈ I.

Since (x, f) ∈ M(c), we have xi = 1 for all i ∈ I when |J | ≥ |I|. Thus select some i ∈ I and

observe that xi ≤ 1 is satisfied at equality for all (x, f) ∈ M(c).
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Case 3. z = 0:

Claim 3

We claim that when z = 0, i ∈ I ∩ J if and only if cxi = 0. If there exists i ∈ I ∩ J , then

cxi + cfi + cxi − cfi = z = 0 implies cxi = 0. If for some i ∈ I ∪ J , cxi = 0, then cfi + cxi = cfi − cxi , so

i ∈ I ∩ J .

• Suppose I ∩ J = ∅. This implies that cxi > 0 for all i ∈ I ∪ J by Claim 3. Consider an

extreme point (x, f) of M(c). We will show that there exists a partition of [1 : n] such that

the inequality (6) is satisfied at equality.

– Firstly, for all k ∈ I, we show fk ≥ 0:

∗ We will show that if there exists j such that fj = −1, then j ∈ J . Suppose

by contradiction that there exists j∗ ∈ [1 : n] \ J such that fj∗ = −1. Then

because the set of possible flows at extreme points is {−1,−(1 − d), 0, d, 1} and
∑n

i=1 fi = d, there must be some i such that fi = 1. Because J minimizes cxj − cfj
and z = 0, cxi + cfi + cxj∗ − cfj∗ > 0, and we could obtain a better solution by setting

xi, xj∗ , fi, fj∗ = 0, contradicting optimality.

∗ We will show that there cannot exist i ∈ I such that fi = −(1 − d). Suppose by

contradiction that there exists i∗ ∈ I such that fi∗ = −(1−d). By flow conservation,

there must exist some j such that fj = 1; and cxj + cfj ≥ cxi∗ + cfi∗ , since I minimizes

that value. Suppose we set xj, fj = 0, fi∗ = d. Then the objective value change is

cxi∗ + dcfi∗ − (cxj + cfj + cxi∗ − (1− d)cfi∗)

≤cxi∗ + dcfi∗ − (cxi∗ + cfi∗ + cxi∗ − (1− d)cfi∗) = −cxi∗ < 0,

which contradicts optimality.

The two cases above show that fk ≥ 0 for all k ∈ I.

– For all k ∈ J , we show that fk ≤ 0:

∗ We will show that if there exists i such that fi = 1, then i ∈ I. Suppose by

contradiction that there exists i∗ ∈ [1 : n] \ I such that fi∗ = 1. Firstly, we must

have fi > 0 for all i ∈ I; consider otherwise:

· If there exists i ∈ I such that fi = 0, then we could set xi = fi = 1, fi∗ = xi∗ = 0

for a better solution, contradicting optimality.

· We have already shown that for all i ∈ I, fi ≥ 0.

Then we have at minimum 1 + d units of flow accounted for between i∗ and I; so

by flow conservation, there must exist j ∈ [1 : n] such that fj = −1. As before, we

can set xj, xi∗ , fj, fi∗ = 0 and obtain a better solution, contradicting optimality.

∗ We will show that there cannot exist j ∈ J such that fj = d. Suppose by contra-

diction that for some j∗ ∈ J , we have fj∗ = d.
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· If there exists i ∈ I such that fi = 0, we can set xi = 1, fi = 1, fj∗ = −(1− d).

Then the objective function change is

cxi + cfi + cxj∗ − (1− d)cfj∗ − cxj∗ − dcfj∗ = cxi + cfi − cfj∗ = z − cxj∗ < 0,

which contradicts optimality.

· Otherwise, we have fi = 1 for all i ∈ I. Then by flow conservation, there must

exist j such that fj = −1; and cxi + cfi + cfj − cfj ≥ z = 0. Then we can set

fi, xi, fj, xj = 0 for a feasible solution that is not worse; and we have already

shown that such a solution cannot be optimal in the previous case. Then this

solution cannot be optimal, either.

The two cases above show that fk ≤ 0 for all k ∈ J .

As we have already shown that fi = 1 =⇒ i ∈ I and fi = −1 =⇒ i ∈ J , then for any

i ∈ [1 : n] \ (I ∪ J ), −1 < fi < 1.

Assign J1 = J , J2 = [1 : n] \ (I ∪ J ), J3 = I, and consider the constraint (6). Since

I ⊆ J3,J ⊆ J1, when there exists i such that fi = ±1, the associated terms cancel out to

zero. If there exists i such that fi = d, then i ∈ J2 ∪ J3, and equality is satisfied; otherwise,

there exists i such that fi = −(1− d), and i ∈ J1 ∪ J2, again satisfying equality.

• Otherwise there exists i∗ ∈ I ∩ J , and cxi∗ = 0.

We claim that for all i with cxi = 0, we have that cfi = cfi∗ . For contradiction, suppose

otherwise. If cfi < cfi∗ , then i∗ ∈ I is contradicted. If cfi > cfi∗ , then i∗ ∈ J is contradicted.

We will consider some cases and show that in each of the cases either we can find an inequality

describing a facet of X which all extreme points of M(c) lie on, or else M(c) = S. Before

presenting the cases, we require the following claim.

Claim 4

When z = 0 and I ∩ J 6= ∅, if cxi > 0 for some i, then fi ∈ {−1, 0, 1}. Consider an i such

that cxi > 0. We will show that fi 6= d. Suppose by contradiction that fi = d, and note that

cxi + cfi ≥ cfi∗ , so cxi + dcfi > dcxi∗ .

– If fi∗ = 0, we can assign fi, xi = 0 and fi∗ = d for a strictly better solution, contradicting

optimality.

– If fi∗ = 1, then by flow conservation there must exist j such that fj = −1. We can

set fj, xj , fi∗ , xi∗ = 0, for an objective change not worse than z = 0. Then we can set

fi, xi = 0 and fi∗ = d for a strictly better solution, contradicting the optimality of the

unmodified solution.

– If fi∗ = −1, then by flow conservation there must exist k such that fk = 1, and we can

set fk, xk, fi∗ , xi∗ = 0, for an objective change not worse than z = 0. Then we can set
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fi, xi = 0 and fi∗ = d for a strictly better solution, contradicting the optimality of the

unmodified solution.

We next show that fi 6= −(1 − d). Suppose by contradiction that fi = −(1 − d), and note

that cxi − cfi ≥ −cfi∗ , so cxi − (1− d)cfi > −(1− d)cfi∗ .

– If fi∗ = 0, we can assign fi, xi = 0 and fi∗ = −(1 − d) for a strictly better solution,

contradicting optimality.

– If fi∗ = −1, then by flow conservation there must exist k such that fk = 1, and we can

set fk, xk, fi∗ , xi∗ = 0, for an objective change not worse than z = 0. Then we can set

fi, xi = 0 and fi∗ = −(1 − d) for a strictly better solution, contradicting the optimality

of the unmodified solution.

– If fi∗ = 1, we can assign fi, xi = 0 and fi∗ = d; the resulting objective change is

dcfi∗ − (cfi∗ + cxi − (1−d)cfi ) = −(1−d)cfi∗ − (cxi − (1−d)cfi ) < 0, contradicting optimality.

The above two cases prove that if cxi > 0 for some i, then fi ∈ {−1, 0, 1}.

Now, we will consider some cases that are analyzed using Claim 4.

– If there exists i ∈ [1 : n] \ (I ∪ J ), then we will show xi = 0 for all (x, f) ∈ M(c):

Suppose there exists such an i and fi 6= 0 for some extreme point of M(c).

∗ fi ∈ {−1, 0, 1} since cxi > 0.

∗ If fi = −1, then by flow conservation there must exist k such that fk = 1; and

cxk+ cfk + cxi − cfi > 0 since i 6∈ J . Then we can set fk, xk, fi, xi = 0 to obtain a better

solution, contradicting optimality.

∗ If fi = 1, and there exists k such that fk = −1, cxi +cfi +cxk−cfk > 0 since i 6∈ I. Then

we can set fk, xk, fi, xi = 0 to obtain a better solution, contradicting optimality.

Otherwise, by flow conservation, there exists some k such that fk = −(1 − d), and

all other arcs carry no flow. For all q 6∈ I ∩ J we have cxq > 0, and −cfi∗ ≤ cxq − cfq ,

then −(1−d)cfi∗ ≤ (1−d)cxq −(1−d)cfq < cxq −(1−d)cfq and we must have k ∈ I∩J ;

else we have fi∗ = 0 and we can swap i∗ and k for a better solution, contradicting

optimality. Then cxk = 0 and cfk = cfi∗ . Then we can set fi, xi = 0 and fk = d, and

the change in objective is dcfi∗ − (cxi + cfi − (1− d)cfi∗) = cfi∗ − cxi − cfi < 0 since i 6∈ I,

contradicting optimality.

Then fi = 0 in all optimal solutions. Since cxi > 0, xi = 0 in all optimal solutions as

well. Thus, xi ≥ 0 is satisfied at equality for all (x, f) ∈ M(c).

Now suppose no such i exists for the remainder of the proof.

– If there exists i ∈ I ∪J such that cxi > 0, then we will show that we have either fi = xi

or fi = −xi, for all (x, f) ∈ M(c).

∗ If i ∈ I and cxi > 0, then we will show that fi = xi.

We will show that fi ∈ {0, 1}. Since cxi > 0, we must have fi ∈ {−1, 0, 1}. Suppose
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by contradiction that fi = −1. By flow conservation, there must exist k such that

fk = 1. Since i 6∈ J and z = 0, we can set fi, xi, fk, xk = 0 and obtain a better

solution, contradicting optimality.

Then fi ∈ {0, 1} and if fi = 0 then xi = 0 since cxi > 0, so fi = xi.

∗ If i ∈ J , then we will show that fi = −xi.

First, we show that fi ∈ {−1, 0}. Since cxi > 0, we must have fi ∈ {−1, 0, 1}. Then

suppose by contradiction that fi = 1.

· If fi∗ > 0, then by flow conservation there must exist k such that fk = −1.

Then since i 6∈ I, we can set fi, xi, fk, xk = 0 for a better solution, contradicting

optimality.

· If fi∗ = 0, then since i 6∈ I and z = 0, we can set fi∗ = 1 and xi, fi = 0 for a

better solution, contradicting optimality.

· If fi∗ = −1, then since i 6∈ I and z = 0, we can set fi∗, fi, xi = 0 for a better

solution, contradicting optimality.

· If fi∗ = −(1− d), then we can set fi∗ = d and fi, xi = 0, and the objective value

change is dcfi∗ −(cxi +cfi −(1−d)cfi∗ ) = cfi∗ −cxi −cfi < 0 since i 6∈ I, contradicting

optimality.

Then fi ∈ {0,−1} and if fi = 0 then xi = 0 since cxi > 0, so fi = −xi. Suppose no

such i exists for the remainder of the proof.

– Then otherwise I ∩ J = [1 : n] and there exists some C̃ such that cxi = 0, cfi = C̃,∀i ∈

[1 : n]. Then due to flow balance, M(c) = S.

Proposition 7. Inequalities (6) can be separated in linear time.

Proof. We now show that the separation of inequalities (6) can be performed in polynomial time.

Given a point (x̂, f̂), we define α̂1
j := (f̄ − d)(f̄ x̂j + f̂j), α̂

2
j := (f̄ − d)dx̂j and α̂3

j := d(f̄ x̂j − f̂j),

j = 1, . . . , n, and construct the partition (Ĵ1, Ĵ2, Ĵ3) such that

Ĵ1 := {j : α̂1
j ≤ α̂2

j , α̂
1
j ≤ α̂3

j}, Ĵ2 := {j : α̂2
j < α̂1

j , α̂
2
j ≤ α̂3

j}, and Ĵ3 := {j : α̂3
j < α̂1

j , α̂
3
j < α̂2

j}.

If
∑3

i=1

∑

j∈Ĵi
α̂i
j < (f̄ − d)d, then this partition corresponds to a most violated inequality and can

be obtained in linear time with respect to n.

6 Computational results

In this section, we explain our computational setting and present our computational results that

compare various approaches to solve the DC-OTS problem for challenging instances from the lit-

erature.
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6.1 Instances

In our computational experiments, we use the instances presented in [8]. There are five groups of

35 instances each and some statistics are reported in Table 1. In each instance, there are |B| many

binary variables and |B|+ |G| + |L| many continuous variables.

Instance |B| |L| |G|

118Blumsack 15 118 186 19

118Blumsack 9G 118 186 19

118Blumsack 5p 118 191 19

118Blumsack 15p 118 191 19

300New 5 300 411 61

Table 1: Instance statistics.

We refer the reader to [8] for the details about these instances.

6.2 Computational setting

In our experiments, we use the commercial MILP solver CPLEX 12.8 on a 64-bit personal computer

with Intel Core i7 CPU 2.60GHz processor (16 GB RAM). A time limit of 3600 seconds is given for

all settings and the relative optimality gap is set to 0.1%. We compare the following four settings

in our computational experiments:

• Default: Default CPLEX.

• Feasibility Oriented: Default CPLEX except MIPEmph=4 and DiveType=2. As we mentioned

earlier, finding feasible solution is also challenging and we will see that changing CPLEX to

this setting improves its performance.

• Feasibility Oriented setting and cuts separated from the convex hull defined in (4) in the

support of x and f variables. The cuts are separated using a cut generation linear program.

Five rounds of cuts are separated at the root node.

• Feasibility Oriented setting and inequalities (6) are separated. Notice that (6) can always be

used by relaxing the upper bounds f̄ in the set S (corresponding to a node). Only the nodes

without a generator are considered in this setting due to the assumption of Theorem 3. Again

five rounds of cuts are separated at the root node.

6.3 Computational results

We present our computational results in Tables 2-4. The following abbreviations are used in the

tables:

• OptTime: Time in seconds used by CPLEX to prove optimality (except time for cut separa-

tion).
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• #Nodes: Number of nodes of the branch-and-bound tree

• SepTime: Time in seconds needed to separate the cuts.

• TotalTime: Total time in seconds to prove optimality.

Table 2 shows results comparing Default CPLEX with Feasibility Oriented CPLEX. Table

3 shows the performance of Feasibility Oriented CPLEX together with cuts separated from the

extended formulation. Table 4 shows the performance of Feasibility Oriented CPLEX together

with (6) cuts separated.

Default Feasibility Oriented

Unsolved OptTime #Nodes Unsolved OptTime #Nodes

118Blumsack 15
GA

0
5.97 19825

0
6.03 11236

AA 100.67 586191 7.69 18461

118Blumsack 9G
GA

7
32.78 180040

5
26.10 76669

AA 686.52 4943363 647.66 2825909

118Blumsack 5p
GA

0
7.33 26880

0
8.06 16441

AA 19.96 149245 10.32 30145

118Blumsack 15p
GA

5
147.36 527989

4
83.56 254854

AA 757.16 2484548 481.14 1169934

300New 5
GA

12
192.72 234234

6
78.99 88550

AA 1284.98 1449385 665.87 698018

Table 2: DC-OTS Results without cuts (GA: Geometric Average, AA: Arithmetic Average).

Unsolved SepTime #Cuts OptTime #Nodes TotalTime

118Blumsack 15
GA

0
0.55 187 6.99 12048 7.71

AA 0.56 187 29.12 76788 29.68

118Blumsack 9G
GA

2
0.54 185 24.76 69342 26.26

AA 0.54 185 356.82 1443889 357.36

118Blumsack 5p
GA

0
0.65 192 8.81 16811 9.56

AA 0.65 192 11.54 31664 12.19

118Blumsack 15p
GA

1
0.58 186 41.44 119906 42.17

AA 0.58 186 146.05 368832 146.64

300New 5
GA

4
2.17 455 91.54 89363 95.93

AA 2.18 455 523.17 485283 525.35

Table 3: DC-OTS Results with Feasibility Oriented setting and cuts separated from the convex
hull.
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Unsolved SepTime #Cuts OptTime #Nodes TotalTime

118Blumsack 15
GA

0
0.02 148 5.26 8250 5.28

AA 0.02 148 6.06 12511 6.08

118Blumsack 9G
GA

2
0.01 139 28.57 76579 28.62

AA 0.02 139 422.73 1692401 422.74

118Blumsack 15p
GA

0
0.02 141 8.13 16297 8.15

AA 0.02 141 10.18 33747 10.20

118Blumsack 15p
GA

2
0.02 137 55.90 153063 55.94

AA 0.02 137 282.95 597637 282.97

300New 5
GA

3
0.04 152 64.99 62704 65.05

AA 0.04 152 379.84 402154 379.88

Table 4: DC-OTS Results with Feasibility Oriented setting and inequalities (6) are separated.

We summarize our observations as below:

• Feasibility oriented (12 unsolved) is much better than Default (24 unsolved). All other statis-

tics are improved as well.

• The setting with cuts separated from the convex hull and the setting with inequalities sepa-

rated from (6) are better than the setting with feasibility oriented (they both solve 5 more

instances). Most of the statistics are improved (especially for the harder instances 118Blum-

sack 9G, 118Blumsack 15p, 300New 5).

• The overall performances of the setting with cuts separated from the convex hull and the

setting with inequalities separated from (6) are similar.

– The latter adds less cuts: This is more advantageous in easier instances 118Blumsack 15

and 118Blumsack 5p.

– The former adds more cuts: This is more advantageous in harder instances 118Blum-

sack 9G and 118Blumsack 15p.

– For 300New 5 instances, the former adds significantly more cuts, which seem to result

in a heavier and slower model (one more unsolved).

• The setting with inequalities separated from (6) does not improve the percentage gap closed,

defined as

100×
UB − LP ′

UB − LP
,

except for three instances from 118Blumsack 9G with negligible improvements (here, UB is

the best upper bound found, LP is the lower bound obtained from the LP relaxation and

LP ′ is the lower bound obtained from the LP relaxation with the added inequalities). The

setting with cuts separated from the convex hull is slightly more successful with average

percentage gap closed reported as 0.08%, 0.38%, 0.08%, 0.00% and 0.16% respectively for the
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five instance families. The OTS Problem is known to have dual degeneracy (the cuts separate

the current fractional point but there exist other optimal solutions of the LP with the same

objective function value) and these results are not very surprising in this respect.

7 Conclusion

We consider a substructure in DC-OTS representing a single bus node and the lines connected

to it. We show that optimizing over this substructure is NP-Hard, and we propose an extended

formulation for its convex hull and show when this convex hull is of a compact size. We also propose

an outer approximation for its convex hull, which is more compact than our extended formulation,

and we show that in a special case of the problem, the outer approximation is exactly the convex

hull. In this case, we are able to obtain the convex hull in the original space. Computationally,

these cuts are able to help solve more instances in lesser time over the commercial solver CPLEX.

We note that while the substructure we studied is motivated from DC-OTS, this set may also

be obtained as a substructure in the context of AC-OPF. For example, we can consider a single bus

and lines connected to it, together with the real power flowing in these line. It may also be possible

to use the results of this study to other network based applications like gas and water networks.
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