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Abstract

In nonparametric local polynomial regression the adaptive selection of the scale paramete
dow size/bandwidth) is a key problem. Recently new efficient algorithms, based on Lepski’s a
proach, have been proposed in mathematical statistics for spatially adaptive varying scale de
A common feature of these algorithms is that they form test-estimatesŷh different by the scaleh ∈ H

and special statistical rules are exploited in order to select the estimate with the best pointwis
ing scale. In this paper a novel multiresolution (MR) local polynomial regression is proposed. Inste
of selection of the estimate with the best scaleh a nonlinear estimate is built using all of the te
estimateŝyh. The adaptive estimation consists of two steps. The first step transforms the da
noisy spectrum coefficients (MR analysis). On the second step, this noisy spectrum is filtered
thresholding procedure and used for estimation (MR synthesis).
 2004 Published by Elsevier Inc.

Keywords: Adaptive scale; Kernel estimation; Local polynomial regression; Multiresolution analysis;
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1. Introduction

The present work is devoted to studying the problem of adaptiveestimation of a multi-
variable function given by noisy data. The developed multiresolution approach (MR
algorithms are of a general nature and can be applied to a variety of univariate o
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tidimensional problems. However, we prefer to give the presentation in terms of i
processing as it allows a convenient and transparent motivation of basic ideas as well a
good illustration of results. Thus, let the function to estimate be a two-dimensional (2D)
image intensity given by noisy values on a 2D regular grid.

The adaptive estimation used in this paper is based on direct nonparametric po
estimation of the image intensity without any preliminary edge recovering. A nonpar
ric regression estimator is derived from the local polynomial approximation (LPA)
sliding window with a varying size (estimator’s scale) selected in a data-driven way.

Among others nonparametric approaches to regression estimation the LPA c
treated as probably one of the most theoretically justified and well studied. It is a
erful nonparametric technique which provides estimates in a pointwise manner base
mean square polynomial fitting in a sliding window (e.g., [2,7,10,14–16,30]). In term
image processing the LPA is a flexible tool to design 2D kernels (masks) having prescrib
reproducing properties with respect to polynomial (smooth) components of the signa
invariant and varying scale selection for the LPA has been studied thoroughly by
authors. Optimal, in particular, varying data-driven scale methods are of special in
for problems where the pointwise smooth approximation is natural and relevant.
denoising provides good examples of this sort of problems.

A crucial difference between the nonparametric LPA and the more traditional parame
ric methods, say the polynomial mean squared estimates, is that the latter are for
unbiased ones while the nonparametric estimates are biased and the reasonable c
the biasedness controlled by the scale parameter is of importance. In the nonpar
regression methods adaptive to unknown smoothness the adaptive selection of the
a key point.

The problem of optimal scale selection admitsan accurate mathematical formulation in
terms of the nonparametric approach, where the optimal scale is defined by a comp
between the bias and the variance of estimation (e.g., [7,16,30]).

The idea of the used Lepski’s adaptation method is as follows, [27–29,38]. Th
gorithm searches for a largest local vicinity of the point of estimation where the
assumption fits well to the data. The test-estimatesŷh(x) are calculated for window size
h from the setH , h ∈ H , and compared. The adaptive window size is defined as the la
of those windows which estimate does not differ significantly from the estimates c
sponding to the smaller window sizes. Special statistics are exploited in order to tes
hypotheses and select the best scale giving the optimal balance between the rando
and the biasedness of the estimate. The Lepski’s approach algorithms have introd
number of statistical rules which are proved to be efficient in theory as well as in ap
tions. The nonlinearity of the method is incorporated by an adaptive pointwise cho
the scale.

A novel spatial adaptivity introduced in this paper can be viewed as a develop
of two independent ideas: wavelet multiresolution analysis (e.g., [11,31]) and a poin
adaptive scale selection based on the Lepski’s approach.

Instead of selection of the estimate with the best scaleh we build a nonlinear estimat
using all of the available test-estimatesŷh(x), h ∈ H . The adaptive estimation is divide
into two successive steps. The first step transforms the data into noisy spectrum
cients (MR analysis). In the second step, these coefficients are filtered by the thresh
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procedure and used for estimation (MR synthesis). The LPA based filters are exploi
the nonparametric (pointwise) MR spectrum analysis and synthesis.

In this way we introduce the extension of the conventional scale adaptive nonpara
regression concept and yield a wider class of the adaptive scale regression estimat
a potentially better performance.

The contribution of this paper is two-fold. Firstly, we present a summary of the
parametric LPA methods including the basic ideas, algorithms for function and deri
estimation, the accuracy analysis. This summary is concluded by a brief review of som
recent methods for selection of the adaptivevarying scales. Secondly, the new MR loc
polynomial regression is introduced as a valuable alternative to the conventional ad
scale nonparametric regression.

The rest of the paper is organized as follows. In Section 2 the observation model a
as the estimation problem are discussed. The LPA method, motivation, basic algo
and the accuracy analysis are presented in Sections 3 and 4. The Lepski’s adaptive varyi
scale algorithms are reviewed in Section 4.3. The nonparametric regression spectr
MR analysis are introduced in Section 5. The multiresolution filtering based on the
spectrum thresholding is presented in Section 6. The optimality of the adaptive scal
regression estimation is discussed briefly in Section 7. Implementation of the intro
algorithms as well as their complexity is a subject of Section 8. Similarity and differ
of the MR local polynomial regression versus the wavelet MR techniques are disc
in Section 9. In Section 10 simulation results are presented. It is shown that appro
filtering of the noisy MR spectrum allows to achieve a better performance that it c
done using the more traditional nonparametricapproach based on selection of the b
varying adaptive scale.

2. Observation model

The following model, commonly used for image denoising, is assumed:

z(x) = y(x) + σε(x), (1)

where an intensityy of the underlying image is defined as a function of two variab
y ∈ R, ε is an additive noise. It is assumed that all functions in (1) are defined onD
rectangular regular gridx ∈ X ⊂ R2 with pixelsx = (x1, x2):

X = {
(x1, x2): x1 = s1∆, x2 = s2∆

}
, s1 = 1, . . . , n1, s2 = 1, . . . , n2, (2)

wheres1, s2 are integers,∆ denotes the sampling interval, andn = n1n2 is a total number
of observations. The random noiseε is assumed to be standard Gaussian i.i.d. for diffe
x with E{ε2} = 1. The basic objective is to reconstruct (estimate)y(x) and derivatives o
y(x) for anyx ∈ X from noisy observations{z(x), x ∈ X} with the pointwise mean square
error (MSE) risk which is as small as possible.

It is assumed thaty is unknown deterministic. For stochasticy it means that the mai
intention is to obtain the best result for every realization ofy even if they are generated b
a probabilistic phenomenon.
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The discrete observations{y(x}, x ∈ X} are obtained as samples of an underlying c
tinuous argumenty(x), x ∈ R2. Different hypotheses on thisy can be applied for derivatio
and analysis of algorithms. Here we follow the nonparametric regression approach a
ing that a parametric representation ofy as a function ofx, say in the form of a serie
or function with reasonably small number of invariant parameters, does not exist or u
known.

The following piecewise model ofy is appropriate for methods considered in this pa
Let a finite support ofy can be separated intoQ regionsAq , q = 1, . . . ,Q, each of them
is a connected set with an edge (boundary)Gq . The functiony is assumed to be smoo
differentiable within each regionAq :

y(x) =
Q∑

q=1

yq(x)1[x ∈ Aq], (3)

where1[x ∈ Aq] is an indicator of the regionAq , 1[x ∈ Aq] = 1 if x ∈ Aq and zero other
wise, andyq is a continuous differentiable function belonging to the class

F|r |(L̄|r |) = {
y: max

r1+r2=|r | |y
(r)(x)| = L|r |(x) � L̄|r |, ∀r1 + r2 = |r|, x ∈ R2}. (4)

Here and in what followsr = (r1, r2) is a multi-index,r1, r2 nonnegative integer and|r| =
r1 + r2. A derivative corresponding tor is y(r)(x) = ∂r1+r2

∂x
r1
1 ∂x

r2
2

y(x), L̄|r | is a finite constan

in (4).
The piecewise constant model ofy

y(x) =
Q∑

q=1

aq1[x ∈ Aq ], 0� aq � 1, (5)

is a particular case of (3) with constant values within each regionAq .
In the models (3) and (5)yq , aq as well as the regionsAq are unknown. The boundarie

Gq define change points of the piecewise smoothy. The estimation ofy can be produce
in two different ways. One of the possible approaches deals with a two-stage pro
including estimation of the boundariesGq on the first stage, which defining the regio
Aq . The second stage is a parametric or nonparametric fittingyq onAq .

Another approach is connected with the concept of spatially adaptive estimati
this context, the change points or, more generally, cusps in the curves can be
as a sort of an inhomogeneous behavior. One may therefore apply the same procedu
for instance nonlinear wavelet, ridgelet, curvelet estimators for allx, and the analysi
focuses on the quality estimation when the change-points are incorporated or not
porated in the model. Under this approach, the main objective is to estimate the
tion and not location of change-points which are treated as features of the functio
face.

In this paper we follow the second approach. The objective is to develop a m
which simultaneously adapts to varying smoothness of the estimated function and
is sensitive to discontinuities of the function and its derivatives.
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3. Local polynomial approximation

3.1. Foundations

The idea of the LPA is simple and natural. It is assumed that the functiony is well
approximated by a polynomial in a neighborhood of the point of interestx. We find the
coefficients of the polynomial fit by the weighted least square method and use this a
imation in order to calculate the estimate for the point of interestx called also “centre”
of the LPA. In fact, the local expansion is applied in order to calculate the estima
this point of interest only. For the next point the calculations are repeated. This poin
procedure determines a nonparametric character of the LPA estimation.

The linear LPA estimators have a very long prehistory (e.g., [2,7,14–16,30]). The
a very popular tool in statistics and signal processing with application to a wide vari
the fields for smoothing, filtering, differentiation, interpolation and extrapolation.

Note that the LPA has appeared in signal processing in a number of modific
and under different names: sliding (moving) least square, Savitzky–Golay filter, loc
gression, reproducing kernel method, moment filters, etc. We prefer the term LPA
reference to publications on nonparametric estimation in mathematical statistics where t
advanced development of this technique can be seen.

In this section we summarize the well known concepts of the discrete LPA.
Let x ∈ R2 be a “centre” (reference point) of the LPA. Then, the estimate forv ∈ R2 in

the neighborhood of the centrex is presented as an expansion:

y(x, v) = CT φ(x − v),

φ(x) = (
φ1(x),φ2(x), . . . , φM(x)

)T
,

C = (C1,C2, . . . ,CM)T , (6)

whereφ(x) ∈ RM is a vector of linear independent 2D polynomials of the powers from
0 up tom, C ∈ RM is a vector of parameters of this model. In particular, the follow
polynomials can be exploited

x
k1
1 x

k2
2

k1!k2! , 0 � k1 + k2 � m, k1, k2 � 0. (7)

A total number of these 2D polynomials is equal toM = (m+ 2)(m+ 1)/2. Form � 3 we
obtain

φ1 = 1 for m = 0,

φ2 = x1, φ3 = x2 for m = 1,

φ4 = x2
1/2, φ5 = x2

2/2, φ6 = x1x2 for m = 2,

φ7 = x3
1/6, φ8 = x3

2/6, φ9 = x2
1x2/2, φ10 = x1x

2
2/2 for m = 3, (8)

with M = 1,3,6, and 10 form = 0,1,2,3, respectively.
The term “centre” does not assume a central position ofx in the neighborhood. It only

emphasizes that the LPA is exploited in order to obtain the estimate for this particular
of the argument ofy.
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Table 1

Window name w(x)

Rectangular symmetric 1,|x| � 1/2,
Rectangular nonsymmetric 1, 0� x � 1,
Exponential 1

2 exp(−|x|),
Gaussian 1√

2π
exp(−x2/2),

Epanechnikov 3
4(1− x2), |x| � 1,

Bisquare window (1− x2)2, |x| � 1,
Tricube (1− |x|3)3, |x| � 1,
Triweight window (1− x2)3, |x| � 1.

The conventional quadratic criterion function is applied in order to find the coefficieC

in (6):

Jh(x) =
∑
v∈X

wh(x − v)
(
z(v) − y(x, v)

)2
, (9)

where{z(v), v ∈ X} are discrete observations and the window

wh(x) = w(x/h)/h2 (10)

is used to formulate mathematicallythe fitting localized in a neighborhood ofx, while the
scale parameterh > 0 determines the size of the neighborhood. The windowing weigw

is usually assumed to satisfy the properties:

w(x) � 0, w(0) = max
x

w(x),

∫
R2

w(x) dx = 1,

∫
R2

w2(x) dx < ∞.

(11)

The multiplicative window

w(x) = w1(x1)w2(x2), (12)

wherew1 andw2 are functions of scalar (1D) arguments, is commonly applied. If th
window is rectangular all observations enter in the criteria (9) with equal weights. No
tangular windows such as triangular, quadratic, Epanechnikov, and so on (see [7,
usually prescribe higher weights to observations which are closer to the centrex. Some
typical 1D window functions used in local regression estimates are shown in Table
us also mention windows conventional in signal processing and associated with the nam
Kaiser, Hamming, Bartlett, Blackman, Chebyshev, etc. Note that theB-splines also can b
used as the windows for the LPA.

There is a simple way to generate nontrivial 2D windows different from the multiplica
tive ones (12). Let us replace the argumentx1 in w1(x1) by the norm‖x‖, wherex is a
vector and the norm is not exclusively Euclidian. Then after the corresponding norm
tion we obtain 2D window functions satisfying (11).

Let ŷh(x) be the LPA estimate ofy(x), where the subindexh shows a dependence
the estimate on the scale parameter. This LPA estimate ofy(x) is defined according to
(6) asŷh(x) = y(x, v)|v=x = y(x, x), i.e., the expansion (6) is used for calculation of
estimate forv = x only.
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Actually, it is one of the key ideas of the pointwise nonparametric estimate de
We introduce the estimate as the expansion in the local neighborhood of the pointx, we
estimate the coefficients of this expansion, and finally we use this expansion only in
to estimate at this argument valuex. Then, it follows from (6) that

ŷh(x) = y(x, v)|v=x = CT φ(0) (13)

and for the polynomials (7) it yields

ŷh(x) = y(x, v)|v=x = C1. (14)

Let ŷ(k)
h (x) be the estimator of akth derivativey(k)

h (x) of y(x). Herek = (k1, k2) is a multi-
index withk1, k2 nonnegative integers. The LPA model (6) of the powerm can be used fo
estimation of any derivative of the orderk, |k| � m. According to the idea of the pointwis
estimation we derive these estimates in the form

ŷ
(k)
h (x) = ∂ |k|y(x, v)

∂v
k1
1 ∂v

k2
2

∣∣∣∣
v=x

= (−1)|k|CT φ(k)(0),

φ(k)(0) = ∂ |k|φ(x)

∂x
k1
1 ∂x

k2
2

∣∣∣∣
x=0

. (15)

This definition of the derivative estimator assumes that differentiation in (15) is
with respect tov as the approximationy(x, v) is a function ofv provided that the LPA
centrex is fixed. After the differentiation we assumev = x.

For the polynomials (8) the derivative estimates (15) are simple:

ŷ
(1,0)
h (x) = −C2, ŷ

(0,1)
h (x) = −C3, ŷ

(2,0)
h (x) = C4,

ŷ
(0,2)
h (x) = C5, ŷ

(1,1)
h (x) = C6, etc. (16)

Thus, the coefficients of the LPA model (6) and (7) gives the estimates of the fun
and of the corresponding derivatives. This link of the coefficientsC with the function and
derivative estimation is important for understanding of the LPA.

The idea of the local approximation is applicable not only for the polynomials in
form (7) but also for different polynomials as well as for any basis functionsφ, which are
reasonable for the local fit. In this case, the estimates of the function and the derivatives a
defined by the general formulas (13) and (15)and each estimate (function and derivati
can depend on all items of the vectorC. The correspondence of the function and der
tive estimates with the items of the vectorC shown in (14) and (16) is valid only for th
polynomials (7).

It deserves to be mentioned that (15) is not a unique definition of the derivative
mate. The estimate of the derivative can be defined as the corresponding derivative
function-estimatêyh. Then

ŷ
(k)
h (x) = ∂ |k|

∂x
k1
1 ∂x

k2
2

ŷh(x). (17)

In general, the estimates (15) and (17) can be quite different at least the derivat
the window functionw appear in (17) while they do not appear in (15) [14,16].
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3.2. Nonhomogeneous kernel estimates

According to (9) the coefficientsCk , k = 1, . . . ,M, have to be found as a solution of t
following quadratic optimization problem:

Ĉ(x,h) = arg min
C∈RM

Jh(x). (18)

In this notation the dependence of the solutionĈ(x,h) on the scaleh and the variablex is
emphasized.

The solution is in the form

Ĉ(x,h) = Φ−1
h

∑
v∈X

wh(x − v)φ(x − v)z(v),

Ĉ(x,h) = (
Ĉ1(x,h), . . . , ĈM(x,h)

)T
, (19)

Φh =
∑
v∈X

wh(x − v)φ(x − v)φT (x − v), (20)

provided that detΦh �= 0. If the matrixΦh is singular a pseudoinverseΦ#
h can be used fo

solution of (18).
SubstitutingĈ(x,h) (19) into (13) and (15) instead ofC we have the function and th

derivative estimates in the kernel form:

ŷh(x) =
∑
v∈X

gh(x, v)z(v),

gh(x, v) = wh(x − v)φT (x − v)Φ−1
h φ(0), (21)

and

ŷ
(k)
h (x) =

∑
v∈X

g
(k)
h (x, v)z(v),

g
(k)
h (x, v) = (−1)|k|wh(x − v)φT (x − v)Φ−1

h φ(k)(0), (22)

where for the polynomials (7)

φ(0) = [1,0, . . . ,0, . . . ,0]T (23)

is a zero vector-columnM × 1 with only 1th elements equal to 1, and

φ(k)(0) = [0, . . . ,0, 1︸︷︷︸
k1,k2th

,0, . . . ,0]T (24)

is also a zero vector-columnM × 1 with the only element equal to 1 corresponding
location of the polynomialxk1

1 x
k2
2 /k1!k2! in the vectorφ.

Thus, the LPA estimates are presented in the form of the linear filters (21) and
where for the estimateŝy(k)

h and for the kernelsg(k)
h the subindexh indicates a dependenc

on this important scale parameter.
It is assumed in (2) thatX is the regular grid. However, the estimates in the form (1

(22) are quite universal. They can be applied to any data given on regular or irregular
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in particular, to data with lost observations and for data interpolation when the centrx of
the LPA does not belong to the grid of the observationsX.

It is assumed in the above formulas that the summations
∑

v∈X is performed within
boundaries of the image supportX. It means an accurate LPA fitting inside of these bou
aries. There is no boundary problems for these estimates typical for convolution est
considered latter.

The pointwise LPA estimates as it is in (21) and (22) insure the reproducing prop
of the estimates with respect to the polynomial components ofy, i.e., for any polynomia
ym with the power less or equal tom the estimates of the function and the derivatives
accurate:∑

v∈X

gh(x, v)ym(v) = ym(x),
∑
v∈X

g
(k)
h (x, v)ym(v) = ∂ |k|ym(x)

∂xk
, x ∈ R2. (25)

Concerning the terminology we note that in statistics the weightsgh(x, v) andg
(k)
h (x, v)

are named “kernels” and the estimates (21)and (22) are “kernel estimates.” The te
“bandwidth” is used in statistics for the window size (scale) parameterh. In image process
ing the term “mask” is commonly used for the weightsgh(x, v) andg

(k)
h (x, v).

If the windoww has a finite support. For examplew(x) = 0 if ‖x‖ =
√

x2
1 + x2

2 > 1.
Thenwh(x) = 0 for ‖x‖ > h. Thus, the parameterh defines the window size as well a
the support of the masksg(k)

h (x, v) andgh(x, v). The mask with a finite support defines
finite impulse response (FIR) linear 2D filter.

3.3. Homogeneous kernel estimates

In this paper we mainly concern in a specialcase of the LPA estimate when the kern
are homogeneous shift-invariant depending on the difference of the argumentsx andv

only. Then, the estimates can be presented as convolutions of these kernels and 2D image
data.

It happens if the gridX in the formulas forgh andg
(k)
h is regular infinite,X = {x1 =

s1∆, x2 = s2∆, s1, s2 ∈ Z}, whereZ is a set of integers. In this case the matrixΦh in (21)
and (22) dependents only on the differencex − v and the kernels defined by the formula

gh(x, v) = gh(x − v), g
(k)
h (x, v) = g

(k)
h (x − v), x, v ∈ X.

Then, the estimates (21) and (22) can be represented as the convolutions:

ŷh(x) =
∑
v

gh(x − v)z(v) =
∑
v

gh(v)z(x − v), (26)

ŷ
(k)
h (x) =

∑
v

g
(k)
h (x − v)z(v) =

∑
v

g
(k)
h (v)z(x − v), (27)

with the shift-invariant kernels

gh(x) = wh(x)φT (x)Φ−1
h φ(0), (28)

g
(k)

(x) = (−1)|k|wh(x)φT (x)Φ−1φ(k)(0), (29)
h h
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Φh =
∑
v

wh(v)φ(v)φT (v). (30)

Hereafter
∑

v means the double sum
∑∞

s1=−∞
∑∞

s2=−∞ over the infinite regular 2D grid
with v1 = s1∆ andv2 = s2∆.

The convolutions (26) and (27) assume that the observationsz(x) defined on the finite
grid (2) are completed by zeros (zero padded) outside of this finite grid for the in
regular grid.

In what follows the conventional compact notation is used for the convolutions (26
(27)

ŷh(x) = (gh � z)(x), (31)

ŷ
(k)
h (x) = (

g
(k)
h � z

)
(x). (32)

The kernels (28) and (29) satisfy to the polynomial vanishing moment conditions followin
from (25):∑

v

gh(v)vr = δ|r |,0, 0 � |r| � m, (33)

1

r!
∑
v

g
(k)
h (v)vr = (−1)|k|δk1,r1 · δk2,r2, 0� |k| � m, 0 � |r| � m. (34)

The multi-indexes notation means here thatk = (k1, k2), r = (r1, r2), andvr = v
r1
1 · v

r2
2 ,

|r| = r1 + r2, 1/r! = (1/r1!)(1/r2!).
The vanishing moment conditions define the polynomial smoothness of the kerne

support of the kernels is identical to the support of the windowwh.
The first condition (33) means that (26) is a smoothing operator of the orderm. The

second condition means that the kernelg
(k)
h (x) defines the differentiating operator (27)

the orderm giving the estimate of the derivative∂k1+k2/∂x
k1
1 ∂x

k2
2 . The both smoothing an

differentiating operators give the accurate results for any polynomialy of the power less
or equal to the order of the kernelsm.

3.4. Integral homogeneous estimates

Provided that the sampling interval∆ and the scaleh are small, such that∆, h → 0 and
h/∆ → ∞, the discrete convolutions (31) and (32) are transformed to the correspo
integral forms

ŷh(x) = 1

h2

∫
R2

g
(
(x − u)/h

)
y(u) du =

∫
R2

g(u)y(x − hu) du, (35)

ŷ
(k)
h (x) = 1

h2+|k|

∫
R2

g(k)
(
(x − u)/h

)
y(u) du

= 1

h|k|

∫
2

g(k)(u)y(x − hu) du, x ∈ R2, (36)
R
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g(x) = w(x)φT (x)Φ−1φ(0), (37)

g(k)(x) = (−1)|k|w(x)φT (x)Φ−1φ(k)(0), (38)

Φ =
∫
R2

w(x)φ(x)φT (x) du, (39)

whereu = (u1, u2),
∫
R2(·) du = ∫ +∞

−∞
∫ +∞
−∞ (·) du1du2.

Some extra technical assumptions are required for the existence of the above in
and justification of the corresponding limit passages from the sums (31) and (32)
integrals (35) and (36). They are satisfied, in particular, if the windoww is a bounded
finite support function andy(x) is continuous.

For the integral kernels the vanishing moment conditions (33) and (34) are as fol∫
R2

g(x)xr dx = δ|k|,0, 0 � |r| � m, (40)

1

r!
∫
R2

g(k)(x)xr dx = (−1)|k|δk1,r1 · δk2,r2, 0 � |k| � m, 0 � |r| � m. (41)

3.5. Restricted nonlinear LPA estimates

An 8 bit gray-scale image is defined by its intensity function taking 28 = 256 different
values. This intensity is nonnegative and takes values from 0 up to 255. After normali
these conditions have a form

0 � y(x) � 1. (42)

Thus,y is an arbitrary nonnegative function normalized to the interval[0,1]. These
conditions can be naturally incorporated in the LPA estimate by modifying (18) to
constrained optimization:

Ĉ(x,h) = arg min
0�C1�1,

C∈RM−1

Jh(x), (43)

whereC = (C2, . . . ,CM)T is the vectorC with the excluded first itemC1.
The constrains (42) according to (14) can be imposed only onC1 while all other items of

C continue to be unconstrained. After the estimates ofC are found from (43) the intensit
and the derivatives are calculated according to the usual formulas (14) and (16).

Concerning the estimate (43) a number of moments can be noted. First, in ge
this estimate is nonlinear with respect to the observations. Its calculation is a much
complex problem as comparedwith the linear estimate. However, if the linear estim
Ĉ1(x,h) found from (18) belongs to the interval[0,1] then the solutions of (18) and (43
are identical. It gives a simple logic to deal with this nonlinear problem. We start
calculation of the linear estimates for allx and test (42). In this way we identify the pixe
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violating the conditions (42) and the nonlinear constrained estimates (43) are calc
only for these pixels.

Second, if the linear estimate does not satisfy to (42) the solutions of the unconst
and constrained optimizations can be different by all elements of the vectorC not only
by C1. The constrains on the intensity functioncan influence the estimates of the deriva
tives and enable one to yield both the more accurate estimate of the function as well as t
derivatives.

The following compromise is used in order to avoid the complexity of (43). The
timates are obtained in two independent steps. The first step is a solution ignori
constrains onC1. The second step defines the estimates according to the equations:

ŷh(x) = [
(gh � z)(x)

]
+, (44)

ŷ
(k)
h (x) = (

g
(k)
h � z

)
(x), (45)

where[·]+ stays for the projection on the segment[0,1], which means[x]+ = x for 0 <

x � 1, [x]+ = 0 for x � 0, and[x]+ = 1 for x > 1. Thus, the estimate ofC1 obtained
from the unconstrained optimization is replaced by its projection on the interval[0,1]. All
others elements of the vectorC are assumed to be equal to the corresponding items o
vectorĈ(x,h).

The estimate built in this way can be treated as an approximation of the accurate n
linear constrained solution (43). It is a conventional practice in image processing t
into consideration the nonnegativity and upper bound of the image intensity by the s
projection of the estimate on the interval[0,1].

In what follows for the sake of simplicity we use the linear estimate given as the c
lutions (26) and (27).

4. LPA accuracy

4.1. Asymptotic bias and variance

A value of the scaleh is a crucial point in the efficiencyof the local estimators (e.g
[7,16,19,30]). Whenh is relatively small, the LPA gives a good smooth fit of functions
then fewer data are used and the estimates are more variable and sensitive with re
the noise. The best choice ofh involves a tradeoff between the bias and variance of
estimate. In order to clarify and formalize the meaning of this tradeoff we present
accuracy results.

In what follows in this chapter we presentthe accuracy results in the terms of thekth
derivative estimation as the function estimation is a special case withk = 0. The estimation
error is a difference between the truey(k) and the estimatêy(k)

h :

ey(k)(x,h) = y(k)(x) − ŷ
(k)
h (x).

This error is composed from the systematic (bias) and random components corre
ing to the deterministicy and the random noiseε. We have, respectively, for the bias

my(k)(x,h) = y(k)(x) − E
{
ŷ

(k)
(x)

}
,
h
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σ 2
y(k)(x,h) = E

{[
y(k)(x) − E

{
ŷ

(k)
h (x)

}]2}
,

whereE{·} denotes the mathematical expectation calculated overε.
The asymptotic formulas formy(k)(x,h) andσ 2

y(k)(x,h) can be given in the integral form
with the analytical dependence on the scaleh. This sort of results are basic for theoretic
accuracy analysis and scale optimization.

Hypotheses assumed:

(H1) y is continuous andr-differentiable at the pointx such thaty ∈ Fr(L̄r ) (4).
(H2) The windoww is finite support continuous.

Let us use the notation

M = min
{
m + 1, |r|}, (46)

wherem is the order of the LPA andr is a multiple-index defining the smoothness (de
ative order) ofy in the classFr .

Let the kernel LPA estimates be defined by (31) and (32), where|k| < M, and the
sampling interval and the scale parameter be small such that∆, h → 0, andh/∆ → ∞.

Provided that the hypotheses (H1) and (H2) hold and the derivativesy(r)(x) in (4) are
continuous Lipshitz functions∣∣y(r)(x) − y(r)(y)

∣∣ � L‖x − y‖γ , γ > 0, (47)

the bias and the variance of the estimateŷ
(k)
h (x) are defined by the formulas

my(k)(x,h) = (−1)M−1hM−|k| ∑
|r |=M

y(r)(x) · 1

r!
∫
R2

urg(k)(u) du + o(hM−|k|), (48)

σ 2
y(k)(x,h) = σ 2 ∆2

h2+2|k|

∫
R2

(
g(k)(u)

)2
du + o

(
∆2

h2+2|k|

)
, (49)

whereg(k) is given in (38) and a smallo(x) means thato(x)/x → 0 asx → 0.
The derivation of these formulas is based on quite routine techniques using, in par

the multivariable Taylor series fory(x − hu) on h. Hypothesis (H2) and (47) enable t
existence of the integral estimates (35) and (36) as well as the corresponding lim
integrals in (48) and (49).

Omitting the small termso(·), the following inequality can be derived from (48)∣∣my(r)(x,h)
∣∣ � hM−|k|LM(x)A(k)

e , A(k)
e =

∑
|r |=M

1

r!
∣∣∣∣
∫
R2

urg(k)(u) du

∣∣∣∣, (50)

where max|r |=M |∂ry(x)/∂xr | � LM(x), according to (4), and (49) is rewritten as

σ 2
y(k)(x,h) = σ 2 ∆2

h2+2|k| B
(k)
e , B(k)

e =
∫

2

(
g(k)(u)

)2
du. (51)
R
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We can see from (50) that the bias error is restricted byLM(x) what is the absolute
value of the maximumMth order derivatives ofy(x). The constantA(k)

e is defined by the
moments of the kernel. The scaleh is an important parameter for the bias: a smallh means
a small bias. The upper bound of the bias is restricted by the value ofh of the powerM for
the function estimation and of the powerM − (k1 + k2) for the derivative estimation. Fo
smallh it giveshM−k1−k2 > hM . Thus, the bias of the derivative estimate is asymptotic
larger than the bias of the function estimate. Note also thatM = min{m + 1, |r|} means
that while we increase the powerm of the LPA the bias becomes smaller. However, t
effect is valid untilm + 1 < |r|.

The variance formula (51) shows that the variance for the derivative estimation (
orderh−2(1+k1+k2)) is larger than the variance for function estimation (of the orderh−2).
Thus, in terms of the bias error as well as of the level of the random error the deri
estimation is a more complex problem than estimation of the function itself. The h
order derivative (largerk1 andk2) automatically means that the estimation errors becom
larger.

4.2. Scale optimization

The formulas (50) and (51) define the pointwise mean squared riskr(k)(x,h) for thekth
derivative estimation as

r(k)(x,h) � E
(
y(k)(x) − ŷ

(k)
h (x)

)2 �
(
hM−|k|LM(x)A(k)

e

)2 + σ 2 ∆2

h2+2|k| B
(k)
e . (52)

The upper bound ofr(k)(x,h) is convex onh. Its minimization onh gives the “ideal”
value of the scale found from the equation

∂

∂h

[(
hM−|k|LM(x)A(k)

e

)2 + ∆2σ 2

h2+|k| B
(k)
e

]
= 0.

Further calculations give for this ideal scale

h∗
k(x) =

(
∆2 σ 2B

(k)
e

(LM(x)A
(k)
e )2

γ 2
k

)1/(2M+2)

, γ 2
k = 1+ |k|

M − |k| , (53)

whereγk is the ratio of the absolute value of the bias to the standard deviation o
derivative estimate ath = h∗

k(x)

γk = ∣∣my(k)

(
x,h∗

k(x)
)∣∣/σy(k)

(
x,h∗

k(x)
)
. (54)

This parameter is a constant (invariant onx) depending onM = min{m + 1, |r|} and|k|
only. Thus, it depends on the LPA powerm, the smoothness of the function defined by|r|
and the order|k| of the estimated derivative.

It can be verified also that∣∣my(k)

(
x,h(x)

)∣∣{<γk · σy(k)(x,h), if h < h∗
k(x),

>γk · σy(k)(x,h), if h > h∗
k(x).

(55)

It shows thatγk · σy(k)(x,h) is a critical value for the ideal bias. Forh < h∗
k(x) the bias

is smaller and forh > h∗(x) the bias is larger than this critical value. The ICI rule
k
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the adaptive varying scale selection considered in Section 4.3 is based on testing of
hypotheses:h ≶ h∗

k(x).
Let the number of observations (image samples)n and the sampling interval∆ satisfy

to the equationn ≈ 1/∆2, which means that the physical size of the image is 1× 1. By
substitutingh∗

k(x) from (53) into (52) we obtain the ideal pointwise mean squared risk
be interested only in the order of this risk for largen we immediately can see that√

r(k)
(
x,h∗

k(x)
) = O

(
n−(M−|k|)/(2M+2)

)
. (56)

This risk approaches zero for a large number of observations and proves the mean
convergence of the studied estimates. The convergence rate is defined by the param

ψ = M − |k|
2M + 2

= min{m + 1, |r|} − |k|
2 min{m + 1, |r|} + 2

, |k| < M. (57)

It is seen from (57) that larger values ofM result in the higher convergence rate wh
is restricted by the limit valueO(n−1/2) for largeM.

The converge rate (56) is an ideal one and cannot be achieved in practice as it req
knowledge of the derivatives of the estimatedfunction for the ideal varying scale selectio
However, it gives an useful information on the potential accuracy which can be use
benchmark for evaluation of algorithms.

Assumingk = 0 the corresponding results can be obtained from the above formul
the function estimation. The ideal scale is

h∗
0(x) =

(
∆2 σ 2B

(0)
e

(LM(x)A
(0)
e )2

γ 2
)1/(2M+2)

, γ 2 = 1

M
, (58)

and the convergence rate following from (56) is defined as√
r(0)

(
x,h∗

0(x)
) = O

(
n−M/(2M+2)

)
.

The convergence rate of the derivative estimates is slower than that for the functio
estimation.

4.3. Adaptive scale selection

The problem of the scale (window size) selection is always solved in favor of the l
scale for any parametric estimate as this estimate is unbiased for any scale and th
scale means a smaller variance. For the nonparametric estimation the situation i
complex. If there is no noise the scale should be selected as small as possible since a
scale means a smaller bias. However, if there is a noise the scale should be incre
order to suppress noise effects. The accuracy analysis produced in Section 4.2 confi
illustrates this claim. It demonstrates that there is the ideal scale which defines the o
mean squared balance between the deterministic bias errors and the variance of
errors.

In many signal processing applications this nonparametric nature of the local appro
imation is ignored. It is assumed that the polynomial model is accurate, noise effects
neglected and the window is taken of the minimum size sufficient for the polynomi
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For instance, we may mention most conventional differentiators as well as methods
on the fit by the orthogonal polynomials (e.g., [8,12]).

A number of publications concerning the scale selection is very large and gro
quickly. While a review of the field is beyond the scope of this paper, we give few
erences illustrating the basic progress in various directions.

Two approaches have been first exploited for adaptive (data-driven) invariant scale s
lection of the LPA estimates. The first one is based on estimation of the biasednessmy(x,h)

and the varianceσ 2
y (x,h) of the estimates with the ideal scale calculation according to the

oretical formulas. However, this bias depends on the derivatives of the signal in que
Thus, in order to find the adaptiveh, say from the formula (58), one needs estimate th
derivatives. This sort of methods, known as “pilot estimates,” are quite complex in im
mentation and have a few design parameters. Nevertheless, successful methods have b
developed based on these ideas and reported by several authors [7,30,36,37].

The second alternative approach, also for the adaptive invariant scale selection
not require estimation of the bias. These group of methods are based on the quality-of
statistics such as cross-validation, generalized cross-validation,Cp , Akaike criteria, etc.,
which are applied for direct optimization of the accuracy (e.g., [7,13,16,30] and referen
herein).

The linear LPA with the varying scale found by minimization the so-called “pse
mean squared error” is considered in [32]. The target point is left out of the averag
the pseudo-mean squared error what differs this estimate from the standard mean
methods. It is reported that the proposed pseudo-mean squared error works better then
local cross-validation.

A recent break-through in pointwise varying scale estimation adaptive to unknow
smoothness of the function is originated from a general scheme of Lepski [28,29,3
ready mentioned in the introduction. The LPA estimates are calculated for a grid of
and compared. The adaptive scale is defined as the largest of those scales in the gr
estimate does not differ significantly from the estimators corresponding to the sm
scale. These type methods first proposed in few cited above papers for 1D nonparamet
ric estimation are mainly differ in (1) grid of window sizes (scales), (2) accuracy criter
(3) statistics used for scale selection.

The intersection of confidence intervals (ICI) rule can be treated as quite a differe
plementation of the basic Lepski’s approach idea [9,17]. It is proved that the LPA equ
with the ICI rule for the scale selection “possesses simultaneously many attractive a
totic properties, namely, (1) it is nearly ideal within lnn-factor for estimation of a functio
(or its derivative) at a single point; (2) it is spatial adaptive in the sense that its q
is close to that one which could achieve if smoothness of the underlying function
known in advance; (3) it is optimal in order or nearly-optimal in order within logn-factor
for estimating whole function (or its derivatives) over wide range of classes and g
loss functions” [9]. These results demonstrate that the “spatial adaptive abilities” of
estimates are the best possible in the terms of the asymptotic analysis. These resu
been extended to multivariable functions provided that the scale parameter of the estimate
is scalar [33]. Similar asymptotic accuracy results are proved for different versions of Le
ski’s algorithm.
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Experimental study reveals that a nonasymptotic performance of the ICI rule de
essentially on the threshold parameter the confidence intervals used in the ICI
rithm [17]. It is shown that the cross-validation is able to give adaptive values o
threshold parameter improving the estimation accuracy. Various modifications of the ICI
rule are appeared to be efficient for different scale adaptive applications: median
ing [20], beamforming [21], time-frequency analysis [4,22]. An application of the ICI
to image denoising and deconvolution has been reported in [18,19]. This developm
the ICI for the 2D image intensity function exploits the 2D quadrant (symmetric and no
symmetric) windows with adaptive varying scale parameters.

A special version of the Lepski’s spatially adaptive method is proposed and ana
in [38]. First of all, a set of test-windows is proposed, which enables a fine cover of a n
borhood of the estimation point. Further, the used test-statistics are based on the r
of estimation, while the original Lepski’s algorithms use the function estimates only
accuracy analysis produced in [38] for estimation at far and near change points shows t
the estimates are nearly optimal within the usual logn-factor unavoidable for the adaptiv
estimation convergence rate.

A 2D generalization of the algorithm from [38] is proposed for image denoising in
It is assumed that the image intensity isan unknown piece-wise constant function. T
estimate is a sample mean calculated in the sliding varying adaptive size window. Th
main algorithmic novelty concerns the 2D window sets and test-statistics design. For
test-statistics the differences between the estimate in the tested window and the estim
some subwindows of the tested window are calculated. Near optimalestimation accurac
is proved for the pixels far and near an edge.

Basic papers concerning the Lepski’s approach are published mainly in mathematic
statistics journals and concentrated on theoretical analysisof the accuracy and adaptivi
properties for various classes of the functions to be estimated. Some recent results c
cerning a development of the adaptive scale multivariable estimation can be seen in [2
where the optimal kernels are derived for different classes of functions to estimate.

To complete these introductory notes we wish to mention a new developmen
cerning a generalization of the approach to multivariable kernel estimates,x ∈ Rd , using
different scales for these variables [25]. Theadaptation becomes anisotropic and assu
selection of the multivariable scale parameterh ∈ Rd . This generalization is of speci
interest as there are some principal obstacles for this sort of multivariable adaptivity

4.4. Lepski’s approach

Let us start from the idea of the Lepki’s approach. Introduce a set of the scales

H̃ = {h1 < h2 < · · · < hJ }, (59)

starting from a smallh1 and increasing to a maximumhJ , and let ŷh be the estimate
of y defined forh ∈ H̃ with the estimation standard deviationσy(x,h). Accordingly to
the accuracy analysis produced above, for smallh the estimatêyh has a small bias an
a large standard deviation of the random noise. The adaptive scale algorithm com
the estimates with increasingh. The main intention is to find the maximum scale wh
the estimate’s deviation can be explained by the random component of the estimatio
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and there is a balance between the biasednessand randomness in the estimate. The accu
meaning of this sort of balance is discussed above.

The Lepski’s approach defines the adaptive scales according to the conditions

ĥ(x) = max
{
h ∈ H̃ :

∣∣ŷh(x) − ŷη(x)
∣∣ � T (h,η, x) for all η < h, η,h ∈ H̃

}
, (60)

whereT (h,η, x) is a given threshold. The procedure (60) is looking for a largest scaleh in
order to obtain the maximum smoothing effect for the random errors. However, a lah

can result in a significant bias error. All estimatesŷη(x) with the scaleη < h are compared
with the estimatêyh(x) of the scaleh. If the differences|ŷh(x) − ŷη(x)| can be explained
by the random errors the bias is not large and largerh can be selected. The adaptive scalĥ

is defined as maximum iñH such that all estimateŝyη(x) with η < h are not too differen
from ŷh(x). The multiple comparison of the estimates with the different scales is u
The parameterT (h,η, x) is a key element of the algorithm as it says when the differe
between the estimates is large or small. The procedure (60) enables a multiple sta
test on significance of the systematic error in the differencesŷh(x) − ŷη(x) in comparison
with the corresponding random errors.

A variety of the Lepski’s algorithms is defined mainly by the different form of
thresholdT (h,η, x) which usually depends on the variances of the estimates with
scalesh andη. A proper selection of this threshold enables nice statistical properti
these adaptive scale estimate [27–29,38].

Let us describe two different algorithms of the Lepski’s class in order to illustrat
approach overall and in order to show that these algorithms are indeed simple in impleme
tation. We also use these algorithms for a reference and further presentation of the no
MR local regression.

4.5. Lepski–Spokoiny algorithm [29]

The adaptive scaleh+(x) is defined as follows:

i+ = max
{
i:

∣∣ŷhi (x) − ŷhj (x)
∣∣ � Γ1(hj )σy(x,hj ), j < i, 1 � i � J

}
,

h+(x) = hi+, (61)

with the adaptive scale estimate

ŷ+(x) = ŷh+(x)(x), h+(x) = hi+ . (62)

Here ŷhi (x) compared with all estimates havinghj < hi and in this comparison the in
equality in (61) is tested. As in (60) the adaptive scaleh+(x) is equal to the maximum
hi+ ∈ H̃ satisfying all of the corresponding inequalities in (61). In this case the thres
T (h,η, x) from (60) is used in the formT (hi, hj , x), as according to (61)hj < hi and
T (hi, hj , x) = Γ1(hj )σy(x,hj ).

The gridH̃ for (61) is defined inductively starting from the largesthJ by

hJ−k = hJ−k+1

1+ α(hJ−k+1)
, k = 1,2, . . . , J − 1, (63)

d(h) =
√

max
(
1, r lg(hj /h)

)
, α(h) = 1√ . (64)
d(h)
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The thresholdΓ1(hj ) in (61) depending onh is as follows:

Γ1(h) = (
1+ α(h)

)
d(h). (65)

It is proved in [29] for some asymptotic consideration that the algorithm give the ada
window sizes which minimizes the riskE{|ŷ(x,hi) − y(x)|r}, r � 1. Ther is a paramete
used in (64). Note that the total number of compared scales is of the logarithmic ord
depends on the maximumhJ .

4.6. ICI algorithm [9,17,19]

Being from the Lepski’s class this algorithm is derived from different speculations
has quite a different recursive structure.

Determine a sequence of the confidence intervalsQj of the estimateŝyhj (x)

Qj = [
ŷhj (x) − Γ · σy(x,hj ), ŷhj (x) + Γ · σy(x,hj )

]
, (66)

whereΓ is a threshold parameter.
Consider the intersection of the intervalsQj , 1� j � i, with increasingi, and leti+ be

the largest of thosei for which the intervalsQj have a point in common. Thisi+ defines
the adaptive scale and the adaptive LPA estimate as given by (62).

The following algorithm implements the ICI rule. Determine the sequence of the u
and lower bounds of the confidence intervalsQj as follows:

Qj = [Lj ,Uj ], Uj = ŷhj (x) + Γ · σy(x,hj ), Lj = ŷhj (x) − Γ · σy(x,hj ),

(67)

and let

L̄j+i = max{L̄j ,Lj+1}, Uj+1 = min{Uj ,Uj+i},
j = 1,2, . . . , J, L̄1 = L1, U1 = U1. (68)

According to these formulas̄Lj+1 is a nondecreasing sequence andUj+1 is a nonincreas
ing sequence. Find the largestj when

L̄j � Uj , j = 1,2, . . . , J, (69)

is still satisfied. Denote this largest value asi+. This i+ is the largest of thosej for which
the confidence intervalsQj have a point in common as it is discussed above and the
adaptive scale ish+ = hi+ . It is a procedure for a fixedx giving the varying adaptive sca
h+(x). Figure 1 illustrates this algorithm.

In the ICI algorithm the estimates of the different scale are compared by using th
confidence intervals. We may conclude that the confidence intervalsQi andQj intersect
if and only if∣∣ŷhi (x) − ŷhj (x)

∣∣ � Γ
(
σy(x,hi) + σy(x,hj )

)
.
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Fig. 1. Intersection of confidence intervals (ICI) rule for the adaptive varying scale selection. The confide
intervals are shown forhj ∈ H . The vertical lines with arrows show the successive intersections of the c
dence intervals(1,2), (1,2,3) and(1,2,3,4). Assuming that the intersection with the forth confidence interva
(correspondingh = h4) is the last nonempty one we obtain the adaptive scale as equal toh4.

Then the ICI rule is reduced to Lepski’s scheme (60) with

T (h,η, x) = Γ
(
σy(x,h) + σy(x, η)

)
.

The theoretical analysis produced in [9] for 1D regression shows that the ICI adapt
scale estimate gives the best possible pointwise and global MSE. A generalization
result for a multidimensional regression with the scalarh is done in [33].

In the asymptotic analysis most of the scale adaptive nonparametric regression
rithms are equivalent in terms of the convergence rate. However, simulation show
practically the efficiency of the algorithms can be quite different. It deserves to be
tioned that the similar asymptotic properties concerning the convergence rate as we
classes of adaptivity are known for the wavelet techniques.

Remind that the ideal scales (53) balance the bias-variance tradeoff. This balan
pends onLm(x), i.e., on the derivatives of the orderM, and these derivatives are unknow
in advance. The order of these derivativeM = min(m + 1, |r|) depends on the paramet
r which also is unknown. The ICI rule gives the adaptive scales close to the ideal
The confidence intervalsQj (67) used in the ICI depend on the estimates and the stan
deviationsσy(x,hj ) (48) only and do not use the parameterr as well as the derivative
of y. Thus, the ICI rule produces the estimates which are spatially adaptive to unk
varying smoothness of the estimated signaly.
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5. MR nonparametric regression

5.1. Nonparametric regression spectrum

Let us introduce a finite set of scalesH

H = {h0 > h1 > · · · > hJ }, (70)

starting from a largesth0 and decreasing to a smallesthJ . Thus,H is a set of the descend
ing scales, whileH̃ in (59) is a set of the ascending scales.

We consider the convolution image intensity estimates as it is defined by (31) a
sume that for the smallest scalehJ the LPA kernelgh(u) is the identical operator

lim
h→hJ

gh(x) = δx,0. (71)

This assumption is not restrictive and only defines a range of scales starting from
h0 and going to sufficiently smallhJ . For instance, if the window in (28) is an indicat
such thatw(x) = 1 for |x1| < 1, |x2| < 1 then the LPA withm = 0 insures thatghJ (x) =
δx,0 for hJ = 1.

If the windoww is the 2D standard Gaussian density, thenh in w(x/h)/h2 (28) is the
standard deviation of this distribution and the LPA defines the discrete kernel suc
limh→0 gh(x) = δx,0. In this casehJ → 0.

Further, we assume that all kernelsgh, h ∈ H , have finite supports embedded into
finite rectangular regular gridU . If the support of the kernel is smaller thanU the kernel
is completed by zeros in order to havegh(x), h ∈ H , defined for allx ∈ U .

Let us start from a simple decomposition of the function estimateŷh (31) in a sum of
differences of various scale estimates:

Ŷ (x,β) = ŷh0(x) +
J∑

j=1

βj · ∇ŷj (x), ∇ŷj (x) = (∇gj � z)(x), (72)

∇gj (x) = ghj (x) − ghj−1(x) for j = 1,2, . . . , J, (73)

where∇ŷj (x) = ŷhj (x) − ŷhj−1(x) andβ = (β1, . . . , βJ )T is a vector of coefficients.
Consider the items in the right hand-side of (72). The difference∇ŷj is a deviation

of the estimate caused by a decrement ofh from hj−1 to hj . The largest valuesh = h0
means a coarser scale and strong smoothing kernel withŷh0(x) = (gh0 � z)(x) being the
smoothest estimate giving the low frequency picture ofy. Smallerh corresponding to a
finer scale detecting higher frequency details in the image. In the sum (72) the first teŷh0

presents the smoothed background of the image while the others add details of d
scales. In this way (72) is a decomposition of the imagey in the different scale component

Let ∇ghj be a spectral (scale) analysis kernel andŶ (x,β) be a spectral (scale) decom
position.

The following properties are easy to verify.

(1) According to (33) the analysis kernels,∇gj (x), j = 1, . . . , J , have vanishing momen
up to the orderm∑

∇gj (x)xk = 0, 0 � |k| � m, j = 1, . . . , J. (74)

x∈U



94 V. Katkovnik / Digital Signal Processing 15 (2005) 73–116

er

d

s
e

at the
ic
spec-
cal

alysis

t

o

Thus, the analysis kernels have the polynomial smoothness defined by the powm of
the LPA.

(2) The sum of the analysis kernels∇gj assuming∇g0 = gh0 is the identical operator

J∑
j=0

∇gj (x) = ghJ (x) = δx,0. (75)

(3) For anyh ∈ H the estimatêyh can be represented in the form

ŷh(x) = Ŷ
(
x,β(h)

)
, (76)

where the coefficientsβj (h) in (72) are defined by the indicator function

βj (h) = 1[hj � h]. (77)

(4) Forβj = 1 for 1� j � J , a perfect reconstruction ofy has a place

ŷh0(x) +
J∑

j=1

∇ŷj (x) = y(x). (78)

Equation (76) is verified substitutingβj given by (77) in (72). Thus, a varyingh in (77) con-
trols a number of spectral items in the expansion (72) and in this way it variesŶ (x,β(hJ ))

from the perfect reconstruction of the observedy(x) = Ŷ (x,β(hJ )) to the most smoothe
estimateŷh0(x) = Ŷ (x,β(h0)).

The problem of the adaptive scale selection for the estimateŷh(x) can be formulated a
selection ofh in β(h) (77) for the estimate (72). Forh invariant onx (77) gives the sam
scale selection for allx while h dependent onx results in the pointwise varying scale

βj

(
h(x)

) = 1
[
hj � h(x)

]
. (79)

5.2. Multiresolution analysis

Developing further the concept of the local regression spectrum we assume th
coefficientsβj in (72) may be not binary. Then, wearrive to the idea of nonparametr
estimation ofy based on the spectral decomposition (72) with some estimates of the
tral coefficientsβj . In this way we break with the traditional statistical approach to lo
regression assuming thath in ŷh is the only scale parameter defining the estimate.

In order to make this approach more constructive we replace the initial spectral an
kernels∇gj by their orthogonal counterparts.

Let the kernels∇gj (x), j = 0,1, . . . , J , x ∈ U , be a set of(J + 1) linear independen
functions with the bounded Euclidean norms,‖∇gj‖2 = ∑

x∈U(∇gj (x))2 < ∞.
Then, the standard Gram–Schmidt procedure givesωj+1(x) orthogonal with respect t

ωk(x), 0� k � j , for x ∈ U as follows:

ωj+1(x) = ∇ghj+1(x) −
j∑

k=0

〈∇ghj+1,ωk〉
‖ωk‖2 ωk(x),

ω0(x) = gh0, j = 0, . . . , J − 1, (80)
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where the inner product〈· , ·〉 means〈∇gh,ωk〉 = ∑
x∈U ∇gh(x)ωk(x) and ‖ωk‖2 =

〈ωk,ωk〉 = ∑
x∈U ω2

k(x).
Replace theseωj by the normalized kernelsωj/‖ωj‖. Then the orthonormal vecto

functionsω(x) = (ω0(x),ω1(x), . . . ,ωJ (x))T and∇g(x) = (∇gh0(x),∇gh1(x), . . . ,∇ghJ

× (x))T satisfy to the Gram–Schmidt equation

Qω(x) = ∇g(x) for all x ∈ U, (81)

whereQ = (Qj,k)j,k=0,1,...,J is a nonsingular lower triangular(J + 1) × (J + 1) matrix.
Letαj be the output of the filter with the kernelωj and the input is the accurate signaly.

Then

αj (x) = (ωj � y)(x) (82)

and the following can be verified:

(1) The outputsαj define a spectral analysis with components varying from a low
quency (coarse scale) base imageα0 to higher frequency (finer scale) image inc
mentsαj . Higher valuej corresponds to a higher frequency spectral component o
spectrum.

(2) The spectral kernels have vanishing moments up to the orderm

(ωj � xk)(0) = 0, 0 < |k| � m, j = 1, . . . , J. (83)

Note that contrary to (74), in general,(ωj � xk)(0) �= 0 for k = 0.
Let l2(Z2) be a space of square summable 2D functionsy defined on the infinite regula

grid X, i.e.,y ∈ l2(Z
2) if

∑
s∈Z2 y2(s∆) < ∞.

Introduce accumulated kernels

Ωj(x) =
J∑

j=0

ωj (x), j = 0,1, . . . , J. (84)

Define linear spacesWj andVj generated by the kernelsωj andΩj , respectively:

Wj =
{

∇yj (x) =
∑
u∈U

ωj (u)y(x − u): y ∈ l2(Z
2)

}
, j = 1, . . . , J, (85)

Vj =
{

yj (x) =
∑
u∈U

Ωj(u)y(x − u): y ∈ l2(Z
2)

}
, j = 0,1, . . . , J. (86)

It can be verified that these∇yj ∈ l2(Z
2) andyj ∈ l2(Z

2) for anyy ∈ l2(Z
2). Thus,Wj

andVj are subspaces ofl2(Z2) defined as convolutions ofy ∈ l2(Z
2) with the kernelsωj

andΩj , respectively.
The kernelsωj are orthogonal. However, it does not mean that the subspacesWj are

orthogonal also. It follows from (84) that the subspacesVj+i can be represented in th
form

Vj+1 = Vj + Wj+1, j = 0,1, . . . , J − 1, (87)
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where the plus “+” stays for the sum of two subspaces. The subspaceWj+1 is a comple-
ment (nonorthogonal in general) of the subspaceVj .

It follows that

Vj+1 = V0 +
(

j+1∑
k=1

Wk

)
, j = 0, . . . , J − 1.

One requirement on the sequence of subspacesVj in the MR analysis is completenes

yj (x) → y(x) asj → J.

The sequenceVj defined in (85) is complete because of (71)

VJ = l2(Z
2). (88)

Definition. The sequence of spaces{Vj , j = 0,1, . . . , J } generated byωj , j = 0,1, . . . , J ,
is a MR analysis ofy ∈ l2(Z

2) andωj are MR analysis kernels defined on the scale seH .

The following is anonparametric local regression decomposition of y based on the
analysis kernelsωj .

Proposition. Let y ∈ l2(Z
2) and qj = ∑J

l=j Ql,j , where Ql,j are elements of the matrix
Q in (81), then

y(x) =
J∑

j=0

αj (x) · qj , (89)

αj (x) = (ωj � y)(x). (90)

Proof of Proposition. Substituting (90) in (89) transforms this representation in the c
volution

y(x) = (K � y)(x), (91)

K(x) =
J∑

j=0

ωj (x)qj . (92)

Show thatK(x) = δx,0 and in this way prove that (91) is the identity. Indeed, it follo
from (81) that

J∑
l=0

∇gl(x) =
J∑

l=0

J∑
j=0

Ql,jωj (x) =
J∑

j=0

ωj (x)

J∑
l=0

Ql,j

=
J∑

j=0

ωj (x)

J∑
l=j

Ql,j =
J∑

j=0

ωj (x)qj = K(x).

However, according to (75)
∑J

l=0 ∇gl = ghJ (x) = δx,0. It shows thatK(x) = δx,0 and
completes the proof of the proposition.�
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The formulas (90) and (89) yield the accurate MR spectral expansion ofy valid for any
nonparametric regressiony ∈ l2. Specifically, the equations (90) and (89) define, resp
tively, the analysis and synthesis steps of this MR analysis. The syntheses formu
shows that the projectionsαj of y on the MR analysis spacesVj taken with the weightsqj

enables the perfect reconstruction of anyy ∈ l2(Z
2).

We wish to mention that the syntheses formula (89) is not unique. In particula
synthesis of the form

y(x) =
J∑

j=0

αj (x)ωj (0), αj (x) = (ωj � y)(x), (93)

is studied in [23,24].
If gJ (x) �= δx,0 the formula (89) can be used as an approximate syntheses formula

gives the reconstruction ofy(x) within the bias error of the kernel operatorghJ . This bias
error is analyzed in Section 4. Note that the following generalization of (89) is valid

ŷhi (x) =
i∑

j=0

αj (x)qj (i), qj (i) =
i∑

l=j

Ql,j , (94)

whereŷhi is the LPA estimate of the scalehi .

5.3. MR for differentiation

For smoothing the accurate identity operator is assumed for the scaleJ in the perfect
reconstruction formula (89). This sort of theaccurate differentiation is not possible as th
is no a kernel for the discrete convolution (32)which gives the accurate derivative for anyy.

The approximate form of (89) is appropriate for differentiation of nonparametric regre
sion functions.

Let us replacegh in (72) and (73) by the differentiation kernelsg(k)
h (29). Then, the

Gram–Schmidt formulas (80) defines the orthogonal differentiation analysis kernelω
(k)
j

and the corresponding MR differentiation subspaces.
The analysis and syntheses formulas (89) and (90) are changed to the form:

ŷ(k)(x) =
J∑

j=0

α
(k)
j (x)q

(k)
j , α

(k)
j (x) = (

ω
(k)
j � y

)
(x). (95)

Hereq
(k)
j = ∑J

l=j Q
(k)
l,j with Q

(k)
l,j being the elements of the matrixQ(k) in the Gram–

Schmidt equation

Q(k)ω(k)(x) = ∇g(k)(x), x ∈ U, (96)

where

ω(k) = (
ω

(k)
0 (x),ω

(k)
1 (x), . . . ,ω

(k)
J (x)

)T
,

∇g(k) = (∇g
(k)

(x),∇g
(k)

(x), . . . ,∇g
(k)

(x)
)T

, ∇g
(k)

(x) = g
(k)

(x).
0 1 J 0 0
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(k)
J is the finest scale differentiation analysis operator in the representation

The interval of the scales from 0 toJ used in (95) and specified inH defines the derivativ
estimates of different scales to select from or to use jointly in the combined MR estim

As ω
(k)
J is not the accurate differentiating operator. The formula (95) defines an appro

imate reconstruction of the derivative withinthe accuracy corresponding to the derivat
estimate with the kernelω(k)

J having the finest scale in the setH , h = hJ .

5.4. Examples of kernels

Some examples of the MR analysis smoothing kernelsωj are shown in Fig. 2. Thes
kernels are obtained according to (80) wheregh are derived from the LPA of the powerm =
2 for the 2D Gaussian windoww = 1

2π
exp(−‖x‖2) truncated to the squares of the s

h× h, whereh ∈ H andH = {21,11,5,3,1}. The first MR kernelω0 defines a smoothin
low-pass filter while others analysis kernelsωj , j = 1, . . . ,4, define band-pass filters.

The MR differentiating kernelsω(1,0)
j (x) are shown in Fig. 3. These kernels are obtai

from g
(1,0)
hj

(x) (differentiation onx1) derived by using the LPA of the powerm = 2 and the

2D Gaussian windoww = 1
2πσ 2 exp(−‖x‖2/σ 2), σ = 0.5. These kernels are truncated

the squares of the sizeh×h, h ∈ H , with H = {21,15,11,5,3}. The firstω(1,0)
0 is the MR

Fig. 2. MR analysis kernelsωj (x) obtained using the LPA of the powerm = 2 and the 2D Gaussian window

w(x) = 1
2π

exp(−‖x‖2).
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Fig. 3. MR differentiating kernelsω(1,0)
j

(x) obtained using the LPA of the powerm = 2 and the 2D Gaussian

window w(x) = 1
2πσ2 exp(−‖x‖2/σ2), σ = 0.5.

differentiation kernel of the largest scaleh0 = 21. The higher scale kernelsω(1,0)
j , j > 0,

become narrower.
A specific feature of the differentiation kernels is that all of them have zero value f

the central pixel of the square maskh × h. The smoothing kernelsωj (x) have maximum
peaks at the central pixel. The support of a square mask differentiating kernel sho
larger than 1× 1 in order the LPA fitting withm � 1 would be possible. For the minimu
scale differentiating kernel we use the mask 3× 3, h = 3. It is the minimumh in the setH
used for differentiating.

6. Filtering by thresholding

A common underlying assumption in multiscale MR curve/surface/signal estimation
that the function to estimate has some redundancy. This is often reflected by the hyp
that it belongs to a particular functional class. For example, it could be discontinuo
only at a limited number of places, or the function is assumed to have only one mod
be monotone. Then, the heuristic for the use of, say wavelets, is that the expansion
a function in a wavelet basis is sparse, i.e., only a few of the wavelet coefficients are
and the rest are small and thus negligible. Hence, in order to estimate the function, o
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to estimate the large wavelet coefficients anddiscard the rest. This approach has pro
useful and successful as shown, in recent years, by various authors (see Refs. [11
references herein). In what follows we apply the thresholding technique to the MR
regression spectral components.

Let the image observation be given by the noisy model (1) and the analysis kernωj

be applied to these data. Then the noisy observations

âj (x) = (ωj � z)(x) (97)

of the true spectral coefficientsαj (x) = (ωj � y)(x) are linked by the equation

âj (x) = αj (x) + σnj (x), j = 0,1, . . . , J, (98)

wherenj = (ε � ωj )(x) are the zero mean Gaussian noise with the standard dev
equal to 1. The orthogonality of the analysis kernelsωj (x) means that these noises a
uncorrelated for different scalesj and a fixedx. The goal is to estimate the unknown vec
α(x) = (α0(x),α1(x), . . . , αJ (x))T from the observations (98). When these estimate
αj (x) are found the function estimate can be used in the form (89) with the trueαj (x)

replaced by the estimates.
This nonparametric estimation via the MR spectral decomposition is divided int

two steps. The first step transforms the data into noisy versions of the spectral
cients α̂j (x). In the second step, these estimates of the spectral coefficients are fi
using the heuristic, confirmed by simulation, that the spectral MR representation
signal is sparse and that the noise is evenly spread over the empirical spectral coefficien
Since the spectral MR representation usually is sparse, it is expected that only a
fraction of the spectral coefficients is large and that the rest is small and thus negl
So if a spectral coefficient is small, it is reasonable to regard it as mostly noise and
it to zero; if it is large, it is reasonable to keep it. This is known as a hard-thresho
A soft-thresholding shrinks everything towards zero by a certain amount, thus reduci
variance of the estimation at the cost of a higher bias.

If the noisy âj (x) (98) are substituted in (89) instead ofαj (x) then ŷ(x) = z(x), i.e.,
there is no filtering because the formula (89)gives a perfect reconstruction of any inp
signalz(x). The mean square error of this straightforward estimate is given by the for

E

([
J∑

j=0

qj

(
αj (x) − âj (x)

)]2)
=

J∑
j=0

q2
j E

{(
αj (x) − âj (x)

)2}
, (99)

as âj (x) are uncorrelated for differentj . The additive structure of (99) with independe
contribution by the estimates of the different scales shows that the “diagonal” estim
i.e., independent estimation ofαj (x) for differentj is a reasonable idea.

Assume that this diagonal estimatorα̃j (x) of αj (x) has a linear structure [31]

α̃j (x) = γ âj (x), (100)

where 0� γj � 1 is an attenuation factor of the estimate. Then the estimate (89) has a

ŷ(x) =
J∑

α̃j (x) · qj =
J∑

γj âj (x) · qj . (101)

j=0 j=0
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Let us start from the “oracle” linear thresholding assuming thatαj (x) is known. It gives
the idealγj asγj = |αj (x)|2/(|αj (x)|2 + σ 2) [31]. The oracle estimate cannot be realiz
from the data since it depends on the unknownαj (x). However, this estimate is useful,
particular, as a bench mark for real estimates.

We consider four thresholding algorithms applied to the observations (98) which d
nonlinear estimates̃αj (x) of αj (x) in the model (100) by selection of the attenuation fac
γj as a nonlinear function of̂aj (x) (e.g., [3,31]):

(a) Hard-thresholding

γj (x) = 1
(∣∣âj (x)

∣∣ > t · σ )
. (102)

Here and in what followst > 0.
(b) Soft-thresholding

γj (x) = (
1− t · σ/∣∣âj (x)

∣∣)+, (103)

where(a)+ = a if a > 0 and(a)+ = 0 otherwise.
(c) Stein’s thresholding

γj (x) = (
1− t · σ/∣∣âj (x)

∣∣2)+. (104)

(d) Smoothed Stein’s thresholding

γj (x) = (
1− t · σ/∣∣b̂j (x)

∣∣2)+, (105)

where|b̂j (x)|2 is a mean value of|âj (x)|2 calculated in a square(M1 × M1) neigh-
borhood of the pixelx.

It follows from the MR representation for differentiation (95) that the adaptive s
derivative estimates can be given by the formulas (100)–(105) provided thatâj (x)

are replaced by the correspondingâ
(k)
j (x) = (ω

(k)
j � z)(x), whereω

(k)
j are defined as

in (96).
In this section me exploit a few well known and efficient diagonal thresholding met

while there are many interesting alternatives (e.g., [3,5,6,11,31]). The thresholding o
allows an interesting interpretation in the context of the sequence estimation or
selection framework [1].

7. Optimality of the adaptive scale estimation

The best accuracy which can be achieved using nonparametric regression estima
and (32) equipped with the adaptive varying scaleh for y from the class (4) is restricte
by the convergence rate√

r(k)
(
x,h+

k (x)
) = O

((
logn

n

)(M−|k|)/(2M+2))
. (106)
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It differs by the factor logn from the formula for the ideal estimator (56) and shows t
the adaptive convergence rate is much slowerthan that is for the ideal estimator. One of t
fundamental results of the modern adaptive estimation theory says that this logn-factor is
unavoidable in adaptive estimation. Thus, there are no algorithms which could achie
better accuracy than shown in (106). Moreover, if this convergence rate is proved for
algorithm it means that this algorithm is best possible in terms of the convergence ra

The theoretical analysis produced for 1D regression in [9] and for multidimension
regression in [33] shows that the ICI adaptive algorithms achieve the best convergen
and in this way the ICI adaptation is asymptotically optimal. Similar results for diffe
classes of function and different accuracy criteria are proved for manyversions of Lepski’s
adaptation algorithms [27,28,35].

The introduced MR spectral decomposition transforms the original nonparametric e
timation problem into the sequence estimation framework with the sequence ofαj (x) =
(ωj � y)(x) defined as the projection ofy(x) on the subspacesVj forming the MR analy-
sis. In other terms, the filtering in the domain of the original argumentx is replaced by
filtering in the MR spectrum domain.

The sequence estimation framework is quitedifferent from the conventional nonpar
metric regression methods that mainly exploit the smoothness of the estimated fu
The sequence estimation is based on the concept that the sparsity of representa
more basic notion than the smoothness and that the nonlinear thresholding can
powerful competitor to traditional linear methods even equipped with the adaptive sc
selection algorithms (see [1,3,5,6], and references herein).

A simple example illustrates a source of the possible advantage of processing
spectral domain. Let us assume that a signaly(x) in the spectrum domain has the only o
kth component different from zero

y(x) = αk(x)qk, αj (x) = 0, j �= k.

Assume that the hard thresholding algorithm identify this nonzero component per
i.e., α̂j (x) = 0 for all j �= k, with the function estimatêy(x) = α̂k(x)qk. This estimate is
unbiased with the variance

E
{(

y(x) − ŷ(x)
)2} = σ 2q2

k , qk =
J∑

l=k

Ql,k. (107)

Further assume that, say ICI algorithm also makes a perfect estimate of the adap
scale asi+ = k and gives the estimate asŷ+(x) = ŷhk (x). According to (94) this estimat
can be presented as

ŷhk (x) =
k∑

j=0

αj (x)qj (k), qj (k) =
k∑

l=j

Ql,j .

This estimate is also unbiased with the variance

E
{(

y(x) − ŷhk (x)
)2} = σ 2

k∑
q2
j (k). (108)
j=0
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Comparing (107) versus (108) assumes for simplicity thatQ is the identity matrix, i.e.
∆ghj in (81) are orthonormal. Thenqk = 1 andqj (k) = 1 and we obtain for the estima
variancesE{(y(x) − ŷ(x))2} = σ 2 versusE{(y(x) − ŷhk (x))2} = σ 2(k + 1). Thus, the
MR hard thresholding algorithm has a smaller variance values for all scalesk > 0 with the
maximum advantage for the highest frequency scalek = J when the variance of the IC
estimate takes its maximum valueσ 2(J + 1) versus the MR hard thresholding varian
E{(y(x) − ŷ(x))2} = σ 2.

This example shows that signals with sparse spectrum representation define a c
where the MR adaptive estimation is able to demonstrate a better performance as c
pare with the nonparametric methods based on the best scale selection.

The general analysis can be produced in order to reveal the ability of the introduce
technique. Mainly, this sort of results are of asymptotic nature assuming that the n
of observationsn, the thresholdt and the numberJ of scales inH are growing. It can be
proved that ifn, t , and scaleshj are adjusted properly the best possible convergence
can be achieved. While this sort of analysis is beyond the scope of this paper we w
note that actually many accuracy results obtained for the wavelet techniques are applica
for the considered estimates at least provided that the usual dyadic scale is assumehj .

8. Algorithm implementation

8.1. Basic MR algorithm

Main steps of the MR algorithm:

(1) SetH = {h0 > h1 > h2 > · · · > hJ }, m, t ;
(2) Forh = hj , j = 0, . . . , J , calculate:

(a) The kernelsghj (x) (28),
(b) The MR kernelsωj (x) (81),
(c) The estimateŝaj (x) (97);

(3) Apply one of the thresholding rules (102)–(105) to the estimatesα̂j (x);
(4) Calculate the MR adaptive estimate according to the final formulas (101).

Note. The step 2b defines a bank of the linear filters of different scalesj . Step 2c serve
for calculation of the estimates for allj andx.

The estimatêσ for Step 3 can be obtained from the high scale MR spectrumâJ (x) as a
robust median estimatêσ = medianx(|âJ (x)|)/0.6745.

8.2. Multiple window estimation

A symmetric windoww is a good choice in (28) and (29) ify is isotropic in a neighbor
hood of the estimation point. However, ify is anisotropic, as it happens near discontinui
or image edges a nonsymmetric approximation ofy becomes much more reasonab
To deal with the anisotropy ofy multiple nonsymmetric window estimates are exploi
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Fig. 4. The quadrant’s segmentation of the neighborhood of the LPA centre(0,0).

[18,19]. It assumes that the neighborhood of the pixelx is separated in a number overla
ping or nonoverlapping subareas. Let’sK such subareas be introduced. Then, the adap
scale estimateŝy[k]

h , k = 1, . . . ,K, are calculated for each of these subareas and fuse
gether in order to yield the final estimate. The four quadrant nonoverlapping segmen
of the pixel neighborhood (see Fig. 4) is a simple and efficient way of fittingy [18,19].
It assumes that the origin of the Euclidian rectangular coordinate(0,0) is the centre of
the LPA estimate for each square quadrant subareas. For each of these quadrantsŷ

[k]
h

kernel estimates with the adaptive scale arecalculated. Thus, for each pixel of the ima
we are able to obtain four independent estimates based on different observations c
by the corresponding quadrant supports respectively.

There are a number of ways how to fuse the quadrant’s estimates into the sing
one. In particular, the inverse-variance weighted mean [9,18] or the sample mean can
applied. The last estimate gives

ŷ(x) = 1

K

K∑
k=1

ŷ[k](x). (109)

In our simulation we complete a set of the introduced quadrant’s windows by the
metric window which is centered with respect to the origin point(0,0). The multiple
window estimation significantly improves the performance of the algorithms. As a fu
development of this idea special directional LPA kernels using narrow beam-wise su
are proposed in [19].

8.3. Algorithm complexity

The calculation of the image estimateâj (x) for given j is the linear convolution re
quiring Nconv ∼ n logn operationsn = n1n2. If the sectioning procedure is used for t
convolution (e.g., [34]), thenNconv ∼ n lognj , wherenj is a maximum size of the squa
mask of the kernelωj . These calculations are repeated for each of theK subareas (quad
rants) of the pixel neighborhood with the fusing the estimates according to (109). T
thresholding is producedJ times for each of theK subareas. Thus, overall the algorith
complexity is proportional toJ · K · Nconv, whereK = 5 for the four quadrant and sym
metric window estimate.
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9. Parallels with wavelets

Let us provide few facts from the wavelet theory which help to demonstrate simi
and difference with the introduced MR nonparametric local polynomial regressio
proach. The standard MR continuous wavelet expansion for 1D continuous data,y(x),
x ∈ R, has a form of the following parametric series (e.g., [11,31]):

yW(x) =
∑
k∈Z

αkϕ0k(x) +
∑
k∈Z

∑
j

αjkψjk(x), (110)

ϕ0k(x) = ϕ(x − k), ψjk(x) = 2j/2ψ(2j x − k), (111)

whereϕ(x) and ψ(x) are the scale function (father wavelet) and the wavelet (mo
wavelet) respectively,Z is a set of integers, 2j stands forj th dyadic scale. The scaleh
used in this paper is linked with the wavelet dyadic scale by the equationh = 2−j . For the
orthonormalϕ0k(x) andψjk(x), x ∈ R, the coefficients of the series (110) are calcula
as

αk = 〈y,ϕ0k〉, αjk = 〈y,ψjk〉. (112)

The inner products used in this section assumes integrals onx ∈ R, for instanceαjk =
〈y,ψjk〉 = ∫ +∞

−∞ y(x)ψjk(x) dx.
The orthonormality exploited in (112) means that

〈ψil ,ψjk〉 = δij δkl, 〈ϕ0l,ψjk〉 = 0, 〈ϕ0l , ϕ0k〉 = δkl, (113)

i.e., the intra- and enter-scale orthogonality ofthe functions (111) is assumed. The int
scale orthogonality means that thefunctions of the same scalej but different by the argu
ment shift (variablek in (111)) are orthogonal, i.e.,〈ψjl,ψjk〉 = δkl , 〈ϕ0l , ϕ0k〉 = δkl . The
inter-scale orthogonality means the orthogonalityof all functions of the different scale
e.g.,〈ψik,ψjk〉 = δij , as well as it is assumed also theorthogonalitybetween the fathe
and mother wavelets〈ϕ0l,ψjk〉 = 0. This double intra- and inter-scale orthogonality
quirements make a design of the wavelet function quite a complex art and confin
classes of wavelet functions.

The father waveletϕ generates the following linear subspaces inL2(R):

V0 =
{

y(x) =
∑

s

ϕ(x − s)cs :
∑

s

|cs |2 < ∞
}

,

V1 = {
f (x) = y(2x): y ∈ V0

}
,

· · ·
Vj = {

f (x) = y(2jx): y ∈ V0
}
, (114)

such that

(1) The subspacesVj are nested,Vj ⊂ Vj+1 and can be represented in the form

Vj+1 = Vj ⊕ Wj+1, j = 0,1, . . . , (115)
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where⊕ stays for the direct sum of the subspaces,Wj+1 is an orthogonal compleme
of the subspaceVj and the complement subspacesWj for every scalej are defined by
the waveletsψjk(x).

(2) The subspace
⋃∞

j=0 Vj = V0
⊕∞

j=1 Wj is dense inL2(R).

These orthogonal subspaces define the wavelet MR analysis [11,31]. It means t
y ∈ L2(R) can be represented as a series (110)–(112).

Now let us compare the wavelet expansion (110)–(112) with the corresponding
parametric regression MR expansions (89) and (90):

• The wavelet expansionyW (110) is a standard orthogonal series with invariant co
ficientsαk andβjk (112). As a function ofx this series is defined by the wavele
ϕ0k(x), ψjk(x) (111). It means that (110) is a parametric expansion ofy. In contrast to
it the expansion (89) is nonparametric as its dependence onx cannot be parameterize
and goes through the coefficients (α0(x) andαj (x)) of the expansion. There are n
invariant coefficients in this expansion and the basis functions depending onx, what
is typical for the standard series.

• The kernelsω0 andωj , j = 1, . . . , J , in (89) and (90) can be interpreted as the fat
and mother wavelets, respectively, according to their role in the analysis and the va
ishing moment conditions (83). The kernelω0 defines a lower frequency backgrou
of the signal (father wavelet analysis) while the kernelsωj , j = 1, . . . , J , define a
higher frequency complements to this background (mother wavelet analysis).

• The subspacesWj andVj are different for the wavelet and the introduced local reg
sion MR analysis. The principal difference is that in the waveletsWj are orthogona
complements ofVj while there is no such orthogonality for the kernel MR analysi

• The dyadic scale in (110)–(112) is a special point defining the wavelet design an
algorithms. In the local regression MR analysis the scale as defined by the seH is
quite arbitrary. The only serious restrictions concern the linear independency ofgh for
h ∈ H .

• The wavelet design for multivariable functions is a serious problem mainly solve
using the direct product of the 1D wavelets. There is no principal difficulties wi
design of the LPA kernels for any dimension.

We present here the classical results of the continuous integral wavelet transfor
x ∈ R andy ∈ L2(R) versus the discrete MR local regression analysis for the kerne
estimates defined for the discretex ∈ Z

2 andy ∈ l2(Z
2). We pragmatically consider onl

discrete signals as it results in clear numerical algorithms. A generalization of the
duced kernel MR is straightforward for continuous signals belonging toL2(R) or L2(R

2).
The discussed parallels concern only the structures and the basic ideas of these t

different transforms.
We may conclude that the ideas of the MR used for the wavelets (114) and (115) a

the MR local regression (85)–(87) are quite similar. However, in the considered non
metric local polynomial version of the MR analysis many strict constrains typical fo
wavelet technique may be dropped. The nonparametric local polynomial approach i
flexible and has more freedom for design of the filters (kernels) with concentration o
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design.

10. Simulation

As a test signal we use the 256×256 “cameraman” image (8 bit gray-scale) corrupted
an additive zero-mean Gaussian noise. The LPA is used with the uniform square windw,
linear polynomialsm = 1, and a finite set of the scalesH = {21,11,5,3,1}. The multi-
window estimate ofy is applied as described in Section 8. We calculate five intermediat
estimates obtained for four quadrant and one symmetric windowsw, respectively. Each o
these five windowing estimates is calculated as spatially adaptive using the develop
algorithms. The final estimate ofy is calculated as the mean (109) of these five adap
scale estimates.

Figure 5 illustrates how the MR expansion (89) works. It images the items of the
expansionαj (x) · qj for the scalesj = 0,1, . . . ,4. The figures are given for the nois
less cameraman image. The first termα0(x) · q0 presents a basic smooth lower frequen
component of the image. The further terms withj > 0 serve as the complements of t
basic one providing some finer higher frequency details. The images of the exp
items become sharper for larger values of the scalej . The sum of all five MR expan
sion items shown in the last image of Fig. 5 gives a perfect reconstruction of the
image.

Histograms of the images from Fig. 5 are shown in Fig. 6. They illustrate the co
of the redundancy of the proposed MR nonparametric regression expansion used in t
thresholding filtering. Indeed, the histogram forj = 0 covers all segment[0,1] of possible
values ofy. The histograms for the complement components of the MR expansio
narrower and more pick-wise. The last scalej = 4 has a smallest number of nonzero ite
which are mainly concentrated in a narrow neighborhood of zero. Actually it means th
space of the MR analysis forj � 1 is sparse: only a few of items of the MR nonparame
expansion are large and the rest are small and thus can be dropped.

In quantitative comparison of the algorithms the following criteria have been used

(1) Root mean squared error (RMSE): RMSE=
√

1
#

∑
x(y(x) − ŷ(x))2;

(2) SNR in dB: SNR= 10 log10
∑

x |y(x)|2/∑
x |y(x) − ŷ(x)|2;

(3) Improvement in SNR (ISNR) in dB: ISNR= 20 log10(σ̂ /RMSE);
(4) Peak signal-to-noise ratio (PSNR) in dB: PSNR= 20 log10(maxx |y(x)|/RMSE);
(5) Mean absolute error (MAE): MAE= 1

#

∑
x |y(x) − ŷ(x)|;

(6) Maximum absolute error: MAXDIF= maxx |y(x) − ŷ(x)|.

These criteria allow to evaluate the performance of the algorithm quantitatively,
PSNR is treated as a criterion linked with a visual image perception. However, it
peared that these criteria gives quite concordant conclusions while the visual eva
is an independent performance criterion. In what follows we mainly use only one cr
ISNR.
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Fig. 5. The spectrum expansion of the noiseless cameraman image. The scale equal to zero corresponds
term of this expansion̂α0(x)q0 and presents a basic lower frequency components of the image. The further
α̂j (x)qj with larger scalesj serve as the complements of this basic item and provide finer details. The ima
these items become sharper for larger values of the scale. The sum of all five MR expansion items show
last image is identical to the original cameraman image.

In image denoising we compare the MR algorithms versus the ICI algorithm w
demonstrates a performance more less equivalent to the performance of the Lepsk
Spokoiny algorithm.

The thresholdt is a main design parameter of the thresholding (102)–(105). Multipl
simulations and analysis produced for different images show thatt = 1.2–1.5 is a reason
ably good value of this parameter for different scenarios. It is a sort of the rule of th
for selection oft . For comparison we show also results for the oracle estimator.

Figure 7 shows ISNR as a function of SNR of the observations. The smoothed S
algorithm (M1 = 5 in (105)) demonstrates the best performance and outperforms th
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Fig. 6. The histograms of the images shown in Fig. 5. The histogram for the scale equal to 0 is wide c
nearly whole segment[0,1] even a bit wider that the histogram of the true image. The histograms for the co
ment components of the MR expansion for the scalesj = 1,2,3,4 become narrower with smaller frequencies
nonzero items. The last scale 5 have smallest number of nonzero items which are well concentrated in
neighborhood of zero.

algorithm approximately on 1 dB. The soft-thresholding algorithm gives values whic
about 1 dB worse than those for the ICI algorithm. The basic Stein’s algorithm show
figures better than the ICI algorithm only for SNR> 15 dB. The oracle estimate natura
demonstrates the best values of ISNR about 2 dB higher than the smoothed Stein
rithm. We do not show results for the hard-thresholding as they are worse than tho
the soft-thresholding.

Examples of the reconstructed images can be seen in Fig. 8, where the noisy
the smoothed Stein’s, ICI and soft-thresholding images are shown. Visual evaluatio
favor of the smoothed Stein’s algorithm.

Let us apply the MR algorithms for scale adaptive differentiation. We estimate the
derivatives of the cameraman image intensity onx1 (horizontal axis) and onx2 (verti-
cal axis). In all following results we use the simulation scenario and LPA paramete
they are for image denoising. For the sake of simplicity of presentation and discu
for differentiation we apply a single window estimate with the symmetric window fu
tion w and the soft-thresholding only. The scales for differentiation are defined by th
H = {21,15,11,5,3} with the minimum admissible scalehJ = 3.
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Fig. 7. ISNR as functions of SNR of the noisy observationsfor the cameraman image. The curves are given for
following four algorithms: soft-thresholding (‘star’), Stein’s (‘plus’), smoothed Stein’s (‘o’), ICI (‘pentagram
The thresholdt = 1.2. The oracle estimation results are marked by ‘squares.’ Overall, the advantage is in f
the smoothed Stein’s algorithm, whichoutperform the ICI algorithm about on 1 dB.

Figures 9 and 10 illustrate formation of the derivative estimates using the MR spe
analysis produced by the kernelsω

(k)
j . Images in the figures correspond to the items

the sum (95)̂α(k)
j (x)q

(k)
j for the scalesj = 0,1, . . . ,4 and the derivativesk = (1,0) and

k = (0,1). The last sixth image is the derivative estimateŷ(k)(x) = ∑J
j=0 α

(k)
j (x)q

(k)
j , as it

is defined in (95). These MR spectrums are given for the noiseless cameraman image.
influence of the scale of the differentiation operator is clear seen. It varies from smoothe
derivative estimate given by the largest scale to the finer contour lines of the smalle
estimates.

In order to produce a quantitative analysisof differentiation we need to know accura
values of the derivatives. For such image as the cameraman these derivatives are un
However, they can be evaluated numerically using the MR analysis. Let us assum
these “accurate” numerical derivatives are defined as the estimates given by the differe
tiation kernelsg(1,0)

h (x) andg
(0,1)
h (x) for the noiseless cameraman image provided

the scaleh is equal to its minimum value. This minimum admissible scale value ish = 3
for the considered LPA withm = 2 and squared 2D support of the differentiating ker
nels.

Table 2 provides data illustrating an improvement which can be achieved by usin
adaptive varying scale differentiators versus the differentiators with a fixed invariant
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Fig. 8. The images obtained by the soft thresholding, smoothed Stein’s and ICI algorithms. SNR= 10 dB. Thresh-
old parametert = 1.2 for the MR algorithms andΓ = 1.5 for the ICI algorithm. The smoothed Stein’s algorith
demonstrates the best performance in terms of the ISNR values as well as visually.

Table 2
Accuracy of the derivative estimation

Invariant scale RSME MAE MAXDIF

h = 21 0.0615 0.0275 0.4386
h = 15 0.0599 0.0271 0.4590
h = 11 0.0576 0.0263 0.4715
h = 5 0.0399 0.0216 0.4274
h = 3 0.0317 0.0252 0.1486
Adaptive scale 0.0219 0.0145 0.1310

The criteria values are given as a mean of the corresponding values obtained for the
atives onx1 andx2.

The lines 1–5 of the table show the criteria values for the invariant scale estimato
the last line corresponds to the MR soft-thresholding adaptive scale estimator(t = 1.2). It
can be concluded that the best scale invariant estimator has the scale equal to its m
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Fig. 9. The spectrum expansion of the derivative∂/∂x1. The noiseless cameraman image. The scale equal to

corresponds to the first term of this expansionα̂
(1,0)
0 (x)q

(1,0)
0 and presents a basic lower frequency (smoo

components of the derivative. The further items with larger scales serve as the complements of this basic
and provide finer sharp details. The sum of all five MR expansion items shown in the last image is t
nonparametric regression estimate of the derivative.

value h = 3. It can be noticed also that these accuracy figures are quite sensitive wi
respect to the scale value.

Further, comparing the criteria values of this best scale invariant estimator versus
corresponding values for the adaptive estimator, we can see quite a significant impro
in values of RMSE and MAE. It consists of about 30% for RMSE and about 40% for M
A less improvement can be seen in values of MAXDIF which consists of about 10%. V
effects of the adaptive scale differentiation are illustrated in Fig. 11.
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Fig. 10. The spectrum expansion of the derivative∂/∂x2. The noiseless cameraman image. The scale equ

zero corresponds to the first term of this expansionα̂
(0,1)
0 (x)q

(0,1)
0 and presents a basic lower frequency (smoo

components of the derivative. The further items with larger scales serve as the complements of this basic
and provide fine sharp details. The sum of all five MR expansion items shown in the last image is t
nonparametric regression estimate of the derivative.

Images presented in Fig. 11 show the sum of absolute values of the estimates
derivatives∂y/∂x1 and∂y/∂x2. The left-hand size image is obtained by using the der
tive estimators with the best invariant scaleh = 3. The right-hand side image correspon
to the MR varying adaptive scale soft-thresholding differentiator. Noisy componen
the derivative estimates clearly seen in the left-hand side image are well cleared out
the right-hand side image while the fine details of the edges of the cameraman ima
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Fig. 11. Images show the sum of absolute values of the estimates of the derivatives∂y/∂x1 and∂y/∂x2. The left

hand size image estimates are obtained using the derivative estimator kernelsg
(1,0)
h

andg
(0,1)
h

with the best found
invariant scaleh = 3. The right hand side image is obtained by theMR varying adaptive scale soft-thresholdin
estimators witht = 1.2. Noisy components of the derivatives are clearly seen in the left-hand side ima
cleared out in the right hand side image while the fine edge details of the cameraman are well preserved

preserved. Thus, visually and quantitatively, the adaptive scale MR differentiator de
strates better results as compared with the scale-invariant estimator with the best p
oracle scale selection.

11. Conclusions

A new varying adaptive scale nonparametric local polynomial regression techni
proposed. It is based on the LPA applied for design of the filters joined with the deve
spectral MR analysis. The usual scale adaptive local polynomial regression estima
based on selection of the best scale. The proposed MR analysis assumes multisca
form of observations, filtering of the obtained local polynomial regression spectrum
fusing these filtered spectrums in the final estimate. This final estimate is compose
the estimates of the different scales but not only single one as it is in the classical ad
nonparametric local polynomial regression. The MR estimate belongs to a more g
class of estimates and is able to provide a better accuracy.

The presentation of the MR analysis is given in terms of image processing. How
the approach is applicable for data of any dimensionality defined on the regular or irr
grids. For the regular grids the MR analysis methods allow fast implementations ba
the fast convolution algorithms. For the irregular grids this sort of fast algorithms i
applicable.

The developed MR nonparametric technique is quite universal and can be appl
many different tasks. The introduced spectral expansion allows to involve many trad
techniques of image processing. In particular, one may weigh spectral components or p
duce their nonlinear transforms in order to obtain desirable image enhancement e
The MR nonparametric local polynomial techniquecan be applied for edge detection, im
age improvements, recognition problems, etc.
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