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Abstract

This paper presents a review in the form of a unified framework for tackling estimation problems in Digital Signal Processing (DSP)
using Support Vector Machines (SVMs). The paper formalizes our developments in the area of DSP with SVM principles. The use
of SVMs for DSP is already mature, and has gained popularity in recent years due to its advantages over other methods: SVMs are
flexible non-linear methods that are intrinsically regularized and work well in low-sample-sized and high-dimensional problems.
SVMs can be designed to take into account different noise sources in the formulation and to fuse heterogeneous information
sources. Nevertheless, the use of SVMs in estimation problems has been traditionally limited to its mere use as a black-box model.
Noting such limitations in the literature, we take advantage of several properties of Mercer’s kernels and functional analysis to
develop a family of SVM methods for estimation in DSP. Three types of signal model equations are analyzed. First, when a
specific time-signal structure is assumed to model the underlying system that generated the data, the linear signal model (so called
Primal Signal Model formulation) is first stated and analyzed. Then, non-linear versions of the signal structure can be readily
developed by following two different approaches. On the one hand, the signal model equation is written in reproducing kernel
Hilbert spaces (RKHS) using the well-known RKHS Signal Model formulation, and Mercer’s kernels are readily used in SVM non-
linear algorithms. On the other hand, in the alternative and not so common Dual Signal Model formulation, a signal expansion is
made by using an auxiliary signal model equation given by a non-linear regression of each time instant in the observed time series.
These building blocks can be used to generate different novel SVM-based methods for problems of signal estimation, and we deal
with several of the most important ones in DSP. We illustrate the usefulness of this methodology by defining SVM algorithms for
linear and non-linear system identification, spectral analysis, nonuniform interpolation, sparse deconvolution, and array processing.
The performance of the developed SVM methods is compared to standard approaches in all these settings. The experimental results
illustrate the generality, simplicity, and capabilities of the proposed SVM framework for DSP.

Keywords: Deconvolution, Filtering, Interpolation, Signal Estimation, Signal Processing, Spectral Estimation, Support Vector,
System Identification.
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1. Introduction

Digital Signal Processing (DSP) is a consolidated and ac-
tive research area mainly devoted to detection, estimation, and
time series analysis [1]. Among the numerous DSP applica-
tions, detection algorithms are widely applied to fields like
sonar and radar detection, communication receivers, or speech
recognition, whereas estimation algorithms are widely used for
linear and non-linear plant or communication channel identi-
fication, estimation of angle of arrival in antenna arrays, and
parametrization in speech coding and recognition. In addition,
time series algorithms are widely used for stochastic systems
control, forecasting, and spectrum analysis.

Standard models in DSP have traditionally relied on the
rather simplifying and strong assumptions of linearity, Gaus-
sianity, stationarity, circularity, causality and uniform sampling.
These models provide mathematical tractability and simple and
fast algorithms, but they also limit the performance and appli-
cability of these models. Since the 1980s, however, DSP has
faced a dramatic change in model design. Current approaches
try to get rid of these approximations, widely used models are
intrinsically non-linear and nonparametric, and they can encode
the relations between the signal and noise (which is often mod-
eled and no longer considered Gaussian i.i.d. noise). These
issues have been fundamentally treated with non-linear models,
such as neural networks. In the last decade, the field of DSP has
witnessed the irruption and wide adoption of kernel methods in
general and support vector machines (SVMs) in particular for
all the aforementioned tasks.

SVM were originally conceived as efficient methods for pat-
tern recognition and classification [2], and the Support Vector
Regressor (SVR) was subsequently proposed as the SVM im-
plementation for regression and function approximation [3, 4].
Right after their introduction, researchers have applied it to a
number of linear [5] and non-linear DSP applications, such as
speech recognition [6], image processing [7, 8], channel equal-
ization [9], multiuser detection [10, 11, 12, 13], array process-
ing [14, 15], or microwave design [16]. Adaptive SVM de-
tectors and estimators for communication system applications
have been also introduced [17]. Beyond the SVM formulations,
many other algorithms for DSP have also been stated from Mer-
cer’s kernel principles, with representative examples such as
discriminant analysis [18, 19], clustering [20], principal or in-
dependent component analysis [21, 22], or mutual information
extraction [23].

SVMs have become a mature and recognized tool in DSP,
the widespread adoption of SVM by researchers and practi-
tioners in DSP being a direct consequence of their good per-
formance in terms of accuracy, sparsity, and flexibility. Note
that SVMs are intrinsically regularized models implementing
the maximum margin concept, they provide a natural way to
perform data selection by choosing the most relevant vectors
from a dataset (the so-called) support vectors, and can be en-
gineered to accommodate different sources of information in
the model. The analysis of time series with supervised SVM
algorithms has paid attention mainly to two DSP applications,
namely, non-linear system identification and time series predic-

tion [24, 25, 26, 27, 28, 29]. In both problems, however, the
SVM algorithm was the conventional SVR using lagged sam-
ples of the available time signals as input vectors. Although
good results have been reported with this approach, several con-
cerns can be raised from a conceptual viewpoint of Estimation
Theory:

1. The basic assumption for the regression problem state-
ment, in a Least Squares (LS) sense, is that observations
are independent and identically distributed (i.i.d.). This
assumption of independence between samples is not ful-
filled in time series data. Algorithms that do not take into
account temporal dependences can miss relevant structures
of the analyzed time signals, such as their autocorrelation
or their cross-correlation.

2. Most of these approaches use Vapnik’s ε-insensitive cost
function, which linearly penalizes errors larger than ε only.
This is not the most appropriate loss function in the case
of Gaussian noise in the data, which is the most common
case in DSP problems.

3. These methods take advantage of the kernel trick [30] to
develop non-linear versions from well established linear
DSP techniques. However, the SVM methodology has
other advantages which are desirable in DSP. For instance,
SVMs are intrinsically regularized algorithms that, unlike
LS methods, are quite resistant to overfitting and robust in
environments with low number of available training sam-
ples and high dimensional datasets. SVMs produces also
sparse solutions provided by the used cost function which
is advantageous for model interpretability and computa-
tional efficiency. SVMs also involve few model parame-
ters to be tuned and lead to convex optimization problems
unlike other popular models in DSP as neural networks.
SVMs algorithms are founded on a solid mathematical
background, hence bounds of performance and optimality
conditions can be established. Actually, SVMs can benefit
from the theory of reproducing kernel functions to, as we
will see in this paper, treat heterogeneous information in a
unified way.

In recent years, several SVM algorithms for DSP applica-
tions have been proposed aiming to overcome the aforemen-
tioned limitations. A first approach to nonparametric spectral
analysis, using the robust SVM optimization criterion instead
of LS, was introduced in [31], where the robustness of the
SVM against non-Gaussian noise was specifically addressed
and solved. Afterwards, the robustness properties of the SVM
were further exploited by proposing linear approaches for γ fil-
tering, ARMA modeling, array beamforming [32, 33, 34], and
subspace-based spectrum estimation [35]. The non-linear gen-
eralization of ARMA filters with kernels [36], and temporal
and spatial reference antenna beamforming using kernels and
SVM [37], have also been proposed. The use of convolutional
signal mixtures has been addressed for interpolation and sparse
deconvolution problems [38, 39], thanks to the autocorrelation
kernel concept, a straightforward property which has opened
the field for a number of unidimensional and multidimensional
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Table 1: Scheme of the DSP-SVM framework (I): Equations of the time-series models for signal estimation.

Regression Time-global Time-local
Spectral ARx Sinc interp. Deconv.

PSM ŷ = 〈w, x〉 + b ŷn =
∑K

k=0 akcos(kω0tn + φk) ŷn =
∑Q

p=1 Dpyn−p +
∑Q

q=0 Eq xn−q+1 ŷn =
∑N

k=0 ak sinc(t − tk) ŷn = xn ∗ hn

RSM ŷ = 〈w,ϕ(x)〉 + b – ŷn = 〈wd ,ϕd(yn)〉 + 〈we,ϕe(xn)〉 – –
DSM ŷ =

∑n
i=1 ηiK(xi, x) + b – – ŷn = K(t) ∗

∑
k ηkδ(t − tk) ŷn = ηn ∗ Rh

n

Table 2: Scheme of the DSP-SVM framework (II): Equations for signal models
in array processing.

Antenna Array Processing
Temporal reference Spatial reference

PSM ŷn = 〈a, xn〉 bi = 〈w,ϕ(bi a0)〉 − bRSM ŷn = 〈w,ϕ(xn)〉
DSM – –

extensions of communications problems [40, 41]. These are ex-
amples that represent partial contributions to the more general
problem of building non-linear SVMs to tackle DSP problems.
Other recent works make use of reproducing kernel Hilbert
spaces (RKHS) signal model equations, but not using SVM op-
timization (see, e.g. [42, 43, 44]).

2. Rationale and Structure of the Review

This paper provides a landscape of the preceding works, and
the formalization of a unified framework for developing SVM
algorithms for supervised estimation applications in DSP. The
framework is thus focused on time series analysis, in which the
time structure of the data could be highly informative. We start
from the consideration that discrete-time processes should be
treated in a conceptually different way from a regression model,
to efficiently deal with data with underlying time series struc-
ture. This framework can be summarized as follows:

• The statement of linear signal model equations in the pri-
mal problem, or SVM Primal Signal Models (PSM), allows
us to obtain robust estimators of the model coefficients [5]
and to take advantage of almost all the characteristics of
the SVM methodology in classical DSP problems, such as
ARX time series modeling, spectral analysis [31, 33, 32],
and antenna array signal processing [37].

• The first option for the statement of non-linear signal
model equations are the widely used RKHS Signal Mod-
els (RSM), which state the signal model equation in the
RKHS and substitute the dot products by Mercer’s ker-
nels [2, 36, 37].

• The second option are the Dual Signal Models (DSM),
which have been previously proposed in an implicit way,
and are based on the non-linear regression of the time in-
stants with appropriate Mercer’s kernels [38, 39]. While
RSM allow us to scrutinize the statistical properties in the
RKHS, DSM can give an interesting and straightforward

interpretation of the SVM algorithm under study, in con-
nection with classical Linear System Theory.

This framework is summarized in Table 1, where the key regres-
sion equations are shown for better understanding and handling
of the signal model equations. The SVM regression formula-
tion is well known and widespread, and it is included for the
sake of completeness and tutorial purposes. The table gives
a principled framework for building efficient SVM linear and
non-linear algorithms in DSP applications. The provided algo-
rithms makes use of these three types of signal model equations,
which can consider the time series structure of the data in dif-
ferent ways.

Note that there is an almost endless variety of signal model
equations in DSP. Among them, we choose the following ones:

• From a viewpoint of the nature of the signals that can be
used, we consider time-global and time-local signal ex-
pansions. The former are given by basis signals whose
duration expands in a non-decaying way throughout the
time interval where the estimated signal is observed. In
particular, sinusoids in nonparametric spectral estimation,
and delayed versions of exogenous and endogenous sig-
nals in difference equation models. The later are given
by basis signals which are either duration-limited or de-
caying, which is the case of sinc functions in time series
interpolation, or energy-defined impulse responses in de-
convolution problems. Illustrative examples of these kinds
of equations are summarized in Table 1.

• A different, yet related approach comes when different ap-
plications can be stated according to different unknown
terms of the same specific signal model equation. An ex-
cellent example in this setting is antenna array processing
for beamforming, where the same signal model equation
supports temporal reference signal detection, and spatial
reference estimation problems. As illustrated in Table 2,
PSM and RSM have been proposed for temporal reference
problems, in a similar way than DSP problems in Table 1,
but interestingly, a slightly different signal model is used
in spatial reference, expressed in both cases in terms of
possibly nonlinear mapping. This aims to illustrate that, in
this case, we switch to a eigenproblem statement, which is
a better representation for the data model, both for linear
and nonlinear cases.

Equations in Tables 1 and 2 will be explained in detail through-
out the paper, so the reader is encouraged to come back to these
tables after the first reading. Note also that, in these tables,
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many problems have not been addressed yet (as indicated by "–
"), and our intention is to motivate the interested reader to com-
plete and expand this table according to their own DSP needs.

The remainder of the paper is as follows. In the next section,
the well-known elements of the non-linear SVR algorithm are
briefly summarized, as they contain all the fundamental tools
that will be required for estimation problems. In Section 3, a
general signal model equation is proposed for supervised learn-
ing in time series estimation, and several signal model equa-
tions from representative DSP fields are introduced accordingly.
In Section 4, the PSM Theorem allows us to create linear algo-
rithms for the described signal models. In Section 5, the RSM
Theorem is explicitly stated, yielding non-linear algorithms for
system identification and for sinusoid detection in the RKHS.
In Section 6, the DSM Theorem allows an immediate formu-
lation for convolutional data models, such as sinc nonuniform
interpolation and sparse deconvolution. Finally, in Section 7,
discussion and conclusions are given.

3. SVM Elements for Regression and Estimation

The SVR algorithm contains all the key elements to tackle
estimation problems in our setting, i.e. regularized solution,
convexity of the optimization problem, sparsity of the solu-
tion, flexibility of the non-linear model via kernel functions,
and adaptiveness to different noise sources. Only the proper-
ties that are relevant to this paper are summarized here, but the
interested reader can see detailed derivations available in the
SVM literature (see e.g. the classical book by Cristianini [45]
and references therein).

Definition 1 (Nonlinear SVR Signal Model Hypothesis).
Be a labeled training iid data set {(vi, li), i = 1, ...,Nr}, where
vi ∈ Rd and li ∈ R. The SVR signal model first maps the
observed explanatory vectors to a higher dimensional kernel
feature space through a non-linear mapping φ : RNr −→ H ,
and then obtains a linear regression model inside this space,
this is,

l̂i = 〈w,φ(vi)〉 + b, (1)

where w is a weight vector in H and b is the bias term in the
regression. Model residuals are given by ei = li − l̂i.

In order to obtain the model coefficients, the SVR minimizes a
cost function of the residuals, which is usually regularized by
the L2 norm of w. This is, we minimize

1
2
‖w‖2 +

Nr∑
i=1

L(ei) (2)

In the standard SVR formulation, Vapnik’s ε-insensitive cost is
often used [46].

Definition 2 (Vapnik’s ε-insensitive Cost). Given a set or
residual errors ei in an estimation problem, the ε-insensitive
cost is given by

Lε(ei) = C max(|ei| − ε, 0), (3)

+ε
0

ξj

Kernel spaceInput space

xi

ξ*

xj

ϕ(xj)

ϕ

ϕ(xi)

i

-ε

L(ei)

ξj
ξ*i

-ec -ε +ε +ec
e

δC

L(ei)

ξ*i ξj

-ε +ε e

(a) (b)

Figure 1: SVR signal model. Samples in the original input space are first
mapped to an RKHS where a linear regression is performed. All samples out-
side a fixed tube of size ε are penalized, and are support vectors (double-circled
symbols). Penalization is carried out by applying (a) Vapnik’s ε-insensitive or
(b) ε-Huber cost functions.

where C controls the trade-off between the regularization and
the losses. Residuals lower than ε are not penalized, whereas
larger ones have linear cost.

This cost function is a suboptimal estimator in applications
when combined with a regularization term [2, 47, 3] and the
noise follows a Gaussian distribution, because of the linear na-
ture of the cost function. This issue has been addressed in the
formulation of LS-SVM [48], where a quadratic cost is used,
though in this case, sparseness of the solution is lost. An al-
ternative cost function of the residuals, the ε-Huber cost, has
been proposed [49] by combining both the quadratic and the ε-
insensitive cost. This has been shown to be a more appropriate
residual cost for SVR in general [50].

Definition 3 (ε-Huber Cost Function). The ε-Huber cost is
given by

LεH(ei) =


0, |ei| ≤ ε
1
2δ (|ei| − ε)2, ε ≤ |ei| ≤ eC

C(|ei| − ε) − 1
2δC

2, |ei| ≥ eC

(4)

where eC = ε + δC; ε is the insensitive parameter, and δ and C
control the trade-off between the regularization and the losses.

The three different regions in the ε-Huber cost allow us to deal
with different kinds of noise: the ε-insensitive zone ignores
absolute residuals lower than ε; the quadratic cost zone uses
the L2-norm of the residuals, which is appropriate for Gaussian
noise; and the linear cost zone is an efficient limit for the impact
of the outliers in the optimal model coefficients. Note that (4)
represents Vapnik’s ε-insensitive cost function when δ is small
enough, LS criterion for δC → ∞ and ε = 0 , and Huber’s cost
function when ε = 0 (see Fig. 1).
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By including the ε-Huber cost into (2), the estimation of
the SVR coefficients can be obtained as the minimization of
a Quadratic Programming (QP) problem [3, 33]. Several ad-
ditional and very relevant properties can be obtained from the
Karush-Khun-Tucker conditions and the dual functional, which
are next summarized.

Property 1 (SVR Sparse Solution and Support Vectors). The
weight vector inH can be expanded in a linear combination of
the transformed input data,

w =

Nr∑
i=1

ηiφ(vi), (5)

where ηi = (αi −α
∗
i ) are the model weights, and α(∗)

i are the La-
grange multipliers corresponding to the positive and negative
residuals in the ith observation. Observations with non-zero
associated coefficients are called support vectors, and the solu-
tion is expressed as a function of them solely.

Property 2 (Robust Expansion Coefficients). The following
non-linear relationship between the residuals and the model
coefficients for the ε-Huber cost is given by:

ηi =
∂LεH(e)
∂e

∣∣∣∣∣
e=ei

=


0, |ei| ≤ ε
1
δ
· sign(ei)(|ei| − ε), ε < |ei| ≤ ε + γC

C · sign(ei), |ei| > ε + γC

(6)

Therefore, the impact of a large residual ei on the coefficients is
limited by the value of C in the cost function, which yields es-
timates of the model coefficients that are robust in the presence
of outliers.

Theorem 1 (Mercer’s Theorem [30]). Let K(u, v) be a
bivariate function fulfilling the Mercer condition, i.e.,∫
RNr×RNr K(u, v) f (u) f (v) ≥ 0 for any square integrable function
f (u). Then, there exists a Reproducing Kernel Hilbert Space
(RKHS)H and a mapping φ(·), such that K(u, v) = 〈φ(u),φ(v)〉
.

The kernel trick in SVM consists of stating the problem at hand
(e.g. classification, regression, and many others) in terms of
dot products of data in the RKHS, and then substituting these
products by Mercer’s kernels. The kernel expression is actu-
ally used in a given SVM algorithm, but neither the mapping
function φ(·), nor the RKHS, need to be known explicitly. The
Lagrangian of (2) is used to obtain the dual problem, which in
turn yields the Lagrange multipliers used as model coefficients.

The following Mercer’s kernels are often used in SVM liter-
ature:

K(u, v) = 〈u, v〉 (7)
K(u, v) = (〈u, v〉 + 1)d (8)
K(u, v) = exp

(
−‖u − v‖2/2σ2

)
(9)

which are called linear, polynomial (d ∈ Z+), and Radial Basis
Function (RBF) (σ ∈ R+) Mercer’s kernels, respectively.

Property 3 (Regularization in the Dual). The dual problem
of (2) for the ε-Huber cost corresponds to the maximization of

−
1
2

(α−α∗)> (K + δI) (α−α∗)+ (α−α∗)> l−ε1>(α+α∗) (10)

constrained to 0 ≤ α(∗)
i ≤ C. Here, α(∗) = [α(∗)

1 , · · · , α(∗)
n ]>; l =

[l1, · · · , lNr ]
>; K represents the kernel matrix, given by Ki, j =

K(vi, v j) = 〈φ(vi),φ(v j)〉; 1 is an all-ones column vector; and I
is the identity matrix.

The use of the quadratic zone in the ε-Huber cost function gives
rise to a numerical regularization. The effect of δ in the solution
is analyzed in [33].

Property 4 (Estimator as an Expansion of Kernels). The esti-
mator is given by a linear regression in the RKHS, and it can
be expressed only in terms of the Lagrange multipliers and Mer-
cer’s kernels as

l̂(v) = 〈w,φ(v)〉 + b =

Nr∑
i=1

ηiK(vi, v) + b, (11)

where only the support vectors (i.e. training examples whose
corresponding Lagrange multipliers are non-zero) contribute
to the solution.

4. Signal Processing Problems and their Signal Models

The proposed SVM framework for DSP consists of several
basic tools and procedures. We start by defining a general signal
model equation for considering a time series structure in our
observed data, consisting on an expansion in terms of a set of
signals spanning a Hilbert signal subspace and a set of model
coefficients to be estimated. Then this general signal model
equation is specified for the chosen DSP problems according to
the rationale given in Section 2.

Definition 4 (General Signal Model Hypothesis). Given
a time series {yn} consisting of N + 1 observations, with
n = 0, . . . ,N, an expansion for approximating this signal can
be built with a set of signals {s(k)

n }, with k = 0, . . . ,K, spanning
the Hilbert signal subspace. This expansion is given by

ŷn =

K∑
k=0

ak s(k)
n , (12)

where ak are the expansion coefficients, to be estimated accord-
ing to some adequate criterion, and en = yn − ŷn are the model
residuals.

The set {s(k)
n } are the explanatory signals, which are selected

here to encode the a priori belief about the time-series structure
of the observations. After that, the estimation of the expansion
coefficients has to be addressed.

Definition 5 (Optimization Functional). Given a signal to be
modeled and a set of explanatory signals, an optimization func-
tional is used to estimate model coefficients. The functional is a
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linear combination of a lossL of residuals en, and a regulariza-
tion functionalM (e.g., Tikhonov regularizer [51]) expressed in
terms of estimated coefficients ak, this is,

{aopt
k } = argopt

{ N∑
n=0

L(en) +M(ak)
}
. (13)

Therefore, a general problem on time series modeling con-
sists on first looking for an adequate set of explanatory signals,
and then estimating the coefficients with a proper criterion for
the residuals and for these coefficients. Several signal model
equations have been paid attention in the DSP and Information
Theory literature, whose signal structure is better analyzed by
taking into account their correlation information. They have
been previously addressed with the SVM methodology, and we
put them in a framework for indicating their differences and
common points in the next subsections.

4.1. Nonparametric Spectral Estimation
In Nonparametric Spectral Estimation, the signal model hy-

pothesis is a linear combination of a set explanatory signals
which are sinusoidal waveforms, from a given grid of frequen-
cies and with amplitudes and phases to be estimated. When the
signal to be spectrally analyzed is uniformly sampled, the LS
criterion yields methods based on the Fourier transform, such
as the Welch’s periodogram and the Blackman-Tukey’s correl-
ogram [52]. When the signal is non-uniformly sampled, the in-
phase and quadrature-phase components of the basis are still or-
thogonal at the uneven sampling times, thus yielding the Lomb
periodogram [53].

Property 5 (Sinusoidal Signal Model Hypothesis). Given a set
of observations {yn}, which is known to present a spectral struc-
ture, its signal model hypothesis can be stated as:

ŷn =

K∑
k=0

ak s(k)
n =

K∑
k=0

Ak cos(kω0tn + φk) =

=

K∑
k=0

(Bk cos(kω0tn) + Ck sin(kω0tn)) ,

(14)

where angular frequencies are assumed to be previously known
or fixed in a regular grid with spacing ω0; Ak, φk are the am-
plitudes and phases of the kth components, and Bk = Ak cos(φk)
and Ck = Ak sin(φk) are the in-phase and in-quadrature model
coefficients, respectively; and {tn} are the (possibly unevenly
separated) sampling time instants.

The Sinusoidal Signal Model straightforwardly corresponds to
the General Signal Model in Definition 4 for {ak} ≡ {Bk} ∪ {Ck}

and {s(k)
n } ≡ {sin(kω0tn)} ∪ {cos(kω0tn)}. Additionally, note that

this signal model equation allows us to consider the spectral
analysis of continuous-time unevenly sampled time series.

4.2. ARX System Identification
In Parametric System Identification and Time Series Predic-

tion, the signal model hypothesis is driven by a difference equa-
tion, and the explanatory signals are delayed versions of the

same observed signal, and possibly (for system identification)
by delayed versions of an exogenous signal. A common prob-
lem in DSP is to model a functional relationship between two si-
multaneously recorded discrete-time processes [54]. When this
relationship is linear and time-invariant, it can be addressed us-
ing an Auto-Regressive and Moving Average (ARMA) differ-
ence equation. When a simultaneously observed (exogenous)
signal {xn} is available, the ARX signal model equation is used
for system identification.

Property 6 (ARX Signal Model Hypothesis). Given a set of ob-
servations {yn}, and a simultaneously observed signal {xn}, an
ARX signal model hypothesis can be stated between them in
terms of a parametric model described by an ARMA difference
equation, given by delayed versions of both,

ŷn =

K∑
k=0

ak s(k)
n =

P∑
p=1

Dpyn−p +

Q∑
q=0

Eqxn−q, (15)

where {xn} is the exogenous signal; Dp and Eq are the AR and
the X model coefficients, respectively, and the system identifica-
tion is an ARX signal model equation.

The ARX System Identification Signal Model is the General
Signal Model in Definition 4 for {ak} ≡ {Dp} ∪ {Eq} and {s(k)

n } ≡

{yn−p} ∪ {xn−q}.

4.3. Sinc Kernel Interpolation

In Sinc Interpolation, a band-limited signal model is hypoth-
esized, and the explanatory signals are delayed sincs. The sinc
kernel provides the perfect reconstruction of an evenly sampled
noise-free signal [55]. In the presence of noise, the sinc recon-
struction of a possibly non-uniformly sampled time series is an
ill-posed problem [56, 57, 58].

Property 7 (Sinc Kernel Signal Model Hypothesis). Let y(t) be
a band limited, possibly Gaussian noise corrupted signal, and
be {yk = y(tk), k = 0, . . . ,N} a set of N + 1 nonuniformly
sampled observations. The sinc interpolation problem con-
sists of finding an approximating function ŷ(t) fitting the data,
ŷ(t) =

∑N
k=0 aksinc(σ0(t − tk)). The previous continuous time

model, after non-uniform sampling, is expressed as the follow-
ing discrete time model:

yn = ŷn + en =

N∑
k=0

aksinc(σ0(tn − tk)) + en, (16)

where sinc(t) =
sin(t)

t , and σ0 = π
T0

is the sinc units bandwidth.

Therefore, we are using an expansion of sinc kernels for in-
terpolation of the observed signal. The sinc kernel interpola-
tion signal model straightforwardly corresponds to the General
Signal Model in Definition 4 for explanatory signals {s(k)

n } ≡

{sinc(σ0(tn − tk))}. An optimal band-limited interpolation algo-
rithm, in the LS sense, was first proposed in [56].
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4.4. Sparse Deconvolution
In Sparse Deconvolution, the signal hypothesis is given by

a convolutional signal mixture, and the explanatory signals are
the delayed and scaled versions of the impulse response from a
previously known Linear Time Invariant system. More specifi-
cally, the sparse deconvolution problem consists on the estima-
tion of an unknown sparse sequence which has been convolved
with a (known) time series (impulse response of the system or
source wavelet) and corrupted by noise, hence producing the
observed noisy time series. The non-null samples of the sparse
series contain relevant information about the underlying physi-
cal phenomenon in each application.

Property 8 (Sparse Deconvolution Signal Model Hypothesis).
Let {yn} be a discrete-time signal given by N + 1 observed
samples of a time series, which is the result of the convolution
between an unknown sparse signal {xn}, to be estimated, and
a known time series {hn} (with M + 1 duration). Then, the
following convolutional signal model equation can be written,

ŷn = x̂n ∗ hn =

M∑
j=0

x̂ jhn− j =

K∑
k=0

a(k)s(k)
n , (17)

where ∗ denotes the discrete-time convolution operator, and x̂n

is the estimation of the unknown input signal.

The Sparse Deconvolution Signal Model corresponds to the
General Signal Model in Definition 4 for model coefficients
{ak} ≡ {xk} and explanatory signals {s(k)

n } ≡ {hn−k}. The perfor-
mance of sparse deconvolution algorithms can be degraded by
several causes. First, they can result in ill-posed problems [59],
and regularization methods are often required. Also, when the
noise is non-Gaussian, either LS or maximum likelihood de-
convolution can yield suboptimal solutions [60]. Finally, if
hn has non-minimum phase, some sparse deconvolution algo-
rithms needing inverse filtering become unstable.

4.5. Array Processing
In Array Processing, a complex-valued spatio-temporal sig-

nal model equation is used in order to manage the proper-
ties of an array of antennas in several signal processing ap-
plications. The easiest system model in array processing [61]
consists of a linear array of K + 1 elements equally spaced
a distance d, whose output is a time series of vector samples
xn = {x0

n, · · · , x
K
n }

T or snapshots. Usually, signals xk
n are repre-

sented as lowpass signals. In order to keep their amplitude and
phase information, signals need a complex-valued representa-
tion in terms of in-phase and quadrature-phase components. A
given source with constant amplitude, whose direction of ar-
rival (DOA) and wavelength are θl and λ, respectively, yields
the following array output (so-called steering vector),

al = {1, e j2π d
λ sin(θl), · · · , e j2Kπ d

λ sin(θl)}>, (18)

where j =
√
−1. If L transmitters are present, the snapshot can

be represented as xn = Abn + nn where A is a matrix containing
all steering vectors of the L transmitters, bn is a column vector
containing (complex valued) symbols transmitted by all users
and nn is the thermal noise present at the output of each antenna.
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Figure 2: In this figure K + 1, (0 ≤ k ≤ K) sinusoidal explanatory signals s(k)
n

are represented. Time transversal vector s10 is constructed with the 10th sample
of each one of the explanatory signals.

Property 9 (Array Processing Signal Model Hypothesis). Let
{yn} be a discrete time signal given by N−1 symbols transmitted
by user 0, and be xk

n, 0 ≤ k ≤ K, a set of discrete time processes
representing time samples of the measured current at each of
the array elements. The array processing problem consists of
estimating yn as

ŷn =

K∑
k=0

ak xk
n. (19)

The problem is called array processing with temporal refer-
ence estimation problem when a set of transmitted signals is
previously observed for training purposes. Whenever the DOA
of the desired user is known, the problem is an array process-
ing with spatial reference problem. This signal model equation
agrees with Definition 4 for {sk

n} = {xk
n}.

5. Type I Algorithms: Primal Signal Models

A class of linear SVM algorithms for DSP come from the so
called PSM [5]. In this framework, rather than the prediction
of the observed signal, the goal of the SVM is a set of model
coefficients that contain the relevant information. The use of
the ε-Huber cost allows to deal with Gaussian noise in all the
SVM algorithms for DSP, while still providing with robust esti-
mations of the model coefficients. As illustrated in Tables 1 and
2, this approach consists of using the signal model equations in
the preceding section in a SVR-like linear formulation.

5.1. Fundamentals of PSM
Definition 6 (Time-Transversal Vector of a Signal Expansion).
Let {yn} be a discrete time series in a Hilbert space, and given
the General Signal Model in Definition 4, then the nth time-
transversal vector of the signals in the generating expansion
set {s(k)

n } is defined as

sn = [s(0)
n , s(1)

n , . . . , s(K)
n ]>. (20)
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Hence, it is given by the nth samples of each of the signals gen-
erating the signal subspace where the signal approximation is
made.

Figure 2 depicts a pictorial example, in which time-transversal
vector s10 is given by the 10th sample of each explanatory signal
(sinusoidal signals in the graph example).

Accordingly, the PSM problem can be stated as follows.

Theorem 2 (PSM Problem Statement). Let {yn} be a discrete
time series in a Hilbert space, then the optimization of

1
2
‖a‖2 +

N∑
n=0

LεH(en) (21)

with a = [a0, a1, . . . , aK]>, gives an expansion solution whose
signal model equation is

ŷn =

K∑
k=1

ak s(k)
n = 〈a, sn〉 (22)

By virtue of Property 4, we can express the primal coefficients
ak as

ak =

N∑
n=0

ηnsk
n ⇒ a =

N∑
n=0

ηnsn (23)

where ηn are the SVM Lagrange multipliers, and the solution at
instant m is

ŷm =

N∑
n=0

ηn〈sn, sm〉 (24)

Only instants n with ηn , 0 are part of the solution (Support
Time Instants).

Therefore, each expansion coefficient ak can be expressed as
a linear combination of input space vectors. Sparseness can be
obtained in coefficients ak, but not in coefficients ηn. Robust-
ness is also ensured for coefficients ak. The Lagrange multipli-
ers are obtained from the dual problem, which is built in terms
of a kernel matrix depending on the signal correlation.

Definition 7 (Correlation Matrix from Time-Transversal Vectors).
Given the set of time-transversal vectors, the correlation matrix
of the PSM is defined as

Rs(m, n) ≡ 〈sm, sn〉 =

K∑
k=0

s(k)
m s(k)

n (25)

In this setting, correlation matrix in Eq. (25) contains all the
temporal correlations conveyed by the explanatory signals for
different lags. For instance, elements in the main diagonal will
convey the zero-lag correlations between the time-transversal
vectors for each time instant, whereas the upper and lower diag-
onal will convey the correlations between time-transversal vec-
tors for lags +1 and −1. For the particular case of s(k)

n = sn−k,
thus these signals being delayed versions of a signal sn, the ma-
trix is a Toeplitz matrix of the autocorrelation function of sn.
In summary, this correlation matrix consists of all the lags for
the time correlations of the Hilbert signal subspace, which is
always a fundamental information when working with time se-
ries.

Property 10 (Correlation Matrix and Dual Problem). Given
the general PSM in (22) and the correlation matrix from the
time-transversal vectors in (25), the dual problem yielding the
Lagrange multipliers consists of maximizing

−
1
2

(α−α∗)>
(
Rs + δI

)
(α−α∗)+(α−α∗)>y−ε1>(α+α∗) (26)

constrained to 0 ≤ αn, α
∗
n ≤ C.

This property can be readily shown from considerations on
the Lagrange functional and the associated KKT conditions [5].
Therefore, by taking into account the PSM for a given DSP
problem, one can determine the signals s(k)

n that generate the
Hilbert subspace where the observations are projected to, and
then the remaining elements and steps of the SVM methodol-
ogy, such as the input space, the input space correlation matrix,
the dual QP problem, and the solution, can be straightforwardly
obtained.

5.2. Spectral Analysis and System Identification
The first SVM algorithms for DSP that were proposed using

the PSM framework were the sinusoidal decomposition [31],
the ARX system identification [33], and the γ-filter struc-
ture [32]. We next point out the relevant elements that can be
identified in these algorithms.

Property 11. (PSM Coefficients for Nonparametric Spectral
Analysis). Given the signal model hypothesis for nonparamet-
ric spectral analysis in Property 5, estimated coefficients using
the PSM are

Bk =

N∑
n=0

ηn cos(kω0tn); Ck =

N∑
n=0

ηn sin(kω0tn). (27)

Property 12. (PSM Correlation and Dual Problem for Non-
parametric Spectral Analysis). Given the signal model hypoth-
esis in Property 5, the correlation matrix is given by the sum of
two terms,

Rcos(m, n) =

K∑
k=0

cos(kω0tm) cos(kω0tn) (28)

Rsin(m, n) =

K∑
k=0

sin(kω0tm) sin(kω0tn) (29)

and the dual functional is given by (26) using Rs = Rcos + Rsin.

The identification of the corresponding time-transversal vec-
tors is straightforward. The derivation of this algorithm in [31]
is obtained by using these two properties in the PSM. Similar
considerations can be drawn for ARX system identification al-
gorithm in [33] using the next two properties.

Property 13 (PSM Coefficients for ARX System Identification).
Given the signal model hypothesis for ARX system identifica-
tion in Property 6, estimated PSM coefficients are

Dk =

N∑
n=0

ηnyn−k; Ek =

N∑
n=0

ηnxn−k+1. (30)
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Property 14. (PSM Correlation and Dual Problem for ARX
System Identification). Given the signal model hypothesis for
ARX system identification in Property 6, the correlation matrix
is given by the sum of two terms,

Ry(m, n) =

P∑
k=1

ym−kyn−k, (31)

Rx(m, n) =

Q∑
k=0

xm−k+1xn−k+1. (32)

These equations represent the time-local Pth and Qth order sam-
ple estimators of the values of the (non-Toeplitz) autocorrela-
tion functions of the input and the output discrete time pro-
cesses, respectively. The dual functional to be maximized is
given by (26) using Rs = Ry + Rx.

5.3. Convolutional Signal Models

Convolutional signal model equations are those models that
contain a convolutive mixture in their formulation. The most
representative ones are the nonuniform interpolation (using sinc
kernels, RBF kernels, or others) and the sparse deconvolution,
presented in [38, 39]. These models are relevant not only for
their robustness, but also because their analysis gives us the
foundations of the DSM to be subsequently used in a variety
of DSP problem statements. We next focus on summarizing the
properties that are relevant for giving a signal processing block
structure, that will be used for their analysis.

Property 15 (PSM Coefficients for Sinc Interpolation). Given
the signal model hypothesis in Property 7 for sinc kernel
interpolation, the PSM coefficients are

ak =

N∑
n=0

ηnsinc(σ0(tk − tn)). (33)

Property 16. (PSM Correlation and Dual Problem for Sinc In-
terpolation). Given the signal model hypothesis in Property 7,
the correlation matrix is given by

Rsinc(m, n) =

N∑
k=0

sinc(σ0(tm − tk))sinc(σ0(tn − tk)) (34)

The maximized dual functional is in (26) when Rs = Rsinc.

Coefficients in (33) are proportional to the cross correlation
of coefficients ηn and a set of sinc functions, each centered in-
stants tn [38]. Similar considerations can be made about the
sparse deconvolution signal model equation.

Property 17 (PSM Coefficients for Sparse Deconvolution).
The estimated PSM coefficients of the signal model hypothesis
in Property 8 are

x̂n =

N∑
i=0

ηihi−n (35)

-

M

Figure 3: Block diagram, elements and signals in the PSM Signal Model for
SVM sparse deconvolution.

Property 18. (PSM Correlation and Dual Problem for Sparse
Deconvolution). The dual problem corresponding to Property 7
is found by using the time-transversal vector

sp =
[
hn, hn−1, hn−2, . . . , hn−p+1

]>
. (36)

Correlation matrix Rh is given by (25), and in this case it rep-
resents the correlation matrix of h. The dual functional to be
maximized is given by (26).

In order to express the SVM algorithm for sparse deconvolu-
tion in terms of signal processing blocks, we can use Prop-
erty 2, a well-known relationship between model residuals
and Lagrange multipliers, valid for general SVM algorithms.
This property establishes a non-linear relationship between the
model coefficients ηn and the residuals en depending on the free
parameters of the ε-Huber cost function.

Therefore, the Lagrange multipliers (or equivalently, the
model coefficients) are mapped from the model residuals by
using a static non-linear map which is given by the first deriva-
tive of the cost function (in our case, the ε-Huber cost). This
property can be easily shown by using the appropriate set of
Karush-Khun-Tucker conditions [5], and it indicates that the
model coefficients are a piece-wise linear function of the model
residuals. According to this expression of the Lagrange multi-
pliers as a time series, the sparse deconvolution model can be
further analyzed, as follows.

Property 19 (PSM Block Diagram for Sparse Deconvolution).
Let a discrete time signal be defined by model coefficients ηn

for n = 0, . . . ,N, and being zero otherwise. Then, from eq.
(35) the relationship between the model coefficients and the
estimated signal can be written as follows:

x̂n = ηn ∗ h−n ∗ δn+M (37)

where δn is the Kronecker delta sequence (1 for n = 0 and zero
elsewhere), the length of the impulse response hn is M + 1 and
∗ denotes discrete-time convolution operator.

This is an interesting property from the signal processing
point of view, and it can be easily obtained by examining the
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Karush-Khun-Tucker in the PSM of the sparse deconvolution
problem [39]. Hence, we can consider a joint equivalent closed-
loop system, given in Fig. 3 which contains all the elements of
the SVM algorithm expressed as signals or systems. Specifi-
cally, one is a non-linear system, given by Property 2, and the
remaining ones are linear, time invariant systems. According to
the preceding property, estimated signal x̂n will not be sparse in
general, because it is the sparseness of ηn that can be controlled
with the ε parameter, but there is a convolutional relationship
between x̂n and ηn that will depend on the impulse response,
which in general does not have to be sparse.

A particular class of kernels are translation invariant ker-
nels, which are those fulfilling K(u, v) = K(u − v). Two highly
relevant properties in this setting, which will be useful in this
section for PSM algorithms and later on for DSM algorithms,
are the following.

Property 20 (Shift-invariant Mercer’s Kernels). A necessary
and sufficient condition for a translation invariant kernel to be
Mercer’s kernel [62] is that its Fourier transform must be real
and non-negative, this is,

1
2π

∫ +∞

v=−∞

K(v)e− j2π〈 f ,v〉dv ≥ 0 ∀ f ∈ Rd (38)

Property 21 (Autocorrelation-Induced Kernel). Let {hn} be a
(N + 1)-samples limited-duration discrete-time real signal, i.e.,
∀n < (0,N)⇒ hn = 0, and let Rh

n = hn ∗ h−n be its autocorrela-
tion function. Then, the following shift-invariant kernel can be
built:

Kh(n,m) = Rh
n(n − m) (39)

which is called Autocorrelation-Induced Kernel (or just auto-
correlation kernel). As Rh

n(m) is an even signal, its spectrum is
real and nonnegative, and according to Property 20, an auto-
correlation kernel is always a Mercer’s kernel.

Now, note that there is no Mercer’s kernel appearing explic-
itly in the problem statement of PSM for sparse deconvolution,
as it could be expected in a SVM approach. However, the block
diagram in Fig. 3 highlights that there is an implicitly present
autocorrelation kernel, given by

Rh
n = hn ∗ h−n, (40)

in the case we associate the two systems containing the original
system impulse response and its reversed version. From Linear
System Theory, the order of the blocks could be changed with-
out modifying the total system. However, the solution signal is
embedded between these two blocks, which precludes the ex-
plicit use of this autocorrelation kernel in this PSM formulation.
Finally, the role of delay system δn+M can be interpreted as just
an index compensation that makes the total system causal.

In summary, the PSM algorithm yields a regularized solu-
tion, in which an autocorrelation kernel is implicitly used, but
it does not allow to control the sparseness of the estimated sig-
nal. These properties will be used later in the DSM for high
performance sparse deconvolution algorithms.

5.4. Array Processing with Temporal Reference

The array processing algorithm needs a complex-valued for-
mulation. The complex Lagrange coefficients can be expressed
as ψn = ηn + jνn, ηn = αn − α

∗
n and νn = βn − β

∗
n being the

Lagrange coefficients generated by the real and imaginary parts
of the error.

Property 22 (PSM for Array Processing). Given the array pro-
cessing signal defined in Property 9, the PSM coefficients for
this problem are given by

ak =

N∑
n=0

ψnxk
n (41)

Property 23. (Dual Problem for Temporal Reference Array
Processing). Let yn, with 0 ≤ n ≤ N be a set of desired sig-
nals available for training purposes, then the problem is known
as temporal reference array processing. The incoming signal
kernel matrix is defined as

K(l,m) =

K∑
i=0

xk
l xk

m (42)

The dual functional to be maximized is a complex valued exten-
sion of (26), i.e.,

ψ>Kψ + Re(ψ>y) − ε1>(α + α∗ + β + β∗), (43)

where y stands for the complex conjugate of y.

5.5. PSM Application Examples

The experiments in this section show several properties of the
SVM elements and SVM algorithms presented up to this point.
Specifically, the cost function in terms of robustness to outlying
samples, the effect of the δ parameter, and the sparsity property
are analyzed with the SVM algorithm for nonparametric spec-
tral analysis [31]. We also give an illustrative example on how
to use the SVM-AR formulation for parametric spectral estima-
tion. An additional example of PSM-DSP algorithms perfor-
mance for antenna array signal processing is also included.

PSM Algorithm for Nonparametric Spectral Analysis. A syn-
thetic data example shows the usefulness of PSM for dealing
with outliers in the data. Let yn = sin(2π f n) + ev

n + e j
n, where

f = 0.3; ev
n is a white, Gaussian noise sequence (zero mean,

variance 0.1); and e j
n is an impulsive noise process, generated as

a sparse sequence for which 30% of the randomly placed sam-
ples have high amplitude values given by ±10 +U(−0.5, 0.5),
where U(·) denotes the uniform distribution in the given in-
terval, and the remaining are null samples. The length is 128
samples, and we set Nω = 128, see Fig. 4(a). We fixed ε = 0
and δ = 10. Parameter C can be chosen according to (6). Fig-
ure 4(b) and (c) show that for C low enough, large residual am-
plitudes can be present without impacting the solution.
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Figure 4: Insensitivity of PSM to impulse noise in nonparametric spectral anal-
ysis. (a) Sinusoid in impulsive noise (up) and its Welch periodogram (down).
(b) SVM spectral estimators for different values of δC. (c) Histogram of the
residuals (scaled to δ = 10) and control of the outlier impact on the solution
with C.

Performance of PSM for AR Parametric Spectral Estimation.
The most widely used linear system model for parametric spec-
tral estimation is the all-pole structure [52]. The output yn of
such filter for a white noise input is an auto-regressive (AR)
process of order P, AR(P), which can be expressed as yn =∑P

p=1 Dpyn−p + en, where Dp are the AR parameters, and en de-
notes the samples of the innovation process. Once the coeffi-
cients Dp of the AR process are calculated, the PSD estimation
is Φ( f ) = σ2

P/ fs|1 −
∑P

p=1 Dpe− j2πp f / fs |−2,where fs is the sam-
pling frequency, and σ2

P is the variance of the residuals.
We used data generated as an ARMA-process with en given

by white Gaussian noise with zero mean and unit variance. Two
systems, previously introduced [63], were analyzed, namely, an
AR(3)-process:

yn = en − 0.9816yn−1 − 0.9400yn−2 − 0.7799yn−3

and a narrow-band ARMA(4,4)-process:

yn = en + 0.4800en−1 + 0.6876en−2 + 0.4476en−3 + 0.3538en−4+

+1.0200yn−1 − 2.0902yn−2 + 0.9808yn−3 − 0.9275yn−4.

The input discrete process was aN(0, 1) sequence with L = 128
samples length. The output signal was corrupted by additive
noise N(0, 0.1), and 20% of samples were affected by impul-
sive noise from a zero mean and unit variance uniform distri-
bution and randomly placed. These L samples were used for
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Figure 5: Application Example for Parametric Spectral Analysis. Evolution of
the IMSE for different power of outliers for an (a) AR(3)-process and (b) the
ARMA(4,4) process.

training the model and 1000 samples more were used for vali-
dation. For all simulations, parameters C and δ were searched
in the range [10−5, 105], and we fixed ε = 0. The perfor-
mance criterion used for the general estimate of Φ( f ) was
the Integrated Mean-square Error (IMSE), given by IMSE =

1
NF

∑NF
f =1

∣∣∣Φ( f ) − Φ̂( f )
∣∣∣2, where NF is the number of estimated

frequencies in the spectrum. The experiment was repeated 100
times and the best model was selected according to the esti-
mated IMSE in the validation set. Figure 5 illustrates the effect
of different power of outliers Po on the estimation accuracy.
In both systems, the SVM-AR method outperformed the stan-
dard methods in all situations, with an average gain of 1.5 to 2
dB. Differences between the methods are lower with increasing
noise, specially for the ARMA(4,4).

SVM Array Processing with Temporal Reference. A linear ar-
ray of six elements spaced d = 0.51λ, was used to detect the
signal from a desired user in presence of different interferences
in an environment with Gaussian noise [34]. The desired sig-
nal was assumed to experiment small multi-path propagation
coming from DOAs −0.1π and −0.25π, with amplitudes 1 and
0.3, respectively, and different phases. Two interferences sig-
nals came from −0.05π, 0.1π, and 0.3π, all of them with unit
amplitude and phase 0. The desired signal was organized in
bursts of 50 training samples plus 105 test samples.

The SVM was compared to the standard LS algorithm for ar-
ray processing. Since the noise was assumed to be thermal, then
its variance could be assumed to be approximately known. In
communications, parameter validation is usually not affordable
due the small amount of available data and the low computa-
tional power of systems. Therefore, parameter δ of the SVM
cost function was set to 10−6, and C was set in order to adjust
δC to the thermal noise standard deviation. Hence, residuals for
samples corrupted mainly by thermal noise were likely in the
quadratic cost, and residuals for samples with high error (when
interfering signals added in phase) were likely in the linear cost.

Results are depicted in Fig. 6. Each Bit Error Ratio (BER)
was evaluated by averaging 100 independent trials. The LS cri-
terion is highly biased by the non-Gaussian nature of the data
produced by the multipath environment plus the interfering sig-
nals. SVM is closer to the linear optimal and offers a processing
gain of several dBs with respect to the LS solution.
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Figure 6: Application example for Array Processing with Temporal Reference.
BER performance of the SVM (solid) and regular LS (dashed) beamformers, in
the presence of thermal noise plus interfering signals giving large residuals.

6. Type II Algorithms: RKHS Signal Models

The class of RSM algorithms algorithms consists of stating
the signal model equation of the time series structure in the
RKHS. The major interest of this approach is the combination
of flexibility (provided to the algorithm by the non-linearity) to-
gether with the possibility of scrutinizing the time series struc-
ture of the model and the solution. It can be seen in Tables
1 and 2 that signal model equations are stated in the RKHS in
this kind of algorithms, which appears to be evident in the ARX
case example.

6.1. Fundamentals of RSM

In this section, we state a general signal model equation for
estimation with discrete-time series notation. Nonlinear ARX
system identification use a signal model equation in the RKHS
relating an exogenous time series and an observed data time
series, whereas antenna array processing with spatial reference
uses an energy expression in the RKHS, together with complex-
valued algebra.

Theorem 3 (RSM Problem Statement). Let {yn} be a
discrete-time series and vn a vector observation for each time
instant. A non-linear signal model equation can be stated by
transforming the weight vector and the input vectors at time
instant n to an RKHS,

ŷn = 〈w,ϕ(vn)〉 + b (44)

Since the same signal model equation is used with weight vector
w =

∑N
n=0 ηnϕ(vn), the solution can be expressed as

ŷm =

N∑
n=0

ηn〈ϕ(vn),ϕ(vm)〉 =

N∑
n=0

ηnK(vn, vm) + b (45)

The proof is given by using the conventional Lagrangian func-
tional and the dual problem. This is the most used approach
to state data problems with SVM. This theorem is next used
to obtain the non-linear equations for several DSP problems.
Composite kernels are used for defining relationships between
two observed (exogenous and output) signals, by means of an
RKHS system identification model.

Property 24 (Composite Summation Kernel). A simple com-
posite kernel comes from the concatenation of non-linear trans-
formations of c ∈ Rc and d ∈ Rd, given by

φ(c, d) = {φ1(c),φ2(d)} (46)

where {·, ·} denotes concatenation of column vectors, and φ1(·),
φ2(·) are transformations to Hilbert spacesH1 andH2. The dot
product between vectors is

K(c1, d1; c2, d2) = 〈φ(c1, d1),φ(c2, d2)〉 = K1(c1, c2)+K2(d1, d2)
(47)

which is known as summation kernel.

The composite kernel expression of a summation kernel can
also account for the cross information between an exogenous
and an output observed time series.

Property 25 (Composite kernels for Cross Information).
Assume a non-linear mapping ϕ(·) into a Hilbert space H and
three linear transformations Ai from H to Hi, for i = 1, 2, 3.
We construct the following composite vector,

φ(c, d) = {A1ϕ(c), A2ϕ(d), A3(ϕ(c) + ϕ(d))} (48)

If the dot product is computed, we obtain

K(c1, c2; d1, d2) =

φ>(c1)R1φ(c2) + φ>(c1)R2φ(d2)
+ φ>(d1)R3φ(c2) + φ>(d1)R3φ(c2)

= K1(c1, c2) + K2(d1, d2) + K3(c1, d2) + K3(d1, c2)

where R1 = A>1 A1+A>3 A3, R2 = A>2 A2+A>3 A3 and R3 = A>3 A3
are three independent definite positive matrices.

Note that, in this case, c and d must have the same dimension.

6.2. Nonlinear ARX Identification

In [24, 64, 48, 29, 65], the SVR algorithm was used for non-
linear system identification, but the time series structure of the
data was not scrutinized. In [33], SVM was explicitly formu-
lated for modeling linear time-invariant ARMA systems (linear
SVM-ARMA), and it was extended to a general framework for
linear signal processing problems [5]. When linearity cannot
be assumed, non-linear system identification techniques are re-
quired. General non-linear models, such as artificial neural net-
works, wavelets, and fuzzy models, are common and effective
choices [54, 66], but the temporal structure cannot be easily an-
alyzed as far as it remains inside a black-box model. This is the
main problem for standard non-linear approaches used in the
NARX approach.

We next summarize several SVM procedures for non-linear
system identification that has alleviated these problems. The
material has been presented in detail in [36, 67, 68], so we fo-
cus here on the most relevant aspects. First, the stacked SVR
algorithm for non-linear system identification is briefly exam-
ined in order to check that, though efficient, this approach does
not correspond explicitly to an ARX model in the RKHS.
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Let {xn} and {yn} be two discrete-time signals, which are the
input and the output, respectively, of a non-linear system. Let
yn = [yn−1, yn−2, . . . , yn−M]> and xn = [xn, xn−1, . . . , xn−Q+1]>

denote the states of input and output at time instant n. The
stacked-kernel system identification algorithm [64, 48] is next
described.

Property 26. (Stacked-kernel Signal Model for SVM Nonlinear
System Identification). Assuming a non-linear transformation
φ({yn, xn}) for the concatenation of the input and output discrete
time processes to a B-dimensional feature space, φ : RM+Q →

H , a linear regression model can be built inH , given by

yn = 〈w,φ({yn, xn})〉 + en, (49)

where w is a vector of coefficients in the RKHS, given by

w =

N∑
n=0

ηnφ({yn, xn}), (50)

and the following Gram matrix containing the dot products can
be identified

G(m, n) = 〈φ({ym, xm}),φ({yn, xn}) = K({ym, xm}, {yn, xn}).
(51)

The non-linear mappings do not need to be explicitly computed,
but instead the dot product in RKHS can be replaced by Mer-
cer’s kernels. Then, the predicted output for newly observed
{ym, xm} is given by

ŷm =

N∑
n=0

ηnK({ym, xm}, {yn, xn}). (52)

Note that this is the expression for a general non-linear system
identification, though it does not correspond to an ARX struc-
ture in the RKHS. Although the reported performance of the
algorithm is high when compared to other approaches, this for-
mulation does not allow us to scrutinize the statistical properties
of the time series that are being modeled in terms of autocorre-
lation and/or cross correlation between the input and the output
time series. Composite kernels can be introduced, allowing us
to create a non-linear version of the linear SVM-ARX algorithm
by actually using an ARX scheme on the RKHS signal model.

Property 27. (SVM in RKHS for ARX Nonlinear System Identi-
fication). If we separately map the state vectors of both the input
and the output discrete-time signals to H , using a non-linear
mapping given by φe(xn) : RM → He and φd(yn) : RQ → Hd,
then a linear ARX model can be stated inH , whose correspond-
ing difference equation is given by

yn = 〈wd,φd(yn)〉 + 〈we,φe(xn)〉 + en, (53)

where wd and we are vectors determining the AR and the MA
coefficients of the system, respectively, in (possibly different)
RKHS. The vector coefficients are

wd =

N∑
n=0

ηnφd(yn); we =

N∑
n=0

ηnφe(xn), (54)
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Figure 7: A non-linear relationship between samples in the input space is trans-
formed into a linear relationship in the high dimensional RKHS. Different sig-
nal model equations can be used in the RKHS, for instance, the use of different
kernels for the AR and the MA components of the difference equation in a ARX
system identification problem allows to implement different non-linearities for
the input and output of the non-linear system.

and two different kernel matrices can be further identified:

Ry(m, n) = 〈φd(ym),φd(yn)〉 = Kd(ym, yn) (55)
Rx(m, n) = 〈φe(xm),φe(xk)〉 = Ke(xm, xn). (56)

These equations account for the sample estimators of both the
input and output time series autocorrelation functions [69] in
the RKHS. Actually, they are proportional to the non-Toeplitz
estimator of the time series autocorrelation matrices.

The dual problem consists of maximizing (26) with Rs = Rx+

Ry, and the output for a new observation vector is obtained as

ŷm =

N∑
n=1

ηn
(
Kd(yn, ym) + Ke(xn, xm)

)
(57)

The kernels in the preceding equation correspond to correlation
matrices computed into the direct summation of kernel spaces
H1 and H2. Hence, the autocorrelation matrices components
given by xn and yn are expressed in their corresponding RKHS
and the cross correlation component is computed in the direct
summation space. A third space can be used to compute the
cross correlation component, which introduces generality to the
model. Figure 7 shows a pictorial representation of the different
kernels corresponding to different non-linearities which cannot
be accommodated, for instance, by the use of a single width us-
ing a RBF kernel, but instead, they can be readily approximated
by using two separate kernels for each time series or time pro-
cess.

Property 28. (Composite Kernels for General Cross Informa-
tion in System Identification). Assuming a non-linear mapping
ϕ(·) into a Hilbert spaceH and three linear transformations Ai

from H to Hi, for i = 1, 2, 3, we can construct the following
composite vector:

φ(y, x) = {A1ϕ(x), A2ϕ(y), A3(ϕ(x) + ϕ(y))} (58)

According to Property 25, we have

K(ym, yn; xm, xn) =

φ>(ym)R1φ(yn) + φ>(ym)R2φ(xn)
+ φ>(xm)R3φ(yn) + φ>(xm)R3φ(yn)

= K1(ym, yn) + K2(xm, xn) + K3(ym, xn) + K3(xm, yn)

where it is straightforward to identify K1 = Kd and K2 = Ke.
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Note that in this case, xn and yn need to have the same dimen-
sion, which can be naively accomplished by zero completion of
the embeddings.

Property 29 (General Composite Kernels). A general compos-
ite kernel, that can be obtained as a combination of the previous
ones, is given by

K(xm, ym; yn, xn) = K1(ym, yn) + K2(xm, xn)
+ K3(ym, xn) + K3(xm, yn) + K4(zm, zn)

(59)

Therefore, despite the fact of SVM-ARX and SVR non-linear
system identification are different problem statements, both
models can be easily combined.

6.3. Array Processing with Spatial Reference
The array processing problem stated in (19) can be solved

when there are no training symbols available, but just a set of
incoming data and information about the angle of arrival of the
desired user. In this case, the algorithm to be applied consists of
a processor that detects without distortion (distortionless prop-
erty) the signal from the desired direction of arrival while mini-
mizing the total output energy. The signal can be easily mapped
to an RKHS, and then we minimize

E = E(wHϕ(xn)ϕ(xn)Hw) = wH Rw ≈ wHΦΦHw (60)

for a given set of previously collected snapshots, where E
stands for statistical expectation, and Φ is a matrix containing
all mapped snapshots ϕ(xn).

Property 30 (Spatial Reference Signal Model in RKHS). In or-
der to introduce the distortionless property, constraints must
be applied to a set of canonical signals (spatial reference sig-
nals) whose steering vector (18) contains the desired direction
of arrival θ0, carrying a set of symbols bi. The reference signal
model equation is

bi = wHϕ(bia0) − b (61)

where a0 is the steering vector corresponding to the desired
signal. Then, a primal functional must contain the following
constraints

Re
(
bi − wHϕ(bia0) − b

)
≤ ε + ξi

−Re
(
bi − wHϕ(bia0) − b

)
≤ ε + ξ′i

Im
(
bi − wHϕ(bia0) − b

)
≤ ε + ζi

−Im
(
bi − wHϕ(bia0) − b

)
≤ ε + ζ′i

(62)

being si all possible transmitted symbols in a given amplitude
range, and ξi, ζi, ξ

′
i , ζ
′
i the slack variables corresponding to the

real and imaginary constraints.

Property 31 (Spatial Reference primal coefficients). A SVM
procedure applied to this constrained optimization problem
has to minimize (61), and it gives

w =
∑

i

R−1ϕ(bia0)ψi (63)

+

-

Lorenz attractor

Non-linear feeback system

Low-pass filter
H(z)

High-pass filter
G(z)

f(·)=log(·)

−20 −10 0 10 20
0

10

20

30

40

50

Figure 8: Application example for Nonlinear System Identification. System
that generates the input-output signals to be modeled in the SVM non-linear
system identification example.

Property 32. (Spatial Reference Kernel). The application
of (63) in (61) implicitly gives the kernels

K(bia0, b ja0) = ϕ(bia0)T R−1ϕ(b ja0), (64)

which cannot be directly used because an expression for R is
not available in infinite dimension RKHS. A kernel eigenanaly-
sis introduced in [70] leads to

K(bia0, b ja0) = Nϕ(bia0)TΦK−1K0Φ
Tϕ(b ja0), (65)

where Φ is a matrix containing all the incoming data used to
compute the autocorrelation matrix R, and K0 is a kernel ma-
trix containing all dot products ϕ(s0

na0)>ϕ(s0
ma0). These kernels

can be used to solve a dual problem equal to the one of Prop-
erty 23. The primal coefficients can be expressed as

w = NΦK−1K0ψ (66)

where ψn = ηn + jνn are complex-valued dual coefficients.

6.4. RSM Application Examples

This section illustrates two RSM applications, namely, ARX
system identification, and spatial reference for antenna array
processing.

SVM Nonlinear System Identification. The performance of
SVM with RSM for non-linear system identification was
benchmarked in [36]. We used different kernel combina-
tions, namely, separated kernels for input and output pro-
cesses (SVM-ARX2K), accounting for the input-output cross-
information (SVM-ARX4K), and different combinations of
non-linear SVR and SVM-ARX models, all of them with the
RBF kernel.

In the global system generating the data (see Fig. 8), the input
discrete-time signal to the system was generated by sampling
the Lorenz system, given by differential equations dx/dt =

−ρx + ρy, dy/dt = −xz + rx − y, and dx/dt = xy − bz, with
ρ = 10, r = 28, and b = 8/3 for yielding a chaotic time series.
Only the x component was used as input signal to the system,
and it was then passed through an 8th-order low-pass filter H(z)
with cutoff frequency ωn = 0.5 and normalized gain of -6dB
at ωn. The output signal was then passed through a feedback
loop consisting of a high-pass minimum-phase channel, given
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Table 3: Mean error (ME), mean-squared error (MSE), mean absolute error
(MAE), and correlation coefficient (r) of models in the test set.

ME MSE MAE r
SVR 0.05 30.37 4.63 0.76
SVM-ARX2K -0.21 39.77 5.11 0.94
SVM-ARX4K 2.95 20.64 2.99 0.96
SVR + SVM-ARX2K -0.00 0.01 0.07 0.99
SVR + SVM-ARX4K 0.03 0.02 0.11 0.99

by on = gn − 2.01on−1 − 1.46on−2 − 0.39on−3, where on and gn

denote the input and the output signals to the channel. Output
on was distorted with f (·) = log(·).

We generated 1000 input-output sets of observations and
these were split into a cross-validation dataset (free parameter
selection, 100 samples) and a test set (model performance, fol-
lowing 500 samples). The experiment was repeated 100 times
with randomly selected starting points, and the free parame-
ters were adjusted with cross-validation in all the experiments.
Table 3 shows the averaged results. The best models were ob-
tained when combining SVR and SVM-ARX models, though
no numerical differences were observed between SVR+SVM-
ARX2K and SVR+SVM-ARX2K . In this example, all models
considering cross-terms in the kernels significantly improved
SVR results.

Spatial and Temporal Antenna Array Kernel Processing. The
kernel temporal reference (SVM-TR) and spatial reference
(SVM-SR) array processors have been benchmarked with their
kernel LS counterparts (kernel-TR and kernel-SR), with the lin-
ear with temporal reference (MMSE), and with spatial refer-
ence (MVDM) [36] . A Gaussian kernel was used in all proces-
sors. The scenario consisted of a multiuser environment with
one desired three interfering users. The modulated signals were
independent QPSK, and the noise was assumed to be thermal,
simulated by additive white Gaussian noise. The desired signal
was structured in bursts containing 100 training symbols, fol-
lowed by 1000 test symbols. Free parameters were chosen in
the first experiment and fixed.

In the first experiment, the BER is measured as a function
of kernel parameter δ for arrays of 5 and 7 elements, in an en-
vironment of three interferences from angles of arrival of 10o,
20o and −10o, and unitary amplitudes, while the desired signal
came from an angle of arrival of 0o with the same amplitude
as the interferences. Results in Figure 9 show the BER as a
function of the RBF kernel width for the temporal and spatial
reference SVM algorithms (i.e. SVM-TR and SVM-SR). These
results are compared to the temporal and spatial kernel LS al-
gorithms (i.e., KLS-TR and KLS-SR), and for 7 and 5 array-
elements. The noise power is of −1 dB for 7 elements and -6
dB for 5 elements.

The results of the second experiment are shown in Fig. 10.
The experiment measured the BER of the four non-linear pro-
cessors as a function of the thermal noise power in an envi-
ronment with three interfering signals from angles of arrival of
−10o, 10o and 20o. Desired signal direction of arrival was 0o.
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Figure 9: Application example for Spatial and Temporal Antenna Array kernel
processing. BER performance, as a function of Gaussian RBF kernel parameter
δ, of the TR (squares) and the SR (circles) in an array of 7 (top) and 5 (bottom)
elements and with three interfering signals. Continuous line corresponds to the
performance of the linear algorithms.

1 2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

−10log10m
2

BE
R

 

 

Linear LS TR
Linear MVDR SR
SVM−TR
KLS−TR
SVM−SR
KLS−SR

Figure 10: BER performance as a function of thermal noise power for linear
algorithms, SVM SVM-TR, SVM-SR, KLS-TR and KLS-SR.

Performances are compared to the linear MVDR and MMSE
algorithms. In this experiment, temporal reference algorithms
show a performance slightly better than spatial reference ones.
All non-linear approaches show an improvement of several
decibels with respect to the linear algorithms. In particular,
SVM approaches show better performance than non-linear LS
algorithms, with lower test computational burden due to their
sparseness properties.

7. Type III Algorithms: Dual Signal Models

An additional class of non-linear SVM algorithms for DSP
can be obtained by considering the non-linear regression of the
time lags or the time instants of the observed signals and us-
ing an appropriate choice of the Mercer’s kernel. This class is
known as DSM based SVM algorithms. Here, we summarize
this approach and pay attention to the interesting and simple
interpretation of these SVM algorithms under study in connec-

15



tion with Linear System Theory (see [38, 39] for details). From
Table 1, this is a very natural representation of a signal model
stated in SVR form, since the concepts of Mercer’s kernel and
impulse response can be put together, as will be explained next.
In the case of antenna array processing (Table 2), no DSM al-
gorithm has been proposed yet.

7.1. Fundamentals of DSM
We use the SVR problem statement as support for the algo-

rithm, by making a non-linear mapping of each time instant to
an RKHS, however, the signal model equation of the DSP to
be implemented will be the resulting kernel-based solution, by
using autocorrelation kernels suitable with the problem at hand.
We summarize these ideas in the following theorem.

Theorem 4 (DSM Problem Statement). Let {yn} be a discrete
time series in a Hilbert space, which is to be approximated in
terms of the SVR model in Definition 1, and let the explana-
tory signals be just the (possibly nonuniformly sampled) time
instants tn that are mapped to an RKHS. Then, the signal model
is given by

yn = y(t)|t=tn = 〈w,φ(tn)〉 (67)

and the expansion solution has the following form,

ŷ|t=tm (t) =

N∑
n=0

ηnKh(tn, tm) =

N∑
n=0

ηnRh(tn − tm) (68)

where Kh is an autocorrelation kernel originated by a given
signal h(t). Model coefficients ηn can be obtained from the op-
timization of (2) (non-linear SVR Signal Model hypothesis in
Property 1), with kernel matrix given by

Kh(n,m) = 〈φ(tn),φ(tm)〉 = Rh(tn − tm) (69)

Hence, the problem is equivalent to non-linearly transforming
time instants tn, tm, and making the dot product in the RKHS.
For discrete-time DSP models, it is straightforward to use dis-
crete time n for nth sampled time instant tn = nTs, where Ts is
the sampling period in seconds.

Indeed, Eq. (68) is formally similar to conventional output
of SVR for regression. The conceptually key different is not
in the mathematical support given by the non-linear transfor-
mation of time instants to the RKHS, but rather that the use of
the estimated autocorrelation of the output in terms of the input
data stands for a straightforward inclusion of the a priori infor-
mation of the problem into the support vector formulation. In
fact, the use of usual kernels as the RBF can be seen as an easy,
yet rough approximation to the autocorrelation of the output
as a function of the input variables. The autocorrelation ker-
nel concept is allowing to address a number of unidimensional
and multidimensional extensions of communications problems
from a different and still well founded approach linking DSP
and Statistical Learning. In [40], simple estimations of multidi-
mensional autocorrelation function and their use in a DSM al-
lowed statistically significant advantage in the estimation prob-
lem of indoor location from Received Signal Strength in Wifi

networks. In [41], the connection between DSM with SVM
and basic Information Theory concepts like the Wiener filter
and the matched filter gave rise to significant improvement in
application examples including bandpass signals or biomedical
time series from heart rate variability. These are examples that
represent partial contributions to the more general problem of
building non-linear DSP algorithms with the SVM methodol-
ogy.

Theorem 4 is used below to obtain the non-linear equations
for several DSP problems. In particular, the statement of the
sinc interpolation SVM algorithm can be addressed from a
DSM [38], and its interpretation in terms of Linear System The-
ory allows to propose a DSM algorithm for sparse deconvolu-
tion, even in the case that the impulse response is not an auto-
correlation.

7.2. Nonuniform Signal Interpolation with SVM
The sinc function in the sinc interpolator has a non-negative

Fourier transform, and hence it can be used as a Mercer’s ker-
nel [62] in SVM algorithms.

Property 33 (DSM for Sinc Interpolation). Given the sinc in-
terpolation signal model equation in Property 7, and given that
the sinc function is an autocorrelation signal, a DSM SVM al-
gorithm can be obtained by using an expansion solution as fol-
lows,

ŷm =

N∑
n=0

ηnK(tn, tm) =

n∑
n=0

ηnsinc (σ0(tn − tm)) (70)

and Lagrange multipliers ηn can be obtained accordingly.

This equation can be compared to the sinc interpolation sig-
nal model equation in Property 7 in terms of model coefficients
and explanatory signals. We can observe that, for uniform sam-
pling, Eq. (70) can be interpreted as the reconstruction of the
observations given by a linear filter, where the impulse response
of the filter is the sinc function, and the input signal is given by
the sequence of the Lagrange multipliers corresponding to each
time instant. A Dirac’s delta train can be used for giving a more
rigorous proof in the continuous-time equivalent signal model
equation. For equally spaced samples, it is easier to see that if
we assume that {ηn} are observations from a discrete-time pro-
cess, and that {Kh(tn)} is the continuous-time version of an au-
tocorrelation signal (in this case, the sinc kernel) given by Kh

n ,
then solution xn can be written down as a convolutional model,

xn = ηn ∗ Kn. (71)

Figure 11(a) depicts this situation. This expression is valid as
far as we have a valid kernel, because in this case the impulse
response has a nonnegative Fourier transform. However, a non-
causal impulse response hn is used here, which for some appli-
cations is not an acceptable assumption. Also, from the point of
view of signal processing, the impulse response is constrained
to be a valid Mercer’s kernel, and as such, it is symmetric, so
that this scheme cannot be proposed for every convolutional
problem. Nevertheless, by allowing ε to be non-zero, only a
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Figure 11: Signal Model for SVM sparse deconvolution. (a) Convolutional
model for sinc interpolation using the DSM problem statement, where the im-
pulse response of the convolutional model is a valid Mercer’s kernel. (b) Con-
volutional model for sparse deconvolution, for an arbitrary impulse response,
where the Mercer’s kernel is the autocorrelation of the impulse response signal.

subset of the Lagrange multipliers will be non-zero, thus pro-
viding a sparse solution, a highly desirable property in a number
of deconvolution problems.

In order to qualitatively compare the sinc kernel SVM pri-
mal and dual signal models for nonuniform interpolation, the
following expansion of the solution for the primal signal model
approach given in (16) can be written as follows,

ŷm =

N∑
n=0

ansinc(σ0(tn − tm))

=

N∑
n=0

 N∑
r=0

ηrsinc(σ0(tm − tr)

 sinc(σ0(tn − tm)).

(72)

Comparison between (72) and (70) reveals that these are quite
different approaches using SVM for solving a similar signal
processing problem. For the primal signal model formulation,
limiting the value of C will prevent these coefficients from an
uncontrolled growing (regularization effect). For the dual sig-
nal model formulation, the SRM principle, which is implicit in
the SVM formalism [2], will lead to a reduced number of non-
zero coefficients.

7.3. Sparse Signal Deconvolution

Given the observations of two discrete-time sequences {yn}

and {hn}, deconvolution consists of finding the discrete-time se-
quence {xn} fulfilling

yn = xn ∗ hn + en. (73)

In many practical situations, xn is a sparse signal, and solving
this problem using an SVM algorithm can have the additional
advantage of its sparsity property in the dual coefficients. If
hn is an autocorrelation signal, then the problem can be stated
as the sinc interpolation problem in the preceding subsection,
using hn instead of the sinc signal. This approach requires an
impulse response that is a Mercer’s kernel, and if an autocor-
relation signal is used as kernel (as we did in the preceding
subsection for the sinc interpolation), then hn is necessarily a
non-causal linear, time-invariant system. For a causal system,

the impulse response cannot be an autocorrelation. A first ap-
proach is the statement of the PSM in Section 5. The solution
can be expressed as

x̂n =

N∑
i=0

ηihi−n. (74)

hence, an implicit signal model equation can be written down,
which is

x̂n =

N∑
i=M

ηihi−n = ηn ∗ h−n+M = ηn ∗ h−n ∗ δn+M . (75)

This means that the estimated signal is built as the convolution
of the Lagrange multipliers with the time-reversed impulse re-
sponse and with a M-lagged time-offset delta function δn. Fig-
ure 11 shows the schemes of both SVM algorithms. Accord-
ing to the Karush-Khun-Tucker conditions, the residuals be-
tween the observations and the model output are used to control
the Lagrange multipliers. In the DSM based SVM algorithms,
the Lagrange multipliers are the input to a linear, time invari-
ant, non-causal system whose impulse response is the Mer-
cer’s kernel. Interestingly, in the PSM based SVM algorithms,
the Lagrange multipliers can be seen as the input to a single
linear, time invariant system, whose global input response is
heq

n = hn ∗ h−n ∗ δn−M (Fig. 3). It is easy to show that heq
n is the

expression for a Mercer’s kernel, that emerges naturally from
the PSM formulation. This provides with a new direction to
explore the properties of the DSM SVM algorithms in connec-
tion with classical Linear System Theory, which is following
described.

Property 34 (DSM for Sparse Deconvolution Problem Statement).
Given the sparse deconvolution signal model equation in Prop-
erty 8, and given a set of observations {yn}, these observations
can be transformed into

zn = yn ∗ h−n ∗ δn−M , (76)

and hence, a DSM SVM algorithm can be obtained by using a
expansion solution with the following form,

ŷm =

n∑
n=0

ηnK(n,m) = ηn ∗ hn ∗ h−n = ηn ∗ Rh
n, (77)

where Rh
n is the autocorrelation of hn, and Lagrange multipliers

ηn can be readily obtained according to the DSM Theorem.

Figure 11(b) depicts this new situation, which can be easily
solved now. This simple transformation of the observations al-
lows to address the sparse deconvolution problem for any im-
pulse response hn to be considered in the practical application.

7.4. DSM Application Examples

This section highlights the differences between primal and
dual SVM signal model equations, focusing on nonuniform in-
terpolation and sparse deconvolution.
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Figure 12: Application example for SVM sinc interpolation from PSM and
DSM. (a) Training, test, and reconstructed signals in the time domain. (b) Tem-
poral representation of the model coefficient discrete-time sequences.

Nonuniform Interpolation. For comparison purposes, PSM
and DSM were used for denoising a signal consisting on the
sum of two squared sincs, one of them being a lower level, am-
plitude modulated version of the baseband component,

y(t) = sinc2
(
π

T0
t
) (

1 +
1
2

sin (2π f t)
)

+ e(t), (78)

where f = 0.4 Hz. A set of L = 32 samples was used with aver-
aged sampling interval T = 0.5s [38]. The signal to noise ratio
was 10dB, and performance was measured on a test, noise-free,
uniformly sampled version of the signal with sampling interval
T/16, as an approximation to the continuous time signal. Fig-
ure 12 shows the training and test signals, as well as the PSM
and DSM interpolation with sinc kernel, and DSM with RBF
kernel. The time representation of the model coefficients was
similar in PSM and DSM, but not equal, when using the sinc
kernel. Note that the sparseness obtained by the RBF kernel
was significantly higher than for the sinc kernel (see the origi-
nal reference for details).

Sparse Deconvolution. In [39], sparse deconvolution with
SVM is benchmarked for analyzing a B-scan given by an ul-
trasonic transducer array from a layered composite material,
details on this application can be found elsewhere [71]. Fig-
ure 13(a) shows a signal example (A-scan) of the sparse signal

estimated by several methods. The same panel also shows the
reconstructed observed signal. The L1 deconvolution yielded
good quality solution with a noticeably number of spurious
peaks, the DSM algorithm yielded a good quality solution with
less spurious peaks, and the Gaussian Mixture (GM) algorithm
often failed at detecting the low amplitude peaks. Figure 13(b)
shows the reconstruction of the complete B-scan data.

8. Discussion and Conclusions

We presented a unified framework for signal processing with
SVM. The framework is constituted by a set of basic tools
(regularization, cost function, primal-dual signal formulations),
operations (shift-invariant Mercer’s kernel, sinc kernels, direct
sum of Hilbert spaces), and signal models (PSM, RSM, DSM).
For illustration purposes, several standard problems in DSP
have been addressed, namely filtering, linear and non-linear
system identification, spectral estimation, interpolation, sparse
deconvolution, and antenna array processing. The capabilities
of this framework for developing new models for DSP have
been illustrated in selected experiments, with improved results
compared to standard formulations.

The main motivation behind the presented framework relies
on the lack of insight of the signal-model structure when using
the standard SVR. Certainly, developing signal processing tools
with support vector machines has led to the extensive use of the
kernel trick for reformulating the linear problem at hand. This
is, of course, a valid approach to develop SVM based methods
for signal processing. However, as highlighted both theoret-
ically and experimentally, this can be a limited methodologi-
cal approach as a wide variety of time series structures are not
taken into account. The statements of a signal model equation
in the primal equations, in the RKHS, and in the solution (dual)
equation of the SVM, yield different algorithms. Also, by in-
specting the signal structure, it is possible to develop more ap-
propriate SVM models that accommodate it, and that general-
ize the common stacked-vector approach plus “kernelization”.
The framework has demonstrated to be particularly useful to
develop SVM formulations for time-series data.

Another relevant aspect for developing SVM-based signal
processing algorithms is the use of a flexible cost function. We
make emphasis here on the use of a general ε-Huber cost func-
tion which generalizes several SVR losses. In fact, the Vapnik’s
ε-insensitivity cost [3] is a particular case for δ = 0, and the
LS-SVM cost [72] is a particular case for ε = 0 and δC large
enough.

The proposed framework for DSP is quite general and admits
any kind of non-parametric regression machine, such as Gaus-
sian Processes (GPs) [73], for the same task. Certainly, the nice
properties of GPs would be worth exploring in the near future.
In particular, free parameter tuning through the maximization
of the marginal likelihood would make the methods more ap-
pealing. Also, providing predictive variances could be an inter-
esting advantage for some signal processing applications, such
as system identification or time series prediction.

Future work includes the possibility of developing schemes
for input feature selection in time-series problems, and the ex-
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Figure 13: Example of real data application: sparse deconvolution of the impulse response in a ultrasound transducer for the analysis of a layered composite material.
(a) Example of deconvolution of a single A-scan line with each algorithm: left, sparse estimated signal; right, estimated A-line. (b) Deconvolution of the B-scan
data.

tension of these concepts to multi-dimensional problems, spe-
cially for interpolation in three-dimensional spaces. Imple-
menting efficient time recursion in the RKHS to develop work-
ing kernel versions of standard adaptive and recursive algo-
rithms in DSP is also a field to be explored.
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