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Abstract

Compressed sensing is a developing field aiming at reconstruction of sparse signals acquired in reduced dimensions,
which make the recovery process under-determined. The required solution is the one with minimumℓ0 norm due
to sparsity, however it is not practical to solve theℓ0 minimization problem. Commonly used techniques includeℓ1
minimization, such as Basis Pursuit (BP) and greedy pursuitalgorithms such as Orthogonal Matching Pursuit (OMP)
and Subspace Pursuit (SP). This manuscript proposes a novelsemi-greedy recovery approach, namely A* Orthogonal
Matching Pursuit (A*OMP). A*OMP performs A* search to look for the sparsest solution on a tree whose paths grow
similar to the Orthogonal Matching Pursuit (OMP) algorithm. Paths on the tree are evaluated according to a cost
function, which should compensate for different path lengths. For this purpose, three different auxiliary structures
are defined, including novel dynamic ones. A*OMP also incorporates pruning techniques which enable practical
applications of the algorithm. Moreover, the adjustable search parameters provide means for a complexity-accuracy
trade-off. We demonstrate the reconstruction ability of the proposedscheme on both synthetically generated data
and images using Gaussian and Bernoulli observation matrices, where A*OMP yields less reconstruction error and
higher exact recovery frequency than BP, OMP and SP. Resultsalso indicate that novel dynamic cost functions provide
improved results as compared to a conventional choice.

Keywords: compressed sensing, sparse signal reconstruction, orthogonal matching pursuit, best-first search,
auxiliary functions for A* search

1. Introduction

Compressed sensing (CS) deals with the acquisition of the sparse signals, i.e. signals with only a few nonzero
coefficients, in reduced dimensions. As a natural consequence of this, the signal has to be reconstructed back to its
full dimension using the observation in reduced dimensions. CS is based on the following question: Can a reduced
number of observations (less than Shannon-Nyquist rate) contain enough information for exact reconstruction of
sparse signals? One might argue that this seems quite unnatural, however a number of articles in CS literature, i.e.
[1], [2] and [3], state that it is indeed possible under certain assumptions.

Exact solution of the CS reconstruction problem requires minimization of theℓ0 norm, i.e. the number of nonzero
coefficients, which is unpractical. One of the solutions that can be found in the literature is the convex relaxation which
replacesℓ0 minimization problem with anℓ1 minimization, such as Basis Pursuit [4]. Another family of algorithms,
so called greedy pursuit algorithms, Orthogonal Matching Pursuit (OMP) [5], Subspace Pursuit (SP) [6], Iterative
Hard Thresholding (IHT) [7, 8] etc. provide greed and find approximate solutions by solving a stagewise constrained
residue minimization problem.

This manuscript proposes a new semi-greedy CS reconstruction approach that incorporates the A* Search [9, 10,
11, 12, 13], a best-first search technique that is frequentlyused in path finding, graph traversal and speech recognition.
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This new method, which we call A*OMP, proposes an A* search that employs the OMP algorithm to expand the
most promising path of the search tree at each iteration. By utilizing best-first search, multiple paths can be evaluated
during the search, which promises improvements over the single path structures of algorithms such as MP or OMP.
This combination of A* search and OMP is not straightforward: It requires appropriately defined cost models which
enable A* to perform stage-wise residue minimization in an intelligent manner, and effective pruning techniques
which make the algorithm tractable in practice. As for the cost model, which should make comparison of paths
with different lengths possible, we introduce two novel dynamic structures, which better comply with our needs,
in addition to the trivial additive one. Pruning capabilityis provided via a number of strategies which, together
with the cost model parameters, enable a complexity-accuracy trade-off. The effectiveness of the proposed pruning
techniques and the dynamic cost models is demonstrated via provided reconstruction examples. This reconstruction
experiments, including different nonzero coefficient distributions, Gaussian and Bernoulli type random observation
matrices, noise contaminated measurements and images, demonstrate that utilization of best-first search is able to
improve the reconstruction accuracy. A preliminary version of this work has been presented in [14].

A number of tree-search based methods have appeared in CS literature. These methods are, however, funda-
mentally different than A*OMP as they do not follow the best-first search principle. The tree-search based OMP
(TB-OMP), [15], employs a tree-search that opensL children per each node at a level. A rather flexible version ofthis
is the flexible tree-search based OMP (FTB-OMP) [16], where the branching factorL is decreased at each level. An-
other straightforward tree-search also appears in Fast Bayesian Matching Pursuit [17], which opens all children of the
nodes at a level, and retains the bestD wrt. their posterior probabilities. These methods incorporate rather simple and
non-sophisticated tree-search techniques in comparison to A*OMP. They employ neither cost models to compensate
for different path lengths, nor mechanisms to select the most promising path on the fly, but expand all nodes at a level.
They do not also possess effective pruning techniques, except FTB-OMP pruning the children of a node wrt. their
correlations to the best one, and FBMP keepingD nodes at a level. The randomized OMP (RandOMP) algorithm
[18] yields an estimate of the minimum mean-squared error (MMSE) solution by averaging multiple sparse repre-
sentations which are obtained by running a randomized version of OMP several times. Though RandOMP involves
multiple sparse representations, it incorporates no explicit tree-search.

To avoid some possible misunderstanding, we would like to note that the tree search concept in A*OMP is com-
pletely general to all sparse signals. A*OMP aims to find a closer result to the trueℓ0 solution, thus the objective is to
improve reconstruction quality not to decrease computational complexity to find a greedy solution, such as in list de-
coding [19]. Furthermore, A*OMP is neither specific for tree-sparse signals nor does it make use of a tree-structured
over-complete basis as for the tree-based OMP algorithm [20]. The algorithm is not specific for structured sparse
signals as well.

The rest of this manuscript is organized as follows: CS reconstruction problem and some major algorithms are
introduced briefly in sections 2. A* search is discussed in section 3. Section 4 is devoted to the A*OMP algorithm
and the novel cost functions. We demonstrate the reconstruction performance of A*OMP in comparison to Basis
Pursuit (BP) [4], Subspace Pursuit (SP) [6] and OMP [5] in Section 5, before concluding the manuscript with a short
summary.

2. Compressed Sensing

2.1. Problem Definition

Compressed Sensing acquisition of aK-sparse signalx, i.e. having onlyK nonzero entries, is obtained via the
observation matrix, or dictionary,Φ:

y = Φx (1)

wherex ∈ R
N, Φ ∈ R

M×N, y ∈ R
M andK < M < N. As M < N, solving forx directly from (1) is ill-posed. CS

exploits sparsity ofx to formulate the reconstruction problem alternatively as

x = arg min‖x‖0 s.t. y = Φx. (2)

where‖.‖0 denotes theℓ0 norm, which is the number of nonzero coefficients of a signal. Solving (2) directly is not
feasible as it requires an exhaustive combinatorial search[1, 21]. Consequently, a variety of strategies have emerged
to find approximate solutions to (2).
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2.2. Theoretical Guarantees - The Restricted Isometry Property

An important means for obtaining theoretical guarantees inCS recovery problem is the restricted isometry property
(RIP) [22, 3, 23]: A matrixΦ is said to satisfy theK-RIP if there exists a restricted isometry constantδK , 0 < δK < 1
such that

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1+ δK)‖x‖22,∀x : ‖x‖0 ≤ K. (3)

A matrix satisfying the RIP acts almost like an orthonormal system for sparse linear combinations of its columns [22],
making reconstruction of sparse signals from lower dimensional observations possible.

Analysis in [3, 24] state that matrices with i.i.d. Gaussianor Bernoulli entries and matrices randomly selected
from discrete Fourier transform satisfy the RIP with high probabilities, when they satisfy some specific conditions on
K based onM andN. Therefore, such random observation matrices can provide compact representations of sparse
signals.

2.3. Major CS Reconstruction Algorithms

Following [25], CS recovery approaches can be categorized as greedy pursuit algorithms, convex relaxation,
Bayesian framework, nonconvex optimization and brute force methods. In this work, we are interested in the first two
of these.

2.3.1. Convex Relaxation
ℓ1 or convex relaxation algorithms rely on the relaxation of the ℓ0 norm minimization in (2) by anℓ1 norm, which

first appeared in Basis Pursuit [4]. In this context, (2) is rewritten as

x = arg min‖x‖1 s.t y = Φx, (4)

which can be solved via computationally tractable convex optimization methods, such as pivoting, linear programming
and gradient methods [25]. Extensive analysis of RIP conditions forℓ1 relaxation can be found in [22, 3, 23, 26].

2.3.2. Greedy Pursuits
Historically, Matching Pursuit (MP) [27] is the first greedypursuit. MP expands the support ofx by the dictionary

atom which has the highest inner-product with the residue ateach iteration. Major drawback of MP is that it does
not take into account the non-orthogonality of the dictionary, which results in suboptimal choices of the nonzero
coefficients.

The non-orthogonality of dictionary atoms is taken into account by the Orthogonal Matching Pursuit (OMP) [5],
which performs orthogonal projection of the residue onto the selected dictionary atoms after each iteration. Ensuring
orthogonality of the residue to the selected support enhances the reconstruction. As expansion of paths in A*OMP is
very similar to OMP, we devote some space to a short overview of this method.

Let’s first define the notation: Letvn ∈ R
M , n = 1, 2, ...,N be the dictionary atoms, i.e. columns of the dictionary

Φ. r l denotes the residue after thel’th iteration. S andc denote the matrix (or, exchangeably in context, the set) of
atoms selected fromΦ for representingy and the vector of corresponding coefficients respectively.

OMP is initialized asr0 = y, S = {} andc = 0. At iteration l, OMP appendsS the dictionary atom that best
matchesr l−1

s = arg max
vn∈Φ\S

〈r l−1, vn〉,

S = S∪ s. (5)

The coefficients are computed by the orthogonal projection

c = arg min
c̃∈Rl

‖ y − Sc̃‖2. (6)

At the end of each iteration, the residue is updated as

r l = y − Sc. (7)
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After termination,Sandc contain the support and the corresponding nonzero entries of x, respectively. OMP may
employ different termination criterion. In this work, we fix the number of iterations asK. Alternatively, iterations can
be carried on until the residue falls below a threshold.

A detailed analysis of OMP is provided in [28] which states a lower-bound on the number of observations for
exact recovery. The guarantees for OMP, however, were shownto be non-uniform, i.e. they hold only for each fixed
sparse signal, but not for all [29]. It was shown in [30] that for natural random matrices it is not possible to obtain
uniform guarantees for OMP.

Recently, more sophisticated pursuit methods, which select multiple columns per iteration, have appeared. For
example, Stagewise OMP (StOMP) [31] selects in each step allcolumns whose inner-products with the residue is
higher than an adaptive threshold depending on theℓ2 norm of the residue. Alternatively, regularized OMP (ROMP)
[29] groups inner-products with similar magnitudes into sets at each iteration and selects the set with maximum
energy. Via this regularization, ROMP provides RIP-based uniform guarantees. Compressive Sampling Matching
Pursuit (CoSaMP) [32] and Subspace Pursuit (SP) [6] combineselection of multiple columns per iteration with a
pruning step. At each iteration, these first expand the selected support by addition of new atoms, and then prune it to
retain only the best K atoms. Both CoSaMP and SP are provided with optimal performance guarantees based on RIP.

Iterative hard thresholding (IHT) [7, 8] employs an iterative gradient search that first updates the sparse estimate
in the direction of the gradient of the residue wrt. the dictionary and then prunes the solution by either thresholding
or keeping only the K largest entries. IHT is equipped with RIP based guarantees similar to CoSaMP and SP [8]. A
recent IHT variant, Nesterov iterative hard thresholding (NIHT) [33] employs Nesterov’s proximal gradient [34] to
update the sparse representation. NIHT provides no a prioriperformance guarantee, but still an online performance
guarantee.

3. A* Search

A* search [9, 10, 11, 12, 13] is an iterative tree-search algorithm. In our problem, the A* search tree is iteratively
built up by nodes which represent the dictionary atoms. Eachpath from the root to a leaf node denotes a subset of
dictionary atoms which is a candidate support forx. A path is calledcompleteif it has K nodes, andpartial if it is
shorter. A* search tree is initialized with all possible single-node paths. At each iteration, the most promising path is
chosen and all of its children are added to the search tree. Search is terminated when the most promising path is found
to be complete.

In our scope, A* search looks for the complete pathpK which minimizes some evaluation functiong(pK). As
tree paths typically have different lengths, these cannot be compared via an evaluation function which depends on the
number of nodes on the path. In order to deal with different path lengths, A* search employs an auxiliary function
[11]. For a pathpl of lengthl ≤ K, the auxiliary functiond(pl) is defined such thatd(pK) = 0 and

d(pl) ≥ g(pl) − g(pl ∪ zK−l), ∀zK−l , (8)

wherezK−l is a sequence ofK − l nodes and∪ denotes concatenation. With this definition,d(pl) is larger than or equal
to the decrement in the evaluation function that any complete extension of the pathpl could yield.

Now, we define the cost function as
F(pl) = g(pl) − d(pl). (9)

Let’s consider a complete pathpK and a partial path̃pl of lengthl < K. Combining (8) and (9), ifF(pK) ≤ F (̃pl), then
g(pK) ≤ g(̃pl ∪ zK−l) for all zK−l , which states thatpK is better than all possible extensions ofp̃l . Hence, it is safe to
use the cost functionF(.) for selecting the most promising path. Note that, satisfying (8) may either be impossible or
unpractical in practice. This issue is discussed when different A*OMP cost models are introduced in Section 4.3.

4. Sparse Signal Reconstruction using A* Search

A*OMP casts the sparse recovery problem into a search for thecorrect support of theK-sparsex among a number
of dynamically evolving candidate subsets. These candidate subsets are stored as paths from the root node to leaf
nodes of a search tree, where each node represents an atom inΦ. The search tree is built up and evaluated iteratively
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Figure 1: Evaluation of the search tree during A*OMP algorithm

by A* search. The search starts with candidate subsets of single elements. At each iteration, new dictionary atoms
are appended to the most promising path, which is selected tominimize some cost function based on the residue. In
this way, A*OMP performs a multi-path search for the best oneamong all possibleK-element subsets ofΦ. Though
the A*OMP search tree actually restricts the search to a set of iteratively built candidate subsets, it is general with the
capability of representing all possibleK-element subsets ofΦ. Fig. 1 illustrates evaluation of a sample search tree
throughout the search.

Incorporation of a multi-path search strategy is motivatedby the expectation that it would improve reconstruction
especially where a single-path algorithm such as OMP fails because of the linear dependency of dictionary atoms. In
cases where computation of a single path yields a wrong representation, the correct one will mostly be in the set of
candidate representations. By a properly configured multi-path search, i.e. by proper selection of the cost model as
discussed below, this correct path may be distinguished among the candidates. In other words, a multi-path strategy
may reduce the error especially when too few measurements are provided.

For the rest of this work, we differentiate between the paths in the search tree with subscripts. The superscripts
represent either the length of the path, or the position of the node in the path.sl

i represents the selected atom at the
l’th node on pathSi andcl

i the corresponding coefficient. Similarlyr i is the residue of pathi. Si andci denote the
matrix of atoms selected for pathi and the vector of corresponding coefficients, respectively. Note thatSi andsl

i are
the mathematical equivalents of the corresponding path andnode, respectively. In the rest of this work, we slightly
abuse this notation and usesl

i andSi also to represent the corresponding node and path.
We discuss utilization of tree search for A*OMP in three mainsteps: initialization of the search tree, selecting the

best path and expansion of the selected partial path.

4.1. Initialization of the Search Tree
A* search originally initializes the search tree by all possible paths with length 1. This corresponds toN different

initial subsets, which is not practical in most cases asN is usually large. In fact, onlyK ≪ N dictionary atoms
are relevant toy. Moreover, each iteration adds the tree multiple children of a selected partial path (Section 4.2).
Hence, the search might be started with less paths. As a consequence, we limit the initial search tree to theI ≪ K
subsets, each of which contains one of theI atoms having the highest absolute inner-product withy. Note that another
possibility would be selecting the atoms whose inner-products withy are greater than a certain threshold.

4.2. Expanding the Selected Partial Path
In typical A* search, all children of the most promising partial path are added to the search tree at each iteration.

In practice, this results in too many search paths because ofthe high number of possible children: To illustrate, let the
length of the selected partial path bel. This path hasN − l ≈ N children sincel < K ≪ N. Hence, each iteration
considers approximatelyN new paths and the upper bound on the number of paths involved overall in the search is
obtained asNK , givenK ≪ N. To limit these, we employ three pruning strategies:
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4.2.1. Extensions per Path Pruning
For our purposes, order of nodes along a path is unimportant.At each step, we require only to add one of theK

correct atoms to the representation, and not a specific one ofthem. Therefore, considering only a few children of a
selected partial path becomes a reasonable sacrifice. At each A*OMP iteration, we expand the search tree only by
theB children which have the highest absolute inner-product with the residue to the selected path. Note that another
reasonable choice would be considering only the children whose inner-products with the residue are higher than a
threshold.

Extensions per Path Pruning decreases the upper bound on thenumber of paths fromNK to BK. Starting the search
with I initial paths, this bound becomesI ∗ B(K−1). Practically,I andB are chosen much smaller thanN, decreasing
the paths involved in the search drastically.

4.2.2. Tree Size Pruning
Despite extensions per path are limited toB, adding new paths at each iteration still increases required memory, as

the corresponding residues are also necessary. To reduce memory requirements, we adopt the “beam search” strategy
and we limit the maximum number of paths in the tree by the beamwidth P. When this limit is exceeded, the worst
paths, i.e. the ones with maximum cost, are removed from the tree till P paths remain.

Fig. 2 illustrates the Extensions per Path and Tree Size Pruning rules whereP = 4 andB = 3. Fig. 2a depicts a
search tree with four paths at the beginning of an iteration.The cost of each path is indicated withCi . Path 4, which
has the minimum cost is selected as the best path. Let the bestB children of path 4 be nodes 2, 8 and 9, ordered with
descending correlation to the residue. In Fig. 2b, the best child 2 is directly appended to Path 4, without increasing
the number of paths. Fig. 2c depicts addition of the second child 8, after which there appear five paths on the tree. As
tree size is limited toP = 4, path 2, which has the maximum cost, is removed. Finally, weconsider node 9 in Fig. 2d.
The resultant path has higher cost than the other four paths.Hence, it is not added to the tree.

4.2.3. Equivalent Path Pruning
Neglecting insertion of equivalent paths to the tree is alsoimportant to improve the search performance. For this

purpose, we define a path equivalency notion that also coverspaths with different lengths: LetSl1
1 andSl2

2 be two paths
of lengthsl1 andl2, respectively, wherel1 ≥ l2. Let’s defineSl2

p,1 as the partial path that consists of the firstl2 nodes

of Sl1
1 , i.e. Sl2

p,1 = s1
1, s

2
1, ..., s

l2
1 . Sl1

1 andSl2
2 are equivalent if and only ifSl2

p,1 andSl2
2 share the same set of nodes. In

this case, orthogonality of the residue to the selected support, ensures thatSl2
p,1 andSl2

2 are equivalent. Consequently,

insertion ofSl2
2 into the tree is unnecessary, asSl2

p,1 has already been expanded in previous iterations.
Fig. 3 illustrates the path equivalency. Path 2 and the first three nodes of Path 1 share the same set of nodes, which

makes Path 1 and Path 2 equivalent. Note that orthogonal projection ensures node 5 will be among the best children of
path 2. On the contrary, Path 1 and Path 3 are not equivalent asthe first three nodes of Path 1 and Path 3 are different.
There exists no guarantee that node 7 will be among the best children of Path 3.

Let’s now summarize extension of a selected partial path with these three pruning rules: First, the bestBchildren of
the selected partial pathS are chosen as the dictionary atoms having highest inner-product with the residue. We obtain
B new candidate paths by appendingS one of theseB children. We apply Equivalent Path Pruning by eliminating
candidates which are equivalent to already visited paths. For each remaining candidate, we first compute the residue
via orthogonal projection ofy ontoS, and then the cost as discussed below. We removeS from the tree and add the
candidate paths. Finally, we prune the tree if number of paths exceedsP.

4.3. Selection of the Most Promising Path
A natural criterion for choosing the most promising path is the minimum residual error. Consequently, for a path

Sl of lengthl, the evaluation function can be written as

g(Sl) =
∥∥∥r l
∥∥∥

2
=

∥∥∥∥∥∥∥∥
y −

l∑

j=1

c jsj

∥∥∥∥∥∥∥∥
2

. (10)

wheresj andc j denote the selected atom at stage j and the coefficient obtained after orthogonal projection of the
residue onto the set of selected atoms, respectively.
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Figure 2: Evaluation of the search tree during a single iteration of the A*OMP algorithm

As discussed in Section 3, A* search employs an auxiliary function to compensate for different path lengths. The
auxiliary function is important for comparing the multiplepaths in the search tree. By proper evaluation of these paths,
though any single one of them is limited to the RIP condition of OMP algorithm alone, A*OMP can relax the RIP
condition, increasing the probability of finding a final paththat is not altered by the linear dependency of the atoms in
the dictionary. Ideally, the auxiliary function should mimic the decay of the residue along a path, which is impossible
in practice. Below, we suggest three different methods which exploit different assumptions about the residue.
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Figure 3: Path Equivalency: Path 1 and Path 2 are equivalent as first three nodes of Path 1 contain only nodes in Path 2. Path 3is not equivalent to
Path 1 as the node ’5’ is not an element of the first three nodes of Path 1. Note that orthogonal projections ensure Path 2 to select ’5’ as the next
node, while there is no guarantee that Path 3 will select ’7’.

4.3.1. Additive Cost Model
The additive cost model assumes that theK vectors in the representation make on average equal contributions to

‖y‖2. That is, we assume that the average contribution of a vectoris δe = ‖y‖2 /K. Then, the unopenedK − l nodes
of a partial path of lengthl are expected to reduce‖r‖2 by (K − l)δe. Combining this with (8), the auxiliary function
should satisfy

dadd(Sl) ≥ (K − l)
‖y‖2
K
. (11)

Consequently, we define the additive auxiliary function as

dadd(Sl) , β(K − l)
‖y‖2
K
, (12)

whereβ is a constant greater than 1. Finally, we obtain the additivecost function as

Fadd(Sl) =
∥∥∥r l
∥∥∥

2
− β

(K − l)
K

‖y‖2 . (13)

Here,β acts as a regularization constant. If it is large, shorter paths are favored, making the search expand more
candidates. When it becomes smaller, the search prefers longer paths. Note that favoring shorter paths increases the
number of paths opened throughout the search, which improves the search at the expense of increased complexity.
Hence, beta should be chosen to balance the available computational power or time restrictions and the recovery
performance.

Note thatδe = ‖y‖2 /K does not hold in general. However, (11) requires this assumption only on average. More-
over, we intuitively expect the search to miss mostly the vectors with smaller contributions to‖y‖2, and for these, the
additive auxiliary function satisfies (11) with higher probabilities.

4.3.2. Adaptive Cost Model
The auxiliary function can also be chosen adaptively by modifying the expectation on average contribution of an

unopened node as:
δe =

(∥∥∥r l−1
i

∥∥∥
2
−
∥∥∥r l

i

∥∥∥
2

)
. (14)

Then, the adaptive auxiliary function should fulfill

dadap(Sl
i) ≥ (K − l)(

∥∥∥r l−1
i

∥∥∥
2
−
∥∥∥r l

i

∥∥∥
2
), (15)

where the subscripti indicates the dependency on the particular pathSl
i . (15) can be justified by the fact that A* is

configured to select first the vectors with higher contributions toy. Hence, the residue is expected to decrease slower
in later nodes than the initial nodes of a path.

As for the additive case, we incorporateβ > 1 to finally obtain the adaptive auxiliary function

dadap(Sl
i) = β(

∥∥∥r l−1
i

∥∥∥
2
−
∥∥∥r l

i

∥∥∥
2
)(K − l). (16)

The adaptive cost function can then be written as follows:

Fadap(Sl
i) =
∥∥∥r l

i

∥∥∥
2
− β(
∥∥∥r l−1

i

∥∥∥
2
−
∥∥∥r l

i

∥∥∥
2
)(K − l), (17)

where the role of the regularization constantβ is very similar to the additive case.
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4.3.3. Multiplicative Cost Model
In contrast to addition of the auxiliary function, multiplicative cost model path employs a weighting function.

Here, we assume that each node reduces‖r‖2 by a constant ratio,α. The multiplicative cost function is defined as

Fmul(Sl
i) = α

K−lg(Sl
i) = α

K−l
∥∥∥r l

i

∥∥∥
2
. (18)

whereα should be chosen between 0 and 1. The role ofα is very close to that ofβ for the additive cost function.
Whenα is close to 0, short paths are assigned very small costs, making the search to prefer them. On the contrary, if
we chooseα close to 1, weighting is hardly effective on the cost function, hence longer paths will be favored.

In contrast to the additive one, adaptive and multiplicative cost models adjust the expected decay inr l
i dynamically

throughout the search. These dynamic structures are expected to provide a better modeling of the decrease inr l
i . In

fact, the simulation results in Section 5 clearly indicate that they improve the reconstruction accuracy.

4.4. A* Orthogonal Matching Pursuit

We can now outline A*OMP:I out of theP paths, which are kept in a stack, are initialized as theI vectors which
best matchy and the remainingP − I paths are left empty. The cost for the empty paths is‖y‖2, hence they will be
removed first. In each iteration, first, we select the path with minimum cost. We, then, expand the bestB children
of the selected path applying the pruning rules discussed inSection 4.2. Iterations are run until the selected path has
lengthK. The pseudo-code for the algorithm is given in Algorithm 1. 1

We note that other termination criteria are also possible, including, for example, norm of the residue falling below
a threshold, or no further reduction of the residue obtained.

4.5. Complexity vs. Accuracy

The complexity of A*OMP approach arises from two points: Thenumber of inner-product checks between the
residue and dictionary atoms, and the number of orthogonal projections. The number of inner-product checks is equal
to the number of iterations. Orthogonal projection, on the other hand, is necessary for each path, except the ones that
are pruned by the equivalent path pruning. Hence, the numberof these is equal toB times the number of iterations
minus the number of equivalent paths detected. Consequently, the important factors that govern the complexity of
A*OMP are, first, the number of iterations and, second, the number of equivalent paths detected. However, it is not
possible to find reasonable approximations of these. The only approximation to the number of paths is the upper
bound that assumes opening of every possible node on the tree, which is obviously far away from being realistic. In
order to give an insight on these, we investigate these experimentally in section 5.1.1.

The pruning strategies of Section 4.2 can be seen as a trade-off between the accuracy and complexity of A*OMP.
If we setI = N, B = N andP = ∞, the algorithm will perform an exhaustive search, which is prohibitively complex.
On the other hand, settingI = 1 andB = 1 yields OMP. A choice between the accuracy and complexity ofthe search
can be adjusted by the pruning parameters. The accuracy is expected to increase with increasing these parameters, as
demonstrated in section 5.1.3. In practice, these parameters, of course, may not be increased after some point, and
regarding the results in section 5.1.3, it is also questionable if they will improve the performance after some point.

The cost model is also extremely important in the complexity-accuracy trade-off. An appropriate modeling of
the decay in the residue improves the ability to predict branches on which the solution might lie. Therefore, the
auxiliary function is important for both choosing the best path and pruning. With an appropriate choice, the trade-off

between the complexity and accuracy is boosted in favor of accuracy, such as the dynamic cost functions improving
the reconstruction ability in the first example in section 5.In addition, the auxiliary function parametersα andβ
also affect the complexity-accuracy trade-off. Choosingβ ≫ 1 or 0 < α ≪ 1 makes the search favor shorter
paths, leading to improvements in accuracy with longer search times. On the contrary, whenβ andα are close to 1,
the algorithm performs similar to OMP. These improvements are, of course, also expected to have some limits, for
example, decreasingα does not improve the performance after some point, as demonstrated in section 5.1.3.

In order to get the best out of the search parameters, they should better be considered together. For example,
reducingα increases the number of paths opened throughout the search.Consequently, a lowerα value should
be accompanied by an increment in the beam widthP in order to obtain better reconstruction results. This also
holds whenβ or B is increased, which similarly increases the number of pathsinvolved in the search. Examples in
section 5.1.3 illustrate this issue.
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Algorithm 1 A* ORTHOGONAL MATCHING PURSUIT
Define:

P :=Maximum number of search paths
I := Number of initial search paths
B := Number of extended branches per iteration
Si = {sl

i}, matrix of atomssl
i on thei’th path

ci = {cl
i}, vector of coefficients for the atoms on thei’th path

Li := length of thei’th path
Ci := cost for selecting thei’th path

Initialize:
T ← ∅
for i ← 1 to I do ⊲ I paths of length 1

n̂← arg max
n,vn∈Φ\T

〈y, vn〉

T ← T ∪ vn̂

s1
i ← vn̂, c1

i ← 〈y, vn̂〉

r i ← y − c1
i s1

i
Ci = F(Si), Li = 1

end for
Ci = ‖y‖2, Li = 0,∀i = I + 1, I + 2, ...,P
best path← 1

while Lbest path , K do
p̂← best path ⊲ first to replace
T ← Sbest path

for i ← 1 to B do ⊲ extensions per path pruning
n̂← arg max

n,vn∈Φ\T
〈rbest path, vn〉

T ← T ∪ vn̂

Ŝ← Sbest path∪ vn̂ ⊲ candidate path
ĉ← arg min

α

‖y − Ŝα‖2 ⊲ Orthogonal projection

Ĉ← F(Ŝ) ⊲ Cost of the candidate path
if (Ĉ < F(Sp̂)) & ⊲ tree size pruning

(Ŝ, Sj , ∀ j = 1, 2, ...,P) then ⊲ path equivalency
Sp̂ ← Ŝ, cp̂ ← ĉ, Cp̂ ← Ĉ
Lp̂ ← Lbest path+ 1
r p̂ ← y − Sp̂cp̂

p̂← arg max
i∈1,2,...,P

Ci ⊲ to be replaced next

end if
end for
best path← arg min

i∈1,2,...,P
Ci ⊲ select best path

end while
return Sbest path, cbest path

5. Simulation Results

We demonstrate sparse recovery via A*OMP in two problems in comparison to BP, SP and OMP. First of them is
the recovery of a synthetically generated 1D signals, whilethe latter involves an image reconstruction problem. The
simulations for A*OMP were performed using the AStarOMP software developed by the authors. The AStarOMP
software incorporates a trie structure to implement the A* search tree in an efficient way. The orthogonalization
over the residue is solved using the QR factorization. This software, and its MATLAB version, are available at
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Figure 4: Reconstruction results over sparsity for uniformsparse signals employing Gaussian observation matrices.

http://myweb.sabanciuniv.edu/karahanoglu/research/.

5.1. Reconstruction of Synthetically Generated 1D Data

In this section, we evaluate three versions of A*OMP using additive, adaptive and multiplicative cost models.
These are abbreviated as Add-A*OMP, Adap-A*OMP and Mul-A*OMP, respectively. The experiments cover differ-
ent non-zero coefficient distributions, including uniform and Gaussian distributions as well as binary nonzero coeffi-
cients. We investigate reconstruction via Gaussian and Bernoulli observation matrices and compare different A*OMP
parameters. Finally, we demonstrate A*OMP for reconstruction from noisy observations.

All the simulations in this section were repeated over 500 randomly generatedK-sparse samples of lengthN = 256
from which M = 100 random observations were taken via the observation matrix Φ. Reconstruction accuracy are
given in terms of both the exact reconstruction rate and the average normalized mean squared error (NMSE), which
is defined as the average ratio of theℓ2 norm of the reconstruction error to‖x‖2 over the 500 test samples. For the
noisy scenarios, we give the reconstruction error in the decibel scale, which we call the distortion ratio. Unless given
explicitly, the following are common in all simulations: A*OMP parameters were set asI = 3, B = 2, P = 200,
β = 1.25 andα = 0.8. For each test sample, we employed an individual observation matrixΦ whose entries were
drawn from the Gaussian distribution with mean 0 and standard deviation 1/N.

5.1.1. Different Coefficient Distributions
The first set of simulations employ sparse signals with nonzero coefficients drawn from the uniform distribution

U[−1, 1]. We refer to these signals as uniform sparse signals in therest. The results of these simulations forK from
10 to 50 are depicted in Fig. 4. In this test, Adap-A*OMP and Mul-A*OMP clearly provide lower average NMSE
than BP, SP and OMP, except forK = 50 where BP provides lower error. As expected, the average NMSE of OMP
is the worst, while that of SP is only slightly better. BP provides lower error than SP and OMP, however it is still
worse than A*OMP except forK = 50. Even the Add-A*OMP, which employs no dynamic cost model,yields lower
error than BP up toK = 40. In addition to average NMSE, Mul-A*OMP, on general, yields higher exact recovery
rates. Though SP yields high average NMSE, its exact recovery frequency competes with that of Mul-A*OMP up
to K = 30, and even exceeds it slightly atK = 30. For Add-A*OMP, the situation is contrary: Despite low average
NMSE values, its exact reconstruction rate is even worse than that of OMP. These results indicate that the static
cost model of Add-A*OMP most of the time fails at small nonzero coefficients. Adaptive and multiplicative cost
models, which dynamically adjust the expected decay in‖r‖2 individually for each path, are clearly more effective for
compensating path length differences.

As for SP, the exact recovery rate is much better than the NMSEsuggests. This indicates that the amount of error
SP makes per failure is much higher than that of the A*OMP algorithm. To visualize this fact, the probability density
estimates of the error are depicted in Fig. 5 for SP and Mul-A*OMP. These were computed using Gaussian kernels
over NMSE of the test vectors which could not be exactly reconstructed forK = 30. The figures state that NMSE
values on the order of 10−3’s for Mul-A*OMP, while for SP, they range up to 0.8, with meanabout 0.3. This arises
from the difference in the average number of misidentified elements per failure, which is shown in Fig. 6 forK = 30.
Mul-A*OMP has misidentified only one or two of the 30 components, while SP has missed 9 to 16 components, and

11

http://myweb.sabanciuniv.edu/karahanoglu/research/


−5 0 5 10

x 10
−3

0

500

1000

MSE

f(
M

S
E

)
Mul. A*OMP

−0.5 0 0.5 1
0

1

2

3

MSE

f(
M

S
E

)

SP

Figure 5: Probability density estimates of the NMSE forK = 30.

0 10 20 30
0

10

20

30

Misidentified components per vector

N
o

. 
v
e

c
to

rs

Mul. A*OMP

0 10 20 30
0

2

4

6

Misidentified components per vector

N
o

. 
v
e

c
to

rs

SP

Figure 6: Number of misidentified entries per test sample forK = 30.

on average about 12 per failure. These figures indicate that if the reconstruction is not exact, SP almost completely
fails, however A*OMP can still reconstruct the desired vector with small amount of error, which is less than 1% of
the signal norm for K= 30.

As discussed in section 4.5, the two important factors for the complexity of A*OMP are the average A*OMP
iterations per vector and the average equivalent paths detected per vector. Table 1 states the average A*OMP iterations
per vector in this scenario in comparison to the upper bound on the number of A*OMP iterations. This upper bound
can easily be obtained asI · (2K−1 − 1) for B = 2 by assuming that all of the opened partial paths are selected one
by one as the best path throughout the search. The actual number of iterations is incomparably lower than this upper
bound. Moreover, though the upper bound increases exponentially with K, the actual number of iterations exhibit
a much lower slope. The second important factor, the averagenumber of equivalent paths per vector is given in
Table 2. These numbers are comparable to the number of iterations, which states the effectiveness of the equivalent
path pruning rule. These results indicate that pruning and proper selection of the cost model make it possible to run
the search for cases where the upper bound becomes unpractically high.

Table 1: Average A*OMP iterations per vector for uniform sparse signals

K
10 20 30 40

Mul-A*OMP 13.8 164 1695 4177
Adap-A*OMP 19 167.4 2443 6109
Upper Bound 1533 1.57 · 106 1.61 · 109 1.65 · 1012

Finally, in order to provide an insight about the speed of thesearch, we list in Table 3 the average run-times
for Mul-A*OMP, Adap-A*OMP and OMP on a modest Pentium Dual-Core CPU at 2.3GHz. These were obtained
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Table 2: Average equivalent paths per vector for uniform sparse signals

K
10 20 30 40

Mul-A*OMP 4.4 114.1 975.2 1776
Adap-A*OMP 11.2 126.6 1355 1831
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Figure 7: Reconstruction results over sparsity for Gaussian sparse vectors using Gaussian observation matrices.

using the AStarOMP software and a similar OMP implementation developed by the authors specially for obtaining
comparable run-times. Note that the structure of A*OMP makes it possible to process theB candidates in parallel
at each iteration. Moreover, the search can easily be modified to open more than one promising path per iteration in
parallel. Hence, these run-times can be significantly reduced by parallel programming, which is beyond the scope of
this paper.

Table 3: Average run-time in sec. per vector for uniform sparse signals

K
10 20 30 40

OMP 0.0012 0.0025 0.0036 0.0050
Mul-A*OMP 0.0022 0.0261 0.3158 0.8292
Adap-A*OMP 0.0032 0.0276 0.4601 1.1525

For the second set of simulations, we employ Gaussian sparsevectors, whose nonzero entries were drawn from
the standard Gaussian distribution. Fig. 7 depicts the average NMSE and exact reconstruction rates for this test. In
this scenario, Mul-A*OMP provides clearly better reconstruction than BP, SP and OMP. We observe that it provides
both lower NMSE and higher exact reconstruction rate than all the other algorithms. SP yields the second best exact
reconstruction rate, however, its average NMSE is the worst, as a consequence of the almost complete failure of a
non-exact reconstruction.

In order to question the choice of the observation matrix, werepeat the last scenario with observation matrices
drawn from the Bernoulli distribution. The average NMSE andexact reconstruction rates for this test are illustrated
in Fig. 8. Comparing Fig. 8 with Fig. 7, we observe that the average NMSE values remain quite unaltered for
Mul-A*OMP and BP, while that for SP increases. Mul-A*OMP leads to the least amount of error. As for exact
reconstruction, only BP keeps the same rates, while the rates of all others fall. BP and SP compete with Mul-A*OMP
until K = 25, where SP is slightly better. WhenK further increases, Mul-A*OMP has the highest exact recovery
frequency.

Next problem is the reconstruction of sparse binary vectors, where the nonzero coefficients were selected as 1.
The results are shown in Fig. 9. We observe that BP clearly yields better reconstruction than the others in this case. SP
also performs better than A*OMP. The failure of A*OMP is related to the fact that this is a particularly challenging
case for OMP-type of algorithms [6]. OMP is shown to have non-uniform guarantees, and, though mathematical
justification of A*OMP is quite hard, this non-uniformity seems to be carried over to A*OMP for this type of signals.
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Figure 8: Reconstruction results over sparsity for Gaussian sparse vectors using Bernoulli observation matrices.
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Figure 9: Reconstruction results over sparsity for sparse binary signals using Gaussian observation matrices.

In contrast, for sparse binary signals,ℓ0 norm of the correct solution is exactly equal to itsℓ1 norm, which might be
considered as an advantage for BP in this particular scenario. The results of this scenario, however, should not be very
discouraging since sparse binary vectors represent a limited subset of the real world problems.

5.1.2. Performance over Different Observation Lengths
Another interesting test case is the reconstruction ability when the observation length,M, changes. Fig. 10 depicts

the recovery performance overM for uniform sparse signals whereK = 25. For eachM value, a single Gaussian
observation matrix is employed to obtain observations fromall signals. We observe that Mul-A*OMP is the best in
terms of the exact recovery rates, while SP and BP compete it for M ≥ 90 andM ≥ 100, respectively. The average
NMSE of Mul-A*OMP is also lower than the others except for thecase ofM = 50 where BP provides lower error
than Mul-A*OMP.

5.1.3. Comparison of Different Search Parameters
Choosing the search parameters is an important issue for theA*OMP algorithm. This was discussed above in sec-

tion 4.5, indicating two main points: The reconstruction performance of the search might be increased by modifying
the search parameters to explore more paths in the search at the expense of increased iterations and search times. In
order to demonstrate this, we consider two scenarios. First, we varyα, and laterB together withP.

Fig. 11 depicts the performance of Mul-A*OMP overα for uniform sparse signals withK = 30 andK = 35. The
dashed and solid lines indicate results forP = 200 andP = 5000, respectively. ForK = 30, the reconstruction perfor-
mance increases whenα is reduced from 0.95 to about 0.8, whereas any further reduction of α does not significantly
affect the performance. In addition, there is hardly any difference between selectingP = 200 andP = 5000. This
suggests that settingP = 200 andα ≈ 0.8 seems to be enough forK = 30. WhenK = 35, however, more paths
are involved in the search, and increasingP improves the reconstruction. WhenP = 200, reducingα below 0.9 does
not improve but slightly degrade the performance. On the contrary, if P is increased to 5000, the reconstruction is
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Figure 11: Reconstruction results overα for uniform sparse signals using Gaussian observation matrices.

Table 4: Average Mul-A*OMP iterations per vector wrt.α andP for uniform sparse signals withK = 35

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

P = 200 4158 3927 3565 2932 1353
P = 5000 58204 51710 41781 25527 4026

improved untilα is reduced to 0.8, below which the reconstruction performance does not change. Though not given
in the figures, the authors have observed that settingP > 5000 has hardly any effect on the reconstruction. These re-
sults demonstrate that reducingα improves the reconstruction until some convergence point.Table 4 lists the average
number of search iterations whileα andP are varied. We observe that decreasingP and increasingα increase the
number of paths involved, which clarifies complexity-accuracy trade off that leads to improved recovery performance
at the expense of increased complexity.

Next, we illustrate the performance of Mul-A*OMP withB = 2 andB = 3 for sparse binary signals in Fig. 12.
The experiment was repeated forP = 200 andP = 1000, which are depicted by dashed and solid lines, respectively.
We observe that increasingB from 2 to 3 improves the reconstruction. This improvement isfurther enhanced by
increasingP from 200 to 1000 whenK ≥ 25, where a larger search stack can better cover for the increased number
of paths involved in the search. Table 5 lists the average number of search iterations, which increase withB andP.
Hence, the improvement, as above, is obtained at the expenseof complexity.

The results in this section explain how the performance of A*OMP can be adjusted by the search parameters.
The mechanism behind is simple: Increasing the number of paths explored by the search improves the results, until a
convergence point, at the expense of increasing the complexity. According to the experimental results, one advantage
is that even with modest settings such asI = 2, P = 200 andα = 0.8 employed in the experiments, A*OMP can
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Figure 12: Reconstruction results for sparse binary signals for B = 2 andB = 3 using Gaussian observation matrices.

Table 5: Average Mul-A*OMP iterations wrt.B andP per vector in the sparse binary problem

P= 200 P= 1000
B=2 B=3 B=2 B=3

K = 10 48 114 48 114
K = 20 1046 2095 1275 7159
K = 30 3424 4249 12278 18240
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Figure 13: Average NMSE over SNR for reconstruction of sparse signals from noisy observations using Gaussian observation matrices.

provide high exact recovery frequencies and lower error than the other candidates for uniform and Gaussian sparse
signals. This indicated that A*OMP recovery, at least in these cases, is quite robust against the choice of search
parameters.

5.1.4. Reconstruction from Noisy Observations
Fig. 13 illustrates recovery results where the observationvectors are contaminated by white gaussian noise at

different SNR levels. Here,K is 25 and 30 for Gaussian and uniform sparse signals, respectively. The results are
shown in terms of the distortion ratio in the decibel scale for better comparison. We observe that Mul. A*OMP
produces less error than BP, SP and OMP for about 10dB and higher. When SNR decreases, BP starts to be more
effective than the greedy algorithms.

5.2. Reconstruction of Images

We finally simulate the reconstruction ability of A*OMP on some commonly used 512× 512 images including
’Lena’, ’Tracy’, ’cameraman’, etc. The images were reconstructed in 8×8 blocks which provide important advantages
that reduce the complexity and memory requirements of the search. First, without block-processing, the reconstruction
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Table 6: PSNR values for images reconstructed using different algorithms

BP OMP SP
Mul-A*OMP Adap-A*OMP
B=2 B=3 B=2 B=3

Lena 33.5 29.6 27.5 36.4 38.3 35.2 37
Tracy 40.6 36.8 33.9 44.8 46.4 44.5 45.5
Pirate 31.7 27.7 25.3 33.6 34.5 32.8 34.2
Cameraman 34.4 30.7 28.5 38.4 40.2 36.7 39.5
Mandrill 28.3 24.4 22.1 30.3 31.3 29.3 30.8

problem requires searching amongN = 5122 = 262144 dictionary atoms. However, block-processing reduces the
problem to 4096 subproblems withN = 64, which is more efficient as each subproblem requires a search in 4096-fold
reduced dimensionality. Second, block-processing reduces the total number of search paths drastically. To illustrate,
let’s setB = 2. From Section 4.2, the number of search paths for eachK-sparse block is upper bounded byI · 2(K−1).
Then, for the whole image, the upper bound becomes 4096· I ·2(K−1) = I ·2(K+11. If no block processing were involved,
the upper bound would beI · 2D whereD ≫ K + 11. Finally, block-processing also reduces the length of the involved
paths. Note that the block structure is shared by all involved recovery methods.

The simulations were performed with five 512× 512 grayscale images using the 2D Haar Wavelet basisΨ. Note
that in this case, the dictionary is notΦ, but the holographic basisV = ΦΨ. Images were first preprocessed such
that each 8× 8 block is K-sparse in the 2D Haar Wavelet basis, whereK = 14. A single observation matrixΦ of
sizeM × N, which was randomly drawn from the Gaussian distribution with mean 0 and standard deviation 1/N, was
employed to compute the measurements of lengthM = 32 from each block. Mul-A*OMP and Adap-A*OMP were
run for bothB = 2 andB = 3. We selectedI = 3 andP = 200. The cost function parameters were set toα = 0.5 and
β = 1.25.

Table 6 lists the peak Signal-to-Noise ratio (PSNR) of reconstructed images. A*OMP yields better reconstruction
than the other methods. IncreasingB from 2 to 3 further improves the reconstruction performance. A*OMP improves
PSNR up to 5.8 dB, and 4.4 dB on average over BP. As an example, Fig. 14 depicts reconstruction of ’lena’ using
SP, BP and Mul-A*OMP withB = 3. Mul-A*OMP reconstruction provides lower error, which can be observed
better in Fig. 15 illustrating the absolute error per pixel for BP and Adap-A*OMP reconstructions. For BP, errors are
concentrated around boundaries and detailed regions, while Mul-A*OMP clearly produces less distortion all around
the image.

6. Conclusion

This work introduces a novel CS reconstruction approach, A*OMP, which is based on an effective combination
of OMP with A* search. This semi-greedy method performs a tree-search, that favors the paths minimizing the cost
function on-the-fly. In order to compare paths with different lengths, novel dynamic cost functions, which show better
reconstruction in the provided experiments, are defined. Pruning strategies are introduced to limit the search running
times. A complexity-accuracy trade-off is provided via adjustment of the search parameters. In the provided experi-
ments, A*OMP, with some modest settings, performs better reconstruction for uniform and Gaussian sparse signals,
and for images than BP and SP. It also shows robust performance under presence of noise. BP and SP perform better
than A*OMP for the sparse binary signals which constitute a limited subset of the real world problems. Moreover,
as demonstrated, the A*OMP reconstruction in this case can be improved by modifying the search parameters at the
expense of complexity.

To conclude, the demonstrated reconstruction performanceof A*OMP indicates that it is a promising approach,
that is capable of reducing the reconstruction errors significantly.
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