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Abstract

Kernel principal component analysis (KPCA) is widely used in classification, feature extraction and denoising applications. In
the latter it is unavoidable to deal with the pre-image problem which constitutes the most complex step in the whole processing
chain. One of the methods to tackle this problem is an iterative solution based on a fixed-point algorithm. An alternative strategy
considers an algebraic approach that relies on the solution of an under-determined system of equations. In this work we present
a method that uses this algebraic approach to estimate a good starting point to the fixed-point iteration. We will demonstrate that
this hybrid solution for the pre-image shows better performance than the other two methods. Further we extend the applicability of
KPCA to one-dimensional signals which occur in many signal processing applications. We show that artefact removal from such
data can be treated on the same footing as denoising. We finally apply the algorithm to denoise the famous USPS data set and to
extract EOG interferences from single channel EEG recordings.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The objective of noise reduction techniques is to improve noisy signals. Projective subspace techniques can be
used favorably to get rid of most of the noise contributions to multidimensional signals [1]. Whereas signals are
considered to live in a sub-manifold only, noise is assumed to fill the multidimensional space evenly. The goal of
subspace methods thus is to project the noisy signal onto the signal-plus-noise, or simply, signal subspace. This way
part of the noise on the signal can be removed. Hence an estimate of the clean multidimensional signal can be made by
removing or nullifying the components of the signal in the noise subspace, retaining only the components in the signal
subspace. The decomposition of the space into (two) subspaces can be done using either singular value decomposition
(SVD) or principal component analysis (PCA). Both techniques estimate those directions, corresponding to the L

largest eigenvalues of the data covariance/scatter matrix or singular values of the data matrix, which can be associated
with the eigenvectors spanning the signal subspace. The remaining orthogonal directions then can be associated with
the noise subspace. Reconstructing the multidimensional signal using only those L dominant components can result
in a substantial noise reduction of the recorded signals. Note that this approach is most appropriate if the underlying
signal represents the main contribution to the recorded signal. More recently those algorithms are applied in feature
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space created by a nonlinear mapping of the data. These generically nonlinear signal processing techniques like kernel
principal component analysis (KPCA) are often used for denoising in image applications [2,3]. KPCA also represents
a projective subspace technique. It transforms a signal nonlinearly into feature space and applies a linear principal
component analysis to the transformed signals. But to recover the noise-reduced signal in input space after denoising
in feature space, the nonlinear mapping must be reverted, i.e. the pre-image in input space must be estimated.

In this work the KPCA methodology is shortly reviewed, following a matrix manipulation approach which is
especially convenient when signal reconstruction and pre-image estimation are considered. Two methods of computing
the pre-image [4,5], discussed in the literature, are summarized before a particularly suitable way of finding the starting
point of the fixed-point iterative [5] method is suggested. This modification renders the algorithm much more efficient
and fast.

Furthermore, we adapt KPCA methods to denoise one-dimensional signals as well as to extract artefact-related
features interfering with the signal of interest. Various signal processing applications rely on one-dimensional signals
like biomedical signals, speech recordings, climatic and meteorological time series, just to mention a few. Clearly
projective subspace techniques are only available for multidimensional signals. Hence, time series analysis techniques
often rely on embedding one dimensional sensor signals in the space of their time-delayed coordinates [6–8], also
called embedding space. Then resulting multidimensional signal can now be analyzed using KPCA. We apply the
method to extract prominent artifacts like electro-oculograms (EOG) in electro-encephalograms (EEG). Note that
in this example, the artifact-related contributions to the recorded EEG signals are considered “the signal” and the
actual EEG signal is considered a “sort of a broadband noise.” Consequently, we can use the projective subspace
techniques referred to above to separate the dominating artifacts from the “pure” EEG signals. Again the influence of
the pre-image estimation on the performance of the algorithm is discussed.

2. KPCA denoising

In practice, the goal of projective subspace techniques is to describe the data with reduced dimensionality by
extracting meaningful components while still retaining the structure of the raw data. KPCA relies on a nonlinear
mapping of given data to a higher dimensional space, called feature space. Then KPCA can simultaneously retain
the nonlinear structure of the data while denoising is achieved with better performance because the projections are
accomplished in the higher-dimensional feature space.

2.1. Kernel-PCA

In KPCA a set of multidimensional signals xk, k = 1, . . . ,K , is envisaged to be mapped through a nonlinear
function φ(xk) into a feature space yielding the mapped data set � = [φ(x1),φ(x2), . . . , φ(xK)]. In feature space
then a linear PCA is performed estimating the eigenvectors and eigenvalues of a matrix of outer products, called a
scatter matrix which for zero mean data is given by C = ��T . It can be shown that these eigenvectors and eigenvalues
are related to those of a matrix of inner products, called a kernel matrix K = �T �. Using the kernel trick [2], the
centered kernel matrix can be expressed as

Kc =
(

I − 1

K
jK jTK

)
�T �

(
I − 1

K
jK jTK

)
=

(
I − 1
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jK jTK

)
K

(
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)
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where jK = [1,1, . . . ,1]T is a vector with dimension K ×1, and I is a K ×K identity matrix. Notice that each element
k(i, j) ≡ k(xi ,xj ) of the kernel matrix depends on the inner product φT (xi )φ(xj ) which can be computed using only
the data xk in input space. For instance, if a radial basis function (RBF) kernel is used, k(i, j) is calculated according to

k(i, j) ≡ k(xi ,xj ) = exp

(
−‖xi − xj‖2

2σ 2

)
, (2)

where σ 2 is a free parameter related to the width of the kernel. It can be chosen according to any suitable data spread
criterion.

Because the eigenvalues of the scatter matrix C coincide with the eigenvalues of the kernel matrix K, the eigende-
composition of Kc provides the necessary information to compute the projection of a vector of the input space yj in
the feature space. Considering the matrix V, the columns of which represent the L eigenvectors of the kernel matrix,
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and D, a diagonal matrix with the corresponding L � K eigenvalues of both matrices, the image φ(yj ) of a point in
input space, can be projected onto the L directions spanned by the eigenvectors of the scatter matrix via

zj = D−1/2VT

(
I − 1

K
jK jTK

)
�T φ(yj ), (3)

where �T φ(yj ) represents a vector the components of which can be computed using the kernel trick by

kyj
= [

k(x1,yj ), k(x2,yj ), . . . , k(xK,yj )
]T

. (4)

There are many applications (for instance classification) where the projections provide necessary and sufficient infor-
mation to characterize the problem. However, in denoising applications, for example, it is needed to reconstruct any
data point in feature space from its noisy version employing the L principal components. Finally, the position of the
corresponding point in input space is of interest, hence the pre-image of the denoised data sample in feature space
needs to be estimated [4,5].

2.2. Reconstruction and pre-image

Consider the reconstructed point in feature space:

φ̂(yj ) = �

(
I − 1

K
jK jTK

)
VD−1/2zj = �g. (5)

In order to avoid to work with the mapped data set �, pre-image estimation methods described in literature combine
the reconstruction in feature space and the estimation of its pre-image in input space in one step. This goal is achieved
by using the Euclidian or L2-norm. The square of the Euclidian distance can be written using dot products which in
turn can be substituted by kernel evaluations. Considering a point p in input space, the distance of its image φ(p) in
feature space to the reconstructed point φ̂(yj ) is defined by

d̃(2) = ∥∥φ(p) − φ̂(yj )
∥∥2 = (

φ(p) − φ̂(yj )
)T (

φ(p) − φ̂(yj )
)
. (6)

Substituting the expression given in Eq. (5) to compute the reconstructed point φ̂(yj ), the dot product can be replaced
by kernel values

d̃(2) = k(p,p) − 2gT kp + gT Kg, (7)

where kp represents a vector whose entries are computed as the dot product of φ(p) with images � of the set of
training data {xk} according to Eq. (4) identifying yj ≡ p. Both pre-image estimation methods use the definition of the
Euclidian distance within different strategies, and consequently the input space point p must be chosen accordingly.
In the following we will discuss these different strategies.

2.2.1. Distance method
Recent work [4] to estimate the pre-image of a given point in feature space is based on the fact that it is possible to

compute the coordinates of a new point if we know its distances to a set of known points [9]. Hence, the distances of
the reconstructed point φ̂(yj ) to every point in the set � of images of the training data xk are computed. So in Eq. (7),
the point p is chosen as an element of the training set, i.e., p ≡ xk . Then by computing the distances to all mapped
points of the training set xk, k = 1, . . . ,K , the following distance vector is obtained

d̃(2) = diag(K) − 2gT K + gT Kg. (8)

With certain kernels, especially isotropic kernels and polynomial kernels with odd powers [4], it is possible to evaluate
the distance in input space knowing the corresponding distance in feature space. If, for example, an RBF kernel is
considered, there is a distinct relation between an input space distance d(2) and the corresponding feature space
distance. Once the vector of distances in feature space can be computed as

d̃(2) = 2

(
jK − exp

(
−d(2)

2σ 2

))
(9)

the corresponding vector of distances in input space is then given by
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d(2) = −2σ 2 ln
(
jK − 0.5d̃(2)

)
. (10)

Consider next a subset S of neighbors of the reconstructed point φ̂(yj ), i.e., choose from the training set those S points
with smallest distance d̃(2), and select the corresponding points Q = [q1,q2, . . . ,qS] in input space. The coordinates
of the subset of points may be taken as the columns of the eigenvector matrix E of their covariance matrix. After
centering the set of neighbors by

Qc = Q
(

I − 1

S
jTS jS

)
(11)

the columns of W = ET Qc represent the new coordinates of the points Qc. Their distance to the origin is obtained as
d(2)

0 = [‖w1‖2,‖w2‖2, . . . ,‖wS‖2]. Then, the coordinates of the point p̃ are given by

WT p̃ = −1

2

(
d(2) − d(2)

0

)
. (12)

The pre-image p of the reconstructed point φ̂(yj ) is finally obtained as

p = Ep̃ + 1

S
QjS = Ep̃ + p0 (13)

where p0 represents the mean of the selected neighbors. This method is usually applied considering that the number S

of neighbors is less than the dimension M of the points in input space [4]. In that case M–S components of the point
p̃ vanish. Hence, the covariance matrix of the set of points Q can have at most S nonzero eigenvalues. Also note that
the SVD of Eq. (12) represents the minimum norm solution. In that case, the second term of Eq. (13) representing the
mean of the neighbors, might constitute the dominant term in the solution to the estimation of the pre-image of the
reconstructed point φ̂(yj ).

2.2.2. Fixed point method
The central idea of this method [5] consists in computing the unknown pre-image p which minimizes the Euclidian

distance in feature space by setting to zero the gradient of Eq. (6)

∂d̃(2)

∂p
= ∂k(p,p)

∂p
− 2

∂gT kp

∂p
= 0. (14)

Substituting the RBF kernel, the first term of the previous equation is zero as k(p,p) = 1. Hence the zeros of the
gradient are obtained by

K∑
i=1

gi(xi − p) exp

(‖xi − p‖2

σ 2

)
= X(g♦kp) − pgT kp = 0, (15)

where ♦ represents the Hadamard product. The zeroes can thus be computed iteratively by the fixed point algorithm

pt+1 = X(g♦kpt)

gT kpt

. (16)

The iterative procedure stops when |pt+1 − pt | is less than a threshold and/or a maximum number of iterations t is
achieved. An equivalent iteration scheme results starting with polynomial or sigmoidal kernels. However it has been
reported that the convergence of the resulting procedure could not be achieved with polynomial kernels [4]. Because
of this the following discussion is restricted to RBF kernels.

2.2.3. Modified fixed point method
The fixed-point iteration can be started with any p0 chosen randomly, but in that case it often results in a slow

convergence. Alternatively, it can be started with the given noisy point in the input space. However this is an option
only when the signal-to-noise ratio is high [10]. Hence, in the following we propose a modified iteration scheme which
yields superior results:

Motivation. Note that the denominator of Eq. (16) is formed by the dot product between the reconstructed point
φ̂(yj ) and φ(pt ). Thus an appropriate starting point in input space can be chosen using the nearest neighborhood
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strategy borrowed from the distance method. This will avoid the numerical instability of having a very small or
negative denominator.

Implementation. Note that with an RBF kernel the identification of the closest neighbors can be achieved with the
dot products avoiding thus the computation of Euclidian distances in feature space. Computing the vector r of dot
products of φ̂(yj ) with the training set � yields

r = gT K. (17)

As the dot product of every mapped data point with itself is normalized to one, the closest neighbors are obtained by
identifying the set S of maximal dot products (φ̂T (yj )φ(xi )), i = 1, . . . ,K . The S closest neighbors, i.e., the ones that
exhibit the largest dot products, are chosen. Selecting the corresponding points Q = [q1,q2, . . . ,qS] in input space,
the fixed-point iteration should start with

p0 = (1/S)QjS. (18)

This strategy is more efficient than starting with the value computed by the distance method (see Eq. (13)) as suggested
in [11]. The modified fixed point (mFP) algorithm will comprise the following initialization steps: the identification
of S neighbors using Eq. (17) and the computation of the starting point of the fixed-point iteration (Eq. (16) with
Eq. (18)).

3. KPCA of one-dimensional signals

The projective subspace techniques discussed so far are clearly not available for one-dimensional time series to
suppress noise contributions. But many signal processing applications rely on one-dimensional signals, like the bio-
medical signals we are going to discuss.

The transformation of one-dimensional signals to multidimensional signals can be effected by a technique called
embedding. It is used, for example, in singular spectrum analysis (SSA) methods [7,12]. After embedding, projective
techniques can be applied resulting in a noise-reduced multidimensional signal and, by reverting the embedding
process, finally in a one-dimensional signal. However, other goals like feature extraction and classification can be
accomplished also with this type of analysis.

Following this strategy, one-dimensional sensor signals are embedded in the space of their time-delayed coordinates
[8] to form a trajectory matrix, whose column vectors span the so called embedding space. To revert the embedding
process, the last step is to transform the “denoised trajectory matrix,” whose columns are formed by the pre-images
of the reconstructed (= denoised) vectors, into a one-dimensional time series with N samples in the time domain.

3.1. Embedding

The embedding transformation can thus be regarded as a mapping which transforms a one-dimensional time series
x = (x[0], x[1], . . . , x[N − 1]) to a multidimensional sequence of K = N − M + 1 lagged vectors

xk = [
x[k − 1 + M − 1], . . . , x[k − 1]]T , k = 1, . . . ,K (19)

with M < N being the corresponding embedding dimension. The lagged vectors then constitute the columns of the
trajectory matrix X = [x1, . . . ,xK ], which represents a Toeplitz matrix. The further processing of this data matrix X
can be performed by KPCA considering each column a point in a space of dimension M (input space). Note that the
latter space is often also called feature space but it is not to be confused with the space resulting from the nonlinear
transformation of the input data effected by KPCA. In the following we will use the term feature space only for this
latter space.

3.2. Diagonal averaging

After applying the described steps of KPCA to each column of the trajectory matrix (X), a new matrix of denoised
data is obtained X̂. So, each φ(xk), k = 1, . . . ,K , is projected in feature space onto L principal directions; it is
then reconstructed using these projections, and finally its pre-image pk in input space is estimated following one of
the described methods. The denoised points pk then form the columns of X̂, the “denoised trajectory matrix.” But
in general this matrix does not posses the characteristic Toeplitz structure anymore, i.e., the elements along each
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descending diagonal of X̂ will not be identical like in case of the original trajectory matrix X. This can be cured,
however, by replacing the entries in each diagonal by their average, obtaining a Toeplitz matrix Xr . This procedure
assures that the Frobenius norm of the difference (Xr − X̂) attains its minimum value among all possible solutions
to get a matrix with all diagonals equal [12]. The noise-reduced one-dimensional signal, x̂[n], is then obtained by
reverting the embedding of matrix Xr , i.e., by forming the signal with an entry of each descendent diagonal.

4. Numerical simulations

The algorithms were implemented in MATLAB using the toolbox provided by Franc [13], where basic pattern
recognition tools and kernel methods can be found. In the following the methods discussed above will first be applied
to the USPS data set to illustrate the denoising performance of the modified KPCA concerning the estimation of
pre-images. The second example refers to the extraction of EOG artifacts from single channel EEG recordings.

4.1. Denoising a USPS data set

In this section the USPS data set1 consisting of 16 × 16 handwritten digits is used. Thus the input data vector,
xk has dimension 256 and is formed by row concatenation of the original image after adding white Gaussian noise
N(0, σ 2

r ) to it. Notice that adding noise to each digit with fixed variance, the signal-to-noise ratio (SNR) differs for
each digit. Table 1, first column, shows the SNRs for the digits represented in the second row of Fig. 1 after adding
noise with variance σ 2

r = 0.25 to the original digits represented in the first row of Fig. 1. Each type of digit is denoised
separately, i.e., a kernel matrix was computed for 300 randomly chosen examples of the digit.

Each time the kernel matrix was created using an RBF kernel with σ = maxi (‖xi − xc‖), i = 1, . . . ,K , with
K = 300 and xc the mean of the data set. Then, denoising was achieved by projecting each mapped digit �(xk)

Table 1
SNR for different pre-image estimation methods σ 2

r = 0.25

Digit SNR

Image mFP Mean Distance L

0 6.202 8.910 8.686 8.766 8
1 −0.194 2.670 4.294 3.787 4
2 2.473 4.000 4.305 4.203 8
3 3.603 7.166 6.083 6.086 16
4 1.925 4.575 4.421 3.596 26
5 3.943 7.330 5.890 5.752 16
6 3.690 7.353 7.084 6.184 16
7 1.482 4.535 4.054 3.365 16
8 4.098 7.575 6.604 6.729 8
9 4.068 7.369 5.809 5.334 16

Fig. 1. Examples of each original, noisy and denoised digits using the different pre-image methods using S = 10 neighbors. First line—original
digit, second line—noisy digit; the following lines the denoised digits using respectively the modified fixed point (mFP), mean and distance
algorithms.

1 http://www.kernel-machines.org.
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Fig. 2. Eigenspectra of kernel matrices for: left—digit 1, right—digit 5.

Fig. 3. SNR versus number of neighbors in the pre-image methods. Top trace—modified fixed point (mFP) algorithm; bottom trace—SNR of the
noisy digit; dotted trace—mean of neighbors; full trace—distance algorithm.

onto the leading L eigenvectors corresponding to the largest eigenvalues. The eigenspectra of the kernel matrices are
different. The number L of leading eigenvalues in each case was chosen according to the leveling off of the latter
(see Fig. 2). The last column of Table 1 shows the number L of directions obtained for each digit. Finally, to yield a
denoised version x̂k of the noisy digit xk , the pre-image x̂k of the reconstructed image of a digit �̂(xk) was estimated
employing one of the following methods

• Distance: the distance method as proposed in [4], see Eq. (13).
• Mean: the mean of the nearest neighbors only within the distance method which corresponds to considering p0 as

the pre-image.
• mFP: the fixed point method initialized with p0.

Figure 1 provides an illustration of the results of KPCA denoising for different digits using the different pre-image
estimation methods discussed. Table 1 shows the SNRs between the original digit and the denoised version using
S = 10 nearest neighbors. These values do not show any consistent tendency that could indicate a clear preference to
any of the pre-image methods. But it is obvious that the modified fixed point (mFP) method yields better results in
most cases and both the mean and the distance methods always yield very similar results.

Considering the dependence on S, it turns out that the distance method, proposed in [4], is the most sensitive
concerning the number of nearest neighbors selected. Figure 3 illustrates in a more detailed manner this dependence
of the SNR obtained with the mFP, the mean and the distance methods on the number of nearest neighbors.
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Fig. 4. Denoised digit using different values for S: top—modified fixed point (mFP) algorithm; middle—mean of neighbors; bottom—distance
method.

Table 2
SNR as function of the number of nearest neighbors S for noise variance σ 2 = 0.25 and the pre-image estimation methods discussed

S SNR

Mean Variance

Noisy image 2.322 3.026

mFP 1 4.5164 2.4323
10 4.5287 2.3575

100 4.4144 2.4711

Mean 1 2.1092 2.4853
10 4.7978 1.8510

100 4.2323 1.7979

Distance 1 2.1092 2.4853
10 4.7942 1.8258

100 3.3670 1.8589

The results obtained with the method of mean nearest neighbors are always close to the ones resulting from the
distance method. And both methods show a decline of the SNR with increasing S. On the other hand, the mod-
ified fixed point is not dependent on the starting point (number of neighbors). Figure 4 illustrates the influence
of the number of neighbors on the SNRs obtained. Naturally when the number of neighbors increases the solu-
tion provided by the mean of neighbors encompasses a smoothing of the background thus leading to a higher noise
level.

The methods are also evaluated using the whole set of digits. The mean SNRs and their respective variances using
different S are collected in Table 2. The results obtained with the modified fixed point method of course do not depend
on S while in the distance method there is a difference of ≈1.5 dB between S = 10 and 100. But considering S = 1,
both the mean and the distance methods correspond to choosing, within the given data set, the digit whose image
is closest to φ̂(yj ). Then the SNR is similar to the one of the original noisy digit. However, considering S = 1 in
the modified fixed point method, a reliable solution is achieved with the algorithm converging faster than when it is
initialized randomly.

4.2. EEG data

Biomedical signals are often contaminated with artifacts which severely distort the signals to be investigated. As an
example we will study the removal of prominent EOG artifacts from EEG recordings. A segment of the signal of 12 s
of duration containing high-amplitude EOG artifacts was considered and divided into 4 sub-segments with N = 384
samples. KPCA was applied separately to each sub-segment. The one-dimensional signal was embedded in M = 11
dimensions, and the number L = 6 principal components for reconstruction was the same for all subsegments. The
pre-image estimated in input space then obviously corresponds to the embedded, multidimensional version of the
one-dimensional EOG contaminating the original EEG recording. This one-dimensional EOG can be obtained after
reverting the embedding process. Finally the extracted EOG signal is subtracted from the original EEG recording to
yield a corrected version of the EEG. The first experiment illustrates the impact of the method to estimate the pre-
image upon the results and the second experiment illustrates the performance of the KPCA method when compared
with local SSA.
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4.2.1. Estimation of the pre-image
Visual inspection of the extracted signals confirmed that the results strongly depend on the method to estimate the

pre-image, corroborating results obtained with the USPS data set. Further experiments showed that the performance of
the distance method is strongly dependent on the number S of neighbors, yielding in some cases unreliable solutions
(see Fig. 8, for example). The results of the modified fixed point algorithm are illustrated in Fig. 5 and are independent
of the number of neighbors used to estimate the starting point. The rate of convergence can be improved considerably
when using p0 as the starting point instead of using a random initialization (see Fig. 6).

To provide a global overview of the performance of the methods, correlation coefficients between a reference
signal and signals resulting from changing either the method of estimating the pre-image or varying the number of
neighbors S are calculated. Figure 7 shows the results considering as reference the signal obtained with the modified
fixed point method initialized with the best match in the training set (S = 1). The correlation coefficient for mFP
equals cc(mFP) = 1 whatever is the number of neighbors. Note that with S = {3,6,7,12} neighbors, the distance
method does not yield a reliable solution. Figure 8 illustrates this for one such solution where we can confirm that
the extracted signal does not correspond to the EOG component. Furthermore, note that if S > M , the correlation
coefficients are small. If S < 20, the result of the mean method is very close to the result of the modified fixed point

Fig. 5. A segment of the EEG signal processed with KPCA (reconstructed with L = 6 principal components and using mFP to estimate the
pre-image (top—the original EEG, middle—the extracted EOG artifact, bottom—the corrected EEG).

Fig. 6. The number of iterations needed for denoising data vector xk , k = 1, . . . ,K = 374 using the modified fixed point (full line) or the fixed
point with random initialization (dotted line).
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Fig. 7. Correlation coefficients between the signal obtained with mFP (S = 1) and all the signals obtained changing the pre-image method and/or
varying S.

Fig. 8. A segment of the EEG signal processed with KPCA (reconstructed with L = 6 principal components) using the distance method (S = 12)
to estimate the pre-image (top—the original EEG, middle—the extracted EOG artifact, bottom—the corrected EEG).

algorithm (mFP). This is corroborated by estimates of the power spectral densities of both the corrected EEG signals
and the extracted EOG as obtained with the mean and modified fixed point algorithms, respectively.

4.2.2. KPCA compared to local SSA
In previous work [14] a modification of the well known singular spectrum analysis (SSA) was proposed for denois-

ing and feature extraction from one-dimensional signals. The method is called local singular spectrum analysis (local
SSA). The method is briefly summarized in appendix but consists in a local PCA decomposition performed in input
space while KPCA performs a PCA after transforming the input data nonlinearly to a feature space. The algorithm is
applied to the same segments of the EEG recordings, contaminated by large EOG artifacts, to which also KPCA has
been applied. Using an embedding dimension M = 41 and an optimal number of clusters q = 6, local SSA achieves
an artifact separation (not shown here) which is upon visual inspection indistinguishable from the results of the KPCA
analysis shown in Fig. 8a. Comparing the power spectral densities resulting from both the local SSA and the modified
KPCA, Fig. 9 shows that the low frequency content of the corrected EEG is affected differently by both methods. The
modified KPCA seems to preserve more spectral information in the very low frequency regime (f � 3 Hz) but yields
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Fig. 9. Power spectral densities (psd) resulting from: left—local SSA (q = 6), right—kernel-PCA.

similar results at higher frequencies: the correlation coefficient (cc) between the extracted EOGs resulting from both
the KPCA and the local SSA is cc = 0.999 and the one between the corrected EEGs is cc = 0.833. The latter value
results from the fact that local SSA also extracts the 50 Hz line interference while the KPCA does not.

5. Conclusions

In this work we considered the estimation of the pre-image within KPCA. This becomes important in applications
like denoising. We compared the two methods of pre-image estimation discussed in the literature and suggested two
simple modifications yielding a hybrid approach which proofed very effective in practical applications with RBF
kernels: (a) the mean of neighbors; (b) the mean of nearest neighbors as starting point to fixed point (mFP). The
comparison on a denoising task revealed that the solution obtained by the distance method strongly depends on
the number S of nearest neighbors chosen and sometimes does not yield reliable results. If S is smaller than the
dimension of the data space, the solution can often be closely approximated by simply choosing the mean of the nearest
neighbors which speeds up computation considerably. Concerning the fixed point algorithm a random initialization
as suggested in the literature often results in very slow convergence. Initializing the algorithm with the mean of the
nearest neighbors considerably speeds up convergence and yields a very robust algorithm. The methodology used
for denoising can as well be applied to the problem of extracting prominent artifacts from one-dimensional signals
like single channel EEG recordings. To this end, we adapt kernel principal component analysis to deal with one-
dimensional signals by embedding them into the space of their delayed coordinates. We demonstrate the performance
of the proposed KPCA algorithms to remove high-amplitude EOG interferences from EEG signals. The result of the
artifact removal strongly depends on the way the pre-image is estimated. We show that again the fixed point algorithm
initialized with the mean of the nearest neighbors (mFP) of each mapped data point is the most robust and reliably
extracts the EOG artifacts. In a previous work [14,15] local SSA was proposed for denoising and feature extraction
from one-dimensional signals. We present a short comparison to this method and show that the low frequency content
of the corrected EEG is affected differently by both methods.
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Appendix A

For convenience the main steps of local SSA are reviewed [15].



A.R. Teixeira et al. / Digital Signal Processing 18 (2008) 568–580 579
• After embedding, the column vectors xk, k = 1, . . . ,K , of the trajectory matrix are clustered using any cluster-
ing algorithm (like k-means [16]). The set of indices of the columns of X is subdivided into q disjoint subsets
c1, c2, . . . , cq . Thus sub-trajectory matrix X(ci ) is formed with Nci

columns of the matrix X which belong to the
subset of indices ci .

• A covariance matrix is computed in each cluster. And the eigenvalue decomposition of each the covariance ma-
trices is computed. The denoising can be achieved by projecting the multidimensional signal into the subspace
spanned by the eigenvectors corresponding to the Lci

< M largest eigenvalues.
• The clustering is reverted by forming an estimate X̂ of the reconstructed, noise-free trajectory matrix using the

columns of the extracted sub-trajectory matrices, X̂ci , i = 1, . . . , q , according to the contents of subsets ci . Then
the corresponding one dimensional signal is obtained as explained in Section 3.2.
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