
Constant Factor Approximation for Tracking Paths and
Fault Tolerant Feedback Vertex Set?

Václav Blažej, Pratibha Choudhary, Dušan Knop, Jan Matyáš Křǐst’an∗,
Ondřej Suchý, Tomáš Valla

aDepartment of Theoretical Computer Science, Faculty of Information Technology, Czech
Technical University in Prague, Thakurova 9, Prague, 160 00, Czech Republic

Abstract

Consider a vertex-weighted graph G with a source s and a target t. Tracking
Paths requires finding a minimum weight set of vertices (trackers) such that the
sequence of trackers in each path from s to t is unique. In this work, we derive a
factor 6-approximation algorithm for Tracking Paths in weighted graphs and
a factor 4-approximation algorithm if the input is unweighted. This is the first
constant factor approximation for this problem. While doing so, we also study
approximation of the closely related r-Fault Tolerant Feedback Vertex
Set problem. There, for a fixed integer r and a given vertex-weighted graph
G, the task is to find a minimum weight set of vertices intersecting every cycle
of G in at least r + 1 vertices. We give a factor O(r) approximation algorithm
for r-Fault Tolerant Feedback Vertex Set if r is a constant.

Keywords: Tracking Paths, Feedback Vertex Set, Approximate algorithms

1. Introduction

In this paper, we study the Tracking Paths problem, which involves find-
ing a minimum weight set of vertices in a vertex-weighted simple graph G that
can track moving objects in a network along the way from a source s to a tar-
get t. A set of vertices T is a tracking set if for any (simple) s-t path P in G the

sequence
−→
TP of the subset of vertices from T that appear in P , in their order

?A preliminary version of this work is to appear in the proceedings of WAOA 2021. Apart
from the full proofs, this version improves the approximation factors for r-Fault Tolerant
Feedback Vertex Set and Multicut in Forests.
The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”. This work was
supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/208/OHK3/3T/18.
∗Corresponding author; kristja6@fit.cvut.cz
1Email addresses: {blazeva1, pratibha.choudhary, dusan.knop, kristja6,

ondrej.suchy, tomas.valla}@fit.cvut.cz

Preprint submitted to Discrete Optimization February 25, 2022

ar
X

iv
:2

10
8.

01
43

0v
2

 [
cs

.D
S]

 2
4

Fe
b

20
22

along P , uniquely identifies the path P . That is, if
−→
TP1 6=

−→
TP2 holds for any two

distinct s-t paths P1 and P2. Formally, the problem is the following.

Tracking Paths
Input: Undirected graph G with positive integer weights w : V (G) → N, a
source s, and a target t.
Output: A minimum weight tracking set T ⊆ V (G).

Motivation for Tracking Paths. The problem is motivated by the nature of in-
formation exchange in complex settings. In the current age of information, social
media networks have an important role in information exchange and dissemi-
nation. However, due to the unregulated nature of this exchange, spreading
of rumours and fake news pose serious challenges in terms of authenticity of
information [10, 33]. Identifying and studying patterns of rumor spreading in
social media poses a lot of challenges due to huge amounts of data in constant
movement in large networks [37]. Tracing the sequence of channels (people,
agents, . . .) through which rumors spread can make it easier to contain the
spread of such unwanted messages [28, 38]. A basic approach would require
tracing the complete route traversed by each message in the network. Here, an
optimum tracking set can serve as a resource-efficient solution for tracing the
spread of rumors and dissolving them. Furthermore, Tracking Paths finds
applications in tracking traffic movement in transport networks and tracing ob-
ject movement in wireless sensor networks [1, 31].

Known results. The graph theoretic version of the problem was introduced by
Banik et al. [6], wherein the authors studied the unweighted (i.e., w(v) = 1 for all
v ∈ V (G)) shortest path variant of the problem, namely Tracking Shortest
Paths (i.e., the set T is required to uniquely identify each of the shortest s-t
paths). They showed that this problem is NP-hard, even to approximate it
within a factor of 1.1557. They also show that Tracking Shortest Paths
admits a 2-approximation algorithm for planar graphs. Later, the parameterized
complexity of Tracking Paths was studied in [4], where the problem was also
proven to be NP-hard.

To the best of our knowledge, Eppstein et al. [17] were the first to study
approximation algorithms for the unweighted Tracking Paths. They gave a
4-approximation algorithm when the input graph is planar. Recently, this result
was extended by Goodrich et al. [20] to a (1 + ε)-approximation algorithm for
H-minor free graphs and an O(log OPT)-approximation algorithm for general
(unweighted) graphs [20]. They also gave an O(log n)-approximation algorithm
for Tracking Paths. The existence of constant factor application algorithm
was posed as an open problem by Eppstein et al. [17]. In this paper, we answer
this affirmatively.

Theorem 1. There is a 6-approximation algorithm for Tracking Paths in
weighted graphs and a 4-approximation algorithm if the input is unweighted.

2

There exists an interesting connection between Feedback Vertex Set
(FVS) and Tracking Paths. Before we discuss this in more detail, we intro-
duce FVS and its fault tolerant variant. Formally, for a given vertex-weighted
graphG = (V,E), FVS requires finding a minimum weight set of vertices S ⊆ V ,
referred to as a feedback vertex set (fvs), such that the graph induced by the
vertex set V \ S does not have any cycles. FVS is a classical NP-hard prob-
lem [26] that has been thoroughly studied in graph theory. An r-fault tolerant
feedback vertex set (r-ftfvs) is a set of vertices that intersect with each cycle
in the graph in at least r + 1 vertices; finding a minimum weight r-ftfvs is the
r-Fault Tolerant Feedback Vertex Set problem [32]:

r-Fault Tolerant Feedback Vertex Set
Input: Undirected graph G, weight function w : V → N.
Output: A minimum weight set of vertices S ⊆ V (G) such that for each
cycle C in G, it holds that |V (C) ∩ S| ≥ r + 1.

Note that if a graph has a cycle of length less than or equal to r, then it
cannot have an r-ftfvs.

Relation Between FVS and Tracking Paths. For a graph G with source s
and destination t, if each vertex and edge participates in an s-t path, then we
refer to G as a preprocessed graph. It is known that in a preprocessed graph,
a tracking set is also a feedback vertex set [4]. Thus, the weight of a minimum
feedback vertex set serves as a lower bound for the weight of a tracking set in
preprocessed graphs. This lower bound has proven to be helpful in the analysis
of Tracking Paths. However, approximating Tracking Paths has been
challenging since the size of a tracking set can be arbitrarily larger than that of
a minimum fvs.

Furthermore, it is known [11, 17] that in a graph G, if a set of vertices T
contains at least three vertices from each cycle in G, then T is a tracking set
for G. Thus, a 2-fault tolerant feedback vertex set is also a tracking set. In
this paper, we borrow inspiration from this concept to derive a polynomial time
algorithm to compute an approximate tracking set. In particular, we start with
finding an fvs for the input graph G, and then identify cycles that need more
vertices as trackers additional to the ones selected as feedback vertices.

Observe that a feedback vertex set is indeed a 0-fault tolerant fvs. Misra [32]
gave a 3-approximation algorithm for the problem of finding a 1-fault tolerant
fvs in unweighted graphs and 34-approximation algorithm for weighted graphs.
In this paper, we give an approximation algorithm for finding an r-fault tolerant
feedback vertex set, where r is a constant. We do this by using the Multicut
in Forests problem (see Section 2) as an auxiliary problem. Misra [32] pointed
out that the complexity of r-Fault Tolerant Feedback Vertex Set is not
known for r ≥ 2 and asked for an approximation algorithm.

Theorem 2. There is a 2r + 2-approximation algorithm for r-Fault Toler-
ant Feedback Vertex Set in weighted graphs, and a r + 2-approximation
algorithm if the input is unweighted, where r is a constant.

3

It is worth mentioning that our approach relies on the explicit enumeration
of certain cycles in the input graph G. This can be done in polynomial time if
r is a constant (see Observation 2). Thus, it remains open how to approximate
the r-Fault Tolerant Feedback Vertex Set if r depends on the size of
the input.

Motivation for (Fault Tolerant) FVS. The FVS problem is motivated by ap-
plications in deadlock recovery [18, 35], Bayesian inference [7], VLSI design [24],
and other areas. Fault tolerant solutions are crucial to real world applications
that are prone to failure of nodes in a network or entities in a system [34]. In
the case of FVS, the failure corresponds to not being able to eliminate the node
from the network.

Related work. There has been a lot of heuristic-based work on the problem of
tracking moving objects in a network [30, 36, 39]. Parameterized complexity
of Tracking Shortest Paths and Tracking Paths was studied in [4, 5,
8, 12, 13, 17]. Feedback Vertex Set is known to admit a 2-approximation
algorithm which is tight under UGC [3, 14]. The best known parameterized
algorithm for FVS runs in 2.7k·nO(1) time, where k is the size of the solution [29].
It is worth noting that Misra [32] uses Multicut in Forests as a subroutine
as well. The edge version is known to admit an LP formulation whose matrix is
totally unimodular [19] if the family of paths is non-crossing; thus, it is solvable
in polynomial time. A related problem is the d-Hurdle Multiway Cut for
which a factor 2-approximation algorithm is known (and it is again tight under
UGC) [15].

Preliminaries and Notations. We refer to [16] for the standard graph theory
terminology. All paths that we consider in this work are simple paths. For
a graph G, we use V (G) to denote its vertex set. For a set S ⊆ V (G) we use
G\S to denote a graph that results from the deletion of the vertex set S and the
edges incident to S. For a weight function w : V (G)→ N, let w(S) for S ⊆ V (G)
denote the sum of respective elements, i.e.,

∑
v∈S w(v). An unweighted version

of the problem is obtained by assigning all vertices the same weight. In fact,
we can also omit the weights in this case. We write vectors in boldface and
their entries in normal font, i.e., x3 is the third entry of a vector x. If we apply
minimum to two vectors, then it is applied entry-wise. We write 1n for the
vector of n ones; we omit the superscript if the dimension is clear from the
context.

2. Vertex Multicut in Forests

In this section, we gather polynomial time (approximation) algorithms for
solving Vertex Multicut in Forests. The algorithms are used later in
the subsequent sections to derive the approximation algorithms for r-Fault
Tolerant FVS and Tracking Paths.

4

Multicut in Forests (MCF)
Input: A forest F = (V,E), weight function w : V → N, terminal pairs
(s1, t1), . . . , (s`, t`).
Output: A minimum weight set of vertices S ⊆ V such that in the
graph F \ S there is no path between si and ti for i ∈ [`].

In this work, we consider the Unrestricted version of Multicut in
Forests i.e., a solution set is allowed to contain vertices from the terminal
pairs. We will consider a set of paths P instead of a set of terminal pairs. It is
not hard to see that these two versions are equivalent on forests: if the terminals
in a pair belong to different trees, then we can discard the pair since there does
not exist any path between them, otherwise there exists a unique path between
each pair of terminals, which the solution S should intersect.

While MCF is NP-hard [9], the unweighted version is polynomial time solv-
able [9, 23]. Recently Agrawal et al. [2, Lemma 5.1] showed LP relative constant
factor approximability of the problem for all chordal graphs. Next we simplify
their proof and adapt it to forests, improving the approximation factor from 32
to 2.

Consider the natural ILP formulation of the problem, where we introduce
a binary variable xv ∈ {0, 1} for each vertex v ∈ V , describing whether the
corresponding vertex should or should not be taken into a solution. At least
one vertex must be taken from each path from P to construct a feasible solution.
Consider the following LP relaxation of the natural ILP.

Minimize
∑
v∈V

w(v) · xv

subject to
∑

v∈V (P)

xv ≥ 1 ∀P ∈ P

0 ≤ xv ≤ 1 ∀v ∈ V.

(LPMCF)

Lemma 1. For a given instance of Multicut in Forests one can find a
solution S such that w(S) ≤ 2 · OPT in polynomial time, where OPT is the
objective value of an optimal solution to the corresponding (LPMCF).

Proof. Consider an optimal fractional solution x to (LPMCF) of the MCF in-
stance (i.e., w(x) = OPT). Let c ≥ 1 be a constant (whose value we determine
later). Let x̂ = min(c · x,1), i.e., x̂v = min(c · xv, 1) for every v ∈ V (G).

Without loss of generality we can assume that G is connected as otherwise we
can process one connected component at a time. Root the graph in an arbitrary
vertex ρG. By P (u, v), where u, v ∈ V (G), we denote the unique path from u
to v in G. Let dv =

∑
u∈P (ρG,v)

x̂u be the distance of v from ρG in G. For a

real a define the fractional part of a as 〈a〉 = a − bac (e.g., 〈5.9876〉 = 0.9876,
and 〈−2.345〉 = 0.655).

For r ∈ [0, 1) let us define the bin of r, denoted Br, as the set of vertices

5

u ∈ V (G) for which

r ∈

{[
〈du − x̂u〉, 〈du〉

)
if 〈du〉 − x̂u ≥ 0,[

〈du − x̂u〉, 1
)
∪
[
0, 〈du〉

)
otherwise.

(1)

Note that a vertex is in x̂u proportion of all the bins, and so a vertex with x̂u ≥ 1
belongs to all bins. We call intervals [〈du− x̂u〉, 〈du〉) aligned to [〈dv− x̂v〉, 〈dv〉)
if 〈dv〉 = 〈du − x̂u〉. Similarly for intervals [〈du − x̂u〉, 1

)
∪
[
0, 〈du〉) etc. Note

that if a vertex v is a predecessor of a vertex u (on the path from ρG to u), i.e.,
v is a parent of u, then their intervals are aligned. See Fig. 1 for an example of
ranges of bins which contain vertices and how parent-child pairs align.

0 1.8.1 .4.2 .3 .7 .9.5 .6

a

d

c
b e

f1

a

b
c d
e f r:

B0.25

f2

0.1

0.1

0.2 0.5

0.6 0.6

Figure 1: Left: A tree G consisting of vertices a through f with ρG = a together with their
weights w. Right: The [0, 1) range together with intervals of bins which contain respective
vertices of G. E.g., bin B0.25 = {c, d, f}. Intervals have closed and open endpoints which are
shown as full and empty circles, respectively. The values r such that f ∈ Br make up two
intervals f1 and f2 because the bins were chosen according to the second case of Eq. 1.

Claim 1. For every r ∈ [0, 1) we claim that Br is a solution to the MCF
instance.

Proof. We show this claim by a contradiction. Assume that vertices in some Br
do not constitute a solution. Then there is a path P ∈ P with endpoints s and t
which was not disconnected by removal of Br. Take z as the last common vertex
of paths P (ρG, s) and P (ρG, t). On the one hand, if

∑
v∈P (z,s) x̂v ≥ 1, then by

aligning the intervals of vertices of P (z, s) (which is possible because each pair
of consecutive vertices is in a parent-child relationship) we get an interval which
spans range of size at least 1. In such case Br contains some vertex of P (z, s),
a contradiction. The same argument also works for P (z, t). On the other hand,
if both

∑
v∈P (z,s) x̂v < 1 and

∑
v∈P (z,t) x̂v < 1, then we have that for c = 2∑
v∈V (P)

x̂v < 2,

∑
v∈V (P)

c · xv < 2,

∑
v∈V (P)

xv < 1.

6

This is a contradiction with x being a solution to (LPMCF), which proves the
claim.

Claim 2. There exists a bin Br∗ with w(Br∗) ≤ c ·OPT.

Proof. Choosing r from interval [0, 1) uniformly at random we get a bin Br
where the probability that a vertex v ∈ V (G) belongs to Br is x̂v because the
bins which contain v span exactly x̂v out of interval [0, 1). By the linearity of
expectation, we have that the expected weight of elements in Br is

E
[∑
v∈V (G)

w(v) · Ind[v ∈ Br]
]

=
∑

v∈V (G)

w(v) · Pr[v ∈ Br] =
∑

v∈V (G)

w(v) · x̂v,

where Ind denotes an indicator variable of an event. Hence, there exists a bin
Br∗ with weight

w(Br∗) ≤
∑

v∈V (G)

w(v) · x̂v = w(x̂) ≤ c · w(x) = c ·OPT,

which proves the claim.

There exists a value r∗ ∈ [0, 1) such that w(Br∗) ≤ c · OPT, therefore Br∗

constitutes a c-approximate solution to the Multicut in Forest instance.
We compute x in polynomial time using the Ellipsoid method. Then, it

is elementary to compute x̂v and dv for every v ∈ V (G) according to their
definitions. If we consider the [0, 1) range as a continuous looped segment (by
identifying 0 with 1) we see that each vertex is contained in a continuous interval
of bins. Consider adding such intervals one by one to an initially empty range.
The range splits into continuous bin-groups that contain the same set of vertices.
Each added interval may split up to two bin-groups into two. Hence, there are at
most 2 · |V (G)| bin-groups, see Fig. 1. By going through each interval endpoint,
we can go through all bin-groups. We can now go through each interval endpoint
(and zero) and evaluate the sum over weights of vertices in the bin-group.

By taking the smallest-weighted bin-group, we get a bin which is as good
as Br∗ – it is a c-approximate solution to the Multicut in Forest instance,
which concludes the proof of the lemma.

The following observation shows that the improvement of the approximation
factor below 2 is unlikely.

Observation 1. There is an approximation preserving reduction from Vertex
Cover to Multicut in Forest.

Proof. Let G = (V,E) and w : V → N form an instance of weighted Vertex
Cover. The desired instance of Multicut in Forest is formed by a star with
V being the set of leaves. The weight of leaves is retained, while we assign some
heavy weight, such as

∑
v∈V w(v), to the centre c of the star, so that it is never

selected in a solution. The paths to be cut are formed by the edges in E, that

7

is, for each edge {u, v} ∈ E we introduce the path u, c, v to P. It is easy to
observe that a subset of V is solution to the formed instance of Multicut in
Forest if and only if it is a vertex cover in G. As the weights are the same,
the reduction preserves the inapproximability.

2.1. Chordal Graphs

It is worth mentioning that the simplifications for the special case of trees
might be transfered to the case of chordal graphs. Therefore, we improve the
approximation factor of Agrawal et al. [2, Lemma 5.1] for general chordal graphs
from 32 to 4. We believe that this is of independent interest.

Note that in chordal graphs there might be several paths between each ter-
minal pair, hence, we have to stick to terminal pairs. The following constitutes
an analogue of Lemma 1 for chordal graphs.

Lemma 2. For a given instance of Multicut in Chordal Graphs one can
find a solution S such that w(S) ≤ 4 · OPT in polynomial time, where OPT is
the objective value of an optimal solution to the corresponding LP.

Proof. Consider again an optimal fractional solution x to the LP of the Mul-
ticut in Chordal Graphs instance (i.e., w(x) = OPT). Let c = 4 and
x̂ = c · x. Our aim is to show that there is an integral solution of weight w(x̂).
To this end, we can afford to take all vertices v with x̂v ≥ 1 into the solution
and remove them from the graph. Hence, we assume that for each vertex v
remaining in the graph we have x̂v < 1.

Without loss of generality we assume that G is connected. Root the graph
in an arbitrary vertex ρG. For a path P in G let the length `(P) of P be defined
as
∑
u∈P x̂u. For each v ∈ V (G) we let dv be the length of a shortest path from

ρG to v, i.e., minimum of `(P) over all paths P from ρG to v.
With this definition of dv we define the bins exactly as in Lemma 1. Note

that v ∈ Br if and only if there is an integer q such that dv − xv ≤ q + r < dv
(this integer can only be q = ddv − xv − re, since xv < 1).

Claim 3. For every r ∈ [0, 1) we claim that Br is a solution to the Multicut
in Chordal Graphs instance.

Proof. We show this claim by a contradiction. Assume that vertices in some Br
do not constitute a solution. Then, there is a pair (s, t) of terminals which were
not disconnected by removal of Br, i.e., there is a path P from s to t in G \Br.
Consider a clique tree T of G. Let cρ be an arbitrary clique containing ρG and
root T in cρ. Let cP be a clique such that cP contains a vertex of P and all
vertices of P are only contained in descendants of cP . Such a clique exists due
to the properties of the clique tree. Note that for each vertex u of P , each path
from ρG to u contains a vertex of cP . See Fig. 2 for an illustration.

Let z be an arbitrary vertex from P in cP . Let q be the maximum integer
such that q+r−1 < dz−xz, i.e., q+r ≥ dz−xz and q = ddz−xz−re. Suppose
first that there is a vertex v on P such that dv > q+ r. If this is the case for z,
then we have dz − xz ≤ q + r < dz and z ∈ Br, contradicting the choice of P .

8

Thus suppose that v is on the part of P from z to t, the other case is symmetric.
Let v be the first such vertex on that path and u be the predecessor of v on this
part of P . Then we have du ≤ q + r and by triangle inequality dv ≤ du + xv,
implying dv − xv ≤ du ≤ q + r. But then dv − xv ≤ q + r < dv and v is in Br,
contradicting the choice of P .

Therefore, for each vertex v in P we have dv ≤ q + r and, hence, dv −
(dz − xz) < q + r − (q + r − 1) = 1. In particular, ds − (dz − xz) < 1 and
dt − (dz − xz) < 1. Consider a path Qs from ρG to s of length ds. This path
must contain a vertex of cP , let us denote an arbitrary such vertex s′. Similarly,
let t′ be a vertex of cP on a path Qt of length dt from ρG to t. As s′ and
z are both in clique cP , they are adjacent and by triangle inequality we have
dz ≤ ds′+xz, i.e., dz−xz ≤ ds′ . Let Q′s be the part of Qs from s′ to s. We have
`(Q′s) = ds − ds′ + xs′ ≤ ds − (dz − xz) + xs′ < 1 + 1 = 2. Similarly, the part
Q′t of Qt from t′ to t has length less than 2. As both s′ and t′ are contained in
cP , they are adjacent and we can join Q′s and Q′t into one path Q′ from s to t
of total length less than 4. Then we have 4 >

∑
u∈Q′ x̂u =

∑
u∈Q′ c · xu. Since

c = 4, we get that
∑
u∈Q′ xu < 1 contradicting x being a feasible solution to

the LP of the instance, which proves the claim.

The rest of the proof is exactly the same as in the proof of Lemma 1.

Figure 2: The grey rectangles indicate vertices of the clique tree T , i.e. cliques of G. The grey
edges indicate paths in T , as the shown vertices of T need not be directly connected. The
root of T is on the left, with depth of the tree increasing to the right. Note that in general
one vertex of G can be contained in multiple vertices of T . Also z, u, s′ and t′ need not be
distinct vertices.

ρG
z

s′

t′ u v t

s

cρ cP

P
Qs

Qt

2.2. Unweighted Version

We also mention the following result of similar nature for unweighted forests,
strengthening the polynomial time solvability of the problem.

Lemma 3. If all the weights are equal, then there is an integral optimal solution
for (LPMCF). Furthermore, such a solution can be found in polynomial time.

Proof. It is enough to show the lemma for each tree T of F separately.
Root the tree T in an arbitrary vertex r. Among all optimal solutions to the

LP, consider the solution x that minimizes
∑
v∈V (T) xv · dist(v, r).

Assume for the sake of contradiction, that x is not integral. Let u be a
vertex with 0 < xu < 1 and the maximum distance from the root r. Note that,

9

in particular, for all descendants v of u, it holds that xv ∈ {0, 1}. Let us first
assume that u 6= r and let p be the parent of u. We define x̂ as

x̂v =

0 if v = u,

min{xp + xu, 1} if v = p,

xv otherwise.

We claim that x̂ is a solution to (LPMCF). Obviously, 0 ≤ x̂v ≤ 1 for
every v ∈ V . Let P ∈ P. If u /∈ V (P), then

∑
v∈V (P) x̂v ≥

∑
v∈V (P) xv ≥ 1. If

u ∈ V (P), then either the path P is fully contained in the subtree of F rooted in
u, or p ∈ V (P). In the first case, we have

∑
v∈V (P) x̂v ≥

(∑
v∈V (P) xv

)
− xu ≥

1 − xu > 0. Since the summands on the left hand side are integral, by the
choice of u, it follows that

∑
v∈V (P) x̂v ≥ 1. In the later case, if x̂p = 1,

then
∑
v∈V (P) x̂v ≥ 1 and otherwise

∑
v∈V (P) x̂v =

(∑
v∈V (P) xv

)
+ xu − xu =∑

v∈V (P) xv ≥ 1.

Hence, x̂ is a solution to (LPMCF). Furthermore, we have that
∑
v∈V w(v) ·

x̂v ≤
∑
v∈V w(v) · xv (since all weights are equal) and

∑
v∈V xv · dist(v, r) >∑

v∈V x̂v · dist(v, r) which is a contradiction. The case u = r can be proved
using a similar argument for x̂ such that x̂u = 0 and x̂v = xv if v 6= u.

The second part of the lemma follows from polynomial time algorithm for
MCF [9], since any optimal solution to the instance of MCF represents an
optimal solution for the corresponding (LPMCF) by the first part of the lemma.

For the rest of the paper, we use µ to denote the best approximation ratio
achievable for MCF with respect to LP relative approximation. That is, µ ≤ 2
for weighted instances and µ = 1 for unweighted instances.

3. Approximate r-Fault Tolerant Feedback Vertex Set

In this section, we give an algorithm for computing an approximate r-fault
tolerant feedback vertex set for undirected weighted graphs, for any fixed integer
r ≥ 1. Recall that an r-fault tolerant feedback vertex set is a set of vertices that
contains at least r+ 1 vertices from each cycle in the graph. A polynomial time
algorithm for computing a constant factor approximate 1-fault tolerant feedback
vertex set was given by Misra [32]. The factor can be easily observed to be 2+µ,
where µ is the best possible approximation ratio for MCF. We show a different
approach that for any fixed r ≥ 1 gives an (2 + rµ)-approximate solution.

3.1. Hardness of r-Fault Tolerant Feedback Vertex Set

Lemma 4. For any fixed r ≥ 0, it is NP-hard to decide whether for a given
graph G and an integer k, G contains an r-fault tolerant feedback vertex set of
size at most k.

10

u va1 a2 a3 a4 a5 a6

b5b4b3b2b1 c5c4c3c2c1

x1

x2

x3

x4

x5
x6

x7

x8

u va1 a2 a3

b3b2b1 c3c2c1

x1

x2

x3x4

x5

Figure 3: Construction used in Lemma 4 for r = 7 and r = 4.

Proof. The case of r = 0 is equivalent to finding a feedback vertex set of size
at most k, which is a well known NP-complete problem [25]. The case of r = 1
was shown by Misra [32]. We extend his approach for r ≥ 2.

We will show a reduction from Vertex Cover, which is a well known NP-
complete problem [25]. Let (G, k) be an instance of Vertex Cover and let G′

be a graph constructed from G in the following way. First replace every edge
e = {u, v} of G by a path Pe with vertices u, a1, a2, . . . , ar−1, v. Additionally
create two paths on ` = dr/2e + 1 vertices: P be on b1, b2, . . . , b` and P ce on
c1, c2, . . . , c`. We add edges {a1, b1}, {abr/2c, b`}, {adr/2e, c1}, {ar−1, c`}. Finally
add a cycle X with new vertices x1, x2, . . . , xr+1 and connect x1 to every vertex
originally in V (G). Two examples for a single edge can be seen in Figure 3.1.

If G has n vertices and m edges, then this process creates r+1+m(2`+r−1)
new vertices and r + 1 + n + m(2l + r + 2) new edges. As r is fixed, the total
size of the construction is bounded by O(n+m), therefore is polynomial in the
size of the input and clearly can be constructed in linear time.

Let k′ = k+ r+ 1 +m(2`+ r− 1). We will now show that every cycle in G′

has size at least r+1 and therefore the instance (G′, k′) of r-Fault Tolerant
Feedback Vertex Set is not a trivial NO-instance.

Let W = V (G′) \ V (G) be the set of vertices added to G. We will first
consider cycles with vertices only in W . Let C be such a cycle. Either C
is X or there exists e ∈ E(G) such that C contains only vertices of Pe ∪

11

P be ∪ P ce . The second case leads to only two possible cycles. The first cycle
consists of vertices a1, a2, · · · , abr/2c, b`, b`−1, b1, the other one consists of ver-
tices adr/2e, adr/2e+1, · · · , ar−1, c`, c`−1, c1. The first cycle has size br/2c + ` =
br/2c+ dr/2e+ 1 = r + 1, the other one r − dr/2e+ ` = br/2c+ ` = r + 1.

Let us now consider all cycles containing some vertex from V (G) and ex-
cluding x1. Let s = |C ∩ V (G)|, then s ≥ 3 as there must exist a cycle C ′

in G such that V (C ′) ⊆ V (C). Also note that in G′, the distance between any
two vertices u, v such that {u, v} ∈ E(G) is exactly r. Therefore the length of
C is at least s · r ≥ r + 1.

Now any other cycle C containing x1 and some vertex in V (G) must contain
at least two vertices from V (G), therefore the size of C is at least r+2. Therefore
every cycle in G′ has size at least r + 1.

We now show that G has a vertex cover of size at most k if and only if G′ has
an r-fault tolerant feedback vertex set of size at most k′. Suppose that S′ is a
vertex cover of G of size k. Then we show that S = S′∪W is an r-fault tolerant
feedback vertex set on G′. Note that |S| = k + r + 1 +m(2`+ r − 1) = k′.

Every cycle with vertices only in W has size exactly r+ 1 and all its vertices
are in S. Let us then consider all cycles which exclude vertex x1 and contain a
vertex in V (G). Let C be such a cycle. As shown above, such C must contain
at least s ≥ 3 vertices from V (G) and therefore has at least s · r − s ≥ r + 1 in
W .

Now any other cycle contains a vertex in V (G) and x1. Let C be such a
cycle. If C contains at least three vertices from V (G), then there are at least
2 · (r− 1) + 1 = 2r− 1 vertices in W and |V (C)∩ S| ≥ 2r− 1 ≥ r+ 1. Suppose
then that C contains exactly two vertices from V (G), say u and v. Then there
are at least r vertices of C in W . As there is {u, v} ∈ E(G) and S′ is a vertex
cover of G, at least one of u and v must be in S′ and therefore |V (C)∩S| ≥ r+1.

Now let us show that if G′ has an r-fault tolerant feedback vertex set of
size at most k + r + 1 + m(2` + r − 1), then there is a vertex cover of size at
most k on G. Let S be an r-fault tolerant feedback vertex set of size at most
k + r + 1 + m(2` + r − 1). Consider any cycle on vertices only in W . Each
such cycle has size exactly r + 1 and therefore all of its vertices must be in S.
Also every vertex in W is on a cycle with vertices only in W , therefore W ⊆ S.
We will show that S′ = S \ W is a vertex cover of size at most k. It holds
|W | = r + 1 +m(2`+ r − 1), therefore |S′| ≤ k.

Suppose that S′ is not a vertex cover. Then there is some edge e = {u, v}
such that u, v /∈ S′. But then consider the cycle C of size r+ 2 consisting of Pe
and x1. It follows that |C ∩ S| = r, which contradicts the assumption that S is
r-fault tolerant.

3.2. Computation of approximate r-Fault Tolerant Feedback Vertex Set

For the rest of the section, we assume that r ≥ 1 is a fixed constant. Let
G = (V,E) be the input graph. First, we assume that we have a α-approximate
feedback vertex set S, for example, by the algorithm by Bafna et al. [3]. Our
goal is to compute a vertex set that contains at least r + 1 vertices from each
cycle in G.

12

To achieve that, we first create a family P of path sets which will eventually
be used to select vertices which will be added to S to extend it to an r-ftfvs.

To construct P, we consider every subset X of S such that 1 ≤ |X| ≤ r.
Each such subset can be a part of many different cycles, we want to consider
each such cycle. To do that, we take each of its k! orderings where k = |X|,
say v1, v2, . . . , vk. For each such k-tuple, we consider every possible selection of
predecessors p1, . . . , pk and successors s1, . . . , sk. It must hold for every i that
pi 6= si, pi, si ∈ N(vi) and if si ∈ S then si = v(i mod k)+1 and p(i mod k)+1 = vi.
Similarly, if p(i mod k)+1 ∈ S then si ∈ S for every i.

As G \S induces a forest, for every pair si, p(i mod k)+1, there is at most one
path between si and p(i mod k)+1 that does not contain vertices of S. Note that
such a selection induces at most one cycle. Namely, if the paths are disjoint,
the selection induces a cycle C which contains vi, pi, si, and the path from si to
p(i mod k)+1 for every i.

Now for every such selection which induces a cycle, we do the following. For
every possible selection of r − k vertices from V (C) \ S, say Y , add the set
of connected components induced by C \ (X ∪ Y) to P. Note that each such
connected component is a path and P is a family of sets of these paths. The
following shows that the final size of P and the time required for its construction
is polynomial in n.

Observation 2. Construction of P can be done in nO(r) time.

Proof. There are no more than (n + 1)r subsets of S of size k, such that 1 ≤
k ≤ r. For each such subset X of size k we take each of its k! orderings. For
each such ordering v1, . . . , vk we fix a predecessor and a successor (taken out
of the respective vertex neighborhood) of each vi. This constitutes at most n2r

different possibilities for each ordering of X. There is at most one path from
the successor of vi to the predecessor of v(i mod k)+1 in (G \ S) as it is a forest.
As the paths are now fixed, we just need to check whether they form a cycle by
checking that the paths are vertex disjoint, which can be done in polynomial
time. If they do form a cycle C, we consider every selection of r−k vertices from
C, say Y is one of them. There is at most nr such selections of Y . Now we add
to P the connected components of C \ (X ∪ Y). Note that each such connected
component is a path. There will be at most r such paths, each can be identified
in linear time. Altogether, we have spent at most (n + 1)rr!n3r+O(1) = nO(r)

time.

Once the family P is computed, we solve the above linear program in poly-
nomial time using the Ellipsoid method [21] (see also [22, Chapter 3]). The
linear program expresses that for each X,C, and Y as above, there is “at least

13

one vertex” selected among V (C) \ (X ∪ Y).

Minimize
∑

v∈V \S

w(v) · xv

subject to
∑

v∈
⋃s

i=1 V (Pi)

xv ≥ 1 ∀{P1, . . . , Ps} ∈ P

0 ≤ xv ≤ 1 ∀v ∈ V \ S.

(LPs -tuples)

Lemma 5. Let S∗ be an r-fault tolerant fvs in G and let OPTx∗ be the optimum
value of (LPs -tuples). Then, OPTx∗ ≤ w(S∗).

Proof. We claim that the vector x̂ defined for v ∈ V \ S as

x̂v =

{
1 if v ∈ S∗

0 otherwise

constitutes a solution to (LPs -tuples). To see this, let P = {P1, . . . , Ps} ∈ P be
an s-tuple of paths, let S be the fvs used in the construction of P and let C
be the cycle formed by P together with X = {v1, v2, . . . , vk} = S ∩ V (C) and
Y = {y1, y2, . . . , yr−k} = V (C) \ S \

⋃s
i=1 V (Pi). Note that |X ∪ Y | = r.

Since S∗ is an r-fault tolerant fvs, we have |S∗ ∩ V (C)| ≥ r + 1 and thus
|S∗ ∩ (V (C) \ (X ∪ Y))| =

∑
v∈

⋃s
i=1 V (Pi)

xv ≥ 1 as needed. Hence, OPTx∗ ≤
w(S∗).

Next, based on an optimal solution x∗ of (LPs -tuples), we create a set of
paths Px∗ . For each path P ∈

⋃
{P1,...,Ps}∈P{P1, . . . , Ps}, we include P in Px∗

if
∑
v∈V (P) x

∗
v ≥ 1

r . Through this process, we are selecting the paths from which
we will include at least one vertex in our solution. Finally, we create an instance
(G \ S,w|(V \S),Px∗) of Multicut in Forests.

Consider the corresponding LP relaxation.

Minimize
∑

v∈V \S

w(v) · yv

subject to
∑

v∈V (P)

yv ≥ 1 ∀P ∈ Px∗

0 ≤ yv ≤ 1 ∀v ∈ V \ S.

(LPpaths)

Lemma 6. Let x∗ be an optimal solution of (LPs -tuples) and let OPTx∗ be its
objective value. Then, y = min{1, rx∗} is a solution to (LPpaths). In particular,
OPTy∗ ≤ r ·OPTx∗ holds, where OPTy∗ is the value of an optimal solution to
(LPpaths).

Proof. Recall that we have
∑
v∈V (P) x

∗
v ≥ 1

r for every path P ∈ Px∗ , by the

definition of Px∗ . Thus, we have
∑
v∈V (P) yv =

∑
v∈V (P) min{1, r · x∗v} ≥

min{1,
∑
v∈V (P) r · x∗v} ≥ 1 for all P ∈ Px∗ and clearly 0 ≤ yv ≤ 1 for all

v ∈ V \ S. We conclude that y is a solution to (LPpaths).

14

We now show how to combine the α-approximate fvs with an approximate
solution for Multicut in Forests to obtain an (α+ rµ)-approximate r-fault
tolerant fvs.

Lemma 7. Let S be an α-approximate fvs and let y be an integral solution to
(LPpaths) of weight at most µ times the weight of an optimal solution. Then,
S′ = S ∪ {v ∈ V \ S | yv = 1} is an (α+ rµ)-approximate r-fault tolerant fvs.

Proof. Let S∗ be an optimal r-fault tolerant fvs. We know that w(S) ≤ α·w(S∗).
By Lemma 5 there is a solution x to (LPs -tuples) with

∑
v∈V \S w(v)·xv ≤ w(S∗).

Thus, by Lemma 6 we have
∑
v∈V \S w(v) · yv ≤ rµ · w(S∗). In total we get

w(S′) = w (S ∪ {v ∈ V \ S | yv = 1})

= w(S) +
∑

v∈V \S

w(v) · yv

≤ α · w(S∗) + rµ · w(S∗)

= (α+ rµ)w(S∗) .

We will show that S′ is an r-fault tolerant fvs. Indeed, if S contains at least
r + 1 vertices in a cycle of the input graph, so does S′. Thus, we can focus on
a cycle C with X = V (C) ∩ S = {v1, v2, . . . , vk} such that k ≤ r.

Suppose for contradiction that C contains at most r vertices of S′. Let
Y = (S′ ∩ V (C)) \X. Add arbitrary vertices of V (C) \ (X ∪ Y) to Y so that
|X∪Y | = r. During the construction of P, we found C using a certain ordering of
vertices in X and with a certain selection of successors and predecessors to those
vertices. Furthermore we considered Y as the selection of vertices in V (C) \X.
Therefore, we added the set of connected components P = {P1, P2, . . . , Ps} of
C \ (X ∪ Y) as a set of paths to P.

Now consider an optimal solution x∗ of (LPs -tuples). For at least one path in
P , say Pi, it must hold that

∑
v∈V (Pi)

x∗v ≥ 1
r as otherwise

∑
v∈

⋃s
j=1 V (Pj)

x∗v < 1.

Therefore in the next step, we include Pi in the constructed instance of Mul-
ticut in Forests. We add the vertices in the solution of this instance to S′.
This ensures that we add to S′ at least one vertex from every path selected by
(LPs -tuples). From this follows that we added some v ∈ Pi to S′ even though
v /∈ X ∪ Y , which is a contradiction. Therefore, we have |V (C) ∩ S′| ≥ r + 1.

Corollary 1. There is a (2 + r)-approximation algorithm for unweighted r-
Fault Tolerant FVS and (2 + 2r)-approximation algorithm for weighted r-
Fault Tolerant FVS.

Proof. We begin with the 2-approximation algorithm for FVS by Bafna et al. [3].
In polynomial time, we construct (LPs -tuples) and obtain an optimal solution
x∗ for it. Based on that, we construct Px∗ and (LPpaths) in polynomial time.
By Lemma 1 or Lemma 3 one can in polynomial time find an integral solution
to (LPpaths) of weight at most µ times the weight of an optimal solution. By

15

Lemma 7 this solution combined with the initial fvs gives (2+rµ)-approximate r-
fault tolerant fvs. The algorithm works in polynomial time as it uses polynomial-
time routines.

4. Approximate Tracking Set

In this section, we give a constant factor approximation algorithm for Track-
ing Paths.

Let G = (V,E) be the input graph and s and t the source and the target.
We start by applying the following reduction rule on G. This can be done in
polynomial time [4].

Reduction Rule 1 (Banik et al. [4]). If there exists a vertex or an edge that
does not participate in any s-t path, then delete it.

We use the term preprocessed graph to denote a graph resulting from exhaus-
tively applying 1. For the sake of simplicity, after the application of reduction
rule, we continue to refer to the reduced graph as G.

Next, we describe the local source-destination pair (local s-t pair), a concept
that has served as crucial for developing efficient algorithms for Tracking
Paths [4, 11, 13, 17]. For a subgraph G′ ⊆ G, and vertices a, b ∈ V (G′), we say
that a, b is a local s-t pair for G′ if

1. there exists a path in G from s to a, say Psa,

2. there exists a path in G from b to t, say Pbt,

3. V (Psa) ∩ V (Pbt) = ∅, and

4. V (Psa) ∩ V (G′) = {a} and V (Pbt) ∩ V (G′) = {b}.

Note that a subgraph can have more than one local source-destination pair.

Lemma 8. Let G be a graph and let G′ be a subgraph of G. We can verify in
O(n2) time whether a, b ∈ V (G′) is a local s-t pair for G′.

Proof. A pair of vertices a, b ∈ V (G′) forms a local source-destination pair for
G′ if and only if there exist disjoint paths from s to a and b to t in the graph
G \ (V (G′) \ {a, b}). It can be verified in O(n2) time whether a, b satisfy this
condition using the disjoint path algorithm from [27].

We recall the following lemma from the previous work.

Lemma 9 ([11, Lemma 2]). In a graph G, if T ⊆ V (G) is not a tracking set
for G, then there exist two s-t paths with the same sequence of trackers, and they
form a cycle C in G, such that C has a local source a and a local destination b,
and T ∩ (V (C) \ {a, b}) = ∅.

16

Eppstein et al. [17] mentioned that a 2-fault tolerant feedback vertex set
is always a tracking set. Here we use a variation of this idea to compute an
approximate tracking set. Specifically, we start with a 2-approximate feedback
vertex set and then identify the cycles that contain only one or two feedback
vertices. We check if these cycles need more vertices as trackers and we use
(LPs -tuples) and (LPMCF) explained in the previous section to add them.

Now we present the algorithm for computing a 2(1+µ)-approximate tracking
set in polynomial time. We start by computing a 2-approximate feedback vertex
set S on the preprocessed graph G using the algorithm by Bafna et al. [3]. We
first check whether S is a tracking set for G by using the tracking set verification
algorithm given in [4]. If it is a tracking set, we return S as the solution,
otherwise we proceed further.

If S is not a tracking set, we will find vertices on which to place additional
trackers in the following way. First we identify cycles C such that |V (C)∩S| = 1.
Each such cycle C can be obtained by taking a vertex a ∈ S together with a
path between a pair of its neighbors in G \ S. For each vertex b ∈ V (C) \ {a}
we check whether a, b (or b, a) is a local s-t pair for C. If this is the case, then
we do the following. If C \{a, b} has two connected components P1, P2, then we
add the pair {P1, P2} to P. Otherwise, if P1 is the only connected component
of C \ {a, b}, we add the set {P1} to P. Note that P1 and P2 will always be
paths.

If a cycle C in G intersects with S in vertices a and b, then there exist two
vertex-disjoint paths P ′1 and P ′2 between a and b, such that V (P ′1) ∪ V (P ′2) =
V (C). Hence, each such cycle C is uniquely determined by the neighbors of
a and b on P ′1 and P ′2. If, furthermore, a, b (or b, a) is a local s-t pair for C,
then we add some pair to P. Similarly to the above, we consider the connected
components of C \{a, b}. If there are two connected components, say P1, P2, we
add {P1, P2} to P. Otherwise, P1 is the only connected component of C \ {a, b}
and we add the set {P1} to P.

Similarly to Observation 2, we have at most n2 candidate cycles with a single
vertex of S and for each of them we have at most n candidates on b. We have
n4 cycles with two vertices of S. For each of them, we check, whether a, b (or
b, a) is a local s-t pair in O(n2) time. Hence, P can be obtained in O(n6) time.

Now we use (LPs -tuples) with P to identify the paths on which we want
to place at least one additional tracker. Let x∗ be an optimal solution of
(LPs -tuples), which can be obtained in polynomial time using the Ellipsoid
method. We construct Px∗ as the set of all paths P ∈ P such that

∑
v∈V (P) x

∗
v ≥

1
2 .

We first show the following observation.

Observation 3. Let G be a preprocessed graph and T ∗ be a tracking set for G.
Let OPTx∗ be the optimum value of (LPs -tuples). Then OPTx∗ ≤ w(T ∗).

Proof. Let x̂ be a vector such that for all v ∈ V (G) \ S

x̂v =

{
1 if v ∈ T ∗

0 otherwise.

17

We show that x̂ is a solution to (LPs -tuples). Suppose that
∑
v∈V (Pi)∪V (Pj)

xv <

1 for some {Pi, Pj} ∈ P, therefore T ∗ ∩ (V (Pi) ∪ V (Pj)) = ∅. Let a, b be the
vertices such that G[V (Pi)∪V (Pj)∪{a, b}] contains a cycle C, such that a, b are
a local s-t pair for C. Such a, b must exist because of the way P was constructed.

Since a, b is a local s-t pair, there exist two distinct paths P̂1 and P̂2 such

that
−→
T ∗
P̂1

=
−→
T ∗
P̂2

: Both reach a from s and reach t from b but one reaches b from

a by Pi and the other one by Pj . This contradicts the assumption that T ∗ is a
tracking set.

To decide which additional vertices to include in the solution, we compute
the minimum multicut in forests on (G \ S,w|(V \S),Px∗) using (LPMCF). Let
y∗ be an integral solution of (LPMCF) of weight at most µ times the optimal
one. By Lemma 1 or Lemma 3 such a solution can be obtained in polynomial
time. Let X be the set of vertices such that yv = 1. Then we claim that S ∪X
is a 2(1 + µ)-approximate solution to the Tracking Paths.

Lemma 10. Let S be a 2-approximate fvs in G and let y be an integral solution
to (LPMCF) induced by Px∗ with weight at most µ times the optimal. The set
T = S ∪ {v ∈ V \ S | yv = 1} is a 2(1 + µ)-approximate solution to Tracking
Paths on G.

Proof. Let X = {v ∈ V \ S | yv = 1}. First, we show that T = S ∪ X is a
tracking set. Suppose there exists a pair of distinct s-t paths P1, P2 in G that

are not distinguished by T , i.e.,
−→
TP1 =

−→
TP2 . Then, by Lemma 9, there exists a

cycle C such that V (C) ⊆ V (P1) ∪ V (P2) and a local s-t pair a, b ∈ V (C) such
that T ∩ V (C) \ {a, b} = ∅. However, then C must have been one of the cycles
enumerated by the algorithm when constructing P.

Say {Pi, Pj} was the pair added to P such that V (Pi)∪V (Pj) ⊆ V (C). As x∗

is the optimal solution to (LPs -tuples), it must hold
∑
v∈V (Pi)∪V (Pj)

x∗v ≥ 1 and

hence
∑
v∈V (Pi)

x∗v ≥ 1
2 or

∑
v∈V (Pj)

x∗v ≥ 1
2 . Thus Pi ∈ Px∗ or Pj ∈ Px∗ . In

either case,
∑
v∈V (Pi)∪V (Pj)

yv ≥ 1 and therefore there is some v ∈ V (Pi)∪V (Pj)

which was added to T and distinguishes
−→
TP1

=
−→
TP2

, which contradicts the choice
of C.

Now we show that w(T) is at most 2(1 + µ) times the weight of a minimum
tracking set in G. Let t∗ be the weight of the minimum tracking set on G and f∗

be the weight of a minimum feedback vertex set in G. Furthermore, let OPTx∗

be the objective value of an optimal solution to (LPs -tuples) and OPTy∗ be the
objective value of a solution to (LPMCF) induced by Px∗ .

We claim that |S| ≤ 2f∗ ≤ 2t∗. The first inequality follows from the fact
that S is a 2-approximate feedback vertex set for G. The second inequality
follows from the fact that every tracking set is also a feedback vertex set [4]. It
also holds w(X) ≤ µOPTy∗ ≤ 2µ ·OPTx∗ ≤ 2µ · t∗. Here the second inequality
follows from Lemma 6, while the third one follows from Observation 3.

Together this gives us w(T) = w(S)+w(X) ≤ 2t∗+2µ · t∗ = 2(1+µ) · t∗.

The result is summed up as follows.

18

Theorem 3 (precise version of Theorem 1). There exists a 2(1+µ)-approximation
algorithm for Tracking Paths, in particular there is a 4-approximation algo-
rithm for unweighted graphs and 6-approximation algorithm for weighted graphs.

References

[1] Anam Abid, Faizan Khan, Mahnoor Hayat, and Waheed Khan. Real-time
object tracking in wireless sensor network. In 2017 10th International Con-
ference on Electrical and Electronics Engineering (ELECO), pages 1103–
1107. IEEE, 2017.

[2] Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh,
and Meirav Zehavi. Polylogarithmic approximation algorithms for
weighted-F-deletion problems. ACM Trans Algorithms, 16(4):51:1–51:38,
2020.

[3] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation
algorithm for the undirected feedback vertex set problem. SIAM J. Discret.
Math., 12(3):289–297, 1999.

[4] Aritra Banik, Pratibha Choudhary, Daniel Lokshtanov, Venkatesh Raman,
and Saket Saurabh. A polynomial sized kernel for tracking paths problem.
Algorithmica, 82(1):41–63, 2020.

[5] Aritra Banik, Pratibha Choudhary, Venkatesh Raman, and Saket Saurabh.
Fixed-parameter tractable algorithms for tracking shortest paths. Theor.
Comput. Sci., 846:1–13, 2020.

[6] Aritra Banik, Matthew J. Katz, Eli Packer, and Marina Simakov. Tracking
paths. Discret. Appl. Math., 282:22–34, 2020.

[7] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. Ap-
proximation algorithms for the feedback vertex set problem with applica-
tions to constraint satisfaction and bayesian inference. SIAM J. Comput.,
27(4):942–959, 1998.

[8] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Tracking
routes in communication networks. Theor. Comput. Sci., 844:1–15, 2020.

[9] Gruia Călinescu, Cristina G. Fernandes, and Bruce A. Reed. Multicuts in
unweighted graphs and digraphs with bounded degree and bounded tree-
width. J. Algorithms, 48(2):333–359, 2003.

[10] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumor
spreading in social networks. Theor. Comput. Sci., 412(24):2602–2610,
2011.

[11] Pratibha Choudhary. Polynomial time algorithms for tracking path prob-
lems. In Combinatorial Algorithms - 31st International Workshop, IWOCA
2020, volume 12126 of LNCS, pages 166–179, 2020.

19

[12] Pratibha Choudhary and Venkatesh Raman. Improved kernels for tracking
path problems. CoRR, abs/2001.03161, 2020.

[13] Pratibha Choudhary and Venkatesh Raman. Structural parameterizations
of tracking paths problem. In Proceedings of the 21st Italian Conference
on Theoretical Computer Science, volume 2756 of CEUR Workshop Pro-
ceedings, pages 15–27. CEUR-WS.org, 2020.

[14] Fabián A. Chudak, Michel X. Goemans, Dorit S. Hochbaum, and David P.
Williamson. A primal-dual interpretation of two 2-approximation algo-
rithms for the feedback vertex set problem in undirected graphs. Oper.
Res. Lett., 22(4-5):111–118, 1998.

[15] Brian C. Dean, Adam Griffis, Ojas Parekh, and Adam A. Whitley. Ap-
proximation algorithms for k -hurdle problems. Algorithmica, 59(1):81–93,
2011.

[16] Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2016.

[17] David Eppstein, Michael T. Goodrich, James A. Liu, and Pedro Matias.
Tracking paths in planar graphs. In 30th International Symposium on
Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages
54:1–54:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[18] Georges Gardarin and Stefano Spaccapietra. Integrity of data bases: A
general lockout algorithm with deadlock avoidance. In Modelling in Data
Base Management Systems, Proceeding of the IFIP Working Conference
on Modelling in Data Base Management Systems, pages 395–412. North-
Holland, 1976.

[19] Daniel Golovin, Viswanath Nagarajan, and Mohit Singh. Approximating
the k -multicut problem. In Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2006, pages 621–630.
ACM Press, 2006.

[20] Michael T. Goodrich, Siddharth Gupta, Hadi Khodabandeh, and Pedro
Matias. How to catch marathon cheaters: New approximation algorithms
for tracking paths. In Algorithms and Data Structures - 17th International
Symposium, WADS 2021, volume 12808 of LNCS, pages 442–456. Springer,
2021.

[21] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellip-
soid method and its consequences in combinatorial optimization. Comb.,
1(2):169–197, 1981.

[22] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, volume 2 of Algorithms and Com-
binatorics. Springer, 1988.

20

[23] Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes
Uhlmann. Complexity and exact algorithms for vertex multicut in interval
and bounded treewidth graphs. Eur. J. Oper. Res., 186(2):542–553, 2008.

[24] Anand V. Hudli and Raghu V. Hudli. Finding small feedback vertex sets
for VLSI circuits. Microprocess. Microsystems, 18(7):393–400, 1994.

[25] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[26] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[27] K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–
435, 2012.

[28] Mehrdad Koohikamali and Dan J. Kim. Rumor and truth spreading pat-
terns on social network sites during social crisis: Big data analytics ap-
proach. In Vijayan Sugumaran, Victoria Yoon, and Michael J. Shaw, ed-
itors, E-Life: Web-Enabled Convergence of Commerce, Work, and Social
Life, volume 258 of LNBIP, pages 166–170. Springer, Cham, 2016.

[29] Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in

O*(2.7k) time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 971–989.
SIAM, 2020.

[30] Chih-Yu Lin, Wen-Chih Peng, and Yu-Chee Tseng. Efficient in-network
moving object tracking in wireless sensor networks. IEEE Transactions on
Mobile Computing, 5(8):1044–1056, August 2006.

[31] E. D. Manley, H. Al Nahas, and J. S. Deogun. Localization and tracking
in sensor systems. In IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC’06), pages 237–242. IEEE,
2006.

[32] Pranabendu Misra. On fault tolerant feedback vertex set. CoRR,
abs/2009.06063, 2020.

[33] M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili. Theory of rumour
spreading in complex social networks. Physica A: Statistical Mechanics and
its Applications, 374(1):457–470, 2007.

[34] Merav Parter. Fault-tolerant logical network structures. Bull. EATCS, 118,
2016.

21

[35] Abraham Siberschatz and Peter B. Galvin. Operating System Concepts,
4th Ed. Addison-Wesley Longman Publishing Co., Inc., USA, 4th edition,
1993.

[36] Tatsuya Tanaka, Suyong Eum, Shingo Ata, and Masayuki Murata. Design
and implementation of tracking system for moving objects in information-
centric networking. In 2019 22nd Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), pages 302–306. IEEE, 2019.

[37] Charu Varshney, S.C. Jain, and Vikash Tripathi. An overview of rumour
detection based on social media. In 2020 11th International Conference
on Computing, Communication and Networking Technologies (ICCCNT),
pages 1–6. IEEE, 2020.

[38] Shihan Wang and Takao Terano. Detecting rumor patterns in streaming
social media. In 2015 IEEE International Conference on Big Data (Big
Data), pages 2709–2715. IEEE, 2015.

[39] Yifan Zhou and Simon Maskell. Detecting and tracking small moving ob-
jects in wide area motion imagery (WAMI) using convolutional neural net-
works (CNNs). In 22th International Conference on Information Fusion,
FUSION 2019, pages 1–8. IEEE, 2019.

22

