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Abstract

In nonparametric local polynomial regression the adaptive selection of the scale parameter (win-
dow size/bandwidth) is a key problem. Recentlyvnefficient algorithms, based on Lepski's ap-
proach, have been proposed in mathematical statistics for spatially adaptive varying scale denoising.
A common feature of these algorithms is that they form test-estinfateiferent by the scalé € H
and special statistical rules are exploited in order to select the estimate with the best pointwise vary-
ing scale. In this paper a novel fftitesolution (MR) local polynomikregression is proposed. Instead
of selection of the estimate with the best sciala nonlinear estimate is built using all of the test-
estimatesy;,. The adaptive estimation consists of two steps. The first step transforms the data into
noisy spectrum coefficients (MR analysis). On the second step, this noisy spectrum is filtered by the
thresholding procedure and used for estimation (MR synthesis).
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1. Introduction

The present work is devoted to studying tbroblem of adaptivestimation of a multi-
variable function given by noisy data. The developed multiresolution approach (MR) and
algorithms are of a general nature and can be applied to a variety of univariate or mul-
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tidimensional problems. However, we prefer to give the presentation in terms of image
processing as it allows a convenient and sfzarent motivation of basic ideas as well as a
good illustration of results. Thus, let the fuion to estimate be a two-dimensional{p
image intensity given by noisy values on A 2egular grid.

The adaptive estimation used in this paper is based on direct nonparametric pointwise
estimation of the image intensity without any preliminary edge recovering. A nonparamet-
ric regression estimator is derived from the local polynomial approximation (LPA) in a
sliding window with a varying size (estimats scale) selected in a data-driven way.

Among others nonparametric approaches to regression estimation the LPA can be
treated as probably one of the most theoretically justified and well studied. It is a pow-
erful nonparametric technique which provides estimates in a pointwise manner based on a
mean square polynomial fitting in a sliding window (e.g., [2,7,10,14-16,30]). In terms of
image processing the LPA is a flexible tool to desighkernels (masks) having prescribed
reproducing properties with respect to polynomial (smooth) components of the signal. The
invariant and varying scale selection for the LPA has been studied thoroughly by many
authors. Optimal, in particular, varying data-driven scale methods are of special interest
for problems where the pointwise smooth approximation is natural and relevant. Image
denoising provides good examples of this sort of problems.

A crucial difference between the nonpararietPA and the more traditional paramet-
ric methods, say the polynomial mean squared estimates, is that the latter are formed as
unbiased ones while the nonparametric estimates are biased and the reasonable choice of
the biasedness controlled by the scale parameter is of importance. In the nonparametric
regression methods adaptive to unknown smoothness the adaptive selection of the scale is
a key point.

The problem of optimal scale selection adnaitsaccurate mathemedl formulation in
terms of the nonparametric approach, where the optimal scale is defined by a compromise
between the bias and the variance of estimation (e.g., [7,16,30]).

The idea of the used Lepski's adaptation method is as follows, [27-29,38]. The al-
gorithm searches for a largest local vicinity of the point of estimation where the LPA
assumption fits well to the data. The test-estimajgs) are calculated for window sizes
h fromthe setd, h € H, and compared. The adaptive window size is defined as the largest
of those windows which estimate does not differ significantly from the estimates corre-
sponding to the smaller window sizes. Special statistics are exploited in order to test these
hypotheses and select the best scale giving the optimal balance between the random errors
and the biasedness of the estimate. The Lepski's approach algorithms have introduced a
number of statistical rules which are proved to be efficient in theory as well as in applica-
tions. The nonlinearity of the method is incorporated by an adaptive pointwise choice of
the scale.

A novel spatial adaptivity introduced in this paper can be viewed as a development
of two independent ideas: wavelet multiresolution analysis (e.g., [11,31]) and a pointwise
adaptive scale selection temson the Lepski's approach.

Instead of selection of the estimate with the best skale build a nonlinear estimate
using all of the available test-estimat@gx), » € H. The adaptive estimation is divided
into two successive steps. The first step transforms the data into noisy spectrum coeffi-
cients (MR analysis). In the second step, these coefficients are filtered by the thresholding
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procedure and used for estimation (MR synthesis). The LPA based filters are exploited for
the nonparametric (pointwise) MR spectrum analysis and synthesis.

In this way we introduce the extension of the conventional scale adaptive nonparametric
regression concept and yield a wider class of the adaptive scale regression estimators with
a potentially better performance.

The contribution of this paper is two-fold. Firstly, we present a summary of the non-
parametric LPA methods including the basic ideas, algorithms for function and derivative
estimation, the accuracy analysis. Thismsoary is concluded by a brief review of some
recent methods for selection of the adaptreeying scales. Secondly, the new MR local
polynomial regression is introduced as a valuable alternative to the conventional adaptive
scale nonparametric regression.

The rest of the paper is organized as follows. In Section 2 the observation model as well
as the estimation problem are discussed. The LPA method, motivation, basic algorithms
and the accuracy analysis are presented ini@ec3 and 4. The Lepski’'s adaptive varying
scale algorithms are reviewed in Section 4.3. The nonparametric regression spectrum and
MR analysis are introduced in Section 5. The multiresolution filtering based on the MR
spectrum thresholding is presented in Section 6. The optimality of the adaptive scale local
regression estimation is discussed briefly in Section 7. Implementation of the introduced
algorithms as well as their complexity is a subject of Section 8. Similarity and difference
of the MR local polynomial regression versus the wavelet MR techniques are discussed
in Section 9. In Section 10 simulation results are presented. It is shown that appropriate
filtering of the noisy MR spectrum allows to achieve a better performance that it can be
done using the more traditional nonparamegjproach based on selection of the best
varying adaptive scale.

2. Observation model

The following model, commonly used for image denoising, is assumed:
z(x) = y(x) +oex), 1)

where an intensity of the underlying image is defined as a function of two variables,
y € R, ¢ is an additive noise. It is assumed that all functions in (1) are defined dn a 2
rectangular regular grid € X ¢ R2 with pixelsx = (x1, x2):

X:{(xl,xz)i X1 =514, xz:szA}, s1=1,...,n1, s2=1,...,n2, (2)

wheress, so are integersA denotes the sampling interval, amé= n1n2 is a total number
of observations. The random noisé assumed to be standard Gaussian i.i.d. for different
x with E{e2} = 1. The basic objective is to reconstruct (estimate)) and derivatives of
y(x) foranyx € X from noisy observationg (x), x € X} with the pointwise mean squared
error (MSE) risk which is as small as possible.

It is assumed that is unknown deterministic. For stochastiat means that the main
intention is to obtain the best result for every realization efven if they are generated by
a probabilistic phenomenon.
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The discrete observatiofs(x}, x € X} are obtained as samples of an underlying con-
tinuous argumeni(x), x € R2. Different hypotheses on thiscan be applied for derivation
and analysis of algorithms. Here we follow the nonparametric regression approach assum-
ing that a parametric representationyofs a function ofx, say in the form of a series
or function with reasonably small number of aniant parameters, does not exist or un-
known.

The following piecewise model of is appropriate for methods considered in this paper.
Let a finite support o can be separated int@ regionsA,, ¢ =1, ..., Q, each of them
is a connected set with an edge (boundary) The functiony is assumed to be smooth
differentiable within each region,:

0
Y =) yg(x)ilx € A, (3)

g=1

wherel[x € A,] is an indicator of the regiod,, 1[x € A;]1 =1 if x € A, and zero other-
wise, andy, is a continuous differentiable function belonging to the class

Fir(Liyp = {y: , max YO @) =Ly (x) < Lyyp, Yro+ra=rl, x € R?}.  (4)
1T7I2=

Here and in what follows = (r1, r2) is a multi-index;1, r2 nonnegative integer and| =
r1+ rz. A derivative corresponding tois y (x) = %y(x), Ly, is afinite constant
X1 0Xy

in (4).
The piecewise constant model pf

o
y(x):Zaq]l[xeAq], 0<ay <1, (5)
qg=1

is a particular case of (3) with constant values within each regign

In the models (3) and (5),, a, as well as the regions, are unknown. The boundaries
G, define change points of the piecewise smoatfihe estimation of can be produced
in two different ways. One of the possible approaches deals with a two-stage procedure
including estimation of the boundari€g, on the first stage, which defining the regions
A,. The second stage is a parametric or nonparametric figtjran A, .

Another approach is connected with the concept of spatially adaptive estimation. In
this context, the change points or, more generally, cusps in the curves can be viewed
as a sort of an inhomogeneous behavior. Ong tharefore apply the same procedure,
for instance nonlinear wavelet, ridgelet, curvelet estimators fox alind the analysis
focuses on the quality estimation when the change-points are incorporated or not incor-
porated in the model. Under this approach, the main objective is to estimate the func-
tion and not location of change-points which are treated as features of the function sur-
face.

In this paper we follow the second approach. The objective is to develop a method
which simultaneously adapts to varying smoothness of the estimated function and which
is sensitive to discontinuities of the function and its derivatives.
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3. Local polynomial approximation
3.1. Foundations

The idea of the LPA is simple and natural. It is assumed that the fungtisnwell
approximated by a polynomial in a neighborhood of the point of intere$¥e find the
coefficients of the polynomial fit by the weighted least square method and use this approx-
imation in order to calculate the estimate for the point of intexestlled also “centre”
of the LPA. In fact, the local expansion is applied in order to calculate the estimate for
this point of interest only. For the next point the calculations are repeated. This pointwise
procedure determines a nonparametric character of the LPA estimation.

The linear LPA estimators have a very long prehistory (e.g., [2,7,14-16,30]). They are
a very popular tool in statistics and signal processing with application to a wide variety of
the fields for smoothing, filtering, differentiation, interpolation and extrapolation.

Note that the LPA has appeared in signal processing in a number of modifications
and under different names: sliding (moving) least square, Savitzky—Golay filter, local re-
gression, reproducing kernel method, moment filters, etc. We prefer the term LPA with a
reference to publications on nonparametric eation in mathematical statistics where the
advanced development of this technique can be seen.

In this section we summarize the well known concepts of the discrete LPA.

Letx € R? be a “centre” (reference point) of the LPA. Then, the estimate foR? in
the neighborhood of the centreis presented as an expansion:

Y, 1) =CTe(x —v),

$(x) = (¢1(x), p2(x). ... g ()"

C=(C1,Ca,....,Con)7, (6)
whereg (x) € RM is a vector of linear independenD2polynomials of the powers from

0 up tom, C € RM is a vector of parameters of this model. In particular, the following
polynomials can be exploited

ki ko
X1 %9

k1lko!’

A total number of these2 polynomials is equal tdf = (m + 2)(m + 1) /2. Form < 3 we
obtain

0<ki+ky<m, k1, kz >0, (7)

¢1=1 form=0,

¢2 =x1, p3=x2 form=1,

¢4=x%/2, ¢5=x§/2, ¢6=x1x2 form=2,

7= xio’/G, ¢ = x§/6, P9 = x%x2/2, P10= xlx%/Z form=3, (8)

with M =1, 3,6, and 10 fomn =0, 1, 2, 3, respectively.

The term “centre” does not assume a central positian iofthe neighborhood. It only
emphasizes that the LPA is exploited in order to obtain the estimate for this particular value
of the argument of.
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Table 1

Window name w(x)

Rectangular symmetric Ir| <1/2,
Rectangular nonsymmetric 10x <1,
Exponential %exp(—lxl),
Gaussian «/LZ exp(—x2/2),
Epanechnikov 21-x?), x| <1,
Bisquare window 1-x%2, x| <1,
Tricube A-1x%3, x1 <1,
Triweight window 1-x23, x| < 1.

The conventional quadratic criterion function is applied in order to find the coeffi€ient
in (6):

) =D wix = v)(2(v) — (. v)%, 9)
veX
where{z(v), v € X} are discrete observations and the window
wi (x) = w(x/h)/h? (10)

is used to formulate mathematicathye fitting localized in a neighborhood of while the
scale parametdr > 0 determines the size of the neighborhood. The windowing weight
is usually assumed to satisfy the properties:

w(x) >0, w(0) = maxw(x), /w(x) dx =1, /wz(x)dx < o0.

R? R2
(11)

The multiplicative window
w(x) = wi(x)wa(x2), (12)

wherew; and w; are functions of scalar (2) arguments, is commonly applied. If the
window is rectangular all observations enter in the criteria (9) with equal weights. Nonrec-
tangular windows such as triangular, quadratic, Epanechnikov, and so on (see [7,16,30])
usually prescribe higher weights to observations which are closer to the acerfmme
typical 1D window functions used in local regression estimates are shown in Table 1. Let
us also mention windows conventional in sigpeocessing and associated with the names:
Kaiser, Hamming, Bartlett, Blackman, Chebysheyv, etc. Note thaBtkplines also can be
used as the windows for the LPA.

There is a simple way to generate nontrivi&l indows different from the multiplica-
tive ones (12). Let us replace the argumenin wi(x1) by the norm||x||, wherex is a
vector and the norm is not exclusively Euclidian. Then after the corresponding normaliza-
tion we obtain 2 window functions satisfying (11).

Let y,(x) be the LPA estimate of (x), where the subindek shows a dependence of
the estimate on the scale parameter. This LPA estimatgof is defined according to
(6) asyn(x) = y(x, v)|v=r = y(x, x), i.e., the expansion (6) is used for calculation of the
estimate fow = x only.
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Actually, it is one of the key ideas of the pointwise nonparametric estimate design.
We introduce the estimate as the expansion in the local neighborhood of thex paiat
estimate the coefficients of this expansion, and finally we use this expansion only in order
to estimate at this argument valueThen, it follows from (6) that

Fn(x) = y(x, v)|y=x = CT ¢ (0) (13)
and for the polynomials (7) it yields
Ih(x) = y(x,v)|y=y = C1. (14)

Let &,(lk) (x) be the estimator of &th derivativey,(lk) (x) of y(x). Herek = (k1, k2) is a multi-
index withky, k2 nonnegative integers. The LPA model (6) of the poweran be used for
estimation of any derivative of the ordey|k| < m. According to the idea of the pointwise
estimation we derive these estimates in the form

PIL
=" — DM 0,
8U113U22 Vv=x
PIL
PRONICIN (15)
dx7'0x5? [x=0

This definition of the derivative estimator assumes that differentiation in (15) is done
with respect tov as the approximatiom(x, v) is a function ofv provided that the LPA
centrex is fixed. After the differentiation we assume= x.

For the polynomials (8) the derivative estimates (15) are simple:

~(1,0 ~(0,1 ~(2,0

y;(, )(x) = —C2, y;(, '(x)=—Cs, y,(1 (x) = Ca,

~(0,2 ~(1,1

599w =cs, 9P (x) = Ce, etc. (16)

Thus, the coefficients of the LPA model (6) and (7) gives the estimates of the function
and of the corresponding derivatives. This link of the coefficiehtsith the function and
derivative estimation is important for understanding of the LPA.

The idea of the local approximation is applicable not only for the polynomials in the
form (7) but also for different polynomials as well as for any basis functionghich are
reasonable for the local fit. In this case, théraates of the function and the derivatives are
defined by the general formulas (13) and (&6) each estimate (function and derivative)
can depend on all items of the vecitor The correspondence of the function and deriva-
tive estimates with the items of the vect@rshown in (14) and (16) is valid only for the
polynomials (7).

It deserves to be mentioned that (15) is not a unique definition of the derivative esti-
mate. The estimate of the derivative can be defined as the corresponding derivative of the
function-estimatégy,. Then

||

0

~ (k) ~

V() = —F——yn(x). (17)
h 0 klaxkz

X1 0%
In general, the estimates (15) and (17) can be quite different at least the derivatives of
the window functionw appear in (17) while they do not appear in (15) [14,16].
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3.2. Nonhomogeneouskernel estimates
According to (9) the coefficient§;, k =1, ..., M, have to be found as a solution of the
following quadratic optimization problem:
C(x, h) =arg min J;(x). (18)
CeRM
In this notation the dependence of the solulﬁ)([x, h) on the scalé: and the variable is

emphasized.
The solution is in the form

Clx, )=, wp(x —v)d(x —v)z(v),

veX
Cx,h)y = (Ci(x, h), ..., Culx, )", (19)
B = wiplx —)P(x —)$" (x — ), (20)

veX

provided that de®,, £ 0. If the matrix®y, is singular a pseudoinverd@f can be used for
solution of (18).

SubstitutingC (x, /) (19) into (13) and (15) instead @ we have the function and the
derivative estimates in the kernel form:

Iy =" gnx, v)z(v),

veX
grh(x, v) = wp(x — V)gT (x — V)@, 19 (0), (21)
and

0 =>" g vz),

veX
g (6, v) = (=D, (x — )" (x — v) &, 160 (0), (22)
where for the polynomials (7)
$(0)=[1,0,...,0,...,0/ (23)
is a zero vector-columm x 1 with only 1th elements equal to 1, and
®©o=r0,...,0, 1 ,0,...,0” 24
o0 =] k?]:;h ] (24)

is also a zero vector-columi x 1 with the only element equal to 1 corresponding to
location of the polynomiat'l‘lxlz‘z/kl!kz! in the vectorp.

Thus, the LPA estimates are presented in the form of the linear filters (21) and (22),
where for the estimatejs,ﬂk) and for the kernelg}(,k) the subindex indicates a dependence
on this important scale parameter.

It is assumed in (2) thaY is the regular grid. However, the estimates in the form (18)—

(22) are quite universal. They can be applied to any data given on regular or irregular grids,
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in particular, to data with lost observations and for data interpolation when the aeofre
the LPA does not belong to the grid of the observatigns

It is assumed in the above formulas that the summatolys, is performed within
boundaries of the image suppaft It means an accurate LPA fitting inside of these bound-
aries. There is no boundary problems for these estimates typical for convolution estimates
considered latter.

The pointwise LPA estimates as it is in (21) and (22) insure the reproducing properties
of the estimates with respect to the polynomial componenis oé., for any polynomial
ym With the power less or equal o the estimates of the function and the derivatives are
accurate:

a‘k‘ym(x)

v x € R%. (25)
X

Y en e @ =y @), > g @ v)ym ) =

veX veX

Concerning the terminology we note that in statistics the weights, v) andg,(lk) (x,v)
are named “kernels” and the estimates (ahQ (22) are “kernel estimates.” The term
“bandwidth” is used in statistics for the window size (scale) paranket@rimage process-
ing the term “mask” is commonly used for the weigptgx, v) andgflk) (x,v).

If the window w has a finite support. For example(x) = 0 if ||x|| = \/x2 + x2 > 1.
Thenwy, (x) =0 for | x|| > k. Thus, the parametér defines the window size as well as
the support of the maslg,ﬂk) (x,v) andgy (x, v). The mask with a finite support defines a
finite impulse response (FIR) lineaDilter.

3.3. Homogeneous kernel estimates

In this paper we mainly concern in a speaiake of the LPA estimate when the kernels
are homogeneous shift-invariant depending on the difference of the argumantsv
only. Then, the estimates can be presdrg convolutions of these kernels and Bnage
data.

It happens if the gridX in the formulas forg, andg,(lk) is regular infinite, X = {x1 =
s14, x2 =524, 51, 52 € Z}, whereZ is a set of integers. In this case the mathixin (21)
and (22) dependents only on the difference v and the kernels defined by the formulas

g ) =gn(x—v), g, v) =g (x—v), x.veX.

Then, the estimates (21) and (22) can be represented as the convolutions:
) =) en(x —v)z() =) gn(®)z(x — ), (26)
P =Yg~z =Y g Wztx —v), (27)

with the shift-invariant kernels

g (x) = wy ()T (x)@; 19 (0), (28)
2P (0) = (=DM, (0)p" (1)@, 19 ® (0), (29)
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=Y w0 (v). (30)

o
§1=—00

Hereafter) , means the double sun
with v1 =514 andvy = s2A.

The convolutions (26) and (27) assume that the observatiansdefined on the finite
grid (2) are completed by zeros (zero padded) outside of this finite grid for the infinite
regular grid.

In what follows the conventional compact notation is used for the convolutions (26) and
(27)

Y oo oo OVer the infinite regular 2 grid

n(x) = (gn ® 2)(x), (31)
5000 = (g @ 2) (). (32)

The kernels (28) and (29) satisfy to the polyriahwvanishing moment conditions following
from (25):

> e =80, 0 Ir|<m, (33)
v

1

=28 = D8y Sy O K <m, O Ir| <im. (34)
)

The multi-indexes notation means here that (k1, k2), r = (r1,r2), andv’” = vi* - V32,
rl=r1+r2, 1/r! = (1/r1)(1/r2)).

The vanishing moment conditions define the polynomial smoothness of the kernels. The
support of the kernels is identical to the support of the winadgw

The first condition (33) means that (26) is a smoothing operator of the erdéhe
second condition means that the kerglﬁf (x) defines the differentiating operator (27) of

the ordenn giving the estimate of the derivati\aé1+k2/ax’l‘18x'2‘2. The both smoothing and
differentiating operators give ¢haccurate results for any polynomjabf the power less
or equal to the order of the kerneis

3.4. Integral homogeneous estimates
Provided that the sampling intervaland the scalé are small, such that, » — 0 and

h/A — oo, the discrete convolutions (31) and (32) are transformed to the corresponding
integral forms

R 1
1) = / 2((x — u)/ )y () du = f g(u)y(x — hu) du, (35)
R2 R
1
50 = B2k /g(k) (e =w)/h)y(w)du
R2
= [ W@y —hdu, xe R (36)

R2
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with the kernels

g(x) = wx)p” (x)@1p(0), (37)

g® ) = (~)Mw)eT ()@ 1p®(0), (38)

Q= / w(x)p(x)¢T (x)du, (39)
R2

whereu = (ug, u2), [p2() du = fjo? fj_;o(') durduo.

Some extra technical assumptions are required for the existence of the above integrals
and justification of the corresponding limit passages from the sums (31) and (32) to the
integrals (35) and (36). They are satisfied, in particular, if the windowe a bounded
finite support function ang(x) is continuous.

For the integral kernels the vanishing moment conditions (33) and (34) are as follows:

/g(x)xr dx =380, 0<|r| <m, (40)

R2

o 0 "dx = (=1*ls b 0< k| <m, 0<|r| < 41

ﬁ 8 (.X).X X = (_ ) k1,r1 * Oko,ros S I I xm, S II"| xm. ( )
R2

3.5. Restricted nonlinear LPA estimates

An 8 bit gray-scale image is defined by its intensity function takifg-256 different
values. This intensity is nonnegative and takes values from 0 up to 255. After normalization
these conditions have a form

0<yx) <1 (42)

Thus, y is an arbitrary nonnegative function normalized to the intef@al]. These
conditions can be naturally incorporated in the LPA estimate by modifying (18) to the
constrained optimization:

Cx,h)=arg min J,(x), 43
(x,h) gogclgl, h(x) (43)
CerM-1

whereC = (Ca, ..., Cy)T is the vectoiC with the excluded first itent’;.
The constrains (42) according to (14) can be imposed onty;amhile all other items of
C continue to be unconstrained. After the estimate§ affe found from (43) the intensity
and the derivatives are calculated according to the usual formulas (14) and (16).
Concerning the estimate (43) a number of moments can be noted. First, in general,
this estimate is nonlinear with respect to the observations. Its calculation is a much more
complex problem as compar&dth the linear estimate. However, if the linear estimate
C1(x, h) found from (18) belongs to the intervid, 1] then the solutions of (18) and (43)
are identical. It gives a simple logic to deal with this nonlinear problem. We start from
calculation of the linear estimates for alland test (42). In this way we identify the pixels
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violating the conditions (42) and the nonlinear constrained estimates (43) are calculated
only for these pixels.

Second, if the linear estimate does not satisfy to (42) the solutions of the unconstrained
and constrained optimizations can béetient by all elements of the vectar not only
by C1. The constrains on the intensity functioan influence the estiates of the deriva-
tives and enable one to yield both the more aatriestimate of the function as well as the
derivatives.

The following compromise is used in order to avoid the complexity of (43). The es-
timates are obtained in two independent steps. The first step is a solution ignoring the
constrains orC1. The second step defines the estimates according to the equations:

) = [(en @], (44)

5P = (¢ @2) (0, (45)

where[-]+ stays for the projection on the segmé¢dt1], which meangx]; = x for 0 <

x <1, [x]+ =0 for x <0, and[x]+ =1 for x > 1. Thus, the estimate af; obtained
from the unconstrained optimization isplaced by its projection on the interyal 1]. All
others elements of the vect6rare assumed to be equal to the corresponding items of the
vectorC(x, h).

The estimate built in this way can besited as an approximation of the accurate non-
linear constrained solution (43). It is a conventional practice in image processing to take
into consideration the nonnegativity and upper bound of the image intensity by the simple
projection of the estimate on the interyal 1].

In what follows for the sake of simplicity we use the linear estimate given as the convo-
lutions (26) and (27).

4. LPA accuracy
4.1. Asymptotic biasand variance

A value of the scalé is a crucial point in the efficiencgf the local estimators (e.g.,
[7,16,19,30]). Wher is relatively small, the LPA gives a good smooth fit of functions but
then fewer data are used and the estimates are more variable and sensitive with respect to
the noise. The best choice bfinvolves a tradeoff between the bias and variance of the
estimate. In order to clarify and formalize the meaning of this tradeoff we present some
accuracy results.

In what follows in this chapter we presethe accuracy results in the terms of ttth
derivative estimation as the function estimation is a special casewith. The estimation
error is a difference between the trué’ and the estimaté}(,k):

A(k
eyio (e, h) = y O () = 510 (x).

This error is composed from the systematic (bias) and random components correspond-
ing to the deterministiy and the random noise We have, respectively, for the bias

m o (x, h) = y© ) — E{517 ()},
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and for the variance
o2, ) = E{[y® ) - E{5{"™)}]%},

whereE{-} denotes the mathematical expectation calculated aver

The asymptotic formulas fony<k) (x,h) andayz(k) (x, h) can be givenin the integral form
with the analytical dependence on the sdal&his sort of results are basic for theoretical
accuracy analysis and scale optimization.

Hypotheses assumed:

(H1) y is continuous and-differentiable at the point such thaty € F,(L,) (4).
(H2) The windoww is finite support continuous.

Let us use the notation
M:min{m+1, |r|}, (46)

wherem is the order of the LPA and is a multiple-index defining the smoothness (deriv-
ative order) ofy in the classF,.
Let the kernel LPA estimates be defined by (31) and (32), whgre: M, and the
sampling interval and the scale parameter be small sucithat- 0, andh/A — oo.
Provided that the hypotheses (H1) and (H2) hold and the derivatiigs) in (4) are
continuous Lipshitz functions

IyP ) -y < Lix—yI7, y>0, (47)

the bias and the variance of the estimﬁ&,j’%(x) are defined by the formulas

1
my<k)(x,h)=(—1)M_1hM_|k| Z y(r)(x)‘;/urg(k)(u)du—i—o(hM_‘k‘), (48)
[rl=M .Rz

2 2 42 ® )2 A2
(ry(k)(x,h)za M (g (u)) du+0 W . (49)

R2
whereg® is given in (38) and a smadl(x) means thab(x)/x — 0 asx — 0.

The derivation of these formulas is based on quite routine techniques using, in particular,
the multivariable Taylor series for(x — hu) on k. Hypothesis (H2) and (47) enable the
existence of the integral estimates (35) and (36) as well as the corresponding limits and
integrals in (48) and (49).

Omitting the small terms(-), the following inequality can be derived from (48)

/ urg(k)(u) du

R2

1
[y e W SHMTH Ly )AL, AP = 30 S : (50)

lrl=m "~

where max =y [8"y(x)/3x"| < Ly (x), according to (4), and (49) is rewritten as

A? 2
2 2 k k k
cry(k)(x,h) =0 o B, BW = /(g( )(u)) du. (51)

R2
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We can see from (50) that the bias error is restricted hy(x) what is the absolute
value of the maximund/th order derivatives of (x). The constanﬂg‘) is defined by the
moments of the kernel. The scdlés an important parameter for the bias: a smatheans
a small bias. The upper bound of the bias is restricted by the valueftthe powerM for
the function estimation and of the powkf — (k1 + k2) for the derivative estimation. For
smallh it giveshM—*1—%2 > M Thus, the bias of the derivative estimate is asymptotically
larger than the bias of the function estimate. Note also Miat min{m + 1, ||} means
that while we increase the power of the LPA the bias becomes smaller. However, this
effect is valid untilm + 1 < |r|.

The variance formula (51) shows that the variance for the derivative estimation (of the
orderi—2(1t+k1tk2)) is larger than the variance for function estimation (of the orde?).

Thus, in terms of the bias error as well as of the level of the random error the derivative
estimation is a more complex problem than estimation of the function itself. The higher
order derivative (larget; andky) automatically means thaté estimation errors become
larger.

4.2. Scale optimization

The formulas (50) and (51) define the pointwise mean squaredfigk, ) for thekth
derivative estimation as

BH. (52)

~ 2 — 2
rOe w2 E(y D) - 510 0)° < (M Ly ) AL) + 02

The upper bound of® (x, k) is convex omi. Its minimization onk gives the “ideal”
value of the scale found from the equation

O [/ M-k 2 | A%
55“ MLy (x)AP) +E§WB§ =0.
Further calculations give for this ideal scale
(k) 1/2M+2
hﬂxyz(A?—ffEi__ﬂﬁ)/( +2) 2 1+ |k (53)
¢ (LunAD?2™ C T M=k

wherey; is the ratio of the absolute value of the bias to the standard deviation of the
derivative estimate at = i (x)

Vi = |my<k) (x, hz(x))|/cry(k) (x, hz(x)). (54)

This parameter is a constant (invariant:ondepending ol = min{m + 1, |r|} and ||
only. Thus, it depends on the LPA power the smoothness of the function defined|by
and the ordelk| of the estimated derivative.
It can be verified also that
-0, Jh), ifh<hi(x),
| R s 1

vk oy (6, h), i B> hE(). (55)

It shows thatyy - oym (x, h) is a critical value for the ideal bias. Far< i} (x) the bias
is smaller and for: > hj(x) the bias is larger than this critical value. The ICI rule for
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the adaptive varying scale selection coesétl in Section 4.3 is based on testing of the
hypothesesh < hj (x).

Let the number of observations (image sampieajpd the sampling interval satisfy
to the equatiom ~ 1/A2, which means that the physical size of the image is 1L By
substitutingz; (x) from (53) into (52) we obtain the ideal pointwise mean squared risk. To
be interested only in the order of this risk for larggve immediately can see that

r® (x, ki (x)) = O (n=M=IkD/@M+2)) (56)

This risk approaches zero for a large number of observations and proves the mean square
convergence of the studied estimates. The convergence rate is defined by the parameter

M — |k| _ min{m + 1, [r|} — |k|
2M +2  2minfm+1,|r|} + 2’

It is seen from (57) that larger values &f result in the higher convergence rate which
is restricted by the limit valu® (»~1/2) for large M.

The converge rate (56) is an ideal one and cannot be achieved in practice as it requires a
knowledge of the derivatives of the estimafadction for the ideal varying scale selection.
However, it gives an useful information on the potential accuracy which can be used as a
benchmark for evaluation of algorithms.

Assumingk = 0 the corresponding results can be obtained from the above formulas for
the function estimation. The ideal scale is

2 (0 1/(2M+2)
B 1
S(-x): AZ “ - 7/2 3 J/2= s (58)
(Ly(x)AL)?

M
and the convergence rate following from (56) is defined as

rO(x, hj(x)) = O (n=M/M+2)),

The convergence rate of the derivativaimsites is slower than that for the function
estimation.

W= k| < M. (57)

4.3. Adaptive scale selection

The problem of the scale (window size) selection is always solved in favor of the larger
scale for any parametric estimate as this estimate is unbiased for any scale and the larger
scale means a smaller variance. For the nonparametric estimation the situation is more
complex. If there is no noise the scale should be selected as small as possible since a smaller
scale means a smaller bias. However, if there is a noise the scale should be increased in
order to suppress noise effects. The accuracy analysis produced in Section 4.2 confirms and
illustrates this claim. It demonstrates that there is the ideal scale which defines the optimal
mean squared balance between the deterministic bias errors and the variance of random
errors.

In many signal processing applicationssthonparametric nature of the local approx-
imation is ignored. It is assumed that the ypwmial model is accurate, noise effects are
neglected and the window is taken of the minimum size sufficient for the polynomial fit.



88 V. Katkovnik / Digital Sgnal Processing 15 (2005) 73-116

For instance, we may mention most conventional differentiators as well as methods based
on the fit by the orthogonal polynomials (e.g., [8,12]).

A number of publications concerning the scale selection is very large and growing
quickly. While a review of the field is beyond the scope of this paper, we give few ref-
erences illustrating the basic progress in various directions.

Two approaches have been first exploited foa@ive (data-driven) invariant scale se-
lection of the LPA estimates. The first one is based on estimation of the biasedress)
and the varianceyz(x, h) of the estimates with the ideatale calculation according to the-
oretical formulas. However, this bias depends on the derivatives of the signal in question.
Thus, in order to find the adaptive say from the formula (58), one needs estimate these
derivatives. This sort of methods, known as “pilot estimates,” are quite complex in imple-
mentation and have a few design parametdevertheless, successful methods have been
developed based on these ideas and reported by several authors [7,30,36,37].

The second alternative approach, also for the adaptive invariant scale selection, does
not require estimation of the bias. Theseuyp of methods are based on the quality-of-fit
statistics such as cross-validation, generalized cross-validdigrikaike criteria, etc.,
which are applied for direct optimization dfe accuracy (e.g., [7,13,16,30] and references
herein).

The linear LPA with the varying scale found by minimization the so-called “pseudo-
mean squared error” is considered in [32]. The target point is left out of the averaging in
the pseudo-mean squared error what differs this estimate from the standard mean square
methods. It is reported that the proposedyskemean squared error works better then the
local cross-validation.

A recent break-through in pointwise vargirscale estimation adaptive to unknown
smoothness of the function is originated from a general scheme of Lepski [28,29,38] al-
ready mentioned in the introduction. The LPA estimates are calculated for a grid of scales
and compared. The adaptive scale is defined as the largest of those scales in the grid which
estimate does not differ significantly from the estimators corresponding to the smaller
scale. These type methods first proposed in few cited above paper® fooriparamet-
ric estimation are mainly differ in (1) gridfavindow sizes (scales), (2) accuracy criteria,

(3) statistics used for scale selection.

The intersection of confidence intervals (ICI) rule can be treated as quite a different im-
plementation of the basic Lepski’'s approachidea [9,17]. Itis proved that the LPA equipped
with the ICI rule for the scale selection “possesses simultaneously many attractive asymp-
totic properties, namely, (1) it is nearly ideal withirvffactor for estimation of a function
(or its derivative) at a single point; (2) it is spatial adaptive in the sense that its quality
is close to that one which could achieve if smoothness of the underlying function was
known in advance; (3) it is optimal in order or nearly-optimal in order withinddgctor
for estimating whole function (or its derivatives) over wide range of classes and global
loss functions” [9]. These results demonstrate that the “spatial adaptive abilities” of these
estimates are the best possible in the terms of the asymptotic analysis. These results have
been extended to multivariable functions pRd that the scale parater of the estimate
is scalar [33]. Similar asymptotic accuracy riessare proved for different versions of Lep-
ski’s algorithm.
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Experimental study reveals that a nonasymptotic performance of the IClI rule depends
essentially on the threshold parameter the confidence intervals used in the ICI algo-
rithm [17]. It is shown that the cross-validation is able to give adaptive values of the
threshold parameter improving the estimataccuracy. Various odifications of the ICI
rule are appeared to be efficient for different scale adaptive applications: median filter-
ing [20], beamforming [21], time-frequency analysis [4,22]. An application of the ICI rule
to image denoising and deconvolution has been reported in [18,19]. This development of
the ICI for the 2D image intensity function exploits the&2quadrant (Ssymmetric and non-
symmetric) windows with adapte varying scale parameters.

A special version of the Lepski’s spatially adaptive method is proposed and analyzed
in [38]. First of all, a set of test-windows is proposed, which enables a fine cover of a neigh-
borhood of the estimation point. Further, the used test-statistics are based on the residual
of estimation, while the original Lepski’s algorithms use the function estimates only. The
accuracy analysis produced in [38] for estiina at far and near change points shows that
the estimates are nearly optimal within the usualkidgctor unavoidable for the adaptive
estimation convergence rate.

A 2D generalization of the algorithm from [38] is proposed for image denoising in [35].

It is assumed that the image intensityais unknown piece-wise constant function. The
estimate is a sample mean calculated in tlidirey varying adaptive size window. The

main algorithmic novelty concerns thé2window sets and test-statistics design. For the
test-statistics the differences between the estimate in the tested window and the estimates in
some subwindows of the tested window arecaldted. Near optimadstimation accuracy

is proved for the pixels far and near an edge.

Basic papers concerning the Lepski’'s aggeh are published mainly in mathematical
statistics journals and conceated on theoretical analysi the accuracy and adaptivity
properties for various classes of the funas to be estimated. Some recent results con-
cerning a development of the adaptive scaldtivariable estimation can be seen in [26]
where the optimal kernels are derived for different classes of functions to estimate.

To complete these introductory notes we wish to mention a new development con-
cerning a generalization of the appah to multivariable kernel estimatese R?, using
different scales for these variables [25]. Td@aptation becomes anisotropic and assumes
selection of the multivariable scale paramefies R¢. This generalization is of special
interest as there are some principal obstacles for this sort of multivariable adaptivity.

4.4. Lepski's approach

Let us start from the idea of the Lepki's approach. Introduce a set of the scales
H={h1<hs<---<hy}, (59)

starting from a smalk; and increasing to a maximumy, and lety, be the estimate

of y defined forh € H with the estimation standard deviation(x, ). Accordingly to

the accuracy analysis produced above, for srhdtie estimatey;, has a small bias and

a large standard deviation of the random noise. The adaptive scale algorithm compares
the estimates with increasirilg The main intention is to find the maximum scale when

the estimate’s deviation can be explained by the random component of the estimation error
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and there is a balance between the biasedamegsandomness in the estimate. The accurate
meaning of this sort of balance is discussed above.
The Lepski’'s approach defines the ptiee scales according to the conditions

h(x)y=max{h € H: |$4(x) — $,(x)| < T(h,n,x)foralln <h, n,he H},  (60)

whereT (h, n, x) is a given threshold. The procedure (60) is looking for a largest &dcale
order to obtain the maximum smoothing effect for the random errors. However, ailarge
can result in a significant bias error. All estimafg$x) with the scale; < i are compared
with the estimatey, (x) of the scalé:. If the differencesy, (x) — 3,(x)| can be explained

by the random errors the bias is not large and lakgean be selected. The adaptive sdale

is defined as maximum if such that all estimate, (x) with n < i are not too different
from ¥,(x). The multiple comparison of the estimates with the different scales is used.
The parametef (k, n, x) is a key element of the algorithm as it says when the difference
between the estimates is large or small. The procedure (60) enables a multiple statistical
test on significance of the systematic error in the differefigés) — ¥, (x) in comparison

with the corresponding random errors.

A variety of the Lepski’s algorithms is defined mainly by the different form of the
thresholdT (&, n, x) which usually depends on the variances of the estimates with the
scalesh andn. A proper selection of this threshold enables nice statistical properties of
these adaptive scale estimate [27—-29,38].

Let us describe two different algorithms of the Lepski’s class in order to illustrate the
approach overall and in order to show that thakjorithms are indeed simple in implemen-
tation. We also use these algorithms for a refieeeand further presentation of the novel
MR local regression.

4.5. Lepski—Spokoiny algorithm[29]

The adaptive scale™ (x) is defined as follows:

it =maxi: [$n, (x) = In; ()| < Mk j)oy(x, b)), j<i, 1<i < T},

h*(x) = h;+, (61)
with the adaptive scale estimate
YT = Fpr oy (), hT(x) = hy+. (62)

Here j;,; (x) compared with all estimates havirkg < &; and in this comparison the in-
equality in (61) is tested. As in (60) the adaptive sdatdx) is equal to the maximum
h;+ € H satisfying all of the corresponding inequalities in (61). In this case the threshold
T (h,n,x) from (60) is used in the fornT (k;, h;, x), as according to (61); < h; and
T(h,-,hj,x) = Fl(hj)cry(x,hj).

The grid A for (61) is defined inductively starting from the largéstby

hy—k+1
hyp=—HL 101 63
Ik 1+a(hy—k+1) / (63)
1
d(h) = Jmax(L rlgth;/ W), a(h) = ———. (64)

d(h)
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The threshold™1 (%) in (61) depending oh is as follows:
Ii(h) = (1+ a(h))d(h). (65)

It is proved in [29] for some asymptotic consideration that the algorithm give the adaptive
window sizes which minimizes the rigg{|y(x, #;) — y(x)|"}, r > 1. Ther is a parameter

used in (64). Note that the total number of compared scales is of the logarithmic order and
depends on the maximuhy .

4.6. 1Cl algorithm[9,17,19]

Being from the Lepski's class this algorithm is derived from different speculations and
has quite a different recursive structure.
Determine a sequence of the confidence intergglof the estimate$),; (x)

Q) =[5, () = -0y (x.j), $i, () + T -0y )], ©9

where!" is a threshold parameter.
Consider the intersection of the intervals, 1< j <, with increasing, and leti* be
the largest of those for which the intervalg) ; have a point in common. This™ defines
the adaptive scale and the adaptive LPA estimate as given by (62).
The following algorithm implements the ICI rule. Determine the sequence of the upper
and lower bounds of the confidence intervals as follows:

Qj=IL;,Ujl, Uj=53n,(x)+ 1 -oy(x,hj), Lj=53n,(x)—1T 0y(x,hj),
(67)

and let

Ljyi=maXL;, Ljy1}, Uja=minflU;, Uji},

j=12...,J, Li=L1, U;=Us. (68)

According to these formulaéjH is a hondecreasing sequence a;h]qu is a nonincreas-
ing sequence. Find the largestvhen

Lij<U, j=12..1. (69)

Iz
is still satisfied. Denote this largest valueids Thisi ™ is the largest of thosg for which
the confidence interval@ ; have a point in common as it is discussed above and the ICI
adaptive scale i8™ = ;+. It is a procedure for a fixed giving the varying adaptive scale
ht(x). Figure 1 illustrates this algorithm.

In the ICI algorithm the estimates of the féifent scale are compared by using their
confidence intervals. We may conclude that the confidence intefyaéd Q ; intersect
if and only if

|9n; (%) = In; ()| < T (0y(x, hi) + 0y (x, hj)).
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ICT rule for Adaptive Window Size Selection
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Window size (scale)

Fig. 1. Intersection of confidence intervals (ICI) rule fbe adaptive varying scale selection. The confidence
intervals are shown fok ; € H. The vertical lines with arrows show the successive intersections of the confi-
dence intervalgl, 2), (1, 2, 3) and (1, 2, 3, 4). Assuming that the intersectionitiv the forth confidence interval
(corresponding: = hy4) is the last nonempty one we obtain the adaptive scale as equgl to

Then the ICl rule is reduced to Lepski's scheme (60) with
T(h,n,x) =T (0y(x,h) +oy(x,1n).

The theoretical analysis produced in [9] fabTegression shows that the ICI adaptive
scale estimate gives the best possible pointwise and global MSE. A generalization of this
result for a multidimensional regression with the scal& done in [33].

In the asymptotic analysis most of the scale adaptive nonparametric regression algo-
rithms are equivalent in terms of the convergence rate. However, simulation shows that
practically the efficiency of the algorithms can be quite different. It deserves to be men-
tioned that the similar asymptotic properties concerning the convergence rate as well as the
classes of adaptivity are known for the wavelet techniques.

Remind that the ideal scales (53) balance the bias-variance tradeoff. This balance de-
pends o, (x), i.e., on the derivatives of the ord&f, and these derivatives are unknown
in advance. The order of these derivatide= min(m + 1, |r|) depends on the parameter
r which also is unknown. The ICI rule gives the adaptive scales close to the ideal ones.
The confidence interval@ ; (67) used in the ICI depend on the estimates and the standard
deviationsoy (x, h;) (48) only and do not use the parameteas well as the derivatives
of y. Thus, the ICI rule produces the estimates which are spatially adaptive to unknown
varying smoothness of the estimated signal
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5. MR nonparametric regression
5.1. Nonparametric regression spectrum

Let us introduce a finite set of scalés
H={ho>h1>--->hy}, (70)

starting from a largestp and decreasing to a smallést. Thus,H is a set of the descend-
ing scales, whilel in (59) is a set of the ascending scales.

We consider the convolution image intensity estimates as it is defined by (31) and as-
sume that for the smallest scdlg the LPA kernelg;, (v) is the identical operator

Jim g =300 (72)

This assumption is not restrictive and only defines a range of scales starting from a large
ho and going to sufficiently smalt ;. For instance, if the window in (28) is an indicator
such thatw(x) =1 for |x1] < 1, |x2| < 1 then the LPA withn = 0 insures thag;,, (x) =
dxoforhy=1.

If the windoww is the 2D standard Gaussian density, them w(x/ )/ h? (28) is the
standard deviation of this distribution and the LPA defines the discrete kernel such that
limu—o0gn(x) =6x.0. Inthis caser; — 0.

Further, we assume that all kernels, h € H, have finite supports embedded into a
finite rectangular regular gridf . If the support of the kernel is smaller théhthe kernel
is completed by zeros in order to hayg(x), h € H, defined for allx € U.

Let us start from a simple decomposition of the function estinjaté31) in a sum of
differences of various scale estimates:

J
Y (x, B) = $no(x) + Zﬂj Vi), Vi) =(Vg @2)(x), (72)
j=1
Vgj(x)=gn(x)—gn;, ,(x) forj=12....J, (73)

wherevy;(x) =y, (x) — In;_,(x) and = (1, ..., BT is a vector of coefficients.

Consider the items in the right hand-side of (72). The differe¥i¢e is a deviation
of the estimate caused by a decremenk éfom % ;_1 to i;. The largest values = hq
means a coarser scale and strong smoothing kerneljwjtlv) = (g, ® z)(x) being the
smoothest estimate giving the low frequency pictureyoEmallerk corresponding to a
finer scale detecting higher frequency details in the image. In the sum (72) the firsf,ferm
presents the smoothed background of the image while the others add details of different
scales. In this way (72) is a decomposition of the imagethe different scale components.

Let Vg, be a spectral (scale) analysis kernel and, B) be a spectral (scale) decom-
position.

The following properties are easy to verify.

(1) Accordingto (33) the analysis kerneisg; (x), j =1, ..., J, have vanishing moments
up to the ordem
> Vgixk =0, 0<Ikl<m, j=1....J. (74)

xeU
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Thus, the analysis kernels have the polynomial smoothness defined by thempaiver
the LPA.
(2) The sum of the analysis kernéfg ; assumingv go = gi, is the identical operator

J
Y Vgi(x)=gn, (x) =8x0. (75)
j=0

(3) For anyh € H the estimate;, can be represented in the form

) =¥ (x, B()), (76)
where the coefficientg; (1) in (72) are defined by the indicator function
Bj(h) =1[hj = h]. (77)
(4) Forg; =1for1< j < J, aperfectreconstruction gfhas a place
J
Do)+ Vi (x) = y(x). (78)
j=1

Equation (76) is verified substitutingy given by (77) in (72). Thus, a varyirigin (77) con-
trols a number of spectral items in the expansion (72) and in this way it &tieB (h.))
from the perfect reconstruction of the obseryed) = Y(x, B(hy)) to the most smoothed
estimatey;,, (x) = ¥ (x, B(ho)).

The problem of the adaptive scale selection for the estifate) can be formulated as
selection ofh in B(h) (77) for the estimate (72). Farinvariant onx (77) gives the same
scale selection for alt while & dependent om results in the pointwise varying scale

Bi(h(x)) =1[h; = h(x)]. (79)
5.2. Multiresolution analysis

Developing further the concept of the local regression spectrum we assume that the
coefficientsg; in (72) may be not binary. Then, warive to the idea of nonparametric
estimation ofy based on the spectral decomposition (72) with some estimates of the spec-
tral coefficientsg;. In this way we break with the traditional statistical approach to local
regression assuming thiain 3 is the only scale parameter defining the estimate.

In order to make this approach more constructive we replace the initial spectral analysis
kernelsVg; by their orthogonal counterparts.

Let the kernelsvg;(x), j=0,1,...,J,x e U, be a set ofJ + 1) linear independent
functions with the bounded Euclidean normi¥,g; 1> = 3", ., (Vg (x))? < 0.

Then, the standard Gram—-Schmidt procedure givas (x) orthogonal with respect to
wi(x),0< k < j, forx € U as follows:

I (Ven . o
1) = Vgh, () = Y %wkm,
k=0

wo(x) =g8hg, J=0,...,J =1, (80)
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where the inner product-,-) means(Vg,, wr) = .oy Var(x)wi(x) and lwrll? =
(0, 0k) = 3y epy 0F (X).

Replace these; by the normalized kernels;/|lw;|. Then the orthonormal vector-
functionsw (x) = (wo(x), w1(x), ..., ws(x))T andVg(x) = (Vgho(x), Vgn, (x), ..., Vgn,
x (x))T satisfy to the Gram—Schmidt equation

Qw(x)=Vg(kx) forallxeU, (81)

whereQ = (Q; 1) j.k=0.1,..,s IS a nonsingular lower triangul@y + 1) x (J + 1) matrix.
Leto; be the output of the filter with the kernel; and the input is the accurate sigiyal
Then

aj(x) = (0; ® y)(x) (82)

and the following can be verified:

(1) The outputsy; define a spectral analysis with components varying from a low fre-
quency (coarse scale) base imageto higher frequency (finer scale) image incre-
mentsy;. Higher valuej corresponds to a higher frequency spectral component of the
spectrum.

(2) The spectral kernels have vanishing moments up to the arder

(0; ®x*)(0)=0, O<lk|<m, j=1,...,J. (83)

Note that contrary to (74), in generédy; ® x¥)(0) % 0 fork =0.

Let/>(Z?) be a space of square summabi2 finctionsy defined on the infinite regular
grid X, i.e.,y € [o(Z?) if 3, 72 y2(sA) < 0.

Introduce accumulated kernels

J
.Qj()C):Za)j(x), j=0,1,...,J. (84)
j=0

Define linear space®; andV; generated by the kerneds; and$2;, respectively:

W= {Vyj(x) = @)y —u): yelz(Zz)}, j=1....J (85)
uelU
V= {yj(x)z Zgj(u)y(x —u)y elz(Zz),, j=0,1,...,J. (86)
uel

It can be verified that thes@y; € I2(Z?) andy; € I(Z?) for anyy € [(Z?). Thus,W;
andV; are subspaces 6f(Z?) defined as convolutions of € /2(Z?) with the kernelsy;
ands$2;, respectively.

The kernelsw; are orthogonal. However, it does not mean that the subsgéicese
orthogonal also. It follows from (84) that the subspa®gs; can be represented in the
form

Vigr=V;+ W11, j=01,...,J-1 (87)
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where the plus 4" stays for the sum of two subspaces. The subspége; is a comple-
ment (nonorthogonal in general) of the subsptge
It follows that

j+1
v,~+1=v0+(ZWk>, j=0,...,J—1.
k=1

One requirement on the sequence of subspégés the MR analysis is completeness:
yj(x) = y(x) asj—J.
The sequenc®; defined in (85) is complete because of (71)
V= 1(Z?). (88)

Definition. The sequence of spacgg;, j =0,1,..., J} generated by;, j =0,1,..., J,
is a MR analysis of € [»(Z?) andw; are MR analysis kernels defined on the scalefget

The following is anonparametric local regression decomposition of y based on the
analysis kernels; .

Proposition. Let y € [2(Z?) and ¢; = Zf:j 0,,j, where Q; ; are elements of the matrix
Q0 in(81), then

J
Y =) aj(x)qj, (89)
j=0
aj(x) = (w; ®y)(x). (90)

Proof of Proposition. Substituting (90) in (89) transforms this representation in the con-
volution

y(x) = (K ®y)(x), (91)
J

K(x):Za)j(x)qj. (92)
j=0

Show thatK (x) = 8, o and in this way prove that (91) is the identity. Indeed, it follows
from (81) that

J J J J J
D Ve =YY 0w =Y wjx)) 0
1=0 Jj=0 =0

1=0 j=0
J J J
=Y 00 0= 0jxg;=K®X.
j=0 l=j j=0

However, according to (752f=0 Vg = gn, (x) = 8y 0. It shows thatK (x) = 8, o and
completes the proof of the propositionc
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The formulas (90) and (89) yield the accurate MR spectral expansipwalid for any
nonparametric regressione lo. Specifically, the equations (90) and (89) define, respec-
tively, the analysis and synthesis steps of this MR analysis. The syntheses formula (89)
shows that the projections of y on the MR analysis spacé$ taken with the weightg;
enables the perfect reconstruction of any I>(Z2).

We wish to mention that the syntheses formula (89) is not unique. In particular, the
synthesis of the form

J
Y =) ai0)w;(0), ajx)=(w; ®y)(x), (93)
Jj=0
is studied in [23,24].
If g;(x) # éx.0the formula (89) can be used as an approximate syntheses formula which
gives the reconstruction of(x) within the bias error of the kernel operaigy, . This bias
error is analyzed in Section 4. Note that the following generalization of (89) is valid

I ()= i), q;@)=Y_ 01, (94)
I=j

j=0

whereyy, is the LPA estimate of the scalte.
5.3. MR for differentiation

For smoothing the accurate identity operator is assumed for the $daléhe perfect
reconstruction formula (89). This sort of thecurate differentiation is not possible as there
is no a kernel for the discrete convolution (3@)ich gives the accurate derivative for ayny

The approximate form of (89) is appropriate thfferentiation of nonparametric regres-
sion functions.

Let us replaceg;, in (72) and (73) by the differentiation kern@é") (29). Then, the
Gram-Schmidt formulas (80) defines the orthogonal differentiation analysis karﬁéls
and the corresponding MR differentiation subspaces.

The analysis and syntheses formulas (89) and (90) are changed to the form:

J
0@ =P e, @ = (" ey, (95)
j=0

Hereq = Y°/_ 0f") with 0! being the elements of the matrig® in the Gram-—

Schmidt equation

0P (x)=vgP ), xeU, (96)
where
¥ = (wék) (x), a)(lk)(x), e, a)(Jk)(x))T,

T
Ve® = (Ve (1), Vel o), ..., veP ), vel ) =gl ).
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The a)(f) is the finest scale differentiation analysis operator in the representation (95).
The interval of the scales from 0 tbused in (95) and specified i defines the derivative
estimates of different scales to select from or to use jointly in the combined MR estimation.

As a)(]k) is not the accurate differentiating optya The formula (95) defines an approx-
imate reconstruction of the derivative withine accuracy corresponding to the derivative
estimate with the kerneb(f) having the finest scale inthe sBt h =h;.

5.4. Examples of kernels

Some examples of the MR analysis smoothing keraglare shown in Fig. 2. These
kernels are obtained according to (80) whgrare derived from the LPA of the power =
2 for the 2D Gaussian windoww = % exp(—|lx||?) truncated to the squares of the size
h x h, whereh € H andH = {21,11, 5, 3, 1}. The first MR kernelvg defines a smoothing
low-pass filter while others analysis kernels, j =1, ..., 4, define band-pass filters.

The MR differentiating kernel@ﬁl’o) (x) are shown in Fig. 3. These kernels are obtained
from g,%’o) (x) (differentiation onx1) derived by using the LPA of the power = 2 and the
2D Gaussian window = Tlgz exp(—|lx[12/c?), ¢ = 0.5. These kernels are truncated to

the squares of the sizex , h € H, with H = {21, 15,11, 5, 3}. The firstw§"? is the MR

MR Kemer, Scale=0 MR Kemer, Scale=1

MR Kemer, Scale=2 MR Kemer, Scale=3

MR Kerner, Scale=4

Fig. 2. MR analysis kernele ; (x) obtained using the LPA of the power = 2 and the 2 Gaussian window
w(x) = 2= exp(—|1x[12).
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X 10-3 MR Diff. Kerner, Scale=0 x 10-3 MR Dift. Kerner, Scale=1

MR Diff. Kerner, Scale=4

Fig. 3. MR differentiating kernel@ﬁ.l’o) (x) obtained using the LPA of the power = 2 and the 2 Gaussian

window w(x) = leﬁz exp(—||x[12/52), ¢ =0.5.

differentiation kernel of the largest scalg = 21. The higher scale kernelé.l’o), j >0,
become narrower.

A specific feature of the differentiation keels is that all of them have zero value for
the central pixel of the square makkx . The smoothing kernels; (x) have maximum
peaks at the central pixel. The support of a square mask differentiating kernel should be
larger than Ix 1 in order the LPA fitting withn > 1 would be possible. For the minimum
scale differentiating kernel we use the mask 3, & = 3. It is the minimum? in the setd
used for differentiating.

6. Filtering by thresholding

A common underlying assumption in multiseaiR curve/surface/signal estimation is
that the function to estimate has some redundancy. This is often reflected by the hypothesis
that it belongs to a particular functional class. For example, it could be discontinuous but
only at a limited number of places, or the function is assumed to have only one mode or to
be monotone. Then, the heuristic for the use of, say wavelets, is that the expansion of such
a function in a wavelet basis is sparse, i.e., only a few of the wavelet coefficients are large
and the rest are small and thus negligible. Hence, in order to estimate the function, one has
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to estimate the large wavelet coefficients aligtard the rest. This approach has proved
useful and successful as shown, in recent years, by various authors (see Refs. [11,31] and
references herein). In what follows we apply the thresholding technique to the MR local
regression spectral components.

Let the image observation be given by the noisy model (1) and the analysis kegnels
be applied to these data. Then the noisy observations

aj(x) = (0; ® ) (x) (97)
of the true spectral coefficients (x) = (w; ® y)(x) are linked by the equation
ajx)=a;j(x)+on;x), j=01...,J, (98)

wheren; = (¢ ® w;)(x) are the zero mean Gaussian noise with the standard deviation
equal to 1. The orthogonality of the analysis kernej¢x) means that these noises are
uncorrelated for different scalgsand a fixedc. The goal is to estimate the unknown vector
a(x) = (ao(x), a1(x), ..., ay(x))T from the observations (98). When these estimates of
aj(x) are found the function estimate can be used in the form (89) with theotr(e
replaced by the estimates.

This nonparametric estimation via the MRextral decomposition is divided into
two steps. The first step transforms the data into noisy versions of the spectral coeffi-
cients@; (x). In the second step, these estimates of the spectral coefficients are filtered
using the heuristic, confirmed by simulation, that the spectral MR representation of the
signal is sparse and that the noise is eventgag over the empirical spectral coefficients.
Since the spectral MR representation usually is sparse, it is expected that only a small
fraction of the spectral coefficients is large and that the rest is small and thus negligible.
So if a spectral coefficient is small, it is reasonable to regard it as mostly noise and to set
it to zero; if it is large, it is reasonable to keep it. This is known as a hard-thresholding.
A soft-thresholding shrinks everything towards zero by a certain amount, thus reducing the
variance of the estimation at the cost of a higher bias.

If the noisya;(x) (98) are substituted in (89) instead @f(x) theny(x) = z(x), i.e.,
there is no filtering because the formula (8es a perfect reconstruction of any input
signalz(x). The mean square error of this straightforward estimate is given by the formula

J 2 J
E([Z gj(aj(x) —a; (x>)} ) =" G2E{(oj 1) — a;0))} (99)
j=0

j=0
asa;(x) are uncorrelated for different The additive structure of (99) with independent
contribution by the estimates of the different scales shows that the “diagonal” estimation,
i.e., independent estimation @f (x) for different is a reasonable idea.
Assume that this diagonal estimator(x) of «; (x) has a linear structure [31]
aj(x)=ya;(x), (100)

where 0< y; < 1is an attenuation factor of the estimate. Then the estimate (89) has a form

J J
=) aj(x)-q; =) vid;(x)qj. (101)

j=0 j=0
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Let us start from the “oracle” ligar thresholding assuming that(x) is known. It gives
the idealy; asy; = |a; (x)[2/(Ja; (x)|?> + 2) [31]. The oracle estimate cannot be realized
from the data since it depends on the unknewor). However, this estimate is useful, in
particular, as a bench mark for real estimates.

We consider four thresholding algorithms applied to the observations (98) which define
nonlinear estimate®; (x) of «; (x) in the model (100) by selection of the attenuation factor
y; as a nonlinear function @f; (x) (e.g., [3,31]):

(a) Hard-thresholding
yj(x)zl(‘&j(x)‘ >t'cr). (102)

Here and in what follows > 0.
(b) Soft-thresholding

vi)=1-r-0/la;x)),. (103)

where(a)+ = a if a > 0 and(a)+ = 0 otherwise.
(c) Sein’sthresholding

yj(x)z(l—t-a/‘&j(x)‘z)Jr. (104)
(d) Smoothed Sein’s thresholding
yi)= (=10 /lb;m[),. (105)

where|b;(x)|? is a mean value ofi;(x)|? calculated in a squareM; x M1) neigh-
borhood of the pixek.

It follows from the MR representation for differentiation (95) that the adaptive scale
derivative estimates can be given by the formulas (100)—-(105) providedattiay
are replaced by the correspondiﬁﬁ) x) = (a)g.k) ® 2)(x), Wherew;.k) are defined as
in (96). ' '

In this section me exploit a few well known and efficient diagonal thresholding methods
while there are many interesting alternatives (e.g., [3,5,6,11,31]). The thresholding overall
allows an interesting interpretation in the context of the sequence estimation or model
selection framework [1].

7. Optimality of the adaptive scale estimation

The best accuracy which can be achieved using nonparametric regression estimates (31)
and (32) equipped with the adaptive varying sdal®r y from the class (4) is restricted
by the convergence rate

(M—k)/(2M +2)
r(k)(x,h,j(x)) = O((IOSn) ) (106)
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It differs by the factor log from the formula for the ideal estimator (56) and shows that
the adaptive convergence rate is much slatlvan that is for the ideal estimator. One of the
fundamental results of the modern adaptive estimation theory says that thidoigpr is
unavoidable in adaptive estimation. Thus, there are no algorithms which could achieve the
better accuracy than shown in (106). Moreover, if this convergence rate is proved for some
algorithm it means that this algorithm is best possible in terms of the convergence rate.

The theoretical analysis produced fab Tregression in [9] and for multidimensional
regression in [33] shows that the ICI adaptive algorithms achieve the best convergence rate
and in this way the ICI adaptation is asymptotically optimal. Similar results for different
classes of function and different accuracy ciée@re proved for manyersions of Lepski's
adaptation algorithms [27,28,35].

The introduced MR spectral decompositiomsforms the original nonparametric es-
timation problem into the sequence estimation framework with the sequencgxf=
(wj ® y)(x) defined as the projection gfx) on the subspacég; forming the MR analy-
sis. In other terms, the filtering in the domain of the original argumeist replaced by
filtering in the MR spectrum domain.

The sequence estimation framework is quitééerent from the conventional nonpara-
metric regression methods that mainly exploit the smoothness of the estimated function.
The sequence estimation is based on the concept that the sparsity of representation is a
more basic notion than the smoothness and that the nonlinear thresholding can be the
powerful competitor to traditional linear rfeods even equipped with the adaptive scale
selection algorithms (see [1536], and references herein).

A simple example illustrates a source of the possible advantage of processing in the
spectral domain. Let us assume that a sigria) in the spectrum domain has the only one
kth component different from zero

yx) =ar(x)qr,  aj(x) =0, j#k.

Assume that the hard thresholding algorithm identify this nonzero component perfectly,
i.e.,&;(x) =0 for all j # k, with the function estimaté (x) = & (x)qx. This estimate is
unbiased with the variance

J
E{(y(@) =3’} =022 a=)_ Q. (107)

I=k

Further assume that, say ICI algorithmalsiakes a perfect estimate of the adaptive
scale as™ = k and gives the estimate &3 (x) = $5, (x). According to (94) this estimate
can be presented as

k k
(@)=Y ajx)qjk), gqik)=>_ 0u;.

j=0 1=

This estimate is also unbiased with the variance

k
E{(y@) = $n )} =02 > g2 (k). (108)
j=0
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Comparing (107) versus (108) assumes for simplicity thés the identity matrix, i.e.,

Agp; in (81) are orthonormal. Thegx = 1 andg; (k) = 1 and we obtain for the estimate
variancesE{(y(x) — $(x))%} = o2 versusE{(y(x) — n, (x))%} = 0k + 1). Thus, the
MR hard thresholding algorithm has a smaller variance values for all scaléswith the
maximum advantage for the highest frequency state/ when the variance of the ICI
estimate takes its maximum vala€(J + 1) versus the MR hard thresholding variance
E{(y(x) = ()%} = 0>,

This example shows that signals with sgaispectrum representation define a class
where the MR adaptive estimation is abtedemonstrate a better performance as com-
pare with the nonparametric methods based on the best scale selection.

The general analysis can be produced ideorto reveal the ability of the introduced
technique. Mainly, this sort of results are of asymptotic nature assuming that the number
of observations, the threshold and the numbey of scales inH are growing. It can be
proved that ifn, ¢, and scaleg ; are adjusted properly the best possible convergence rate
can be achieved. While this sort of analysis is beyond the scope of this paper we wish to
note that actually many accuracy results obtdifoe the wavelet techniques are applicable
for the considered estimates at least provided that the usual dyadic scale is assumed for

8. Algorithm implementation
8.1. Basic MR algorithm

Main steps of the MR algorithm:

(1) SetH ={hg>hy1>ho>--->hy},m,t,
(2) Forh=hj, j=0,...,J, calculate:
(@) The kernelgj,; (x) (28),
(b) The MR kernelsv;(x) (81),
(c) The estimates; (x) (97);
(3) Apply one of the thresholding rules (102)—(105) to the estimajes),
(4) Calculate the MR adaptive estireadccording to the final formulas (101).

Note. The step 2b defines a bank of the linear filters of different scal&ep 2c serves
for calculation of the estimates for gllandx.

The estimat& for Step 3 can be obtained from the high scale MR spectipy(m) as a
robust median estimate= median (|a;(x)|)/0.6745.

8.2. Multiple window estimation

A symmetric windoww is a good choice in (28) and (29)ifis isotropic in a neighbor-
hood of the estimation point. However,ifis anisotropic, as it happens near discontinuities
or image edges a nonsymmetric approximationyabecomes much more reasonable.
To deal with the anisotropy of multiple nonsymmetric window estimates are exploited
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Quadrant square segmentation of the pixel’s neighborhood
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©.0)
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F oz

1

Fig. 4. The quadrant’s segmentation of the neighborhood of the LPA cghte

[18,19]. It assumes that the neighborhood of the pixiel separated in a number overlap-
ping or nonoverlapping subareas. Let'ssuch subareas be introduced. Then, the adaptive
scale estimategl’!, k = 1,..., K, are calculated for each of these subareas and fused to-
gether in order to yield the final estimate. The four quadrant nonoverlapping segmentation
of the pixel neighborhood (see Fig. 4) is a simple and efficient way of fittifg8,19].
It assumes that the origin of the Euclidian rectangular coordi(@t®) is the centre of
the LPA estimate for each square quadrant subareas. For each of these quad@%ﬁﬁ]ts the
kernel estimates with the adaptive scale eaculated. Thus, for each pixel of the image
we are able to obtain four independent estimates based on different observations covered
by the corresponding quadrant supports respectively.

There are a number of ways how to fuse the quadrant’s estimates into the single final
one. In particular, the inverse-varianceiglged mean [9,18] or the sample mean can be
applied. The last estimate gives

1 K
y0 == 0. (109)
k=1

In our simulation we complete a set of the introduced quadrant’s windows by the sym-
metric window which is centered with respect to the origin paiit0). The multiple
window estimation significantly improves the performance of the algorithms. As a further
development of this idea special directional LPA kernels using narrow beam-wise supports
are proposed in [19].

8.3. Algorithm complexity

The calculation of the image estimaig(x) for given j is the linear convolution re-
quiring Ncony ~ nlogn operations: = nin». If the sectioning procedure is used for the
convolution (e.g., [34]), theNeony ~ nlogn ;, wheren ; is a maximum size of the square
mask of the kerneb;. These calculations are repeated for each ofirsubareas (quad-
rants) of the pixel neighborhood with theding the estimates according to (109). The
thresholding is produced times for each of th& subareas. Thus, overall the algorithm
complexity is proportional to/ - K - Nconv, WhereK =5 for the four quadrant and sym-
metric window estimate.



V. Katkovnik / Digital Sgnal Processing 15 (2005) 73-116 105

9. Parallelswith wavelets

Let us provide few facts from the wavelet theory which help to demonstrate similarity
and difference with the introduced MR nonparametric local polynomial regression ap-
proach. The standard MR continuous wavelet expansion fbrc@ntinuous datay(x),

x € R, has a form of the following parametric series (e.g., [11,31]):

ywE) =gk (X) + > ajijr(x), (110)
keZ keZ j
pok() =(x —k),  Yjx) =22y 2/ x k), (111)

where¢(x) and ¥ (x) are the scale function (father wavelet) and the wavelet (mother
wavelet) respectivelyZ is a set of integers,/2stands forjth dyadic scale. The scale
used in this paper is linked with the wavelet dyadic scale by the equatio@—/ . For the
orthonormalpo (x) andjx(x), x € R, the coefficients of the series (110) are calculated
as

ok = (Y, pok), ok =y, Vjk)- (112)

The inner products used in this section assumes integrals@R, for instancex j; =
Vv = 2 y )Y (x) da.
The orthonormality exploited in (112) means that

Wit, Vjx) = 8ij 8k, (por, ¥jk) =0, (por, pok) = ki, (113)

i.e., the intra- and enter-scale orthogonalitythod functions (111) is assumed. The intra-
scale orthogonality means that thunctions of the same scajebut different by the argu-
ment shift (variablek in (111)) are orthogonal, i.eqyrj;, ¥ k) = i, {par, wok) = 8ki- The
inter-scale orthogonality means the orthogonatdityall functions of the different scales,
e.0.,(Vik, ¥jk) = 8;j, as well as it is assumed also tbehogonalitybetween the father
and mother waveletépq;, ¥ ;¢) = 0. This double intra- and inter-scale orthogonality re-
guirements make a design of the wavelet function quite a complex art and confines the
classes of wavelet functions.

The father wavelep generates the following linear subspace& #tR):

Vo= :ym =Y plx—s)est Y el < oo},

Vi={f(x)=y@x): ye Vo},

Vi={f(x)=y@x): yeVo}, (114)
such that

(1) The subspaceg; are nestedy; C V; 1 and can be represented in the form

Visi=Vi@® Wi, j=01,..., (115)
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whered stays for the direct sum of the subspad&s, ;1 is an orthogonal complement
of the subspac®; and the complement subspadés for every scalg are defined by
the wavelets) i (x).

(2) The subspace)iZ,V; = Vo@7Z, W, is dense inL2(R).

These orthogonal subspaces define the wavelet MR analysis [11,31]. It means that any
y € L2(R) can be represented as a series (110)—(112).

Now let us compare the wavelet expansion (110)—(112) with the corresponding non-
parametric regression MR expansions (89) and (90):

e The wavelet expansiony (110) is a standard orthogonal series with invariant coef-
ficientsay and B (112). As a function ofx this series is defined by the wavelets
@ok(x), ¥k (x) (111). It means that (110) is a parametric expansion & contrast to
it the expansion (89) is nonpanetric as its dependence srcannot be parameterized
and goes through the coefficientg(x) and«; (x)) of the expansion. There are no
invariant coefficients in this expansion and the basis functions dependingveimat
is typical for the standard series.

e The kernelsyg andw;, j =1,...,J,in (89) and (90) can be interpreted as the father
and mother wavelets, respectively, accogdio their role in the analysis and the van-
ishing moment conditions (83). The kernej defines a lower frequency background
of the signal (father wavelet analysis) while the kernejs j =1,..., J, define a
higher frequency complements to this background (mother wavelet analysis).

e The subspace; andV; are different for the wavelet and the introduced local regres-
sion MR analysis. The principal difference is that in the waveléjsare orthogonal
complements o¥/; while there is no such orthogonality for the kernel MR analysis.

e The dyadic scale in (110)—(112) is a special point defining the wavelet design and fast
algorithms. In the local regression MR analysis the scale as defined by tlig iset
quite arbitrary. The only serious restrictions concern the linear independepgyaf
heH.

e The wavelet design for multivariable functions is a serious problem mainly solved by
using the direct product of theld wavelets. There is no principal difficulties with
design of the LPA kernels for any dimension.

We present here the classical results of the continuous integral wavelet transform with
x € R andy € La(R) versus the discrete MR local regression analysis for the kernel and
estimates defined for the discretes Z2 andy e [(Z?). We pragmatically consider only
discrete signals as it results in clear numerical algorithms. A generalization of the intro-
duced kernel MR is straightforward for continuous signals belongitgt®) or La(R?).

The discussed parallels concern only theictures and the basic ideas of these two
different transforms.

We may conclude that the ideas of the MR used for the wavelets (114) and (115) and for
the MR local regression (85)—(87) are quite similar. However, in the considered nonpara-
metric local polynomial version of the MR analysis many strict constrains typical for the
wavelet technique may be dropped. The nonparametric local polynomial approach is more
flexible and has more freedom for design of the filters (kernels) with concentration on the
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signal properties rather than deal with mathematical difficulties essential for the wavelet
design.

10. Simulation

As atest signal we use the 25@56 “cameraman”image (8 bit gray-scale) corrupted by
an additive zero-mean Gaussian noise. The LPA is used with the uniform square window
linear polynomialsn = 1, and a finite set of the scalés = {21, 11, 5, 3, 1}. The multi-
window estimate ofy is applied as described in Section\8e calculate five intermediate
estimates obtained for four quadrant and one symmetric windgwsspectively. Each of
these five windowing estimates is calculated as spatially adaptive using the developed MR
algorithms. The final estimate gfiis calculated as the mean (109) of these five adaptive
scale estimates.

Figure 5 illustrates how the MR expansion (89) works. It images the items of the MR
expansion;(x) - g; for the scalesji =0, 1,...,4. The figures are given for the noise-
less cameraman image. The first targix) - go presents a basic smooth lower frequency
component of the image. The further terms wjtl- O serve as the complements of the
basic one providing some finer higher frequency details. The images of the expansion
items become sharper for larger values of the sgal&€he sum of all five MR expan-
sion items shown in the last image of Fig. 5 gives a perfect reconstruction of the true
image.

Histograms of the images from Fig. 5 are shown in Fig. 6. They illustrate the concept
of the redundancy of the proposed MR nonparaimeegression expansion used in the
thresholding filtering. Indeed, the histogram foe= 0 covers all segmen0, 1] of possible
values ofy. The histograms for the complement components of the MR expansion are
narrower and more pick-wise. The last scate 4 has a smallest number of nonzero items
which are mainly concentrated in a narrow neighborhood of zero. Actually it means that the
space of the MR analysis fgr> 1 is sparse: only a few of items of the MR nonparametric
expansion are large and the rest are small and thus can be dropped.

In quantitative comparison of the algorithms the following criteria have been used:

(1) Root mean squared error (RMSE): RMSI%/% YL ) =)

(2) SNRin dB: SNR=10log;Y", [y(x)I%/ 3, ly(x) — $(x)|?%;

(3) Improvementin SNR (ISNR) in dB: ISNR 20log, (6 /RMSE);

(4) Peak signal-to-noise ratio (PSNR) in dB: PSNRO log g(max; |y (x)|/RMSE);
(5) Mean absolute error (MAE): MAE £ 3" |y(x) — $(x)I;

(6) Maximum absolute error: MAXDIE max, |y(x) — y(x)|.

These criteria allow to evaluate the performance of the algorithm quantitatively, while
PSNR is treated as a criterion linked with a visual image perception. However, it is ap-
peared that these criteria gives quite concordant conclusions while the visual evaluation
is an independent performance criterion. In what follows we mainly use only one criteria
ISNR.
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Scale=0 Scale=1

Scale=2

Scale=4 True Image

Fig. 5. The spectrum expansion of the noiseless cameraman image. The scale equal to zero corresponds to the first
term of this expansiofig(x)gg and presents a basic lower frequency components of the image. The further items
&;(x)q; with larger scaleg serve as the complements of this basic item and provide finer details. The images of
these items become sharper for larger values of the scale. The sum of all five MR expansion items shown in the
last image is identical to the original cameraman image.

In image denoising we compare the MR algorithms versus the ICI algorithm which
demonstrates a performance more less vadeint to the performance of the Lepski—
Spokoiny algorithm.

The threshold is a main design parameter of tHeésholding (102)—(105). Multiple
simulations and analysis produced for different images show thdt.2—-15 is a reason-
ably good value of this parameter for different scenarios. It is a sort of the rule of thumb
for selection of. For comparison we show also results for the oracle estimator.

Figure 7 shows ISNR as a function of SNR of the observations. The smoothed Stein’s
algorithm (M1 = 5 in (105)) demonstrates the best performance and outperforms the ICI
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Fig. 6. The histograms of the images shown in Fig. 5. The histogram for the scale equal to O is wide covering
nearly whole segmeti0, 1] even a bit wider that the histogram of the true image. The histograms for the comple-
ment components of the MR expansion for the scalesl, 2, 3, 4 become narrower with smaller frequencies of
nonzero items. The last scale 5 have smallest number of nonzero items which are well concentrated in a narrow
neighborhood of zero.

algorithm approximately on 1 dB. The soft-thresholding algorithm gives values which are
about 1 dB worse than those for the ICI algorithm. The basic Stein’s algorithm shows the
figures better than the ICI algorithm only for SNR15 dB. The oracle estimate naturally
demonstrates the best values of ISNR about 2 dB higher than the smoothed Stein’s algo-
rithm. We do not show results for the hard-thresholding as they are worse than those for
the soft-thresholding.

Examples of the reconstructed images can be seen in Fig. 8, where the noisy image,
the smoothed Stein’s, ICI and soft-thresholding images are shown. Visual evaluation is in
favor of the smoothed Stein’s algorithm.

Let us apply the MR algorithms for scale adaptive differentiation. We estimate the first
derivatives of the cameraman image intensityxan(horizontal axis) and on (verti-
cal axis). In all following results we use the simulation scenario and LPA parameters as
they are for image denoising. For the sake of simplicity of presentation and discussion
for differentiation we apply a single window estimate with the symmetric window func-
tion w and the soft-thresholding only. The scales for differentiation are defined by the set
H =1{21,15, 11,5, 3} with the minimum admissible scalgy = 3.



110 V. Katkovnik / Digital Sgnal Processing 15 (2005) 73-116

Fig. 7. ISNR as functions of SNR of the noisy observatifitthe cameraman image. The curves are given for the
following four algorithms: soft-thresholding (‘star’), Stein’s (‘plus’), smoothed Stein’s (‘0’), ICI (‘pentagram’).
The threshold = 1.2. The oracle estimation results are marked by ‘squares.’ Overall, the advantage is in favor of
the smoothed Stein’s algorithm, whidatperform the ICI algorithm about on 1 dB.

Figures 9 and 10 illustrate formation of the derivative estimates using the MR spectrum
analysis produced by the kerne,lék). Images in the figures correspond to the items of

the sum (95)&;") (x)qj(.k) for the scales =0, 1, ...,4 and the derivativek = (1, 0) and

k = (0, 1). The last sixth image is the derivative estimate (x) = Z]J‘=0 aﬁ.k) (x)q(.k)

,asit
is defined in (95). These MR spectrums areegivor the noiseless cameramanjimage. The
influence of the scale of the diffentiation operator is cleaesn. It varies from smoothed
derivative estimate given by the largest scale to the finer contour lines of the smaller scale
estimates.

In order to produce a quantitative analysfdifferentiation we need to know accurate
values of the derivatives. For such image as the cameraman these derivatives are unknown.
However, they can be evaluated numerically using the MR analysis. Let us assume that
these “accurate” numerical derivatives ardinied as the estimates given by the differen-
tiation kerneISg,(ll’O) (x) and g,(lo’l) (x) for the noiseless cameraman image provided that
the scaléh is equal to its minimum value. This minimum admissible scale value=is3
for the considered LPA witlhm = 2 and squared 22 support of the differentiating ker-
nels.

Table 2 provides data illustrating an improvement which can be achieved by using the
adaptive varying scale differentiators versus the differentiators with a fixed invariant scale.



V. Katkovnik / Digital Sgnal Processing 15 (2005) 73-116 111

Soft Thresh, ISNR=4.74dB Smoothed Stein, ISNR=6.6dB

Fig. 8. The images obtained by the soft thalsling, smoothed Stein’s and ICI algorithms. SNRO dB. Thresh-
old parameter = 1.2 for the MR algorithms and™ = 1.5 for the ICI algorithm. The smoothed Stein’s algorithm
demonstrates the best performance in terms of the ISNR values as well as visually.

Table 2

Accuracy of the derivative estimation

Invariant scale RSME MAE MAXDIF
h=21 0.0615 0.0275 0.4386
h=15 0.0599 0.0271 0.4590
h=11 0.0576 0.0263 0.4715
h=5 0.0399 0.0216 0.4274
h=3 0.0317 0.0252 0.1486
Adaptive scale 0.0219 0.0145 0.1310

The criteria values are given as a mean of the corresponding values obtained for the deriv-
atives onxq andxo.

The lines 1-5 of the table show the criteria values for the invariant scale estimators and
the last line corresponds to the MR soft-thresholding adaptive scale estifnatdr?2). It
can be concluded that the best scale invariant estimator has the scale equal to its minimum
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Scale=0 Scale=1
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1

Fig. 9. The spectrum expansion of the derivatly@x1. The noiseless cameraman image. The scale equal to zero

corresponds to the first term of this expans&éjro) (x)q(()l’o) and presents a basic lower frequency (smooth)

components of the derivative. The further items witlgéa scales serve as the complements of this basic item
and provide finer sharp details. The sum of all five MR expansion items shown in the last image is the MR
nonparametric regression estimate of the derivative.

value & = 3. It can be noticed also that these aeay figures are quite sensitive with
respect to the scale value.

Further, comparing the criteria values ofghiest scale invariant estimator versus the
corresponding values for the adaptive estimator, we can see quite a significantimprovement
in values of RMSE and MAE. It consists of about 30% for RMSE and about 40% for MAE.

A less improvement can be seen in values of MAXDIF which consists of about 10%. Visual
effects of the adaptive scale differentiation are illustrated in Fig. 11.



V. Katkovnik / Digital Sgnal Processing 15 (2005) 73-116 113

Scale=0 Scale=1
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Fig. 10. The spectrum expansion of the derivaily@x,. The noiseless cameraman image. The scale equal to

zero corresponds to the first term of this expansié(}'nl) (x)q(()o’ Y and presents a basic lower frequency (smooth)

components of the derivative. The further items witlgéa scales serve as the complements of this basic item
and provide fine sharp details. The sum of all five MR expansion items shown in the last image is the MR
nonparametric regression estimate of the derivative.

Images presented in Fig. 11 show the sum of absolute values of the estimates of the
derivativesdy/dx1 anddy/dx2. The left-hand size image is obtained by using the deriva-
tive estimators with the best invariant scale- 3. The right-hand side image corresponds
to the MR varying adaptive scale soft-thresholding differentiator. Noisy components of
the derivative estimates clearly seen ie fleft-hand side image are well cleared out in
the right-hand side image while the fine details of the edges of the cameraman image are
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Fig. 11. Images show the sum of absolute values of the estimates of the deridatideg anddy/dx,. The left

hand size image estimates are obtained using the derivative estimator lgé?‘r?élandgéo‘ D with the best found

invariant scale: = 3. The right hand side image is obtained by MR varying adaptive scale soft-thresholding
estimators withr = 1.2. Noisy components of the derivatives are clearly seen in the left-hand side image are
cleared out in the right hand side image while the fine edge details of the cameraman are well preserved.

preserved. Thus, visually and quantitatively, the adaptive scale MR differentiator demon-
strates better results as compared with the scale-invariant estimator with the best possible
oracle scale selection.

11. Conclusions

A new varying adaptive scale nonparametric local polynomial regression technique is
proposed. It is based on the LPA applied for design of the filters joined with the developed
spectral MR analysis. The usual scale adaptive local polynomial regression estimates are
based on selection of the best scale. The proposed MR analysis assumes multiscale trans-
form of observations, filtering of the obtained local polynomial regression spectrums and
fusing these filtered spectrums in the final estimate. This final estimate is composed from
the estimates of the different scales but not only single one as it is in the classical adaptive
nonparametric local polynomial regression. The MR estimate belongs to a more general
class of estimates and is able to provide a better accuracy.

The presentation of the MR analysis is given in terms of image processing. However,
the approach is applicable for data of any dimensionality defined on the regular or irregular
grids. For the regular grids the MR analysis methods allow fast implementations based on
the fast convolution algorithms. For the irregular grids this sort of fast algorithms is not
applicable.

The developed MR nonparametric technique is quite universal and can be applied for
many different tasks. The introduced spectral expansion allows to involve many traditional
techniques of image processing. In partisubne may weigh spectral components or pro-
duce their nonlinear transforms in order to obtain desirable image enhancement effects.
The MR nonparametric local polynomial technicean be applied for edge detection, im-
age improvements, recognition problems, etc.
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