
Bayesian Combination of Sparse and non Sparse Priors
in Image Super ResolutionI

S. Villenaa,∗, M. Vegaa, S. D. Babacanb, R. Molinac, A.K. Katsaggelosd
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Abstract

In this paper the application of image prior combinations to the Bayesian Super
Resolution (SR) image registration and reconstruction problem is studied. Two
sparse image priors, a Total Variation (TV) prior and a prior based on the
`1 norm of horizontal and vertical first order differences (f.o.d.), are combined
with a non-sparse Simultaneous Auto Regressive (SAR) prior. Since, for a given
observation model, each prior produces a different posterior distribution of the
underlying High Resolution (HR) image, the use of variational approximation
will produce as many posterior approximations as priors we want to combine.
A unique approximation is obtained here by finding the distribution on the
HR image given the observations that minimizes a linear convex combination
of Kullback-Leibler (KL) divergences. We find this distribution in closed form.
The estimated HR images are compared with the ones obtained by other SR
reconstruction methods.

Keywords: Super Resolution, total variation, variational methods, parameter
estimation, Bayesian methods.

1. Introduction

Image SR is an active research field that studies the process of obtaining an
HR image from a set of degraded Low Resolution (LR) images (see [1, 2] for
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a review). The basic principle in SR is that changes in LR images caused by
the blur and the camera (and/or scene) motion provide additional information
that can be utilized to reconstruct the HR image. Usually SR methods include
two parts: registration, where the motion between LR images is estimated, and
image reconstruction, where the HR image is recovered from the LR images.

In the Bayesian framework a prior model on the HR image to be recon-
structed is introduced, its aim is to encapsulate our prior image knowledge and
consequently to avoid the ill-posedness of the image reconstruction problem.
The selection of this Bayesian prior model is a critical issue. Prior models im-
posing image smoothness, like the Conditional Auto Regressive (CAR) or SAR
image models (see [3]), are known to oversmooth edge regions. More sophis-
ticated priors based on wavelets [4], TV [5], or the `1 norm of horizontal and
vertical f.o.d. [6], have been proposed. However, these priors lead to over-
smooth non edge regions.

Combining image priors is an interesting way to take advantage of their be-
havior. While in image restoration there have been several attempts to combine
image priors [7–9], no such attempts have been made in the SR literature apart
from our conference paper [10], from which the present paper grows. In [9]
a Student’s t Product of Experts (PoE) image prior model was proposed and
learnt from the observations. In [8] the PoE prior was learnt using a large train-
ing set of images and also stochastic sampling methods. A combination of the
TV image prior model and the PoE model of [9] has been recently proposed
in [11]. This method can be considered a spatially adaptive version of the TV
model which furthermore, as the method in [9], has the ability to simultaneously
enforce different properties on the image.

In this paper, a combination of the sparse TV and `1, and the non sparse
SAR image prior models is applied to SR. The rationale of this modelling is to
benefit from the ability of the sparse priors to recover image edges, and at the
same time to avoid their tendency to oversmooth inner regions by combining
them with an smoothness promoting prior model.

Accurate registration of displaced and rotated images, is vital in SR image
reconstruction. There are two major approaches to registration in SR, which
differ in the stage where registration is performed. In the first approach the
motion parameters are previously estimated from the observed LR images, in a
preprocessing step, and then used in a separate image estimation process (see
[12–15]). The limited accuracy inherent to HR registration from LR images is a
shortcoming of this first approach. The second approach is to alternate between
HR image registration and HR image estimation (see [5, 16–25]).

All the HR reconstruction methods proposed in this work depend on model
parameters, usually called hyperparameters. Hyperparameter estimation is also
a critical issue, which has been studied in previous SR papers, see for instance
[5, 6, 10, 21, 25]. In this paper the entire SR problem, that is HR image re-
construction, registration, and hyperparameter estimation, is approached from
a Bayesian perspective. All the unknown, i.e., the HR image and the displa-
cements and rotations, are systematically included in a hierarchical Bayesian
model. Using a variational Bayesian analysis, sparse and no sparse HR image
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prior models can be combined. The proposed framework provides uncertainties
of the estimates during the restoration process, which helps to prevent error-
propagation and improves robustness. All required algorithmic parameters are
estimated along with the HR image and the motion parameters, and therefore
the proposed algorithms do not require user supervision.

The rest of this paper is organized as follows. Section 2 provides the mathe-
matical model for the LR image acquisition process. We provide the description
of the hierarchical Bayesian framework modeling the unknowns in Section 3. The
inference procedure to develop the proposed methods is presented in Section 4.
We demonstrate the effectiveness of the proposed methods with experimental
results in Section 5 and conclusions are drawn in Section 6.

2. Problem Formulation

We assume that the imaging process generates L LR images yk, k = 1, . . . , L,
from the HR image x. The LR images yk consist of N = Nh × Nv pixels
(where Nh and Nv are the observations pixels number in horizontal and vertical,
respectively) and the HR image x of PN pixels, where the integer P > 1 is
the factor of increase in resolution. In this paper we adopt the matrix-vector
notation such that the images yk and x are arranged as N × 1 and PN × 1
vectors, respectively. The imaging process introduces shifting, blurring and
downsampling, which is modeled as

yk = AHkC(sk)x + nk = Bk(sk)x + nk, (1)

with the system N × PN matrix Bk = AHkC(sk), where A is the N × PN
downsampling matrix, Hk is the PN ×PN blurring matrix, C(sk) is the PN ×
PN warping matrix generated by the motion vector sk, and nk is the N × 1
acquisition noise. Note that the matrices Hk and C(sk) and the noise nk can
be different for each LR image yk.

In this work, we assume that the blurring matrices Hk are known and we
consider a motion model consisting of translational and rotational motion, so
that sk = (θk, ck, dk)t, where θk is the rotation angle, and ck and dk are the
horizontal and vertical translations of the kth HR image with respect to the
reference frame x.

The effects of downsampling, blurring, and warping are combined into the
system matrix Bk(sk), from which each row maps the pixels of the HR image
x to a given pixel in the LR image yk. Given Eq. (1), the SR problem can be
expressed as the search of an estimate of the HR image x from the set of LR
images {yk} using our prior knowledge about {C(sk)}, {nk}, and x.

3. Hierarchical Bayesian Model

In this work, we adopt a hierarchical Bayesian framework consisting of two
stages. The first stage is used to model the acquisition process, the unknown
HR image x and the motion vectors {sk}. For the unknown x we have m models
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which we want to combine. They are denoted by pi(x|αi) for i = 1, . . . ,m. Prior
distributions p(sk) are assigned to the unknowns sk, for k = 1, . . . , L. The ob-
servation y = {yk} is also a random process with the corresponding conditional
distribution p(y|x, {sk}, {βk}). These distributions depend on additional pa-
rameters αi and {βk} (called hyperparameters), which are modeled by assigning
hyperprior distributions in the second stage of the hierarchical model.

In the following subsections we provide the description of the individual
distributions used to model the unknowns.

3.1. Observation Model
Using the model in Eq. (1) and assuming that nk is zero-mean white Gaus-

sian noise with inverse variance (precision) βk, the conditional distribution of
the LR image yk is given by

p(yk|x, sk, βk) ∝ βN/2k exp
[
−βk

2
‖ yk −Bk(sk)x ‖2

]
. (2)

Assuming statistical independence of the noise among the LR image acquisi-
tions, the conditional probability of the set of LR images y given x can be
expressed as

p(y|x, {sk}, {βk}) =
L∏
k=1

p(yk|x, sk, βk) . (3)

The independent Gaussian model in Eq. (3) is used in most of the existing
super resolution methods [18, 21, 22, 26].

Let us now explicitly state the form of the warping matrices C(sk) of Eq. (1).
We denote the coordinates of the reference HR grid by (u, v) and the coordinates
of the kth warped HR grid, after applying C(sk) to x, by (uk, vk). Let us also
define

∆uk = uk − u = u cos(θk)− v sin(θk) + ck − u
∆vk = vk − v = u sin(θk) + v cos(θk) + dk − v .

Note that the coordinates (uk, vk) generally correspond to fractional values,
and therefore the HR image value at pixel (uk, vk) in the kth HR grid has to be
calculated using resampling (see Figure 1). As in [27], we incorporate bilinear
interpolation to approximate the HR image value at (uk, vk) using the four
neighboring HR image values xtl(sk), xtr(sk), xbl(sk), and xbr(sk) (see black bold
remarked pixels in Figure 1), which are the pixels at the top-left, top-right,
bottom-left and bottom-right locations of the pixel at (uk, vk), respectively.

Let us denote by (ak(sk), bk(sk))T the vector difference between the pixel
position at (uk, vk) and the pixel at its top-left position in the reference HR
grid, that is,

ak(sk) = ∆uk − floor(∆uk)
bk(sk) = ∆vk − ceil(∆vk) .
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Path of grid element (u,v)

(u , v)
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(u ,v)

(uk , vk )xbl (sk )xbr (sk )

x tl (sk )x tr (sk )

(b)

Figure 1: (a) HR image grid (in black) and the kth image grid (in red). (b)
Detailed view of (a), with the pixel notation used for the bilinear interpolation
of grid element (uk, vk).

Using bilinear interpolation, the warped image C(sk)x can be approximated as
(see [27] for details)

C(sk)x ≈ Dbk(sk)(I−Dak(sk))Lbl(sk)x + (I−Dbk(sk))Dak(sk)Ltr(sk)x

+ (I−Dbk(sk))(I−Dak(sk))Ltl(sk)x + Dbk(sk)Dak(sk)Lbr(sk)x , (4)

where Dak(sk) and Dbk(sk) denote diagonal matrices with the vectors ak(sk) and
bk(sk) in their diagonal, respectively. The matrices Lz with z ∈ {bl(sk),br(sk),
tl(sk), tr(sk)} are constructed in such a way that the product Lzx produces pix-
els at the top-left, top-right, bottom-left and bottom-right locations of (uk, vk),
respectively.

3.2. Image Models
The quality of the estimated HR image as well as the accuracy in the es-

timates of other unknowns depends on the incorporation of accurate image
models. In this paper the SAR prior model (see [3]), the prior model based in
the `1 norm over horizontal and vertical f.o.d. (see [6]) and the TV prior model
(see [5]) are used.

The SAR model is an smooth prior with quadratic energy which is well
known to oversmooth edge regions (see [3]). It is defined by

p1(x|α1) ∝ α
PN
2

1 exp
{
−α1

2
‖Cx‖2

}
, (5)

5



where C is the Laplacian operator and α1 the hyperparameter of this prior
model.

The `1 norm prior model is defined as

p2(x|α2) ∝ (αh2α
v
2)

PN
4 exp

{
−
PN∑
i=1

[
αh2
∥∥∆h

i (x)
∥∥

1
+ αv2 ‖∆v

i (x)‖1
]}

, (6)

where ∆h
i (x) and ∆v

i (x) represent the horizontal and vertical f.o.d., respectively,
for the pixel i, α2 = {αh2 , αv2}, being αh2 and αv2 the model hyperparameters.

The TV prior model is defined as

p3(x|α3) ∝ α
PN
2

3 exp

{
−α3

2

PN∑
i=1

√
(∆h

i (x))2 + (∆v
i (x))2

}
, (7)

where α3 is the hyperparameters of this prior model. Both TV, and `1, are
sparse priors, very effective in preserving edges. The main difference between
TV and `1 is the presence of two hyperparameters αh2 and αv2, in the `1 prior.
These two parameters allow to adapt the model to possible direction dependence
of the edge strength.

3.3. Modeling the Uncertainties in the Registration Parameters
Let us denote by s̄pk the estimate of sk obtained from LR observations in a

preprocessing step, using conventional registration algorithms, such as the one
reported in [28]. As mentioned earlier, these estimates are in general inaccurate,
which lowers the image restoration quality. Therefore, we model the motion
parameters as stochastic variables following Gaussian distributions with a priori
means set equal to the preliminary motion parameters s̄pk, that is,

p(sk) = N (sk|s̄pk,Ξ
p
k) (8)

with Ξp
k the a priori covariance matrix. The parameters s̄pk and Ξp

k incorporate
prior knowledge about the motion parameters into the estimation procedure. If
such knowledge is not available, s̄pk and (Ξp

k)−1 can be set equal to zero, which
makes the observations solely responsible for the estimation process. Similar
models utilizing Gaussian distributions to model the uncertainty in preliminary
motion parameters have also been used in some existing algorithms [18, 21, 26],
but with different inference methods.

3.4. Hyperpriors on the Hyperparameters
The hyperparameters α1, α2, α3 and {βk} are crucial for the performance

of the SR algorithm. For their modeling, we employ Gamma distributions

p(ω) = Γ(ω|aoω, boω) =
(boω)a

o
ω

Γ(aoω)
ωa

o
ω−1 exp [−boωω] , (9)
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where ω > 0 denotes a hyperparameter, and aoω > 0 and boω > 0 are the shape
and scale parameters, respectively. The hyperpriors are chosen as Gamma dis-
tributions since they are conjugate priors for the Gaussian distribution.

Finally, combining Eqs. (3), (5), (6), (7), (8) & (9) we obtain

pl(Θl,y) = pl(x|αl)p(αl)
L∏
k=1

[p(yk|x, sk, βk)p(βk)p(sk)] , (10)

which for l ∈ {1, 2, 3}, denotes the different joint probability distributions cor-
responding to the SAR, `1 and TV prior models respectively. In Eq. (10)
Θl = {Ω, αl}, Ω = {x, {sk}, {βk}}, p(α2) = p(αh2 )p(αv2) and the conditional
probability for the set of L LR observations, defined in Eq. (3), has been used.

4. Variational Bayesian Inference

Let us denote the set of all unknowns by Φ = {Ω, {αl}}. In this paper,
Bayesian inference is based on the posterior distribution p(Φ|y) of Φ given the
observed y. We propose here to approximate this posterior distribution by
the distribution minimizing the following linear convex combination of m KL
divergence measures

q̂(Φ) = argmin
q(Φ)

m∑
l=1

λlCKL(q(Ω)q(αl)||pl(Θl|y)), (11)

where m is the number of image priors to be combined in our model, λl ≥ 0 for
l = 1, . . . ,m and

∑m
l=1 λl = 1. In Eq. (11) the posteriors p(Θl|y), for l = 1, ...,m

are given by

p(Θl|y) =
p(Θl,y)

p(y)
, (12)

where the joint distribution p(Θl,y), corresponding to the different prior models,
has been defined in Eq. (10), q(Φ) = q(Ω)

∏m
l=1 q(αl), q(Ω) = q(x)

∏L
k=1 q(βk),

and the KL divergences are defined as

CKL(q(Ω)q(αl)||pl(Θl|y)) =
∫

q(Ω)q(αl) log
(

q(Ω)q(αl)
pl(Θl,y)

)
dΩdαl + const. (13)

Notice that since pl(Θl|y) can not be found because p(y) can not be calculated
analytically, we apply variational methods to approximate this posterior distri-
bution (see [29]). The KL divergence is always non negative and zero if pl(Θl|y)
and ql(Θl) coincide, so by decreasing the KL divergence we are looking for good
posterior distribution approximations.

The estimation of λ = {λ1, λ2, . . . , λm} will not be addressed in this pa-
per, but we will show experimentally that non-degenerate combinations of the
divergences (those with more than one coefficient λl 6= 0) may provide better
reconstructions than degenerate ones.
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Taking into account that∫
q(Ω)q(αl) log

(
q(Ω)q(αl)
pl(Θl,y)

)
dΩdαl =

∫
q(Φ) log

(
q(Ω)q(αl)
pl(Θl,y)

)
dΦ, (14)

Eq. (11) can be written in the more compact form:

q̂(Φ) = argmin
q(Φ)

∫
q(Φ) log

(
q(Ω)

p(y|Ω)
∏L
k=1 p(βk)

m∏
l=1

[
q(αl)

pl(x|αl)p(αl)

]λl)
dΦ.

(15)

In this paper two model configurations are studied. We first consider the
combination between SAR and `1 prior models, and afterward the combina-
tion between SAR and TV. The two configurations are denoted as Φc, for
c ∈ {`1, TV }, with λ`1 = {1 − λ2, λ2, 0} and λTV = {1 − λ3, 0, λ3}. The
configuration corresponding to the combination between the three considered
prior models has not been considered, because TV and `1 are very similar, dif-
fering only on the adaptability of the `1 prior to the possible direction dependent
strength of the edges.

Unfortunately, we can not directly tackle the minimization of Eq. (15) be-
cause of the prior models pl(x|αl) for l = 2, 3, defined in Eqs. (6) and (7), re-
spectively. In earlier work with `1 prior model (see [6]) and with TV prior model
(see [5]), this difficulty was overcome by resorting to majorization-minimization
(MM) approaches, which is also the path followed here, in this paper.

In the MM approach lower bounds to the joint distributions of Eq. (10) are
found, which make the mininization of Eq. (11) tractable. Lower bounds to the
pl(Θl,y) distributions of Eq. ((10)), for l = 2, 3 can be found as follows. Let us
first consider the functionals

M2(α2,x,w2) = (αh2α
v
2)

PN
4 exp

{
−
PN∑
i=1

[
αh2

(∆h
i (x))2 + wh2i

2
√
wh2i

+

αv2
(∆v

i (x))2 + wv2i
2
√
wv2i

]}
(16)

and

M3(α3,x,w3) = (α3)
PN
2 exp

{
−α3

2

∑PN
i=1

[
(∆h

i (x))2+(∆v
i (x))2+w3i√

w3i

]}
, (17)

with PN dimensional vectors wh
2 ,w

v
2 ,w3 ∈ (R+)PN , with components wh2i, w

v
2i,

w3i for i = 1, . . . , PN , and with α2 = {αh2 , αv2} and w2 = {wh
2 ,w

v
2}. In Eqs (16)

and (17), wh2i, w
v
2i, and w3i act as local adaptability factors: the greater their

values, the lower the smoothing effect of the functional. We will see in Eqs (33)
and (34), that these vectors have large values in pixel locations with high f.o.d.
values, i.e. near image edges, that is, where we want the smoothing effect of the
prior to be lower.
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It can be shown by applying, in Eqs (16) and (17), the inequality
√
z ≤ z+w

2
√
w

,
∀z ≥ 0, w > 0, (details can be found in [5, 6]) that these functionals are lower
bounds of the image priors pl(x|αl), for l = 2, 3, in Eqs. (6) and (7) respectively.
These lower bounds can be used to find lower bounds for the respective joint
distributions, that is, for l = 2, 3 we have

pl(Θl,y) ≥ p(y|Ω)Ml(αl,x,wl)p(αl)
L∏
k=1

[p(βk)p(sk)] = Fl(Θl,y,wl) , (18)

and consequently, an upper bound to the integral in Eq. (15) is then obtained.
The minimization in Eq. (15) can then be replaced by the minimization of

its upper bound, since minimizing this bound with respect to the unknowns
and the auxiliary variable wl in an alternating fashion results in closer bounds
at each iteration. This bound is quadratic and therefore it can be evaluated
analytically.

Before we proceed to calculate the posterior approximation, we first observe
that to calculate q(αl), l = 1, 2, 3, we only have to look at the only divergence
where that distribution is present. So we can write

q(α1) ∝ exp
(
〈log p1(Ω, α1,y)〉q(Ω)

)
, (19)

and

q(αl) ∝ exp
(
〈log Fl(Θl,y,wl)〉q(Ω)

)
, for l = 2, 3 , (20)

where 〈?〉q(Ω) denotes the expected value of ? using the q(Ω) distribution, i.e.
〈?〉q(Ω) = Eq(Ω)[?]. In what follows, we will use 〈?〉 for simplicity, making the
distribution q(Ω) being utilized clear from the context.

However, to calculate the distributions for the rest of the unknowns q(ξ), ξ ∈
Ω we have to take into account all the divergences. We obtain

qc(ξ) ∝ exp

(〈
log

[
p(y|Ω)

L∏
k=1

[p(βk)p(sk)]

[Mlc(αlc ,x,wlc) p(αlc)]
λlc [p1(x|α1)p(α1)]1−λlc

]〉
q(Φcξ)

)
, (21)

for the two configurations c ∈ {`1, TV }, where lc = 2 for c = `1 and lc = 3 for
c = TV . In Eq. (21) Φcξ, for c ∈ {`1, TV }, denote the set of variables Φc with
ξ removed.
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4.1. Estimation of the HR Image and Registration Parameters Distributions
In order to obtain the distribution function qc(x) we use Eq. (21) resulting

in the multivariate Gaussian

q`1(x)∝exp

[
−1

2

(
λ2

{
<αh2>

∑
i

(∆h
i (x))2 + wh2i√

wh2i
+<αv2>

∑
i

(∆v
i (x))2 + wv2i√

wv2i

}

+(1− λ2)<α1> ‖Cx‖2+
∑
k

<βk><‖ yk −Bk(sk)x ‖2>q(sk)

)]
(22)

for c = `1, and for c = TV

qTV (x) ∝ exp

[
−1

2

(
λ3<α3>

∑
i

(∆h
i (x))2 + (∆v

i (x))2 + w3i√
w3i

+(1− λ3)<α1> ‖Cx‖2 +
∑
k

<βk>< ‖ yk −Bk(sk)x ‖2 >q(sk)

)]
. (23)

Also, from Eq. (21), we can find for the registration parameters, the distri-
bution

q(sk) ∝ exp
[
−1

2
(
< βk > < ‖ yk −Bk(sk)x ‖2 >q(x)

+ (sk − s̄pk)t (Ξp
k)−1 (sk − s̄pk)

)]
. (24)

The explicit form of these distributions depends on the expectation values
< ‖ yk −Bk(sk)x ‖2 >q(sk) and < ‖ yk −Bk(sk)x ‖2 >q(x). These calculations
are not easy since C(sk), in Eq. (1), is nonlinear with respect to sk. Therefore,
we expand C(sk) using its first-order Taylor series around the mean value s̄k =
< sk >= (θ̄k, c̄k, d̄k)T of the distribution q(sk), of Eq. (24), resulting in

C(sk) ≈ C(s̄k) + [N1(s̄k),N2(s̄k),N3(s̄k)] (sk − s̄k) , (25)

with

[N1(s̄k)x,N2(s̄k)x,N3(s̄k)x] =
[(P1(s̄k)M1(s̄k) + P2(s̄k)M2(s̄k)),M1(s̄k),M2(s̄k)] . (26)

In Eq. (26),

M1(s̄k) = (I−Dbk(sk))(Ltr(sk) − Ltl(sk)) + Dbk(sk)(Lbr(sk) − Lbl(sk))
M2(s̄k) = (I−Dak(sk))(Lbl(sk) − Ltl(sk)) + Dak(sk)(Lbr(sk) − Ltr(sk)),

P1(s̄k) = −[Du sin(θ̄k) + Dv cos(θ̄k)] and P2(s̄k) = [Du cos(θ̄k) −Dv sin(θ̄k)],
where Du and Dv are diagonal matrices whose diagonals are the vectors u and
v, respectively.
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Using Eq. (25), Bk(sk) of Eq. (1) can be approximated by

Bk(sk) = AHkC(sk) ≈ Bk(s̄k) + [Ok1(s̄k),Ok2(s̄k),Ok3(s̄k)] (sk − s̄k), (27)

with Okr(s̄k) = AHkNr(s̄k), for r = 1, .., 3, and we obtain

< ‖ yk −Bk(sk)x ‖2 >q(sk) ≈ ‖ yk −B(s̄k)x ‖2 +
3∑
i=1

3∑
j=1

<βk>ξkijxtOki(s̄k)tOkj(s̄k)x , (28)

where for i, j = 1, .., 3, ξkij are the elements of the 3× 3 covariance matrix Ξk

of the posterior q(sk), of Eq. (24).
Substituting Eq. (28) into Eqs. (22) and (23), we obtain for the posterior

distribution qc(x) the multivariate Gaussian

qc(x) = N
(
x|Eqc(x)[x], covqc(x)[x]

)
, (29)

with mean

Eqc(x)[x] = covqc(x)[x]

[∑
k

<βk>Bk(s̄k)tyk

]
, (30)

and inverse covariance

cov−1
q`1(x)[x] =

∑
k

<βk>Bk(s̄k)tBk(s̄k) +
∑
k

3∑
i=1

3∑
j=1

<βk>ξkijOki(s̄k)tOkj(s̄k)

+λ2

(
<αh2>∆htW(wh2 )∆h +<αv2>∆vtW(wv2)∆v

)
+ (1− λ2)<α1>CtC,

(31)

for c = `1, and

cov−1
qTV (x)[x] =

∑
k

<βk>Bk(s̄k)tBk(s̄k) +
∑
k

3∑
i=1

3∑
j=1

<βk>ξkijOki(s̄k)tOkj(s̄k)

+λ3<α3>
(

∆htW(w3)∆h + ∆vtW(w3)∆v
)

+ (1− λ3)<α1>CtC,
(32)

for c = TV . In the equations above, ∆h and ∆v represent the PN × PN
convolution matrices associated respectively with the horizontal and vertical
f.o.d., and W(w), ∀w ∈ (R+)PN , is a PN ×PN diagonal matrix with elements
W(w)ii = 1√

wi
, for i = 1, . . . , PN . These W(w) matrices can be interpreted

as space adaptation matrices.
The following expressions are obtained for the w parameters

wh2i = Eq`1(x)[(∆h
i (x))2], wv2i = Eq`1(x)[(∆v

i (x))2], (33)

w3i = EqTV (x)[(∆h
i (x))2 + ∆v

i (x))2]. (34)

11



Now, we use again Eq. (27), to obtain the following approximation

< ‖ yk −Bk(sk)x ‖2 >q(x) ≈‖ yk −B(s̄k)Eqc(x)[x]−Υk(sk − s̄k) ‖2

+ trace
[
B(s̄k)t B(s̄k)covqc(x)

]
+ 2Φt

k(sk − s̄k) + (sk − s̄k)tΨk(sk − s̄k) (35)

which allows us to express the distribution q(sk) of Eq. (24) as the Gaussian
q(sk) = N (sk|<sk>,Ξk) with parameters

<sk> = Ξk

[
(Ξp

k)−1 s̄pk+ < βk > (Γks̄k + Ψks̄k + Qk −Φk)
]
, (36)

and

Ξ−1
k = (Ξp

k)−1 + < βk > (Ψk + Γk) . (37)

In Eqs. (35), (36) and (37) above,

Υk = [Ok1(s̄k)Eqc(x)[x],Ok2(s̄k)Eqc(x)[x],Ok3(s̄k)Eqc(x)[x]] ,

Φk and Qk are 3×1 vectors with elements Φki = trace
[
B(s̄k)tOki(s̄k)covqc(x)

]
,

and Qki =
(
yk −B(s̄k)Eqc(x)[x]

)t
Υki, respectively, for i = 1, 2, 3, and Ψk and

Γk are 3× 3 matrices with elements Ψkij = trace
[
Oki(s̄k)tOkj(s̄k)covqc(x)[x]

]
,

and Γkij = Υt
kiΥkj , respectively, for i, j = 1, 2, 3.

An interesting observation is that this registration method is a generalized
stochastic version of the Lucas-Kanade registration algorithm [28] as applied
to the super resolution problem. The classical Lucas-Kanade method can be
obtained as a special case of Eq. (36) by setting the matrix Ψk equal to zero.
This matrix incorporates the uncertainty of the image estimate x into the motion
estimation procedure.

4.2. Estimation of the hyperparameter distributions
Finally we obtain the distributions for the hyperparameters {αl} and {βk},

which are found to be Gamma distributions. For the {βk} hyperparameters,
using Eq. (21), we obtain

q(βk) ∝ β
N
2 −1+a0

βk

k exp

−βk
b0βk +

Eqc(x)

[
‖yk −Bk(sk)x‖2

]
2

 (38)

Using Eq. (19) we obtain for α1 the distribution

q(α1) ∝ α
PN
2 −1+aoα1

1 exp

−α1

b0α1
+

Eqc(x)

[
‖Cx‖2

]
2

 , (39)

and from Eq. (20) we obtain

q(αh2 ) ∝ (αh2 )
PN
4 −1+a0

αh2 exp

[
−αh2

(
b0αh2

+
PN∑
i=1

√
wh2i

)]
, (40)

q(αv2) ∝ (αv2)
PN
4 −1+a0

αv2 exp

[
−αv2

(
b0αv2 +

PN∑
i=1

√
wv2i

)]
, (41)
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for α2, and finally for α3

q(α3) ∝ (α3)
PN
2 −1+a0

α3 exp

[
−α3

(
b0α3

+
PN∑
i=1

√
w3i

)]
. (42)

We summarize below the proposed iterative SR algorithm 1, which comprises
HR image estimation, registration and estimation of the model hyperparame-
ters. Two model configurations are considered, the combination between SAR
and `1 prior models, for c = `1, and the combination between SAR and TV, for
c = TV .

Algorithm 1 SR and registration using SAR and `1 or TV model combinations

Require: Initial values for HR image, registration parameters and hyperpa-
rameters.

1: while convergence criterion is not met do
2: Estimate the image distribution using Eq. (21).
3: Calculate the vectors wh

2 and wv
2 using Eq. (33), for c = `1, or w3 using

Eq. (34) for c = TV .
4: Estimate the registration parameters using Eq. (36).
5: Estimate the hyperparameters {βk} using Eq. (38), α1 using Eq. (40),

and α2 using Eqs. (40) and (41), for c = `1, or α3 for c = TV , using
Eq.(42).

5. Experimental Results

A number of experiments have been run, with synthetic and real images, in
order to evaluate the performance of the proposed method, both in terms of
HR image restoration quality and of registration accuracy, some of them will
be described in this section. The two most widely used SR sensor integration
models are uniform and Gaussian functions. In this paper we have used, for Hk

in Eq. (1), a 3× 3 uniform PSF.

We use in this section, as convergence criterion for Algorithm 1 ‖x
j−xj−1‖2
‖xj−1‖2 <

10−5, where xj and xj−1 are the image estimates at the jth and (j − 1)th iter-
ations, respectively. Step 4 of Algorithm 1 is an iterative registration process
based on Eqs. (36) and (37), for which the stopping criterion

∥∥yk −AHkC(sik)x̂
∥∥2

>
∥∥yk −AHkC(si−1

k )x̂
∥∥2

, has been applied, where sik and si−1
k are the motion

parameters estimated at the ith and (i − 1)th iterations, respectively. This it-
erative registration process has been limited to a maximum of 35 iterations.
Setting aoω = 0 and boω = 0 in Eq.(9), for ω ∈ {{αl}, {βk}}, we have used non-
informative prior in all the experiments. In Algorithm 1 initialization, a bicubic
interpolation of the first observation y1, has been used as initial value x0 for
the HR image. The remaining parameters have been initialized to the follow-
ing values: wh2i = (∆h

i (x0))2, wv2i = (∆v
i (x

0))2, w3i = (∆h
i (x0))2 + (∆h

i (x0))2,

13



αh2 = PN/(2
∑PN
i

√
wh2i), α

v
2 = PN/(2

∑PN
i

√
wv2i), α3 = PN/(2

∑PN
i

√
w3i)

and βk = N/
∥∥yk −Bk(sk)x0

∥∥2.
The parameter estimations in steps 3-5 of Algorithm 1, which have been

described in section 4, require the evaluation of traces of different matrix prod-
ucts involving the covariance matrix covqc(x)[x]. As this covariance matrix can
not be obtained in exact form, an approximation has to be applied. In our
previous paper [30], an analysis of approximations to the covariance matrix was
performed. The Jacobi approximation, which has been adopted in this paper,
offered the best tradeoff between precision and efficiency.

The proposed Algorithm 1 allows the determination of all the unknowns of
our problem, except for the λ parameter, which determines the relative con-
tribution of the different prior models we are combining. Two variants of the
proposed Algorithm 1 have been considered, the first, for c = `1, corresponds
to the combination of the SAR and `1 norm based model priors (denoted by `1-
SAR), and the second, for c = TV , corresponds to the combination of the SAR
and TV model priors (denoted by TV-SAR). For `1-SAR λ`1 = {1− λ2, λ2, 0}
and there are two degenerate combinations of interest. When λ2 = 0 only the
SAR model is used, and this combination will be denoted as SARREG, while
the combination for λ2 = 1, will be denoted as `1. `1 coincides with the model
proposed in [6], except for image registration which we incorporate in this paper.
For c = TV , λTV = {1 − λ3, 0, λ3}. We denote as TV the degenerate combi-
nation obtained when λ3 = 1. When λ3 = 0 we obtain again the SARREG
combination.

In this section we compare the results obtained using SARREG, `1, TV, TV-
SAR and `1-SAR, with the ones obtained by bicubic interpolation (denoted by
BBC), the robust SR method in [13] (denoted by ZMT ), based on backprojection
with median filtering, the robust SR method in [14] (denoted by RSR), based
on bilateral TV filters and the SR method in [23] (denoted by SDK ), based on
multidimensional kernel regression.

Let us consider first the experiments with synthetic images, which are based
on the set of four images of 120 × 120 pixels of size, depicted in Figure 2.
Sequences of five LR images have been generated from the image set through
warping, blurring and downsampling by a factor

√
P = 2. For the warping, the

following motion vectors have been used for the images in the sequence: s1 =
(0.0◦, 0.0, 0.0)t, s2 = (3.0◦, 0.0, 0.5)t, s3 = (−3.0◦, 0.5, 0.0)t, s4 = (5.0◦, 1.0, 0.0)t

and s5 = (−5.0◦, 0.0, 1.0)t. A 3 × 3 uniform PSF has been used for the blur.
Finally additive white Gaussian noise with Signal to Noise Ratio (SNR) levels
between 10 dB and 40 dB, has been added to the LR observations. We conducted
simulations with 3 different noise realizations at each SNR level. Motion errors
have also been simulated, corrupting the original translation parameters with
white Gaussian noise with standard deviation of 1, and the rotation parameters
with noise uniformly distributed in [−2◦, 2◦].

A numerical comparison between the original and reconstructed HR images,
obtained with the different methods, has been performed in terms of the peak
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(a) (b) (c) (d)

Figure 2: Set of 120× 120 images used in the synthetic experiments.

signal-to-noise ratio (PSNR), defined as

PSNR = 10 log10

NP

‖x̂− x‖2
, (43)

where x̂ and x are the estimated and original HR images, respectively, and pixel
values have been normalized to lie in the interval [0, 1].

Figure 3.a-d shows, for the images in Figures 2.a-d, plots of the PSNR values
corresponding to the different methods, except for the SDK method, and for
all noise levels. The SDK method [23], which reconstructs video sequences,
assumes differentiability in the temporal direction, to which a first order Taylor
expansion is applied. We believe it is unfair to compare the SDK method in this
experiment since there are abrupt changes between the images in the sequence.

The proposed methods SARREG, `1, TV, TV-SAR and `1-SAR, behave
better in terms of PSNR than the other ones. Regarding the various mod-
els separately, the sparse `1 and TV give better results than the non-sparse
SARREG and in most cases, `1 gives higher PSNR values than TV. The two
proposed model combinations `1-SAR and TV-SAR obtain similar PSNRs and
perform better than l1, TV and SAR alone.

Table 1 shows the λ2 values maximizing PSNR, for the `1-SAR model com-
bination, and the λ3 values for TV-SAR, in the present experiment, for the
different images and noise levels. These λ2 and λ3 values have been obtained
by exhaustive search of the value space [0, 1], with a precision of 0.05. Figure 4,
for example, shows the PSNR as a function of λ2 for `1-SAR combination and
as a function of λ3 for the TV-SAR combination for the reconstruction of the
HR image in Figure 2.c, at 20 dB. For PSNR as a function of λ2 and λ3, curves
similar in shape to the ones shown in Figure 4, have been obtained for the rest
of the images, and experiments.

In the second experiment, in order to compare our results also with the
ones obtained using the SDK method, a smooth temporal sequence has been
considered. For the image in Figure 2.b, the following rotations and transla-
tions were used: s1 = (0.0◦, 0.0, 0.0)t, s2 = (0.1◦, 0.3, 0.1)t, s3 = (0.2◦, 0.4, 0.2)t,
s4 = (0.3◦, 0.5, 0.3)t and s5 = (0.4◦, 0.6, 0.4)t. A 3 × 3 uniform PSF has been
used for the blur. Finally additive white Gaussian noise with SNR levels be-
tween 5 dB and 40 dB, has been added to the LR observations. We conducted
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(a) (b)

(c) (d)

Figure 3: Mean PSNR values, and standard deviations, corresponding to the
different methods and noise levels, for the images in Figures 2.a-d.

(a) (b)

Figure 4: PSNR of the reconstruction of the HR image in Figure 2.c, from 5 LR
observations with 20 dB, as a function of λ2 for `1-SAR and λ3 for TV-SAR.
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Table 1: λ2 and λ3 values obtained from the exhaustive search PSNR maxi-
mization, for the different noise levels and images in Figure 2.

Image SNR 10 dB 20 dB 30 dB 40 dB

Fig 2.a λ2 0.95 0.85 0.85 0.55
λ3 0.80 0.85 0.65 0.45

Fig 2.b λ2 0.90 0.75 0.30 0.00
λ3 0.85 0.75 0.30 0.00

Fig 2.c λ2 0.90 0.80 0.10 0.00
λ3 0.90 0.85 0.05 0.00

Fig 2.d λ2 1.00 0.95 1.00 0.90
λ3 0.95 0.90 0.95 0.55

simulations with 3 different noise realizations at each SNR level. Motion errors
have also been simulated, corrupting the original translation parameters with
white Gaussian noise with standard deviation of 1, and the rotation parameters
with noise uniformly distributed in [−2◦, 2◦]. Figure 5.a shows a plot of the
PSNR values corresponding to the different methods and noise levels. As it can
be observed in Figure 5.a, the proposed methods SARREG, `1, TV, TV-SAR
and `1-SAR, behave better in terms of PSNR than the other ones.

For this experiment, a comparison of the efficiency of the different meth-
ods in terms of the CPU time on an @Intel(R) Core(TM) i7CPU 950 at 3.07
GHz processor, has been performed. Figure 5.b, shows CPU plots for the dif-
ferent noise levels, our proposed methods are more time consuming than the
other considered methods, with the exception of the SDK method. In the case
of the proposed TV-SAR and `1-SAR methods the execution times shown in
Figure 5.b, corresponds to a given λm value. The exhaustive search process,
multiplies these times by the number of explored λm values.

In a third experiment, a comparison has been performed between the re-
gistration accuracy of the proposed methods, and the one obtained utilizing
the Lucas-Kanade (LK) [28] registration method. A comparison with the Van-
dewalle (VAN) method [15] was also performed, its performance is not shown
because its registration accuracy is considerably worse. LK was applied to the
HR images resulting from bilinear interpolations of the observations. In this
experiment, in order to illustrate the robustness of the registration process,
together with the image sequence of the first experiment, two more five ima-
ges sequences have been considered, with motion vectors s1 = (0.0◦, 0.0, 0.0)t,
s2 = (−6.4◦, 1.3,−0.6)t, s3 = (3.2◦,−2.6,−4.1)t, s4 = (4.0◦, 3.5, 2.6)t and
s5 = (−7.2◦, 0.5, 6.2)t, for the first sequence, and s1 = (0.0◦, 0.0, 0.0)t, s2 =
(−8.0◦, 2.0,−1.0)t, s3 = (3.0◦,−3.0, 5.0)t, s4 = (−4.0◦, 4.0, 2.0)t and s5 =
(5.0◦, 1.0, 2.0)t for the second sequence. In this case motion errors have also
been simulated, corrupting the original translation parameters with white Gaus-
sian noise with standard deviation of 1, and the rotation parameters with noise
uniformly distributed in [−2◦, 2◦].
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(a) (b)

Figure 5: (a) Mean PSNR values, (b) mean CPU time corresponding to the
different methods and noise levels, for the image in Figure 2.b.

The accuracy of the registration has been measured in terms of the absolute
registration errors |sk − 〈sk〉|, between the estimated parameters 〈sk〉 and their
true values sk, which in this case are known. Figure 6 shows the error values
for the registration of the HR image in Figure 2.b, for the different methods,
at different noise levels. From the results shown in Figure 6, the proposed
methods outperform to the LK method.

Let us finally study the performance of the proposed methods on real obser-
vations. Two data sets have been used, the set of real observations in [31], and
image sequences captured with a Canon IXUS700 camera, to which the different
methods have been applied to enhance their resolution by a factor

√
P = 4.

Figure 7 shows the HR reconstructions obtained using BBC, RSR, ZMT
and the proposed methods, for the first 20 LR images of the “text” sequence in
[31]. The superior quality of the HR reconstructions obtained by our proposed
methods is evident in Figure 7. We note, for example, that the gray background
is cleaner in the reconstructions obtained using the model combinations TV-
SAR, for λ3 = 0.8, of Figure 7.g, and `1-SAR, for λ2 = 0.4 of Figure 7.h, than
in the `1 reconstruction of Figure 7.d.

Finally, for the sequence of 19 observations captured with a Canon Ixus700
camera, Figure 8 shows the HR reconstructions obtained using the different
methods. Once again, the reconstructions obtained using model combinations,
shown in Figures 8.g & h, are superior to the ones obtained using the rest of
methods under comparison.

6. Conclusions

In this paper, a novel variational Bayesian methodology for the combination
of sparse and non-sparse image priors, has been applied to SR image recon-
struction from rotated and displaced LR images. The entire SR problem, that
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(a) (b)

(c)

Figure 6: Mean absolute motion error, and standard deviations, of the estimated
values for (a) the rotation angle θk, (b) the horizontal displacement ck, and (c)
the vertical displacement dk, corresponding to the different methods and noise
levels, for the image in Figure 2.b.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: HR images obtained from the first 20 LR frames of the text sequence
using: (a) BBC, (b) RSR, (c) ZMT, (d) SAR, (e) TV, (f) `1, (g) TV-SAR with
λ3 = 0.8 and (h) `1-SAR with λ2 = 0.4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: HR images obtained from 19 LR observations captured with a Canon
Ixus700 camera, using: (a) BBC, (b) RSR, (c) ZMT, (d) SAR, (e) TV, (f) `1,
(g) TV-SAR with λ3 = 0.5 and (h) `1-SAR with λ2 = 0.5.
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is, the joint HR image reconstruction, registration and parameter estimation,
has been studied from a Bayesian perspective. For the combination of different
image prior models, the Bayesian inference utilized finds the HR image given the
observations, which minimizes a linear convex combination of KL divergences.
We have found this distribution in closed form. The HR image estimates ob-
tained by the proposed method compare favorably with the images provided
by other state of the art SR reconstruction methods. Future work will address
the estimation of the weights assigned to each KL divergence in their convex
combination.
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