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Abstract

In this paper, the problem of despeckling SAR images when the input data is ei-

ther an intensity or an amplitude signal is revisited. State-of-the-art despeckling

methods based on Bayesian estimators in the wavelet domain, recently proposed

in the literature, are taken into consideration. First, how these methods pro-

posed for one format (e.g., intensity) can be adapted to the other format (e.g.,

amplitude) is investigated. Second, the performance of such algorithms in both

cases is analyzed. Experimental results carried out on simulated speckled im-

ages and on true SAR data are presented and discussed in order to assess the

best strategy. From these results, it can be observed that filtering in the ampli-

tude domain yields better performances in terms of objective quality indexes,

such as preservation of structural details, as well as in terms of visual inspection

of the filtered SAR data.

Keywords: Despeckling, intensity and amplitude SAR images, wavelet

transform, Bayesian estimation.

1. Introduction

Speckle noise is a granular disturbance that degrades images acquired with

active coherent systems. SAR, ultrasound sensors and sonar are examples of

systems that produce data affected by speckle. Since image analysis may be
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impaired by speckle, a pre-processing stage is commonly needed to diminish its

effect (despeckling).

The acquisition instrument produces a radiation and captures the signals

reflected from a small area of the imaged scene. Due to the presence of several

scatterers within the resolution cell, the received signal is the sum of waves with

a random phase so that the output from both the in-phase and the quadra-

ture channels can be modelled as Gaussian variables. The acquired datum is a

complex variable and the information is contained in the modulus (amplitude

format, or AF) or in the squared modulus (intensity format, or IF) of this vari-

able. When the images are visualized, the complex data can not be represented

and the AF is commonly used. The phases induced by the different scatterers,

however, introduce also a random variation on the information signal that can

be modeled as a multiplicative noise u for both cases, AF and IF [1]. When

this model applies, the noise is termed fully developed speckle. The distribution

of u is an exponential probability density function (pdf) in the IF case and a

Rayleigh pdf in the AF case [2].

In order to improve the quality of the acquired images, independent adjacent

samples are averaged so that the variance of the speckle is reduced at the price

of a resolution degradation (multi-look processing). If the average is taken

over L samples of the single-look intensity image, then the speckle affecting

the intensity of the multi-look datum is distributed according to a Γ(L,L) pdf,

whereas its square root is distributed according to a Nakagami distribution [3].

If amplitudes of the single-look image are averaged, the pdf of the speckle can

not be expressed in a closed form, even though its moment can be computed.

The knowledge of the pdf of the speckle is fundamental in the formulation

of despeckling filters based on Bayesian estimation that attempt to extract the

noise-free reflectivity from a speckled observation [4, 5] as well as for other tasks,

e.g., SAR imagery segmentation [6].

Recently, several despeckling methods have been proposed based on a multi-

resolution analysis, such as the wavelet transform. Despeckling in the wavelet

domain is carried out by taking the wavelet decomposition of the observed sig-
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nal, by estimating the speckle-free wavelet coefficients, and by reconstructing the

filtered image using the inverse DWT (IDWT) applied to the despeckled coeffi-

cients. The wavelet transform may be either maximally decimated or redundant,

even though the latter approach has several benefits for denoising applications,

thanks to the shift-invariance property, since it significantly reduces structured

artifacts [7].

When Bayesian methods are applied in the transformed domain, the pdf

of the wavelet coefficients is needed. A statistical analysis of the coefficients

belonging to a whole subband of the wavelet tranform has induced researchers

to propose highly peaked distributions, such as the Laplacian or the general-

ized Gaussian (GG) pdf. In order to make Bayesian methods properly work,

however, the pdf of coefficients should be computed locally, i.e., in a restricted

neighbourhood of the pixel to be processed. Since a single realization of the

imaged scene is usually available, assessing the validity of an hypothesized pdf

is not possible from few data samples. Hence, a given pdf is “conjectured”

to be valid and its parameters are derived from some statistical indexes (e.g.,

moments and cumulants) locally estimated.

Methods for Bayesian despeckling in the wavelet domain have been pro-

posed, for instance, in [8, 9, 10, 11, 12, 13, 14, 15] for the case of SAR data and

in [16, 17, 18, 19, 20] for the case of ultrasound and sonar data. Although the

above methods are based on different models of the wavelet coefficients, a com-

mon feature is that they consider only intensity images. However, very often the

modeling of the wavelet coefficients is not directly related to the actual distri-

bution of the speckle, i.e., on the format of the SAR image. For example, in [11]

wavelet coefficients are modeled by a very flexible generalized Gaussian model,

requiring only the knowledge of the moments of the involved variables. To the

best of our knowledge, there is no study in the literature assessing whether it is

more convenient to filter wavelet coefficients of intensity or amplitude images.

The aim of this paper is twofold: first, despeckling methods based on Bayesian

estimation in the wavelet domain are revisited and a unique formulation is given

for the intensity and amplitude formats; second, the different methods are com-
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pared by assessing their performances on both true SAR images and syntheti-

cally speckled test images - according to the models valid for AF and IF, either

in the single-look or in the multi-look case - in order to determine the best

filtering strategy.

The paper is organized as follows. In Section 2, the signal model and the pdfs

of the wavelet coefficients of the signal and of the noise component are discussed.

In Section 3, some Bayesian despeckling methods based on the wavelet trans-

form and proposed for intensity signals are revisited and their application to

amplitude signals is discussed. In Section 4, some experimental results carried

out on synthetically speckled images as well as on true SAR images are pre-

sented in order to compare amplitude vs intensity despeckling methods. Some

conclusions are drawn in Section 5.

2. Signal model

For the simplicity’s sake, the model is formulated in one dimension. It is

assumed that the available data are real and are given by

g(n) = f(n) · u(n). (1)

In this expression, f(n) and g(n) are the noise-free reflectivity and the observed

signal, respectively. They can be in either amplitude or intensity format. The

random variable u(n) represents the fully developed speckle noise. We assume

that u(n) is unit-mean, uncorrelated and independent from f(n) [21, 22, 23].

The multiplicative model in (1) can be translated into an additive one as

follows:

g(n) = f(n) + f(n) · (u(n)− 1) = f(n) + f(n) · u′(n)

= f(n) + v(n).
(2)

The mean of u′(n) = u(n)−1 is zero and its pdf is directly derived from that of

u(n). The term v(n) is signal-dependent and accounts for speckle disturbance.
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2.1. Undecimated Wavelet Transform

The additive model in (2) is very convenient for modeling the wavelet coef-

ficients of the observed signal. We will use the notation A
[j]
f (n) and W

[j]
f (n) to

denote the approximation and the detail (or wavelet) coefficients, respectively,

of the signal f at the jth level of the decomposition, whereas n is the spatial in-

dex. Unlike the maximally decimated DWT [24], undecimated DWT (UDWT)

is considered here, where downsamplers and upsamplers are omitted from the

analysis and synthesis stage, respectively.

It can be easily shown [8, 9] that the undecimated approximation and wavelet

coefficients can be obtained by filtering the original signal by means of the

following equivalent filters

H
[j]
eq,l(z) =

j−1∏
m=0

H0(z2
m

),

H
[j]
eq,h(z) =

[
j−2∏
m=0

H0(z2
m

)

]
·H1(z2

j−1

)

(3)

where H0(z) and H1(z) denote the lowpass and highpass filters of the wavelet

transform, respectively.

Since the wavelet transform is linear, from equation (2) we have

A[j]
g (n) = A

[j]
f (n) +A[j]

v (n), (4)

W [j]
g [n] = W

[j]
f (n) +W [j]

v (n). (5)

In the following, we will consider only the wavelet coefficients, i.e., the relation-

ship in equation (5). Moreover, since filtering will be applied to each subband

separately, to simplify the notation we will drop the superscript [j]. Whenever

it does not create ambiguity, also the spatial index n will be omitted and we

will denote with h[n] a generic equivalent wavelet filter.

2.2. Probability Density Functions

Bayesian estimation in the wavelet domain relies on the pdfs of Wf and

Wv, which in turn depend on the distributions of the speckle u and of the
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reflectivity f . In the following, we will briefly review the probability density

functions commonly used to model the above signals.

2.2.1. Reflectivity

The pdf of f depends on the imaged scene and is difficult to estimate, even

though several models exist based on the heterogeneity of the underlying area

(uniform, textured, etc.) [23, 25, 26]. The solutions considered in this paper

do not rely on a particular distribution of f , hence such models are not further

investigated.

2.2.2. Speckle

The pdf of the speckle process u depends on the specific format of the signal

[3]. For IF single-look images the pdf of u is exponential, whereas for multi-look

images the pdf of u becomes a Γ(L,L), given by

pU (u) =
LL

Γ(L)
uL−1e−uL. (6)

For AF single-look images the pdf of u is a unit mean Rayleigh pdf, given

by

pU (u) =
πu

2
e−

πu2

4 (7)

whereas for AF multi-look images u is distributed according to the average of

L independent unit mean Rayleigh variables and its pdf can not be expressed

in a closed form.

Sometimes, it is convenient to consider also the squared root of an IF (SIF)

image, which can be considered as an alternative amplitude format. In this

case, for a SIF single-look image u is Rayleigh distributed with mean equal to
√
π/2, whereas for SIF multi-look images the pdf of u is a Nakagami pdf given

by

pU (u) =
2LL

Γ(L)
u2L−1e−u

2L. (8)

For SIF images the mean of u is different from one, however the model in (1)

is still valid if we rescale the square root of the intensity by a factor µSIF(L) =

L−
1
2 Γ(L)/Γ(L + 1

2 ). It is worth noting that single-look AF and rescaled SIF
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images have identical distribution, whereas multi-look AF and rescaled SIF

images have different distributions and must be considered different formats. In

the following, with SIF images we will always refer to rescaled SIF images.

2.2.3. Wavelet Coefficients

As noticed by Mallat in his seminal paper [24], the pdf of the wavelet coef-

ficients can be approximated by a family of unimodal distributions that can be

efficiently modeled by a generalized Gaussian (GG) pdf. A zero-mean GG pdf

depends only on two parameters and its expression is given by

pWX
(Wx) =

[
νWX

· η(νWX
, σWX

)

2 · Γ(1/νWX
)

]
e−[η(νWX ,σWX )·|Wx|]

νWX (9)

where Γ is the Gamma function, σWX
is the standard deviation of the distribu-

tion, νWX
is a shape factor, and η(νWX

, σWX
) is given by

η(νWX
, σWX

) =
1

σWX

[
Γ(3/νWX

)

Γ(1/νWX
)

]1/2
. (10)

As particular cases, the GG pdf includes both the Laplacian and the Gaussian

pdfs, for ν = 1 and ν = 2, respectively.

Assessing the validity of a specific pdf for the wavelet coefficients, however,

is not a simple task. The analysis of the histogram of the coefficients of a

whole subband yields “global” information about the distribution, whereas, due

to the nonstationarity of the image, “local” information should be pursued in-

stead. Spatially adaptive methods make the “conjecture” that a given pdf is

valid locally and try to compute its parameters from the few data available in

a window of the signal. The most viable solution for achieving the pdf param-

eters is based on the estimation of few spatially varying statistical indexes - for

example, cumulants and moments - of the data in a small area of the image.

The local GG model has been successfully used in [11, 12] to model the

wavelet coefficients of IF images, whereas local Gaussian and Laplacian models

have been used in [9, 14], again considering IF images. However, in principle

such models do not depend on the IF assumptions and can be also used to model

the wavelet coefficients of AF and SIF images.
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3. Bayesian despeckling in the wavelet domain

In the last decade, several despeckling methods based on Bayesian estimation

in the DWT or in the undecimated DWT domain have been proposed. The

methods differ each other for the choice of the estimation criterion used to

achieve the despeckled coefficients and for the modelling of the data in the

wavelet domain.

Bayesian estimation requires the knowledge of the pdfs of the wavelet coeffi-

cients relative to the signal of interest (the reflectivity), also referred to as prior

pdf, and to the noise component.

As to the knowledge about u in (2), it will be shown that to achieve the

solution of the despeckling problem only the moments of u are necessary. In the

following, some despeckling methods are reviewed and the necessary information

that is needed to achieve the solution is provided for the IF, AF, and SIF signals.

3.1. LMMSE filter

The linear minimum mean square error (LMMSE) criterion is the simplest

Bayesian despeckling filter. It is the optimal solution when both signal and noise

components have a Gaussian pdf. The expression of the estimated despeckled

coefficients is given by [9]

Ŵf (n) =
E[W 2

g (n)]− E[W 2
v (n)]

E[W 2
g (n)]

Wg(n) (11)

and depends only on the second-order moment of Wv(n) (besides to the observ-

able variable Wg(n) and its second moment).

3.2. MAP filters

Unlike the LMMSE case, where only the moments of the involved random

processes are needed, in general Bayesian filtering needs a precise knowledge

of their pdf. By using Bayes’ rule, it can be demonstrated that the maximum

a-posteriori probability (MAP) estimator of Wf is given by the solution of the
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following problem [8, 11]

Ŵf = arg max
Wf

pWF |WG
(Wf |Wg)

= arg max
Wf

pWV |WF
(Wg −Wf |Wf )pWF

(Wf ), (12)

so that it depends on the knowledge of pWF
and pWV |WF

. In the following, we

will consider two solutions based on the pdf models of Section 2.2.3.

3.2.1. Laplacian-Gaussian

In [14], a despeckling method based on the MAP solution and on the as-

sumptions that the pdf of Wf is Laplacian and the pdf of Wv is Gaussian has

been presented (MAP-LG). The method has the advantage that a closed-form

solution exists and is given by

Ŵf (n)=


Wg(n)−

√
2E[W 2

v (n)]√
E[W 2

f (n)]
if Wg(n) >

√
2E[W 2

v (n)]√
E[W 2

f (n)]

Wg(n) +
√
2E[W 2

v (n)]√
E[W 2

f (n)]
if Wg(n) < −

√
2E[W 2

v (n)]√
E[W 2

f (n)]

0 elsewhere.

(13)

Due to the simple form of the involved pdfs, only the second-order moments of

Wf (n) and of Wv(n) are necessary to achieve the solution.

3.2.2. Generalized Gaussian

In [11] a despeckling method based on the MAP criterion and on the GG

assumption has been presented (MAP-GG). The despeckled coefficients are es-

timated as the solution of

Ŵf (n) = arg min
Wf (n)

[(
ηWf (n)|Wf (n)|

)νWf (n)

+
(
ηWv(n)|Wg(n)−Wf (n)|

)νWv(n)
]

(14)

where the shape factors can be estimated by inverting

E
[
X2
]√

E [X4]
=

Γ(3/νX)√
Γ(1/νX)Γ(5/νX)

(15)

where X is either Wf (n) or Wv(n). As can be seen, the second and fourth-order

moments of both Wf (n) and Wv(n) are necessary to solve the problem.
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3.3. Moments of Wavelet Coefficients

All of the above solutions are based on the knowledge of some moments of

either Wf (n) or Wv(n). In general, such moments can be expressed as a function

of the moments of the observed variables g(n) and Wg(n), the equivalent filter

h(n), and the moments of the speckle variables u and u′. Several expressions

have been proposed in the literature. In the following, we report the exact

expression derived in [12]:

E
[
W 2
v (n)

]
=
µ
[2]
u′

µ
[2]
u

E
[
M [2]
g (n)

]
(16)

E
[
W 2
f (n)

]
=E

[
W 2
g (n) +

(
1

µ
[2]
u

− 1

)
M [2]
g (n)

]
(17)

E
[
W 4
v (n)

]
=E

[
3

(
µ
[2]
u′

µ
[2]
u

)2 (
M [2]
g (n)

)2
+

(
µ
[4]
u′

µ
[4]
u

− 3

(
µ
[2]
u′

µ
[2]
u

)2)
M [4]
g (n)

] (18)

E[W 4
f (n)] =E

[
W 4
g (n) +

(
6

µ
[2]
u

− 6

)
W 2
g (n)M [2]

g (n)

+

(
3(

µ
[2]
u

)2 − 6

µ
[2]
u

+ 3

)(
M [2]
g (n)

)2
+

(
4

µ
[3]
u

− 12

µ
[2]
u

+ 8

)
Wg(n)M [3]

g (n)

+

(
1

µ
[4]
u

− 4

µ
[3]
u

− 3(
µ
[2]
u

)2 +
12

µ
[2]
u

− 6

)
M [4]
g (n)

]
(19)

where we define µ
[k]
u = E[uk] and M

[k]
g (n) =

∑
i h

k(i)gk(n − i). In practice,

the moments of the observed variables can be estimated using local averages,

whereas the moments of u and u′ can be computed according to the number of

look L and the image format, as specified in the next subsection.

3.4. Moments of Speckle Variables

The solutions derived so far are not based on a specific image format. As

long as the input signal obeys the model in (1), the filters defined by (11), (13),
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and (14), based on the moments given in (16)-(19), can be applied to IF, AF, or

rescaled SIF images, provided that the correct moments of the speckle variables

are used. In the following, we will derive the expression of the moments of u

according to the number of look L and the image format. As to the moments

of u′, they can be easily derived from the moments of u as follows:

µ
[1]
u′ = 0

µ
[2]
u′ = µ[2]

u − 1

µ
[3]
u′ = µ[3]

u − 3µ[2]
u + 2

µ
[4]
u′ = µ[4]

u − 4µ[3]
u + 6µ[2]

u − 3

3.4.1. Intensity

When u is distributed according to (6), its moments can be expressed as [27]

µ[m]
u (L) =

Γ(L+m)

Γ(L)

1

Lm
. (20)

3.4.2. Amplitude

In the case of single-look AF signals, u has a Rayleigh pdf given by (7) and

its moments can be expressed as

µ[m]
u (1) =

(
4

π

)m
2

Γ
(

1 +
m

2

)
. (21)

When u is the average of L i.i.d. variables distributed according to (7), it can

be shown (see Appendix A) that its moments can be expressed by

µ[1]
u (L) =1 (22)

µ[2]
u (L) =

1

πL
[4 + π(L− 1)] (23)

µ[3]
u (L) =

1

πL2
[6 + 12(L− 1) + π(L− 2)(L− 1)] (24)

µ[4]
u (L) =

1

π2L3

[
32 + 48(L− 1) + 24π(L− 1)2 (25)

+ π2(L− 3)(L− 2)(L− 1)
]

(26)

(27)
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3.4.3. Square Root of Intensity

If we denote as ũ the square root of an intensity speckle process, distributed

as (8), its moments are given by [3]

µ
[m]
ũ (L) =

Γ
(
L+ m

2

)
Γ(L)

1

L
m
2
. (28)

Hence, the moments of u for a rescaled SIF signal can be obtained as

µ[m]
u (L) =

µ
[m]
ũ (L)(

µ
[1]
ũ (L)

)m =
Γ(L)m−1Γ

(
L+ m

2

)
Γ
(
L+ 1

2

)m . (29)

3.5. Segmentation

Recent works on despeckling SAR images demonstrate that filtering perfor-

mance is usually improved by applying different statistical models to different

areas of the image. In [12], each wavelet plane is segmented according to the

variance of the texture component of the signal into homogenous, heteroge-

neous, and highly heterogenous classes, and different GG parameters are used

for each class. A similar approach is used in [14], where the homogenous classes

are filtered through the MAP-LG filter and the heterogenous classes are filtered

through the LMMSE filter. In the following, we will refer to the above filters as

MAP-GG-S and MAP-LG-S, respectively.

According to the model proposed in [12] (see equations (24)-(25) in [12]),

the variance of the texture component can be expressed again as a function of

the moments of the observed signal g, the equivalent filter coefficients h, and

the variance of the speckle variable u. Hence, even MAP-GG-S and MAP-LG-S

filters can be applied irrespective of the format of the underlying signal, provided

that the correct expression of σ2
u is used in the computation of the variance of

the texture component.

4. Experimental Results

The performances of the different filters on different image formats have

been assessed on both simulated images and true SAR images. As to simulated
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(a) (b) (c)

Figure 1: Original images: (a) “Lena”; (b) “Barbara”; (c) “San Francisco”.

images, the performances are measured by computing the peak-signal-to-noise

ratio (PSNR) and the mean structural similarity index (MSSIM) between the

original and the filtered images. The PSNR is defined as

PSNR = 10 log10

(
I2peak

E[(Î − I)2]

)
(30)

where I is the original image, Î is the filtered image, and Ipeak is the peak value

(for 8-bit images, we assume Ipeak = 255). The PSNR, as well as closely related

metrics like the mean square error between the original and the filtered images,

have been often used to assess the performance of despeckling applications [11,

28]. The MSSIM is a measure of degradation of structural information and it is

defined as [29]

MSSIM = E

[
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î

+ C2)

]
(31)

where µI , σ
2
I , µÎ , σ

2
Î
, and σIÎ are the local mean, variance, and covariance of

the original and filtered images, whereas C1 and C2 are two suitable constants.

Since we want to avoid the comparison to be biased by the the format in which

the measures are taken, we consider both I and Î in the amplitude format; that

is, for IF we use I =
√
f and Î =

√
f̂ , while for both SIF and AF we use I = f

and Î = f̂ .

Moreover, as a no-reference index of the quality of the filtered images, we re-

port the sample mean and the sample variance of the ratio between the observed
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and the filtered images, defined as

û =
g

f̂
. (32)

The analysis of the ratio image is generally considered an efficient global filtering

test [23, 30, 5]. For a good despeckling filter, û should be as close as possible to

the speckle process u and we should obtain µû = 1, i.e., the filter should preserve

the radiometric properties of the observed scene, and σ2
û = σ2

u. In the case of

IF and SIF images, the statistics have been evaluated on intensity values and

we have σ2
u = 1/L. In the case of AF images, the statistics have been evaluated

on amplitude values and we have σ2
u = (4 − π)/(πL). For a better evaluation

of the estimated values, in all the following tables the normalized values σ2
u · L

or σ2
u · (πL)/(4 − π) are reported. Since there is no need of using the original

image as a reference, the above indexes can be used for both simulated and true

SAR images.

For all tested filters, the biorthogonal 9/7 wavelets [31] have been used, with

a four level decomposition.

4.1. Simulated Images

We considered three 8-bit 512 × 512 optical images, “Lena”, “Barbara”,

and “San Francisco”, corrupted by synthetic speckle generated according to the

models in (6)-(8) considering different number of look L. The original images

are shown in Fig. 1. In Tables 1–3, we report the results obtained in the case

of IF and SIF images, whereas in Tables 4–6 we report the results obtained in

the case of AF images.

The results clearly show that filtering SIF images outperforms filtering IF

images. For each image and for each number of look, all filters yield a higher

PSNR when operating in the SIF domain. For example, the MAP-GG filter

gains about 0.6 dB in PSNR for the single-look “Lena” and “Barbara” images

and about 0.9 dB in PSNR for the single-look “San Francisco” image. As to

the MSSIM, in the case of the “Lena” image we have very similar values for

both formats, whereas in the case of the “Barbara” and“San Francisco” images,
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the MSSIM is slightly better for SIF, indicating that filtering the square root

of intensity neither introduces artifacts nor alters structural information. The

above results are also confirmed by inspecting the values of µû and σ2
û for the

different filters: the values of µû are always very similar for both formats; the

values of σ2
û, especially for the MAP-GG and MAP-GG-S filters, in the case

of “Barbara” and“San Francisco” are closer to the theoretical variance of the

speckle for SIF, whereas in the case of “Lena” are slightly better for IF.

In the case of AF images, we can see that all filters obtain results very close

to those obtained on SIF images. Also the values of the statistical parameters

µû and σ2
û confirm a good performance of the filters for this kind of images,

especially in the case of the MAP-GG filter, which yields a σ2
û quite close to the

theoretical value on all images. It is interesting to note that the LMMSE filter

exhibits a bias irrespective of the SAR image format, indicating that Gaussian

modeling of wavelet coefficients is not adequate even in the case of amplitude

and square root of intensity signals.

4.2. True SAR Images

Results on true SAR data have been assessed by using two 16 bit 512× 512

COSMO-SkyMed 1-look X-HH images showing the area near the airport of

Firenze, Italy. For showing results on intensity multilooked data, two corre-

sponding 4-look 256×256 intensity images have been obtained by averaging four

neighbouring pixels and downsampling the intensity of the 1–look images. Fur-

thermore, by means of the same procedure, two corresponding 4-look 256× 256

amplitude images have been obtained from the amplitude of the 1–look images.

The 1-look “COSMO-SkyMed” images are shown in Fig. 2.

The statistics µû and σ2
û of the extracted speckle in the three considered

image formats and for all the considered filters have been evaluated on two

different homogeneous areas, denoted as “A” and “B” in Fig. 2.

The results for the IF and SIF domains, reported in Table 7, indicate that

the despeckling performance of both approaches is very similar on areas affected

by fully developed speckle. All filters, apart from the LMMSE one, are virtually

15



Figure 2: 1-look “COSMO-SkyMed” images used in the experiments.

unbiased irrespective of the image format. Also, the variance of the estimated

speckle noise is quite close to the theoretical value, with very little differencies

between IF and SIF. Namely, IF appears to achieve a slightly better σ2
û for

1-look images, whereas SIF achieve slightly better results for 4–look images.

In Table 8, the results for the 4–look image in the AF domain are shown. It

is interesting to note that the indexes are very similar to those obtained for

the 4–look SIF case, except for the LMMSE filter where a reduction of bias is

observed in the AF domain.

For visual inspection, we propose the images obtained by applying the MAP-

GG-S filter in the IF and SIF domains for the 1-look case (Fig. 3) and for the

4-look case (Fig. 4), as well as the images obtained by applying the same filter

for the 4–look case in the AF domain (Fig. 5). From all the examples, it is ap-

parent that filtering SIF or AF images is usually beneficial. As to homogeneous

areas, the smoothing degree obtained by the filter, as well as the artifacts pro-

duced by the wavelet synthesis stage, are similar for all the proposed formats.

Conversely, it is particularly evident that filtering SIF or AF images yields a

better preservation of details, since it produces less artifacts near edges, high

variance regions, and targets. From the comparison of 4–look SIF and AF im-

ages we can observe no appreciable differences between the despeckled images

obtained from the two formats.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Example of despeckling of the 1-look “COSMO-SkyMed” images: (a)-(b) original;

(c)-(d) MAP-GG-S filtered, IF; (e)-(f) MAP-GG-S filtered, SIF.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Example of despeckling of the 4-look intensity “COSMO-SkyMed” images: (a)-(b)

original; (c)-(d) MAP-GG-S filtered, IF; (e)-(f) MAP-GG-S filtered, SIF.
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(a) (b)

(c) (d)

Figure 5: Example of despeckling of the 4-look amplitude “COSMO-SkyMed” images: (a)-(b)

original; (c)-(d) MAP-GG-S filtered.
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5. Conclusions

In this work, we have presented a study on despeckling images affected by

multiplicative noise in either amplitude or intensity format. Bayesian despeck-

ling algorithms in the wavelet domain have been considered. We have shown

that a common framework for the despeckling problem can be setup for various

formats - satisfying the multiplicative model - based on the computation of the

moments of the speckle component. Such moments are derived for single-look

and multi-look images. In the latter case, amplitude multi-look images can be

obtained either averaging amplitude signals or taking the square root of the

average of intensity signals. The experimental results have been carried out on

both synthetically speckled images and on true SAR COSMO-SkyMed images.

The results obtained on synthetically degraded images show that a significant

improvement of objective quality measures can be observed when the wavelet

decomposition is applied on amplitude images. On the other hand, for both

synthetically speckled and true SAR images, filtering either in the amplitude

or in the intensity domain yields statistical parameters of the extracted speckle

noise which are quite similar. For the MAP–GG and MAP–GG-S filters this is

not surprising, since both filters already achieved almost optimal performance

in the SIF case. Moreover, this fact indicates that, even though the domain

of filtering may not significantly affect the global statistical performance of the

filters, filtering in the amplitude domain yields a better preservation of structural

details. The above observation is confirmed by the visual inspection of filtered

SAR data, since images filtered in either SIF or AF domain show less artifacts

in the presence of highly heterogenous areas.

The observed behaviour can be explained by a more effective modeling of

the wavelet coefficients of amplitude SAR signals and a more robust estimation

of the moments for the amplitude case. The above results also suggest that AF

and SIF should be the preferred image formats when despeckling is performed

in the wavelet domain, and that existing IF images should always be converted

to SIF before processing with this kind of despeckling filters.
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Appendix A. Derivation of Amplitude multi-look speckle moments

When u is the average of L i.i.d. variables ri, i = 1, . . . , L, distributed

according to (7), its moments can be derived as follows:

µ[1]
u (L) = E

[
1

L

∑
i

ri

]
=

1

L

∑
i

E[ri] = E[r] (A.1)

µ[2]
u (L) = E

( 1

L

∑
i

ri

)2


=
1

L2

∑
i

E[r2i ] +
∑
i

∑
j 6=i

E[ri]E[rj ]


=

1

L
E[r2] +

L− 1

L
E[r]2

(A.2)

µ[3]
u (L) =E

( 1

L

∑
i

ri

)3


=
1

L3

∑
i

E[r3i ] + 3
∑
i

∑
j 6=i

E[r2i ]E[rj ]

+
∑
i

∑
j 6=i

∑
k 6=j 6=i

E[ri]E[rj ]E[rk]


=

1

L2
E[r3] +

3(L− 1)

L2
E[r2]E[r]

+
(L− 2)(L− 1)

L2
E[r]3

(A.3)
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µ[4]
u (L) =E

( 1

L

∑
i

ri

)4


=
1

L4

∑
i

E[r4i ] + 4
∑
i

∑
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E[r3i ]E[rj ]

+3
∑
i
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+ 6
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∑
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=

1

L3
E[r4] +

4(L− 1)

L3
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where E[rm] = µ
[m]
u (1). After some simple algebra, the moments result to be

those expressed in (22).
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Table 1: Results for despeckling of simulated image “Lena”, obtained on different number of

looks by means of various filter, in the case of IF and SIF.

L filter PSNR MSSIM µû σ2
û · L

IF SIF IF SIF IF SIF IF SIF

1

noisy 11.30 0.109 - -

LMMSE 24.55 24.69 0.513 0.524 0.90 0.89 0.639 0.619

MAP–GG 26.32 26.90 0.736 0.735 0.98 0.98 0.998 0.938

MAP–GG–S 26.33 26.87 0.736 0.734 0.98 0.98 0.999 0.937

MAP–LG 26.16 26.67 0.725 0.718 0.95 0.96 0.874 0.875

MAP–LG–S 26.17 26.66 0.725 0.718 0.95 0.96 0.874 0.874

2

noisy 14.46 0.175 - -

LMMSE 26.65 26.95 0.630 0.635 0.93 0.94 0.666 0.661

MAP–GG 28.03 28.74 0.785 0.787 0.99 0.98 1.037 0.935

MAP–GG–S 28.06 28.71 0.785 0.786 0.99 0.98 1.014 0.933

MAP–LG 27.82 28.48 0.775 0.772 0.97 0.97 0.885 0.887

MAP–LG–S 27.86 28.50 0.775 0.772 0.97 0.97 0.888 0.886

4

noisy 17.55 0.258 - -

LMMSE 28.53 28.98 0.720 0.725 0.96 0.96 0.678 0.683

MAP–GG 29.64 30.34 0.824 0.824 0.99 0.99 1.085 0.938

MAP–GG–S 29.71 30.32 0.825 0.824 0.99 0.99 1.041 0.933

MAP–LG 29.38 30.10 0.814 0.815 0.97 0.98 0.899 0.901

MAP–LG–S 29.50 30.19 0.816 0.817 0.98 0.98 0.914 0.895

16

noisy 23.68 0.468 - -

LMMSE 32.55 32.95 0.850 0.852 0.98 0.99 0.672 0.668

MAP–GG 33.13 33.70 0.883 0.886 1.00 0.99 1.066 0.917

MAP–GG–S 33.16 33.64 0.881 0.884 1.00 0.99 1.021 0.892

MAP–LG 32.89 33.52 0.880 0.883 0.99 0.99 0.926 0.894

MAP–LG–S 33.18 33.66 0.882 0.883 0.99 0.99 0.989 0.869
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Table 2: Results for despeckling of simulated image “Barbara”, obtained on different number

of looks by means of various filter, in the case of IF and SIF.

L filter PSNR MSSIM µû σ2
û · L

IF SIF IF SIF IF SIF IF SIF

1

noisy 11.52 0.181 - -

LMMSE 22.61 22.85 0.518 0.548 0.88 0.88 0.633 0.593

MAP–GG 22.89 23.51 0.606 0.640 0.98 0.97 1.198 0.969

MAP–GG–S 23.05 23.70 0.617 0.653 0.98 0.97 1.190 0.953

MAP–LG 22.89 23.44 0.603 0.631 0.94 0.96 0.903 0.883

MAP–LG–S 23.00 23.59 0.610 0.640 0.94 0.95 0.897 0.874

2

noisy 14.68 0.280 - -

LMMSE 24.33 24.68 0.634 0.657 0.92 0.92 0.636 0.624

MAP–GG 24.42 25.11 0.691 0.720 0.98 0.97 1.220 0.929

MAP–GG–S 24.79 25.38 0.707 0.734 0.98 0.97 1.172 0.909

MAP–LG 24.17 24.89 0.680 0.709 0.95 0.96 0.883 0.879

MAP–LG–S 24.56 25.18 0.696 0.722 0.95 0.96 0.870 0.863

4

noisy 17.80 0.397 - -

LMMSE 26.17 26.56 0.737 0.754 0.94 0.95 0.637 0.630

MAP–GG 26.31 26.92 0.777 0.794 0.99 0.98 1.215 0.897

MAP–GG–S 26.64 27.18 0.792 0.806 0.99 0.98 1.321 0.872

MAP–LG 25.86 26.59 0.762 0.783 0.96 0.97 0.878 0.868

MAP–LG–S 26.30 26.96 0.780 0.797 0.97 0.97 0.941 0.844

16

noisy 23.93 0.630 - -

LMMSE 30.21 30.55 0.873 0.878 0.98 0.98 0.610 0.581

MAP–GG 30.35 30.86 0.886 0.892 0.99 0.99 1.052 0.826

MAP–GG–S 30.30 30.84 0.890 0.895 1.00 0.99 1.149 0.778

MAP–LG 29.93 30.55 0.879 0.887 0.98 0.99 0.879 0.819

MAP–LG–S 30.35 30.84 0.888 0.893 0.99 0.99 0.955 0.765
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Table 3: Results for despeckling of simulated image “San Francisco”, obtained on different

number of looks by means of various filter, in the case of IF and SIF.

L filter PSNR MSSIM µû σ2
û · L

IF SIF IF SIF IF SIF IF SIF

1

noisy 15.23 0.194 - -

LMMSE 23.94 24.58 0.573 0.588 0.88 0.88 0.655 0.620

MAP–GG 23.99 24.90 0.623 0.646 0.98 0.98 1.184 1.009

MAP–GG–S 24.03 24.89 0.624 0.646 0.98 0.98 1.128 1.002

MAP–LG 24.00 24.87 0.624 0.645 0.94 0.96 0.919 0.917

MAP–LG–S 24.03 24.89 0.624 0.645 0.94 0.96 0.919 0.915

2

noisy 18.42 0.303 - -

LMMSE 25.47 26.23 0.658 0.675 0.92 0.92 0.668 0.647

MAP–GG 25.27 26.28 0.672 0.695 0.99 0.98 1.379 0.983

MAP–GG–S 25.35 26.28 0.674 0.695 0.99 0.98 1.517 0.972

MAP–LG 25.27 26.25 0.674 0.695 0.95 0.97 0.921 0.915

MAP–LG–S 25.39 26.34 0.677 0.697 0.96 0.97 0.961 0.908

4

noisy 21.53 0.435 - -

LMMSE 27.07 27.84 0.727 0.741 0.94 0.95 0.673 0.646

MAP–GG 26.71 27.73 0.719 0.738 1.00 0.99 2.226 0.972

MAP–GG–S 26.88 27.79 0.722 0.739 1.00 0.98 1.652 0.947

MAP–LG 26.67 27.70 0.721 0.740 0.96 0.98 0.955 0.923

MAP–LG–S 26.92 27.86 0.726 0.743 0.98 0.98 1.446 0.901

16

noisy 27.66 0.716 - -

LMMSE 30.80 31.36 0.840 0.846 0.97 0.98 0.611 0.544

MAP–GG 30.39 31.10 0.813 0.822 1.00 0.99 1.633 0.884

MAP–GG–S 30.35 30.86 0.813 0.822 1.00 0.99 1.102 0.762

MAP–LG 30.24 31.12 0.818 0.827 0.98 0.99 1.039 0.868

MAP–LG–S 30.69 31.22 0.824 0.830 0.99 0.99 1.197 0.772
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Table 4: Results for despeckling of simulated image “Lena”, obtained on different number of

looks by means of various filter, in the case of AF.

L filter PSNR MSSIM µû σ2
û · πL

4−π

1

noisy 11.27 0.109 - -

LMMSE 24.67 0.520 0.97 0.744

MAP–GG 26.92 0.736 0.99 0.969

MAP–GG–S 26.88 0.735 0.99 0.968

MAP–LG 26.68 0.717 0.99 0.937

MAP–LG–S 26.67 0.717 0.99 0.936

2

noisy 14.29 0.170 - -

LMMSE 26.79 0.628 0.98 0.739

MAP–GG 28.55 0.781 0.99 0.957

MAP–GG–S 28.52 0.781 0.99 0.955

MAP–LG 28.30 0.766 0.99 0.928

MAP–LG–S 28.31 0.767 0.99 0.927

4

noisy 17.31 0.252 - -

LMMSE 28.89 0.722 0.99 0.728

MAP–GG 30.29 0.825 1.00 0.949

MAP–GG–S 30.25 0.824 0.99 0.945

MAP–LG 30.04 0.815 0.99 0.924

MAP–LG–S 30.12 0.816 0.99 0.919

16

noisy 23.31 0.455 - -

LMMSE 32.74 0.847 1.00 0.684

MAP–GG 33.52 0.883 1.00 0.926

MAP–GG–S 33.46 0.881 1.00 0.902

MAP–LG 33.35 0.880 1.00 0.908

MAP–LG–S 33.49 0.880 1.00 0.882
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Table 5: Results for despeckling of simulated image “Barbara”, obtained on different number

of looks by means of various filter, in the case of AF.

L filter PSNR MSSIM µû σ2
û · πL

4−π

1

noisy 11.54 0.180 - -

LMMSE 22.83 0.548 0.96 0.722

MAP–GG 23.50 0.641 0.99 0.980

MAP–GG–S 23.68 0.653 0.99 0.969

MAP–LG 23.40 0.632 0.98 0.939

MAP–LG–S 23.56 0.641 0.98 0.933

2

noisy 14.54 0.276 - -

LMMSE 24.65 0.659 0.97 0.708

MAP–GG 25.06 0.720 0.99 0.955

MAP–GG–S 25.36 0.734 0.99 0.938

MAP–LG 24.83 0.708 0.98 0.926

MAP–LG–S 25.15 0.722 0.98 0.912

4

noisy 17.55 0.388 - -

LMMSE 26.44 0.746 0.98 0.685

MAP–GG 26.77 0.788 0.99 0.929

MAP–GG–S 27.04 0.801 0.99 0.904

MAP–LG 26.45 0.777 0.99 0.911

MAP–LG–S 26.81 0.791 0.99 0.885

16

noisy 23.57 0.617 - -

LMMSE 30.32 0.873 0.99 0.602

MAP–GG 30.65 0.888 1.00 0.842

MAP–GG–S 30.63 0.892 1.00 0.795

MAP–LG 30.32 0.883 0.99 0.841

MAP–LG–S 30.62 0.890 1.00 0.784

30



Table 6: Results for despeckling of simulated image “San Francisco”, obtained on different

number of looks by means of various filter, in the case of AF.

L filter PSNR MSSIM µû σ2
û · πL

4−π

1

noisy 15.23 0.194 - -

LMMSE 24.67 0.594 0.96 0.740

MAP–GG 24.97 0.648 0.99 0.988

MAP–GG–S 24.98 0.648 0.99 0.985

MAP–LG 24.93 0.646 0.98 0.948

MAP–LG–S 24.96 0.647 0.98 0.947

2

noisy 18.26 0.297 - -

LMMSE 26.14 0.672 0.97 0.727

MAP–GG 26.19 0.692 0.99 0.991

MAP–GG–S 26.23 0.693 0.99 0.981

MAP–LG 26.15 0.692 0.99 0.953

MAP–LG–S 26.24 0.694 0.99 0.945

4

noisy 21.29 0.426 - -

LMMSE 27.77 0.739 0.98 0.700

MAP–GG 27.66 0.736 0.99 0.986

MAP–GG–S 27.69 0.737 0.99 0.962

MAP–LG 27.63 0.738 0.99 0.953

MAP–LG–S 27.78 0.741 0.99 0.930

16

noisy 27.30 0.702 - -

LMMSE 31.13 0.841 0.99 0.578

MAP–GG 30.85 0.816 1.00 0.913

MAP–GG–S 30.68 0.818 1.00 0.801

MAP–LG 30.88 0.821 0.99 0.901

MAP–LG–S 31.00 0.825 1.00 0.808
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Table 7: Statistical parameters derived from 1-look (CS–1L) and 4-look intensity (CS–4L)

COSMO-SkyMed images despeckled by means of various filter.

image filter Zone A Zone B

µû σ2
û · L µû σ2

û · L

IF SIF IF SIF IF SIF IF SIF

CS–1L

LMMSE 0.92 0.91 0.661 0.627 0.91 0.90 0.630 0.606

MAP–GG 0.99 0.99 0.980 0.954 0.98 0.98 0.935 0.918

MAP–GG–S 0.99 0.99 0.980 0.954 0.98 0.98 0.935 0.918

MAP–LG 0.98 0.98 0.912 0.890 0.96 0.97 0.868 0.859

MAP–LG–S 0.98 0.98 0.912 0.890 0.96 0.97 0.868 0.859

CS–4L

LMMSE 0.95 0.96 0.726 0.721 0.95 0.96 0.701 0.706

MAP–GG 0.99 1.00 1.280 1.170 0.99 1.00 1.143 1.117

MAP–GG–S 0.99 1.00 1.269 1.156 0.99 1.00 1.143 1.117

MAP–LG 0.98 0.99 1.078 1.085 0.98 0.99 1.034 1.045

MAP–LG–S 0.98 0.99 1.073 1.079 0.98 0.99 1.034 1.045

Table 8: Statistical parameters derived from 4-look amplitude (CS–4L–AF) COSMO-SkyMed

images despeckled by means of various filter.

image filter Zone A Zone B

µû σ2
û · L µû σ2

û · πL
4−π

CS–4L–AF

LMMSE 0.99 0.731 0.99 0.736

MAP–GG 1.00 1.140 1.00 1.121

MAP–GG–S 1.00 1.127 1.00 1.121

MAP–LG 0.99 1.062 0.99 1.068

MAP–LG–S 0.99 1.057 0.99 1.069

32


