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Abstract

We investigate adaptive mixture methods that linearly combine outputs of m con-

stituent filters running in parallel to model a desired signal. We use “Bregman di-

vergences” and obtain certain multiplicative updates to train the linear combination

weights under an affine constraint or without any constraints. We use unnormalized

relative entropy and relative entropy to define two different Bregman divergences

that produce an unnormalized exponentiated gradient update and a normalized ex-

ponentiated gradient update on the mixture weights, respectively. We then carry

out the mean and the mean-square transient analysis of these adaptive algorithms

when they are used to combine outputs of m constituent filters. We illustrate the

accuracy of our results and demonstrate the effectiveness of these updates for sparse

mixture systems.
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1 Introduction

In this paper, we study adaptive mixture methods based on “Bregman diver-

gences” [1,2] that combine outputs of m constituent filters running in parallel

on the same task. The overall system has two stages [3–8]. The first stage con-

tains adaptive filters running in parallel to model a desired signal. The outputs

of these adaptive filters are then linearly combined to produce the final output

of the overall system in the second stage. We use Bregman divergences and

obtain certain multiplicative updates [9], [2], [10] to train these linear combi-

nation weights under an affine constraint [11] or without any constraints [12].

We use unnormalized [2] and normalized relative entropy [9] to define two

different Bregman divergences that produce the unnormalized exponentiated

gradient update (EGU) and the exponentiated gradient update (EG) on the

mixture weights [9], respectively. We then perform the mean and the mean-

square transient analysis of these adaptive mixtures when they are used to

combine outputs of m constituent filters. We emphasize that to the best of

our knowledge, this is the first mean and mean-square transient analysis of the

EGU algorithm and the EG algorithm in the mixture framework (which nat-

urally covers the classical framework also [13,14]). We illustrate the accuracy

of our results through simulations in different configurations and demonstrate

advantages of the introduced algorithms for sparse mixture systems.

Adaptive mixture methods are utilized in a wide range of signal processing

applications in order to improve the steady-state and/or convergence perfor-

mance over the constituent filters [11,12,15]. An adaptive convexly constrained

mixture of two filters is studied in [15], where the convex combination is shown

to be “universal” such that the combination performs at least as well as its

best constituent filter in the steady-state [15]. The transient analysis of this

adaptive convex combination is studied in [16], where the time evolution of

the mean and variance of the mixture weights is provided. In similar lines,
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an affinely constrained mixture of adaptive filters using a stochastic gradi-

ent update is introduced in [11]. The steady-state mean square error (MSE)

of this affinely constrained mixture is shown to outperform the steady-state

MSE of the best constituent filter in the mixture under certain conditions [11].

The transient analysis of this affinely constrained mixture for m constituent

filters is carried out in [17]. The general linear mixture framework as well as

the steady-state performances of different mixture configurations are studied

in [12].

In this paper, we use Bregman divergences to derive multiplicative updates

on the mixture weights. We use the unnormalized relative entropy and the

relative entropy as distance measures and obtain the EGU algorithm and the

EG algorithm to update the combination weights under an affine constraint

or without any constraints. We then carry out the mean and the mean-square

transient analysis of these adaptive mixtures when they are used to combine

m constituent filters. We point out that the EG algorithm is widely used in

sequential learning theory [18] and minimizes an approximate final estimation

error while penalizing the distance between the new and the old filter weights.

In network and acoustic echo cancellation applications, the EG algorithm is

shown to converge faster than the LMS algorithm [14, 19] when the system

impulse response is sparse [13]. Similarly, in our simulations, we observe that

using the EG algorithm to train the mixture weights yields increased con-

vergence speed compared to using the LMS algorithm to train the mixture

weights [11, 12] when the combination favors only a few of the constituent

filters in the steady state, i.e., when the final steady-state combination vector

is sparse. We also observe that the EGU algorithm and the LMS algorithm

show similar performance when they are used to train the mixture weights

even if the final steady-state mixture is sparse.

To summarize, the main contributions of this paper are as follows:
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• We use Bregman divergences to derive multiplicative updates on affinely

constrained and unconstrained mixture weights adaptively combining out-

puts of m constituent filters.

• We use the unnormalized relative entropy and the relative entropy to define

two different Bregman divergences that produce the EGU algorithm and the

EG algorithm to update the affinely constrained and unconstrained mixture

weights.

• We perform the mean and the mean-square transient analysis of the affinely

constrained and unconstrained mixtures using the EGU algorithm and the

EG algorithm.

The organization of the paper is as follows. In Section II, we first describe

the mixture framework. In Section III, we study the affinely constrained and

unconstrained mixture methods updated with the EGU algorithm and the

EG algorithm. In Section IV, we first perform the transient analysis of the

affinely constrained mixtures and then continue with the transient analysis of

the unconstrained mixtures. Finally, in Section V, we perform simulations to

show the accuracy of our results and to compare performances of the differ-

ent adaptive mixture methods. The paper concludes with certain remarks in

Section VI.

2 System Description

2.1 Notation

In this paper, all vectors are column vectors and represented by boldface

lowercase letters. Matrices are represented by boldface capital letters. For

presentation purposes, we work only with real data. Given a vector w, w(i)

denotes the ith individual entry of w, wT is the transpose of w, ‖w‖1 △
=
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Fig. 1. A linear mixture of outputs of m adaptive filters.

∑

i |w(i)| is the l1 norm; ‖w‖ △
=

√
wTw is the l2 norm. For a matrix W ,

tr(W ) is the trace. For a vector w, diag(w) represents a diagonal matrix

formed using the entries of w. For a matrix W , diag(W ) represents a column

vector that contains the diagonal entries of W . For two vectors v1 and v2,

we define the concatenation [v1; v2]
△
= [vT

1 vT
2 ]

T . For a random variable v, v̄

is the expected value. For a random vector v (or a random matrix V ), v̄ (or

V̄ ) represents the expected value of each entry. Vectors (or matrices) 1 and

0, with an abuse of notation, denote vectors (or matrices) of all ones or zeros,

respectively, where the size of the vector (or the matrix) is understood from

the context.

2.2 System Description

The framework that we study has two stages. In the first stage, we have m

adaptive filters producing outputs ŷi(t), i = 1, . . . , m, running in parallel to
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model a desired signal y(t) as seen in Fig. 1. The second stage is the mixture

stage, where the outputs of the first stage filters are combined to improve

the steady-state and/or the transient performance over the constituent filters.

We linearly combine the outputs of the first stage filters to produce the final

output as ŷ(t) = wT (t)x(t), where x(t)
△
= [ŷ1(t), . . . , ŷm(t)]

T and train the

mixture weights using multiplicative updates (or exponentiated gradient up-

dates) [2]. We point out that in order to satisfy the constraints and derive

the multiplicative updates [9], [20], we use reparametrization of the mixture

weights as w(t) = f (z(t)) and perform the update on z(t) as

z(t + 1) = argmin
z

{

d(z, z(t)) + µ l
(

y(t), fT (z)x(t)
)

}

, (1)

where µ is the learning rate of the update, d(·, ·) is an appropriate distance

measure and l(·, ·) is the instantaneous loss. We emphasize that in (1), the

updated vector z is forced to be close to the present vector z(t) by d(z(t +

1), z(t)), while trying to accurately model the current data by l
(

y(t), fT (z)x(t)
)

.

However, instead of directly minimizing (1), a linearized version of (1)

z(t+ 1) = argmin
z

{

d(z, z(t)) + l
(

y(t), fT (z(t))x(t)
)

+ µ∇z l
(

y(t), fT (z)x(t)
)T
∣

∣

∣

∣

z=z(t)
(z − z(t))

}

(2)

is minimized to get the desired update. As an example, if we use the l2-norm

as the distance measure, i.e., d(z, z(t)) = ‖z − z(t)‖2, and the square error

as the instantaneous loss, i.e., l
(

y(t), fT (z)x(t)
)

= [y(t) − fT (z)x(t)]2 with

f (z) = z, then we get the stochastic gradient update on w(t), i.e.,

w(t + 1) = w(t) + µe(t)x(t),

in (2).

In the next section, we use the unnormalized relative entropy

d1(z, z(t)) =

{

m
∑

i=1

[

z(i) ln

(

z(i)

z(i)(t)

)

+ z(i)(t)− z(i)
]}

(3)
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for positively constrained z and z(t), z ∈ Rm
+ , z(t) ∈ Rm

+ , and the relative

entropy

d2(z, z(t)) =

{

m
∑

i=1

[

z(i) ln

(

z(i)

z(i)(t)

)]}

, (4)

where z is constrained to be in an extended simplex such that z(i) ≥ 0,
∑m

k=1 z
(i) = u for some u ≥ 1 as the distance measures, with appropriately

selected f (·) to derive updates on mixture weights under different constraints.

We first investigate affinely constrained mixture ofm adaptive filters, and then

continue with the unconstrained mixture using (3) and (4) as the distance

measures.

3 Adaptive Mixture Algorithms

In this section, we investigate affinely constrained and unconstrained mixtures

updated with the EGU algorithm and the EG algorithm.

3.1 Affinely Constrained Mixture

When an affine constraint is imposed on the mixture such that wT (t)1 = 1,

we get

ŷ(t) = w(t)Tx(t),

e(t) = y(t)− ŷ(t),

w(i)(t) = λ(i)(t), i = 1, . . . , m− 1,

w(m)(t) = 1−
m−1
∑

i=1

λ(i)(t),

where the m− 1 dimensional vector λ(t)
△
= [λ(1)(t), . . . , λ(m−1)(t)]T is the un-

constrained weight vector, i.e., λ(t) ∈ Rm−1. Using λ(t) as the unconstrained

weight vector, the error can be written as e(t) =
[

y(t) − ŷm(t)
]

− λT (t)δ(t),

where δ(t)
△
= [ŷ1(t) − ŷm(t), . . . , ŷm−1(t) − ŷm(t)]

T . To be able to derive a
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multiplicative update on λ(t), we use

λ(t) = λ1(t)− λ2(t),

where λ1(t) and λ2(t) are constrained to be nonnegative, i.e., λi(t) ∈ Rm−1
+ ,

i = 1, 2. After we collect unconstrained weights in λa(t) = [λ1(t);λ2(t)], we

define a function of loss e(t) as

la (λa(t))
△
= e2(t)

and update positively constrained λa(t) as follows.

3.1.1 Unnormalized Relative Entropy

Using the unconstrained relative entropy as the distance measure, we get

λa(t+ 1) = argmin
λ

{ 2(m−1)
∑

i=1

[

λ(i) ln

(

λ(i)

λ
(i)
a (t)

)

+ λ(i)
a (t)− λ(i)

]

+

µ

[

la (λa(t)) +∇λla (λ)
T
∣

∣

∣

λ=λa(t)
(λ− λa(t))

]

}

.

After some algebra this yields

λ(i)
a (t+ 1) = λ(i)

a (t) exp {µe(t)(ŷi(t)− ŷm(t))} , i = 1, . . . , m− 1,

λ(i)
a (t+ 1) = λ(i)

a (t) exp {−µe(t)(ŷi(t)− ŷm(t))} , i = m, . . . , 2(m− 1),

providing the multiplicative updates on λ1(t) and λ2(t).

3.1.2 Relative Entropy

Using the relative entropy as the distance measure, we get

λa(t+ 1) = argmin
λ

{ 2(m−1)
∑

i=1

[

λ(i) ln

(

λ(i)

λ
(i)
a (t)

)

+ γ(u− 1Tλ)

]

+

µ

[

la (λa(t)) +∇λla (λ)
T
∣

∣

∣

λ=λa(t)
(λ− λa(t))

]

}

,
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where γ is the Lagrange multiplier. This yields

λ
(i)
a (t + 1) = u

λ
(i)
a (t) exp {µe(t)(ŷi(t) − ŷm(t))}

∑m−1

k=1

[

λ
(k)
a (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k+m−1)
a (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

] ,

i = 1, . . . ,m− 1,

λ
(i)
a (t + 1) = u

λ
(i)
a (t) exp {−µe(t)(ŷi(t) − ŷm(t))}

∑m−1

k=1

[

λ
(k)
a (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k+m−1)
a (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

]
,

i = m, . . . , 2(m − 1),

providing the multiplicative updates on λa(t).

3.2 Unconstrained Mixture

Without any constraints on the combination weights, the mixture stage can

be written as

ŷ(t) = wT (t)x(t),

e(t) = y(t)− ŷ(t),

where w(t) ∈ Rm. To be able to derive a multiplicative update, we use a

change of variables,

w(t) = w1(t)−w2(t),

where w1(t) and w2(t) are constrained to be nonnegative, i.e., wi(t) ∈ Rm
+ ,

i = 1, 2. We then collect the unconstrained weights wa(t) = [w1(t);w2(t)] and

define a function of the loss e(t) as

lu (wa(t))
△
= e2(t).

3.2.1 Unnormalized Relative Entropy

Defining cost function similar to (4) and minimizing it with respect tow yields

w(i)
a (t+ 1) = w(i)

a (t) exp {µe(t)ŷi(t)} , i = 1, . . . , m,

w(i)
a (t+ 1) = w(i)

a (t) exp {−µe(t)ŷi(t)} , i = m+ 1, . . . , 2m,
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providing the multiplicative update on wa(t).

3.2.2 Relative Entropy

Using the relative entropy under the simplex constraint on w, we get the

updates

w(i)
a (t+ 1) = u

w(i)
a (t) exp {µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
] ,

i = 1, . . . , m,

w(i)
a (t+ 1) = u

w(i)
a (t) exp {−µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
] ,

i = m+ 1 . . . , 2m.

In the next section, we study the transient analysis of these four adaptive

mixture algorithms.

4 Transient Analysis

In this section, we study the mean and the mean-square transient analysis of

the adaptive mixture methods. We start with the affinely constrained combi-

nation.

4.1 Affinely Constrained Mixture

We first perform the transient analysis of the mixture weights updated with

the EGU algorithm. Then, we continue with the transient analysis of the

mixture weights updated with the EG algorithm.
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4.1.1 Unconstrained Relative Entropy

For the affinely constrained mixture updated with the EGU algorithm, we

have the multiplicative update as

λ
(i)
1 (t+ 1) = λ

(i)
1 (t) exp {µe(t)(ŷi(t)− ŷm(t))} ,

= λ
(i)
1 (t)

∞
∑

k=0

(

µe(t)(ŷi(t)− ŷm(t))
)k

k!
, (5)

λ
(i)
2 (t+ 1) = λ

(i)
2 (t) exp {−µe(t)(ŷi(t)− ŷm(t))} ,

= λ
(i)
2 (t)

∞
∑

k=0

(

− µe(t)(ŷi(t)− ŷm(t))
)k

k!
, (6)

for i = 1, . . . , m − 1. If e(t) and ŷi(t) − ŷm(t) for each i = 1, . . . , m − 1 are

bounded, then we can write (5) and (6) as

λ
(i)
1 (t + 1) = λ

(i)
1 (t)

(

1 + µe(t)(ŷi(t)− ŷm(t)) +O(µ2)
)

, (7)

λ
(i)
2 (t + 1) = λ

(i)
2 (t)

(

1− µe(t)(ŷi(t)− ŷm(t)) +O(µ2)
)

, (8)

for i = 1, . . . , m−1. Since µ is usually relatively small [2], we approximate (7)

and (8) as

λ
(i)
1 (t+ 1) = λ

(i)
1 (t)

(

1 + µe(t)(ŷi(t)− ŷm(t))
)

, (9)

λ
(i)
2 (t+ 1) = λ

(i)
2 (t)

(

1− µe(t)(ŷi(t)− ŷm(t))
)

. (10)

In our simulations, we illustrate the accuracy of the approximations (9) and

(10) under the mixture framework. Using (9) and (10), we can obtain updates

on λ1(t) and λ2(t) as

λ1(t+ 1) =
(

I + µe(t)diag
(

δ(t)
))

λ1(t), (11)

λ2(t+ 1) =
(

I − µe(t)diag
(

δ(t)
))

λ2(t). (12)

Collecting the weights in λa(t) = [λ1(t);λ2(t)], using the updates (11) and

(12), we can write update on λa(t) as

λa(t + 1) =
(

I + µe(t)diag
(

u(t)
))

λa(t), (13)
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where u(t) is defined as u(t)
△
= [δ(t);−δ(t)].

For the desired signal y(t), we can write y(t)− ŷm(t) = λT
0 (t)δ(t)+e0(t), where

λ0(t) is the optimum MSE solution at time t such that λ0(t)
△
= R−1(t)p(t),

R(t)
△
= E

[

δ(t)δT (t)
]

, p(t)
△
= E

{

δ(t)
[

y(t)− ŷm(t)
]}

and e0(t) is zero-mean

and uncorrelated with δ(t). We next show that the mixture weights con-

verge to the optimum solution in the steady-state such that limt→∞ E
[

λ(t)
]

=

limt→∞ λ0(t) for properly selected µ.

Subtracting (12) from (11), we obtain

λ(t+ 1) = λ(t) + µe(t)diag
(

δ(t)
)(

λ1(t) + λ2(t)
)

,

= λ(t)− µe(t)diag
(

δ(t)
)

λ(t) + 2µe(t)diag
(

δ(t)
)

λ1(t). (14)

Defining ε(t)
△
= λ0(t)− λ(t) and using e(t) = δT (t)ε(t) + e0(t) in (14) yield

λ(t + 1) = λ(t)− µdiag
(

δ(t)
)

λ(t)δT (t)ε(t)− µdiag
(

δ(t)
)

λ(t)e0(t)

+ 2µdiag
(

δ(t)
)

λ1(t)δ
T (t)ε(t) + 2µdiag

(

δ(t)
)

λ1(t)e0(t). (15)

In (15), subtracting both sides from λ0(t + 1), we have

ε(t+ 1) = ε(t) + µdiag
(

δ(t)
)

λ(t)δT (t)ε(t) + µdiag
(

δ(t)
)

λ(t)e0(t)

− 2µdiag
(

δ(t)
)

λ1(t)δ
T (t)ε(t)− 2µdiag

(

δ(t)
)

λ1(t)e0(t)

+
[

λ0(t+ 1)− λ0(t)
]

. (16)

Taking expectation of both sides of (16) and using

E
[

µdiag
(

δ(t)
)

λ(t)e0(t)
]

= E
[

µdiag
(

δ(t)
)

λ(t)
]

E[e0(t)] = 0,

E
[

2µdiag
(

δ(t)
)

λ1(t)e0(t)
]

= E
[

2µdiag
(

δ(t)
)

λ1(t)
]

E[e0(t)] = 0,

and assuming that λ1(t) and λ2(t) are independent of ε(t) [17] yield

E
[

ε(t+ 1)
]

= E
[

I − µdiag
(

λ1(t) + λ2(t)
)

δ(t)δT (t)
]

E
[

ε(t)
]

+ E
[

λ0(t+ 1)− λ0(t)
]

. (17)
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Assuming convergence of R(t) and p(t) (which is true for a wide range of

adaptive methods in the first stage [16], [14, 21]), we obtain limt→∞ E
[

λ0(t +

1)−λ0(t)
]

= 0. If µ is chosen such that the eigenvalues of E
[

I−µdiag
(

λ1(t)+

λ2(t)
)

δ(t)δT (t)
]

have strictly less than unit magnitude for every t, then

limt→∞E
[

λ(t)
]

= limt→∞ λ0(t).

For the transient analysis of the MSE, we have

E[e2(t)] = E

{

[

y(t)− ŷm(t)
]2
}

− 2λ̄
T

a (t)E
{[

y(t)− ŷm(t)
]

[δ(t);−δ(t)]
}

+ E
{

λT
a (t)[δ(t);−δ(t)][δ(t);−δ(t)]Tλa(t)

}

,

= E

{

[

y(t)− ŷm(t)
]2
}

− 2λ̄
T

a (t)E
{[

y(t)− ŷm(t)
]

u(t)
}

+ tr

(

E
[

λa(t)λ
T
a (t)

]

E
{

u(t)u(t)T
}

)

,

= E

{

[

y(t)− ŷm(t)
]2
}

− 2λ̄
T

a (t)γ(t) + tr

(

E
[

λa(t)λ
T
a (t)

]

Γ(t)

)

,

(18)

where we define γ(t)
△
= E

{

u(t)
[

y(t)− ŷm(t)
]}

and Γ(t)
△
= E

[

u(t)uT (t)
]

.

For the recursion of λ̄a(t) = E[λa(t)], using (13), we get

λ̄a(t+ 1) = λ̄a(t) + µdiag
(

γ(t)
)

λ̄a(t)− µdiag
(

E[λa(t)λ
T
a (t)]Γ(t)

)

. (19)

Using (32), assuming λa(t) is Gaussian and assuming λ(i)
a (t) and λ(j)

a (t) are
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independent when i 6= j [17], [14], we get a recursion for E
[

λa(t)λ
T
a (t)

]

as

E
[

λa(t + 1)λT
a (t + 1)

]

= E
[

λa(t)λ
T
a (t)

]

+ µdiag
(

γ(t)
)

E
[

λa(t)λ
T
a (t)

]

− µdiag
(

Γ(t)λ̄a(t)
)

E
[

λa(t)λ
T
a (t)

]

− µE
[

diag2(u(t))
]

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

1λ̄
T

a (t)

− µdiag
(

λ̄a(t)
)

Γ(t)

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

+ µE
[

λa(t)λ
T
a (t)

]

diag
(

γ(t)
)

− µE
[

λa(t)λ
T
a (t)

]

diag
(

Γ(t)λ̄a(t)
)

− µλ̄a(t)1
T

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

E
[

diag2(u(t))
]

− µ

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

Γ(t)diag
(

λ̄a(t)
)

. (20)

Defining qa(t)
△
= λ̄a(t) and Qa(t)

△
= E

[

λa(t)λ
T
a (t)

]

, we express (19) and (20)

as a coupled recursions in Table 1.

Table 1

Time evolution of the mean and the variance of the affinely constrained mixture

weights updated with the EGU algorithm

qa(t + 1) = qa(t) + µdiag
(

γ(t)
)

qa(t) − µdiag
(

Qa(t)Γ(t)
)

,

Qa(t+ 1) =

(

I + µdiag
(

γ(t)
)

− µdiag
(

Γ(t)qa(t)
)

)

Qa(t) − µE
[

diag2(u(t))
]

(

Qa(t) − qa(t)q
T
a (t)

)

1qT
a (t)

−µdiag
(

qa(t)
)

Γ(t)

(

Qa(t) − qa(t)q
T
a (t)

)

+Qa(t)

(

µdiag
(

γ(t)
)

− µdiag
(

Γ(t)qa(t)
)

)

−µqa(t)1
T

(

Qa(t) − qa(t)q
T
a (t)

)

E
[

diag2(u(t))
]

− µ

(

Qa(t) − qa(t)q
T
a (t)

)

Γ(t)diag
(

qa(t)
)

.

In Table 1, we provide the mean and the variance recursions for Qa(t) and

qa(t). To implement these recursions, one needs to only provide Γ(t) and γ(t).

Note that Γ(t) and γ(t) are derived for a wide range of adaptive filters [16],

[14]. If we use the mean and the variance recursions in (18), then we obtain

the time evolution of the final MSE. This completes the transient analysis of

the affinely constrained mixture weights updated with the EGU algorithm.
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4.1.2 Relative Entropy

For the affinely constrained combination updated with the EG algorithm, we
have the multiplicative updates as

λ
(i)
1 (t + 1) = u

λ
(i)
1 (t) exp {µe(t)(ŷi(t) − ŷm(t))}

∑m−1

k=1

[

λ
(k)
1 (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k)
2 (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

]
,

λ
(i)
2 (t + 1) = u

λ
(i)
2 (t) exp {−µe(t)(ŷi(t) − ŷm(t))}

∑m−1

k=1

[

λ
(k)
1 (t) exp {µe(t)(ŷk(t) − ŷm(t))} + λ

(k)
2 (t) exp {−µe(t)(ŷk(t) − ŷm(t))}

]
,

for i = 1, . . . , m − 1. Using the same approximations as in (7), (8), (9) and
(10), we obtain

λ
(i)
1 (t + 1) = u

λ
(i)
1 (t)

(

1 + µe(t)(ŷi(t) − ŷm(t))
)

∑m−1

k=1

[

λ
(k)
1 (t)

(

1 + µe(t)(ŷk(t) − ŷm(t))
)

+ λ
(k)
2 (t)

(

1− µe(t)(ŷk(t) − ŷm(t))
)

] , (21)

λ
(i)
2 (t + 1) = u

λ
(i)
2 (t)

(

1− µe(t)(ŷi(t) − ŷm(t))
)

∑m−1

k=1

[

λ
(k)
1 (t)

(

1 + µe(t)(ŷk(t) − ŷm(t))
)

+ λ
(k)
2 (t)

(

1− µe(t)(ŷk(t) − ŷm(t))

]
. (22)

In our simulations, we illustrate the accuracy of the approximations (21) and

(22) under the mixture framework. Using (21) and (22), we obtain updates on

λ1(t) and λ2(t) as

λ1(t+ 1) = u

(

I + µe(t)diag
(

δ(t)
))

λ1(t)
[

1T + µe(t)uT (t)
]

λa(t)
, (23)

λ2(t+ 1) = u

(

I − µe(t)diag
(

δ(t)
))

λ2(t)
[

1T + µe(t)uT (t)
]

λa(t)
. (24)

Using updates (23) and (24), we can write update on λa(t)

λa(t+ 1) = u

[

I + µe(t)diag
(

u(t)
)]

λa(t)
[

1T + µe(t)uT (t)
]

λa(t)
. (25)

15



For the recursion of λ̄a(t), using (25), we get

E
[

λa(t+ 1)
]

= E







u

[

I + µe(t)diag
(

u(t)
)]

λa(t)
[

1T + µe(t)uT (t)
]

λa(t)







,

≈ u
E
{[

I + µe(t)diag
(

u(t)
)]

λa(t)
}

E
{[

1T + µe(t)uT (t)
]

λa(t)
} , (26)

= u
E
[

λa(t)
]

+ µdiag
(

γ(t)
)

E
[

λa(t)
]

− µdiag
(

E[λa(t)λ
T
a (t)]Γ(t)

)

[

1T + µγT (t)
]

E
[

λa(t)
]

− µtr
(

E[λa(t)λ
T
a (t)]Γ(t)

) ,

(27)

where in (26) we approximate expectation of the quotient with the quotient

of the expectations. In our simulations, we also illustrate the accuracy of this

approximation in the mixture framework. From (25), using the same approx-

imation in (27), assuming λa(t) is Gaussian, assuming λ(i)
a (t) and λ(j)

a (t) are

independent when i 6= j, we get a recursion for E
[

λa(t)λ
T
a (t)

]

as

E
[

λa(t+ 1)λT
a (t+ 1)

]

= u2A(t)

b(t)
, (28)

where A(t) is equal to the right hand side of (20) and

b(t) = 1TE
[

λa(t)λ
T
a (t)

]

1+ µpT (t)E
[

λa(t)λ
T
a (t)

]

1

− µλ̄
T

a (t)R(t)E
[

λa(t)λ
T
a (t)

]

1− µ1T

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

R(t)λ̄a(t)

− µ1T

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

E
[

diag2(u(t))
]

1T λ̄a(t)1

+ µ1TE
[

λa(t)λ
T
a (t)

]

p(t)− µ1TE
[

λa(t)λ
T
a (t)

]

R(t)λ̄a(t)

− µλ̄
T

a (t)R(t)

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

1

− µ1T λ̄
T

a (t)1E
[

diag2(u(t))
]

(

E
[

λa(t)λ
T
a (t)

]

− λ̄a(t)λ̄
T

a (t)

)

1. (29)

If we use the mean (27) and the variance (28), (29) recursions in (18), then

we obtain the time evolution of the final MSE. This completes the transient

analysis of the affinely constrained mixture weights updated with the EG

algorithm.
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4.2 Unconstrained Mixture

We use the unconstrained relative entropy and the relative entropy as distance

measures to update unconstrained mixture weights. We first perform transient

analysis of the mixture weights updated using the EGU algorithm. Then, we

continue with the transient analysis of the mixture weights updated using the

EG algorithm. Note that since the unconstrained case is close to the affinely

constrained case, we only provide the necessary modifications to get the mean

and the variance recursions for the transient analysis.

4.2.1 Unconstrained Relative Entropy

For the unconstrained combination updated with EGU, we have the multi-

plicative updates as

w
(i)
1 (t + 1) = w

(i)
1 (t) exp {µe(t)ŷi(t)} ,

w
(i)
2 (t + 1) = w

(i)
2 (t) exp {−µe(t)ŷi(t)} ,

for i = 1, . . . , m. Using the same approximations as in (7), (8), (9) and (10),

we can obtain updates on w1(t) and w2(t) as

w1(t+ 1) =
(

I + µe(t)diag
(

x(t)
))

w1(t), (30)

w2(t+ 1) =
(

I − µe(t)diag
(

x(t)
))

w2(t). (31)

Collecting the weights in wa(t) = [w1(t);w2(t)], using the updates (30) and

(31), we can write update on wa(t) as

wa(t + 1) =
(

I + µe(t)diag
(

u(t)
))

wa(t), (32)

where u(t) is defined as u(t)
△
= [x(t);−x(t)].

For the desired signal y(t), we can write y(t) = wT
0 (t)x(t) + e0(t), where

w0(t) is the optimum MSE solution at time t such that w0(t)
△
= R−1(t)p(t),

17



R(t)
△
= E

[

x(t)xT (t)
]

, p(t)
△
= E {x(t)y(t)} and e0(t) is zero-mean disturbance

uncorrelated to x(t). To show that the mixture weights converge to the opti-

mum solution in the steady-state such that limt→∞ E
[

w(t)
]

= limt→∞w0(t),

we follow similar lines as in the Section 4.1.1. We modify (14), (15), (16) and

(17) such that λ will be replaced by w, δ(t) will be replaced by x(t) and

ε(t) = w0(t)−w(t). After these replacements, we obtain

E
[

ε(t + 1)
]

= E
[

I − µdiag
(

w1(t) +w2(t)
)

x(t)xT (t)
]

E
[

ε(t)
]

+ E
[

w0(t+ 1)−w0(t)
]

. (33)

Since, we have limt→∞E
[

w0(t + 1) −w0(t)
]

= 0 for most adaptive filters in

the first stage [14] and if µ is chosen so that all the eigenvalues of E
[

I −
µdiag

(

w1(t) + w2(t)
)

x(t)xT (t)
]

have strictly less than unit magnitude for

every t, then limt→∞E
[

w(t)
]

= limt→∞ w0(t).

For the transient analysis of MSE, defining γ(t)
△
= E {u(t)y(t)} and Γ(t)

△
=

E
[

u(t)uT (t)
]

, (18) is modified as

E[e2(t)] = E
{

y2(t)
}

− 2w̄T
a (t)γ(t) + tr

(

E
[

wa(t)w
T
a (t)

]

Γ(t)

)

. (34)

Accordingly, we modify the mean recursion (19) and the variance recursion

(20) such that instead of λa(t) we use wa(t). We also modify the Table 1

using qa(t)
△
= w̄a(t) and Qa(t)

△
= E

[

wa(t)w
T
a (t)

]

. If we use this modified

mean and variance recursions in (34), then we obtain the time evolution of

the final MSE. This completes the transient analysis of the unconstrained

mixture weights updated with the EGU algorithm.
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4.2.2 Relative Entropy

For the unconstrained combination updated with the EG algorithm, we have

the multiplicative updates as

w(i)
a (t+ 1) = u

w(i)
a (t) exp {µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
] ,

i = 1, . . . , m,

w(i)
a (t+ 1) = u

w(i)
a (t) exp {−µe(t)ŷi(t)}

m
∑

k=1

[

w(k)
a (t) exp {µe(t)ŷk(t)}+ w(k+m)

a (t) exp {−µe(t)ŷk(t)}
] ,

i = m+ 1 . . . , 2m.

Following similar lines, we modify (23), (24), (25), (27), (28) and (29) such

that we replace δ(t) with x(t), λ with w and u(t) =
[

x(t);−x(t)
]

. Finally,

we use the modified mean and variance recursions in (34) and obtain the

time evolution of the final MSE. This completes the transient analysis of the

unconstrained mixture weights updated with the EG algorithm.

5 Simulations

In this section, we illustrate the accuracy of our results and compare per-

formances of different adaptive mixture methods through simulations. In our

simulations, we observe that using the EG algorithm to train the mixture

weights yields better performance compared to using the LMS algorithm or

the EGU algorithm to train the mixture weights for combinations having more

than two filters and when the combination favors only a few of the constituent

filters. The LMS algorithm and the EGU algorithm perform similarly in our

simulations when they are used to train the mixture weights. We also observe

in our simulations that the mixture weights under the EG update converge to

the optimum combination vector faster than the mixture weights under the
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LMS algorithm.

To compare performances of the EG and LMS algorithms and illustrate the

accuracy of our results in (27), (28) and (29) under different algorithmic pa-

rameters, the desired signal as well as the system parameters are selected as

follows. First, a seventh-order linear filter,

wo = [0.25,−0.47,−0.37, 0.045,−0.18, 0.78, 0.147]T , is chosen as in [17]. The

underlying signal is generated using the data model y(t) = τ wT
o a(t) + n(t),

where a(t) is an i.i.d. Gaussian vector process with zero mean and unit

variance entries, i.e., E[a(t)aT (t)] = I, n(t) is an i.i.d. Gaussian noise pro-

cess with zero mean and variance E[n2(t)] = 0.3, and τ is a positive scalar

to control SNR. Hence, the SNR of the desired signal is given by SNR
△
=

10 log(E[τ2(wT
ou(t))2 ]

0.01
) = 10 log( τ

2‖wo‖2

0.01
). For the first experiment, we have

SNR = -10dB. To model the unknown system we use ten linear filters us-

ing the LMS update as the constituent filters. The learning rates of these two

constituent filters are set to µ1 = 0.002 and µ6 = 0.002 while the learning

rates for the rest of the constituent filters are selected randomly in [0.1, 0.11].

Therefore, in the steady-state, we obtain the optimum combination vector

approximately as λo = [0.5, 0, 0, 0, 0, 0.5, 0, 0, 0, 0]T , i.e., the final combination

vector is sparse. In the second stage, we train the combination weights with

the EG and LMS algorithms and compare performances of these algorithms.

For the second stage, the learning rates for the EG and LMS algorithms are

selected as µEG = 0.0008 and µLMS = 0.005 such that the MSEs of both

mixtures converge to the same final MSE to provide a fair comparison. We

select u = 500 for the EG algorithm. In Fig. 2a, we plot the weight of the

first constituent filter with µ1 = 0.002, i.e. E[λ(1)(t)], updated with the EG

and LMS algorithms. In Fig. 2b, we plot the MSE curves for the adaptive

mixture updated with the EG algorithm, the adaptive mixture updated with

the LMS algorithm, the first constituent filter with µ1 = 0.002 and the sec-

ond constituent filter with µ2 ∈ [0.1, 0.11]. From Fig. 2a and Fig. 2b, we see
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that the EG algorithm performs better than the LMS algorithm such that the

combination weight under the update of the EG algorithm converges to 0.5

faster than the combination weight under the update of the LMS algorithm.

Furthermore the MSE of the adaptive mixture updated with the EG algorithm

converges faster than the MSE of the adaptive mixture updated with the LMS

algorithm. In Fig. 2c, to test the accuracy of (27), we plot the theoretical val-

ues for λ̄(1)
a (t) and λ̄(10)

a (t) along with simulations. Note in Fig. 2c we observe

that λ̄(1)(t) = λ̄(1)
a (t)− λ̄(10)

a (t) converges to 0.5 as predicted in our derivations.

In Fig. 2d, to test the accuracy of (28) and (29), as an example, we plot the

theoretical values of E
[

λ(1)
a (t)2

]

and E
[

λ(1)
a (t)λ(3)

a (t)
]

along with simulations.

As we observe from Fig. 2c and Fig. 2d, there is a close agreement between

our results and simulations in these experiments. We observe similar results

for the other cross terms.

We next simulate the unconstrained mixtures updated with the EGU and EG

algorithms. Here, we have two linear filters and both using the LMS update to

train their weight vectors as the constituent filters. The learning rates for two

constituent filters are set to µ1 = 0.002 and µ2 = 0.1 respectively. Therefore, in

the steady-state, we obtain the optimum vector approximately as wo = [1, 0].

We have SNR = 1 for these simulations. The unconstrained mixture weights

are first updated with the EGU algorithm. For the second stage, the learning

rate for the EGU algorithm is selected as µEGU = 0.01. The theoretical curves

in the figures are produced using Γ(t) and γ(t) that are calculated from the

simulations, since our goal is to illustrate the validity of derived equations. In

Fig. 3a, we plot the theoretical values of w̄(1)
a (t), w̄(2)

a (t), w̄(3)
a (t) and w̄(4)

a (t)

along with simulations. In Fig. 3b, as an example, we plot the theoretical val-

ues of E
[

w(1)
a (t)2

]

, E
[

w(1)
a (t)w(2)

a (t)
]

, E
[

w(2)
a (t)w(3)

a (t)
]

and E
[

w(3)
a (t)w(4)

a (t)
]

along with simulations. We continue to update the mixture weights with the

EG algorithm. For the second stage, the learning rate for the EG algorithm

is selected as µEG = 0.01. We select u = 3 for the EG algorithm. In Fig. 3c,
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we plot the theoretical values of w̄(1)
a (t), w̄(2)

a (t), w̄(3)
a (t) and w̄(4)

a (t) along

with simulations. In Fig. 3d, as an example, we plot the theoretical values of

E
[

w(2)
a (t)2

]

, E
[

w(1)
a (t)w(2)

a (t)
]

, E
[

w(2)
a (t)w(3)

a (t)
]

and E
[

w(2)
a (t)w(4)

a (t)
]

along

with simulations. We observe a close agreement between our results and sim-

ulations.

To test the accurateness of the assumptions in (9) and (10), we plot in Fig.

4a, the difference

‖ exp {µe(t)(ŷi(t)− ŷm(t))} − {1 + µe(t)(ŷi(t)− ŷm(t)))} ‖2
√

‖ exp {µe(t)(ŷi(t)− ŷm(t))} ‖2‖ {1 + µe(t)(ŷi(t)− ŷm(t)))} ‖2

for i = 1 with the same algorithmic parameters as in Fig. 2 and Fig. 3. To

test the accurateness of the separation assumption in (27), we plot in Fig. 4b,

the first parameter of the difference

∥

∥

∥

∥

E

{

u

[

I+µe(t)diag
(

u(t)
)]

λa(t)
[

1
T
+µe(t)uT (t)

]

λa(t)

}

− u
E

{

[

I+µe(t)diag
(

u(t)
)]

λa(t)

}

E

{

[

1
T
+µe(t)uT (t)

]

λa(t)

}

∥

∥

∥

∥

2

√

√

√

√

∥

∥

∥

∥

E

{

u

[

I+µe(t)diag
(

u(t)
)]

λa(t)
[

1
T
+µe(t)uT (t)

]

λa(t)

}
∥

∥

∥

∥

2∥
∥

∥

∥

u
E

{

[

I+µe(t)diag
(

u(t)
)]

λa(t)

}

E

{

[

1
T
+µe(t)uT (t)

]

λa(t)

}

∥

∥

∥

∥

2

with the same algorithmic parameters as in Fig. 2 and Fig. 3. We observe

that assumptions are fairly accurate for these algorithms in our simulations.

In the last simulations, we compare performances of the EGU, EG and LMS

algorithms updating the affinely mixture weights under different algorithmic

parameters. Algorithmic parameters and constituent filters are selected as in

Fig. 2 under SNR = -5 and 5. For the second stage, under SNR = -5, learning

rates for the EG, EGU and LMS algorithms are selected as µEG = 0.0005,

µEGU = 0.005 and µLMS = 0.005 such that the MSEs converge to the same final

MSE to provide a fair comparison. We choose u = 500 for the EG algorithm.

In Fig. 5a, we plot the MSE curves for the adaptive mixture updated with

the EG algorithm, the adaptive mixture updated with the EGU algorithm,

the adaptive mixture updated with the LMS algorithm, first constituent filter
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with µ1 = 0.002 and second constituent filter with µ2 ∈ [0.1, 0.11] under SNR

= -5. Under SNR = 5, learning rates for the EG, EGU and LMS algorithms

are selected as µEG = 0.002, µEGU = 0.005 and µLMS = 0.005. We choose u

= 100 for the EG algorithm. In Fig. 5b, we plot same MSE curves as in Fig.

5a. We observe that the EG algorithm performs better than the EGU and

LMS algorithms such that MSE of the adaptive mixture updated with the

EG algorithm converges faster than the MSE of adaptive mixtures updated

with the EGU and LMS algorithms. We also observe that the EGU and LMS

algorithms show similar performances when they are used to train the mixture

weights.

6 Conclusion

In this paper, we investigate adaptive mixture methods based on Bregman

divergences combining outputs of m adaptive filters to model a desired signal.

We use the unnormalized relative entropy and relative entropy as distance

measures that produce the exponentiated gradient update with unnormalized

weights (EGU) and the exponentiated gradient update with positive and neg-

ative weights (EG) to train the mixture weights under the affine constraints or

without any constraints. We provide the transient analysis of these methods

updated with the EGU and EG algorithms. In our simulations, we compare

performances of the EG, EGU and LMS algorithms and observe that the EG

algorithm performs better than the EGU and LMS algorithms when the com-

bination vector in steady-state is sparse. We observe that the EGU and LMS

algorithms show similar performance when they are used to train the mixture

weights. We also observe a close agreement between the simulations and our

theoretical results.
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Fig. 2. Using 10 LMS filters as constituent filters, where learning rates for 2 con-

stituent filters are µ = 0.002 and for the rest are µ ∈ [0.1, 0.11]. SNR = -10dB.

For the mixture stage, the EG algorithm has µEG = 0.0008 and the LMS algo-

rithm has µLMS = 0.005. For the EG algorithm, u = 500. (a) The weight of the

first constituent filter in the mixture, i.e., E[λ(1)(t)]. (b) The MSE curves for adap-

tive mixture updated with the EG algorithm, the adaptive mixture updated with

the LMS algorithm, the first constituent filter and the second constituent filter.
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Fig. 3. Two LMS filters as constituent filters with learning rates µ1 = 0.002 and

µ2 = 0.1, respectively. SNR = 1dB. For the second stage, the EGU algorithm

has µEGU = 0.01 and the EG algorithm has µEG = 0.01. For the EG algorithm,

u = 3. (a) Theoretical values for the mixture weights updated with the EGU

algorithm and simulations. (b) Theoretical values E
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Fig. 4. (a) The difference ‖ exp{µe(t)(ŷi(t)−ŷm(t))}−{1+µe(t)(ŷi(t)−ŷm(t)))}‖2√
‖ exp{µe(t)(ŷi(t)−ŷm(t))}‖2‖{1+µe(t)(ŷi(t)−ŷm(t)))}‖2

for i = 1

with the same algorithmic parameters as in Fig. 2 and Fig. 3. (b) The first parame-

ter of the difference

∥

∥

∥

∥

E

{

u

[

I+µe(t)diag

(

u(t)

)]

λa(t)
[

1
T
+µe(t)uT (t)

]

λa(t)

}

−u

E

{

[

I+µe(t)diag

(

u(t)

)]

λa(t)

}

E

{

[

1
T
+µe(t)uT (t)

]

λa(t)

}

∥

∥

∥

∥

2

√

√

√

√

√

∥

∥

∥

∥

E

{

u

[

I+µe(t)diag

(

u(t)

)]

λa(t)
[

1
T
+µe(t)uT (t)

]

λa(t)

}
∥

∥

∥

∥

2∥
∥

∥

∥

u

E

{

[

I+µe(t)diag

(

u(t)

)]

λa(t)

}

E

{

[

1
T
+µe(t)uT (t)

]

λa(t)

}

∥

∥

∥

∥

2

with the same algorithmic parameters as in Fig. 2 and Fig. 3.

29



200 400 600 800 1000 1200 1400
−9

−8

−7

−6

−5

−4

−3

−2

Samples

M
S

E
 (

dB
)

MSEs of the constituent filters and adaptive mixtures, SNR = −5dB

 

 

MSE of the first constituent filter
MSE of the second constituent filter
MSE of the adaptive mixture updated with the LMS algorithm
MSE of the adaptive mixture updated with the EG algorithm
MSE of the adaptive mixture updated with the EGU algorithm

200 400 600 800 1000 1200 1400 1600 1800 2000
−6

−5

−4

−3

−2

−1

0

1

Samples

M
S

E
 (

dB
)

MSEs of the constituent filters and adaptive mixtures, SNR = 5dB

 

 

MSE of the first constituent filter
MSE of the second constituent filter
MSE of the adaptive mixture updated with the LMS algorithm
MSE of the adaptive mixture updated with the EG algorithm
MSE of the adaptive mixture updated with the EGU algorithm

(a) (b)

Fig. 5. Algorithmic parameters and constituent filters are selected as in Fig. 2 under

SNR = -5dB. For the second stage, the EG algorithm has µEG = 0.0005, the EGU

algorithm has µEGU = 0.005 and the LMS algorithm has µLMS = 0.005. For the EG

algorithm, u = 500. (a) the MSE curves for the adaptive mixture updated with the

EG algorithm, the adaptive mixture updated with the EGU algorithm, the adaptive

mixture updated with the LMS algorithm, the first constituent filter and the second

constituent filter. Next, SNR = 5dB. For the second stage, the EG algorithm has

µEG = 0.002, the EGU algorithm has µEGU = 0.005 and the LMS algorithm has

µLMS = 0.005. For the EG algorithm, u = 100. (b) the MSE curves for the adaptive

mixture updated with the EG algorithm, the adaptive mixture updated with the

EGU algorithm, the adaptive mixture updated with the LMS algorithm, the first

constituent filter and the second constituent filter.
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