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Weighted SPICE: A Unifying Approach for
Hyperparameter-Free Sparse Estimation

Petre Stoica, Dave Zachariah, Jian Li

Abstract—In this paper we present the SPICE approach for becomes a sparse vector afhdl (1) applies. Identification of a
sparse parameter estimation in a framework that unifies it nonzero component, therefore concomitantly identifies the
with other hyperparameter-free methods, namely LIKES, SLIM corresponding gridpoin®;, which becomes an estimate of

and IAA[] Specifically, we show how the latter methods can th i ter. Anoth le. that .
be interpreted as variants of an adaptively reweighted SPIE € nonlinear parameter. Another example, that appears in

method. Furthermore, we establish a connection between SEE ~ applications of machine learning and statistics, is finding

and the /;-penalized LAD estimator as well as the square-root general input-output mapping

LASSO method. We evaluate the four methods mentioned above

in a generic sparse regression problem and in an array proceing yi = h(0;) + e,

application.

from data {6;,v:;}2Y,. The nonlinear mapping is modeled

by a sparse linear combination of kernel functioh§d;) =

Zévzl k(6;,0;)x;, where{z;} denote the expansion coef-
During the past two decades, sparse parameter estimafiefents [8]. Thus the sparse linear modgl (1) applies and

for the ubiquitous linear model identification of the nonlinear mapping can be posed as a

sparse parameter estimation problem, whereijtte element
y=BeteeC", BeCTY (1) O?B is Fg);iven by the kernel fuzctioh(ei, 0;). !

has become an important problem in signal processingsstati Many popular sparse estimation methods are based on reg-

tics and machine learnin@I[1].][2].][3], with applicatioreng- ularizing the least-squares method by penalizing a norrheof t

ing from spectral analysis and direction-of-arrival estiion to  parameter vectog, in an attempt to strike a balance between

magnetic resonance imaging and biomedical analysis[[}], [6lata fidelity and parameter sparsitithile such sparsifying

[6], [7]. In this modelz € CM denotes the unknown sparsemethods can estimate in highly underdetermined scenarios,

parameter vector ang € CV is the vector of observationsmost of them require the careful selection of user-defined

with typically M > N. The matrix of regressordB is regularization hyperparameteis [9]. [10], [11],[12], §L3]

assumed to be given and the unknown naisés assumed for a critical discussion.

to have zero mearfFor M > N, the problem is ill-posed, Recently, asparse iterative covariance-basedstimation

unless the knowledge about the sparsityrois exploited. method ($I1CE) was proposed which does not require any
Exploiting sparsity also enables one to tackle nonlinelyperparameters, yet has good statistical propefties [14],

estimation problems. Consider, for example, a nonlineateho [16]. In this tutorial paper:

which consists of the superposition of an unknown number of, e set out to derive four different hyperparameter-free

|. INTRODUCTION

mode vectors - methods in a unifying 8ice-like manner: the methods
y=)Y h(6,)z +e, are ICE, LIKES, SLIM and laA [16], [17], [18]. In
i the process we provide insights into these methods, and
whereh(8) is a given function of unknown paramete?s € derive new versions of each of them.

©. Each mode has an amplitude. This model is relevant Furthermore, we establish the connection betweritS
to spectral analysis and related applications. By gridimg t and/;-penalized 1ap as well as the square-roorsso
parameter spac® using a sufficiently large number of points ~ Methods[[18],[[20]. . _
{6),})1,, we can approximate the nonlinear model by means® Finally, we evaluate the four methods in two different
of a dictionary of mode vectors evaluated at the fixed grid Scenarios: a generic sparse regression problem and a
points B = [h(8:) --- h(8x)] such thate = [z -~ 2] 7 direction-of-arrival estimation application.
Notation: Matrices, vectors and scalars are distinguished by
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a square matrixA. We use dia@l,,...,dy) or diagd) to In general one can expectdd (4) to be a less biased estimate

compactly denote a diagonal matrix with entries frdmA > than [3), but[[B) to have a smaller MSE. Interestingly, if the

B signifies the Lowner order between Hermitian matriges sameP is used in both[{3) and4) then:

and B. The Kronecker delta is denoted By,. The proper

complex Gaussian distribution with mean and covariance

matrix 3 is denotedCA (u, X). The probability of eventz In particular this means that the estimdié (3)aofs always

is written asPr{E}. sparser thar({4). This fact follows from the following simpl
Abbreviations: If and only if (iff). Subject to (s.t.). result:

With respect to (w.r.t.). ldentically and independentlys-di Lemma 1

tributed (IID). Signal-to-noise ratio (SNR). Mean square e ' . 1

ror (MSE). Linear minimum mean square error (LMMSE). Pr < L.l 6)

Least squares (LS). Second-order cone program (SOCP). R ay

Direction-of-arrival (DOA). Uniform linear array (ULA). The proof of this lemma, as well as of the subsequent ones,

Least absolute deviation fD). Least absolute shrinkage andcan be found in AppendixIB.

selection operator (Asso). Focal underdetermined system If & K-sparse estimate af is desired, that is an estimate

solver (Focuss. Sparse iterative covariance-based estimatidix} Where onlyK elements are nonzero, then we can apply

(SPicE). Likelihood-based estimation of sparse parameteie LS method to[{1) where we retain only the columnsBof

(LIKES). Sparse learning via iterative minimizationL(®). Whose indices correspond to tii¢ largest peaks ofpy } L ;.

lterative adaptive approachad). SPIQE_estimatgs{pk} by minimizing the following covari-
ance fitting criterion:

IR ?(yy* — R)|% = tr{(yy* — R)R ' (yy" — R)}
= |lyll3y*R 'y + tr{ R} + const,

1Tx](3) < |Tx](4)- (5)

II. BRIEF REVIEW OF THE BASICSPICE APPROACH

SPICE was introduced as a covariance fitting approach
in [14], [15], [16]. In what follows we consider the one-

snapshot case ofl(1), but the method is easily extended to (7)
the multisnapshot case as we show in Appeiidix A. Consider equivalently,
the following ‘model’ for the covariance matrix of the data M+N
vectory: y'R 'y + TolE wgpk,  wy, = [lag]3. (8)
P1 0 PM+1 0 ’ =l
R—B B+ Next we note the following result:
0 P 0 DPM4N ) Lemma 2. Let
* NxN M+N
=APATe T, p=argmin g(p), g(p) =y* R (P)y+¢ > wips,
where P k=1
A2 [BIy], P =dagp), where ¢ > 0, and let
and whereA = [a; ay --- ayyn] € CNXMHN) gndp £ M+N
(1., puan]’ € RYTN. The covariance matrisR(p) is p=argmin f(p), f(P) =y "R (P)y + Z Wi Pr-
a function of the parameterg} which can be interpreted p k=1
as the variances ofz;} and {e;}. In the next section, we Then
will discuss the covariance modél (2) in more detail. While i D = cp.

appears to assume thaty, e; } are uncorrelated, this should ) , . .
not be interpreted as a restriction, as will be explained. Note also that a uniform scaling ofp,} leaves {2}

In the spectral analysis applications of sparse parametiichanged whether using LMMSE, Capon or LSQ- It follows
estimation, the main goal is to estimafig, }. In most of the [ToM these observations that the constant fadigf; in (8)

other applications, the goal is the estimationzofEven in the &N be omitted. Thus we can reformulate tfracE criterion

latter case, there exists a class of methods (that inclinesst 25 MAN

discussed here) which first obtain estimafgs} of {p:} and min y*R 'y + Z WeP- 9)
then, if desired, estimate via the usual LMMSE estimator {px} 1

formula [21]:

When||ax||2 = const, the weights in[{P) can be replaced by
~—1 )

ir=praiR y, k=1,...,M, (3) 1s.
~ ~ ) . _ The problem in[{(B) is convex, namely an SOCPI[15], and
where R = APA". As we show in the next sections, thishence it can be solved globally [23]. Rather than solvingyit b
estimate also occurs naturally W|th_|n an augmented VersigR off-the-shelves SOCP code, the following iterative icycl
of the S"CE_ approach. An alternative is to use the CapoRinimizer, which monotonically decreasgs (9) at each iena
formula [22]: and converges globally [14], 5], was found to be prefezabl

azﬁily from a computational standpoint:
——= k=1,...,M. (4) _
~—1 ’ ’ ) i D 1
a;R ay Pt = hilaiR; yl/Vwk, (SPICE) (10)

Tk =



where k = 1,2,...,M + N and R, = Adiag(p')A* To understand the role gb in the estimation ofx, we
denotes the covariance matrix estimate at iteratjome use a rewrite the criterion in[{9) in terms of the original modg),(1
subindex ‘a’ for the 8ICE algorithm in [10) to differentiate it with the help of the following result.

o . oo
from a variation that will be presented later on, see Se@#n Lemma 3. Let

below.
We remark on the fact that we have allowed the noise PM+1 0 p1 0
e to have different powers, say? = pri1, 02 = S = : I =
5 S
PM+2,---,0% = pu+n, in different data samples for three 0 PMAN 0 Pt
reasons:
« notational simplicity (it allows treating the noise powerg—hen
similarly to {px}+., and not differently as is the case M
o= . : *qg—1 2 _ o x—1
when the conditionr? = o2, Vk, is enforced). min (y — Bx)"S™ (y — Bz) + > lwkl*/pk =y Ry
« generality (in some applications;?, o3,...,0%, may k=1 (11)

well be different from one another).

« even if the noise powers are uniform = o, Vk, but
we either do not know that or prefer not to impose this & =TIB*R 'y. (12)
condition, $I1cE with different noise powers works well. L
Indeed, the degradation of accuracy compared with that't follows from the above lemma that the minimizer of the
achieved by imposing? = o2, Vk, is not significant — SPICE criterion in [9) can also be obtained by minimizing the

we explain why this is so in the next section. On thipllowing function (w.r.t.both z and p):

and the minimum value occurs at

other hand, if we are sure thaf = o2, Vk, and want N M M+N
to enforce this condition, then we can do so with only Z lyx — bix|®/Park + Z |2k /pe + Z wrpk, (13)
some minor modifications of the algorithms (séel[14], k=1 k=1 k=1
[13], [16] and AppendiX €). where b;, denotes theith row of B. Minimization of (I3)

Finally, we note that the form of 8cE, iteration, [I0), is sim- w.r.t. {p;} yields:
ilar to that associated withdcuss|[24]; the main difference

between the two methods lies in the way the noise powers are P = okl Vg, k=1,.... M (14)
treated: Bcussassumes that the noise powers are identical PyM+k = lyk — brx|//wnmtrk, k=1,...,N.

andgiven (possibly estimated by some other method), whergasertion of [1%) into[(IB) gives:
SpPICE does not make this restrictive assumption.

W2y - Ba)lls + || Wy . (15)
IIl. ON THE COVARIANCE MODEL AND THE LINK OF SPICE where W, = diagwarsi,...,waen) and Wy =

TO £1-PENALIZED LAD diagwsy, ..., wy); this is recognized as a (weighted)-

There are several important questions about the covariamenalized lap criterion [19].
model in [2): The above analysis has several implications, some far:L

a) Assume thatz and e are drawn from correlated distri- e« The /;-penalized laD estimate ofz can be obtained
butions (i.e. distributions whose covariance matrices are using the ®ICE, algorithm, [1D), to estimat¢p;} and
not diagonal). Then will 8iCE, and the other estimation  then get& from (@2) (note that[{(12) is identical t1(3)).
methods discussed later, still work despite seemingly-rely ~ For the complex-valued data case|Se can be expected
ing on the diagonal covariance matrix [0 (2)? Note that in  to be faster than other convex programming techniques
the Bayesian approach to sparse estimation (see€lg. [25]), that are used to geit from (13) directly.
@) is viewed as a ‘prior information’ — however this does o If the conditiono? = o5 = --- = 0% is enforced,
not offer any satisfactory answer to the above equation, then the ®iCE approach was shown in_[26]._[27] to
as priors are not ‘forgotten’ in problems with many more  be equivalent to the square-roontso method of [20]

unknowns than data samples (. > N), as in the case (see also AppendikIC for a more direct proof of this
considered here. equivalance result). This fact establishes an interesting
b) In fact what do{p;} estimate? Do they estimafér;|?}? connection between square-rootdso and/;-penalized

c) If indeedo? = o2, Vk, do we significantly degrade the LAD.
accuracy by using a nonuniform noise power model as #&nd some for SICE:

@7 _ S _ _ o The ICE estimates{p,} of {p.} are not estimates of
d) Is () a unique description, i.e. for a givéh can we find 2|2 and|ex|? but of (scaled versions of) the square-roots

a P # P such thatAPA" = APA™? of these quantities. However, wher), is an estimate of
We will provide answers to questions a)-c) by establishing 1/p, or a quantity related to/p, (see Sectiof V), then
the connection between thee&E criterion in [9) and the/; - it follows from (I4) that{p,} estimategzy|?.

penalized lap criterion. Then we will address the question in « SPicE will still work even if the {z}.} and{e,} in (@) are
d) by means of a separate analysis. drawn from correlated distributions; indeed, whem &



is viewed from the perspective of its equivalence with nullspace ofA may or may not satisfy {17) depending on
penalized lap (or square-root kSso), its performance whether the signs of the coefficients which do not belong
does not depend significantly on the wayand e were to the support op are all the same.

generated because the performance of #heenalized

LAD or square-root kssois not strongly dependent on |V. LIKEs, SLIM, IAA (AND NEW VERSIONS THEREOK AS
that [19], [20]; in this light, {px} and the ‘covariance (RE)WEIGHTED SPICE

model"in {3) can be "'e.WGd as be"_]g nothing but instru- oo nqider the sice fitting criterion in [9) with general
ments employed to achieve the equivalence proven aboygy sy, ~ 0} (possibly different than the weights il (9)).
and hence not for necessarl.ly pr_ov_|d|ng atrue d_esc:npu@?)r fixed weights,[(9) is a convex function df}, which

of the dat.a} cov;anance2 matrix. S|m|I2arIy, by not IMPOSINGan be globally minimized, for example, by the algorithm in
the conditionoy = o5 = --- = of, when this was ). In the following we will derive[{T0) by using gradient
known to be true, we b_a5|_ca||y do nothing but choos, pproachthat is simpler than the cyclic minimization approach
to useEl-penallzed_ laD in lieu of square-root hSSQ, employed in [14], [15], [15]. The gradient approach is also
and the difference in accuracy between the latter meth dre flexible in that it suggests alternatives fa](10) which

Is usually not significant. may be interesting in their own right.
In the above discussion we have provided answers to

guestions a)-c). Next, we turn our attention to question dA. WeidhtedSpIcE
The parameterization/descriptidd (2) Bf is unique iff there " 9 o _
is no diagonal matrixQ = diag(q) # 0 (whereq € RM+N) The derivative of[(B) w.r.tp, is equal to

which is such that: e 1 OR _ w1 12
AQA* =0 (16) —y'R 6—ka y+w, =—|agR "yl  +wp.  (19)
and Consequently, thé: + 1)th iteration of a gradient algorithm
P+Q>o, (17) (with variable step length) applied tb] (9) is given by:
Equation [IB) can be re-written as: Pe = Pi — pi(wr — lai R, yl?), (20)
. M+N whereR; is made from{p: }, as before, and the step sizp
veqAQA") =vec| > qiaxaj must be non-negative
. k=1 . P > 0. (21)
a1 ! MEN MmNl Because{p;, > 0} by definition, we shall also choogé such
i.e., equivalently, that:
~% ~i41
Also, for easy reference, we can wrife17)as-q > 0. In Let us choose Ny
the analysis of[{18), the rank of the matrik 2 A*T © A ol = Dk (23)
clearly is an essential factor: wy, + wi/2|a7§§;1y|

i) Assume thatV/ < N (i.e. M +N < 2N) and that anyV
columns ofA are linearly independent. Then rdok) = . .
M + N [28] and thus[(IB) impliegy = 0, which means ., jiw; +ppwy*lai Ryl — pwk + pilap R, yl?
that the descriptio{2) oR is unique. L

iy If M+ N < N2, thenA has full rank (equal ta/ + N) .
for almost any matrixA (assumed to be drawn from a _ Pila;R; yl
continuous distribution) [29] and hendg (2) is generically - w2

H k
unique. B _
iii) For M + N > N2, ranKA) < M + N and there exists thatis, . o e
q # 0 that satisfy[(IB). In this scenario one must consider Pyt =pilarR; yl/w,” (SPICE) (24)

two cases. Let be the maximum integer such that any and thus[(22) is satisfied too. Note that whep — | a2,

COlumnS ofA are linearly independent. Then, [jpljo > (24) is nothing but the Sicg, algorithm in equation (@0),
Qe4331ilsuzociru:(l)%t%i(;Alljze(rjee?)serltﬂr'log%nrtahee?nga)mr:;):)f whose derivation above is more direct than the derivation in
) ) .o [14], [15], [16] which was based on cyclically minimizing an
anc'i[p und((ajr c;nn&d;er:atlonl. To se;ﬁthls, lAtdenc;Fe thte augmented criterion function.
tmha fix made Irom te co\;;vrgns correfrﬁ)on ng to As already mentioned, the gradient approach is also more
€ n?n{erogemintﬁ %1’ 7e0n ”é’”o - d_er(? ex_ltshs flexible in the sense that, in (20) can be chosen in several
a vectorg # 0 such thatAg = 0. By appendingg wi different ways than[{23) to obtain alternative algorithros t

zeros we can therefore form a vectprthat fulfills both . : . :
~ . es .
Acq — 0 andp + cq > 0, for a sufficiently smalk. On @4). A particularly simple such choice (that satisfies (24)

the other hand, wheltp||o < r then such a vectay in the ph = pt Jwy, (25)

which satisfies[(21). A simple calculation gives:

~—1
Wi + wi/2|aZRi Y|



which leads to i) Update R in (29), and the weight$wy }, and go to step
i AP i).
B = phlai R, P we (Spice)  (26) "

This leads to the following iterative schemes:

(therefore [(2R) is satisfied as well). When, = ||ax||2, (28) . o .
minimizes the same criterion ds{24) and will therefore be re ﬁ}jl =prlarR; y|/(a;R, ak)l/Q, (LIKESa)  (30)
ferred to as 8ICE,. Both algorithms share the same stationa
points, but they may have different rates of convergence.
particular observe that the step length[in](23) is smallanth it i 2w L
@3), when both are evaluated using the saipig}. P =Pl yl* /(iR ar) (LIKESp).  (31)

In the next sections we will consider different choiceitially, we set¢ = 0, and the above updates are executed as
of the weights than S&cFEs, which will lead to other follows:
hyperparameter-free methods, namelygs, SLim and IAA. 1) lterate fori = £,6+1,...,0 +m — 1, wherem is the

Unlike SPICE, whose weights are constant, these algorithms = ,mber of iterations in which the weights are kept fixed.
use data-dependent weights that change with the iteration. 2y Reset/ + ¢+ m, and go to 1).

r .
%’ﬁ, alternatively,

The algorithm in[(3D) is recognized asWEs [16], whereas
B. LIKES the one in[(3) is a new version. To distinguish between them
The current problem of estimatingp,} from y is not we have designated them asEs, and LIKESy, respectively.
a standard one especially owing to the fact thdt+ N Because these algorithms update the weight§ih (29), they ca
= number of unknownss 2N = number of (real-valued) only be interpreted as minimizers of the criterion[inl (29ngs
data. Even so, the analysis n[30], as well as data-whitenithe weights obtainedt convergenceThis does not say much
considerations, suggest that a possibly (statisticallgiteh as to the convergence properties [of]1(30) [ar] (31), an aspect
covariance matching criterion thad (7) is the following pne that will be addressed in the next section. Here we only note
12 ~-1/2 that the two iterative algorithms above clearly have theesam
R (yy" - R)R 17, (27) stationary points. However, their rates of convergence to a

where R is an available estimate aR. A straightforward Stationary point may be different from one another.
calculation shows thaf (27) can be re-written as:
* DL - C. SLIM
[y - IR (yy — )R] | o |
~—1 o Consider[(2P) with different weights:
=(y'R y)(y*"R 'y) +tr(R R)+ const. X
M+N wr = 1/px. (32)

~—1 ~—1
=R y(y'R 'y + Z (apR ar)px +cONst.  The corresponding penalty term [129) would then be a more
b=t (28) direct approximation of|p||o than whenw;, = a;ﬁ_lak as
) _ for LIKES. In fact it follows from Lemma 1 that the weights in
In_view of Lemma 2 we can omit the constant factoyzg) arelarger than LIKES’ weights. Consequently the use of
(y*R y) in (28), which leads to the following weighted@z) should yield sparser estimates{gf.} than LKEs does.

SPICE criterion: Note that this interpretation is valid as long as the weiginés
M+N 1 kept fixed and therefore it does not extend necessarily to the
YR 'y+ > wipr, wi=(apR ap). (29) case in which the weights are updated (because in the latter

k=1 case different weights lead to different estimategf} and

Unlike SpicE's weights, which are data independent, the,} hence the weights at different iterations do not correspond
in 29) depend on the data (vﬁ), Note thatwy, in (29) can to the same{p;} any longer). However, empirical evidence
be interpreted as the Capon estimatel ¢f;, (see e.g.[[22]). suggests that the above observation remains typicallyd vali
This means that the penalty term [n29) is an approximatieven in that case.

of ||p|lo rather than just being proportional to tig-norm Using [32) in [2%) and(26) yields the algorithms:

of p as for PICE. It is well known that thely-(quasi)norm

. ) . Sl (AiN3/2) kT
is the most sensible measure of the sparsity of a parameter Pt = (1) *|ai R,y (SLiMa) (33)
vector because it is not dependent on the size of the eleme
of that vector, as is thé;-norm (see, e.g./ [31] for a general " i el
rnorm (see, e.g.LI3}1] fora g = (1) lai R,y (SLMy) (34)

discussion on this aspect).
It follows from the above discussion that the weights igyhere [3#) is recognized asL® [17] (more precisely, an
(29) are intuitively a more appealing choice than tflec®'s  extension of the Bm-0 algorithm in the cited reference to
weights in [9). The data-dependent weights [in] (29) can Bge case of different noise powers) afd](33) is a new version
updated in the following way: thereof that we call BM,. Most comments made in the
i) Fix Rin {wy} and use[(24) or((26) to minimiz& (P9),previous subsection about thekies algorithm apply to[(3B)
or at least monotonically decrease this function for a prand [34) as well. In particulaf(B3) and {34) clearly have th
specified number of iterations. same stationary points.



D. 1aa by the following linear function of p;} (after omitting some

The weights in[(32) were larger thanes'. Next consider UNinteresting additive constants):

the following weights: M+N M+N
wi, = pr(aj R~ ay)? (35) O pe=pe — Opre | |pu=pr
M+N
which, in view of Lemma 1, aremallerthan LIKES weights _ i (a*ﬁ—la p
(whenever both sets of weights are computed from the same P k k)Pk
{Pr}). The estimates of{p,} corresponding to[{35) can - (39)

therefore be expect to bless sparsghan LIKES estimates; _ _ o
and this fact, despite the cautionary note followifig] (32), inserting [39) into[(38) we get the criterion [0 {29). ThexEs

confirmed by empirical evidence. algorithms decreasé_(29) at each iteration (see, once again
Using [35) in [24) and[{26), in the same fashion as dofppendixD) and therefore, by the properties of majorizatio
above for $IM, we get: minimization approaches (e.g. [32]), they decrehsk (38)ano

tonically. This fact implies that the sequence akEs esti-
pitt = (ﬁz)lﬂ|azﬁ;1y|/(a,’;1§;lak) (1aA,)  (36) mates converges to a local minimum Bf](38), or at least that
it contains such a convergent sub-sequehce [33]. Becaase th
and _ S 1 current estimation problem is not a standard one, as already
ot =larR; yl*/(aiR; ar)® (1AAp) (37) mentioned, convergence to a minimum of the negative log-
likelihood function in [38) does not automatically guaeat
good statistical properties; nevertheless it is an intergs
statistical interpretation of IKES.

Remark In the light of the above discussion, theISE
criterion can also be related to {38) by replacing the pgnalt
termin |R| in (38) with tr{ R}. The criterion associated with
V. STATISTICAL INTERPRETATIONS AND CONVERGENCE  SLIM can be similarly interpreted, see below.

PROPERTIES

The same comments, made previously on theels and
SLim algorithms, apply verbatim toal, and laa, as well.
Note that hA, concides with the original AA algorithm
introduced in [[18] whereasah, is a new version.

A. SPICE C. SLIM

The SIcE algorithms minimize the convex covariance | In|R| in (@8) is replaced byin|P|, which is also an

fitting criterion in [9), and they can be shown to be globally, . eaging concave function dfy, > 0} and thus can serve
convergent from any initial estimatgp, > 0} ([14], [15], 45 5 penalty term, we obtain the criterion:
[16]). This property basically follows from the convexity o

the problem, and the fact that botl®I8E, and $1CE, mono- . M+N
tonically decrease the optimization criterion (as expdiin YR 'y+ > Inpy. (40)
Appendix(D). k=1

The other algorithms discussed here also globally minimizg,o tangent plane for the second term[ial (40), at &}, is
their corresponding covariance fitting criteria providedttthe given by (to within an additive constant);

weights are kept fixed. This is a useful property as long as

the weights are reasonable approximations ffi,. However, " o(In pr) MAN
when the weights are continuously updated, adin (29), (32) Z ey T Z o (41)
and [35), this property is no longer valid and a separate k=1 k=1

analysis is needed to provide statistical interpretatafrieese |nsertion of [@1) in[[4D) yields a majorizing function forQy
algorithms, as well as analyze their convergence proseste®e that coincides with the 1Sm criterion [32). Consequently,
the next subsections. similarly to what was concluded followin§(B9) aboutEs,

the S.1M algorithms generate a sequence of estimates that
monotonically decreasels {40) and converges to a minimum of

) ) __ this function, or at least comprises a sub-sequence that doe
Under the covariance model iril(2) and the additiona,

Gaussian data assumption, the negative log-likelihoodtfon
of y is (to within an additive constant):

B. LIKES

D. laA

Both LIKES and S.IM monotonically decrease a cost func-
The first term in[(3B) is a convex function whereas the secotidn of the form
is an increasing concave function ¢py, > 0} [16]. This y* R 'y + h(p), (42)
implies that the second term in(38) acts as a sparsity-induc
penalty. The previous fact also means that the fundtigi®?| whereh(p) is an increasing concave function. Fewml, on the
in (38) is majorized by its tangent plane at any pginthat is other hand, no function of this form can be found.

y*R 'y +1In|R|. (38)



The proof is by contradiction. If indeed a concave functioaof iterations, which is corroborated by empirical expecien
h(p) existed whose derivatives w.rt, were the weight$w;} cf. [17]. Unlike SPicE, which solves the powers of afy-
of 1A, e, penalized problem, ISm can be understood as a heuristic
oh(p) approach to approximate afy-penalized problem. We set
Opi, the number of iterations, somewhat aribitrarily, to 5 in the
then the Hessian matrix of that function would have th@umerical evaluations.
elements: IAA:_ Emplrlca!l_y_ we found that whenN grows large
numerical instabilities could occur due to numerical esror

= pk(aZRilak)Qa

0*h(p) - (a;Rflak)zékj — 2pk(a}§R71ak)|aZR71aj|2- when computinga;Ri_lak > 0, which make the quantity
Opr0p; ' complex-valued. We ensure that this quantity is real-v@lue
But this matrix is not symmetric as required, let alone niegat When numerically evaluating the weights ofA and LIKES,
definite, and thus we reached a contradiction. ie., use Réa; R; 'ay}.

A partial statistical motivation of AA along with a lo- ~ Remark:In the interest of reproducible research we have

cal convergence proof can be found [n[18].1[34]. A morgade the codes for FSCE, LIKES, SLim and IAA, as well
definitive statistical interpretation oAk and a global analysis as for the simulations in the subsequent section, available
of its convergence properties are open problems that awitt PS:// wwmv. i t. uu. se/ kat al og/ davza513.
resolution. A possible way of attacking these problems is to

view the IAA algorithms as fixed-point iterations and attempt VI. NUMERICAL COMPARISONS

to make use of the available results on the convergence bf SUC|n this section we compare the four hyperparameter-free

iterations in the literature (see, e.¢..[35]) to settleeast the methods, BICE, LIKES, SLIM and IAA, by means of numeri-

question aboutAA’s convergence properties. cal examplesThe standard kssowith cross-validation based
hyperparameter selection has already been compared’with
E. Implementational aspects penalized lab in [19]. In the cited paper and in_[20], the

. . . . . robustness of;-penalized lab and square-root ASSO with
Version-a vs. version-b algorithmEmpirical experience .
. . . respect to the hyperparameter choice was demonstrated and
with the previous algorithms suggests that the convergence .
o own to be an important advantage over the standagsb
of SPICE, and LIKES, can be significantly slower than that o . .
Here, two different sparse parameter inference problems ar

SPICE, and LlKE_Sa_. A plausible explanatior_1 for this_ follows a}ddressed for the linear model [ (1) with~ CA’(0, 02 Iy ).
from the analysis in AppendiID: when usirlg126) instead Note that despite generating noise with uniform powers, we

@).we get equality m[(BS?, instead of |nequall|ty, pogmblwi" not impose this constraint but rather use the general
leading to a smaller reduction of the cost function. Further

algorithms derived in the previous sections.
more, the new AA,, was found to work at least as well or 9 P

better than the originalAlap. These findings suggest usingreFlrSt we consider a generic regression problem with 11D

. : . ressorsh;; ~ 0,1). In this case the cross-correlation
the a-versions of the algorithms rather than the b-versions 9 vig ~ CN(0,1)

o o . between the columns dB is low. Next, we consider a DOA
Initialization and termination:Unless otherwise stated, the

lqorith initialized with timat btai estimation problem in which the adjacent columnsBfare
algorithms are '[‘é 1alize Vg' pO\gver estimates obtain highly correlated with each other. In both problems we let
a matched filterp} = |a}y|*/||ax||5, Yk and the convergence

LRI - ; ; . M = 1000.
~i+1 ot A1
tolerance for termination in || Pl2/[P72 <cis set \yo " gofing  the signal-to-noise ratio as SNRZ:

to 10~°. The algorithms are set to terminate if the number %[HB:L‘H%]/E[HEH%] = S es e |2/02, whereS denotes the

|terSat|on§_?;]<cgedeld 1OOtO.t' i24) foll th . ._true support set of nonzero coefficients. The performance
PICE The Implementation as | ) follows the origina etrics are evaluated using 1000 Monte Carlo simulations.

setup of the algorithni[15], and was found to be numerical e used a PC with Intel i7 3.4 GHz CPU and 16 GB RAM.

stable for all the tested cases. The algorithms were implemented inAVILAB (MS Win7) in

L.'tKESt:. The olr_|g|?al vefrsélr?n R;z "K'TS Wtis fc_)rmurigtﬁdthas a rather direct manner without paying significant attention
an iterative application of the BcE algorithm in which the computational details.

weights are refined repeatedly [16]IKES minimizes a non-

convex function with a number of local minima that typically

increases asV grows. Empirically we found that initializing A 1D regressors

the algorithm with the power estimates frormISE, as in the ~ The regressor matrixB is randomized in each Monte

original formulation, produces better results than wheingis Carlo run. We considef(-sparse vectorg € C'°°°, where

the matched filter. This is how we will initializelKES in the K = 3, with a fixed support sef = {400,420,600}. The

numerical evaluations. Further, we update the weights asrianzero coeffients; = |zx|e/?* have fixed powers{1,9,4},

(30) with m = 30. It was found that too frequent updates ledespectively, and uniformly drawn phases, forc S. The

to performance degradation. estimatest;, are computed using the LMMSE formulgal (3).
SLim: As we have seen1$v decreases a cost functionThe Capon formulal{4) produces less sparse estimates with

with a concave penality term. This function, however, lacksigher MSE.

a global minimum; it assumesoo if any power estimate is  Figure[1 illustrates the ability of the four algorithms to

0. Therefore it is advisable to terminate after a small numblercate the active coefficients:,. }.cs and provide reasonably
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Fig. 1. Estimategiy| versusk for a randomly selected realizatiolN = 35 samples and SNR- 20 dB.

small estimates ofzy }rgs, for a randomly selected realiza-
tion. LIKES and IaA produce sparser respectively denser es
mates than SICE. Note that the magnitude oAk estimates
for k ¢ S is substantially lower than for the other algorithms
A plausible explanation of this is that the power estimates f
k ¢ S capture a fraction of the residual power. Thus a ‘quas
sparse’ method likeAA will spread this residual power more
evenly acrossk ¢ S, than a sparse method such asiNg
which will concentrate it into fewer nonzero estimates.
Figured2 an@3 show the mean square error metric MSE
E[||z — #||3], normalized by the signal powét[||z||3]. This

. e . -85 —+— SPICE S~
metric quantifies the ability of the methods to localize S as —o—LKes N
well as provide reasonably small estimatesiar S. For ref- I | vy b

. ) P - — - Oracl
erence we have added the performance of an ‘oracle’ estime a5 Orte - . - - )

for which the unknown support sétis given; it computes the
LS estimate for these coefficients, the performance of whici
provides a lower MSE bound. Note that & = 1000, the
uniqueness conditioh/ + N < N2, is satisfied whedv > 33,
cf. Sectior(ll. Observe that wheN is above this threshold,
IAA performs better than the other algorithms in terms of

MSE. This MSE reduction is mainly attributable t@aA’s

ability to provide smaller coefficient estimates forg S. The performance of the standard beamformer was too low for
The next two figures show plots of the support-set detectigiibility and therefore omitted.

rate, Py = Pr{S = S‘}. We obtain the estimated support set, Finally, Figure[6 shows the average computation time until
S, for each algorithm as the set of indices corresponding tonvergence for each algorithm. While the implementations
the K = 3 largest values opy, k =1,..., M. Figured# and are not carefully optimized, the figure should illustratéeaist
show P; as a function of SNR andv. We can see thaP,; the relative order of the algorithms. Noticeably, in the t&se
approaches 1 for all algorithms &é increases, and also thatwith the present signal dimensionsRISE tends to be slower
SpicE and LIKES perform the best in the low sample scenaridhan S.iM and IAA which update their weights adaptively.

SNR [dB]

Fig. 2. Normalized MSE versus SNR for the IID regression fgoh N = 35
samples.
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Fig. 3. Normalized MSE versud/ for the 1ID regression problem, SNR  Fig. 5. Probability of correct support-set detectiBp versusN for the IID
20 dB. regression problem, SNR 20 dB.
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Fig. 4. Probability of correct support-set detectif versus SNR for the Fig. 6. Average computation time versdé for the [ID regression problem,
1ID regression problem)N = 35 samples. SNR= 20 dB

Not only does the performance ohA degrade whemV < o4 17.9°, respectively. As before the amplitudes fore S
33, but the algorithm tends to require more iterations ”mélre generated ag, — |ax|e’** with fixed powers{1,9,4]},
convergence. respectively, and uniformly drawn phases.
Figure[T illustrates the ability of the four algorithms to

B. Steering-vector regressors locate the sources and estimate their amplitudes in a ralydom

We now consider estimating the directions of arrival o$elected realization. The estimatgsare computed using the
the source signals impinging on a uniform linear arragapon formulal(#) which in the present case is less biased
(ULA) with half-wavelength separation between elementiwards zero than[{3). Note thatiKES produces sharper
In this problem the locations of the nonzero componengpectral estimates than the other algorithms. Next, wetfyan
of x are of interest rather tham itself. The columns of the accuracy of the DOA estimatd$, } obtained from the

= [b(61) - -- b(A,r)] are given by the array steering vectotocations of the three peaks ¢fy. },Z L In Figure[8 we plot
b(9) = [Lemmsin® ... e (N-Umein@] T [27], and a uniform the root MSE per source, RMSE 1/ - E[|6 — ||2], where
grid of angles{0x};1, C [-90°,90]8 We considerk’ = _3 6 and 6 denote the vectors of ordered DOAs and estimates,
sources located i, k € S = {400’4.20’600} Orl the g“fj'- respectively. For reference, we have also included thelatan
This corresponds to DOAs at approximately8.1°, —14.5 beamformer performance. As SNR increases above 10 dB

2Here k = wed/c, wherew, is the signal frequencyd is the element the errors of BICE, LIKEs and laA fall well below the
spacing andt: is the propagation velocity. We set= . RMSE of the beamformer. Figulg 9 shows the probability
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Fig. 7. Estimatesz| in a randomly selected realizatiotN = 35 sensors and SNR 20 dB.
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Fig. 8. Root mean square error of DOA estimates, per sousrsps SNR. Fig. 9. Probability of detectio®; versus SNR for steering-vector regressors,
N = 35 sensors. N = 35 sensors.

Figure[I0 illustrates the average computation time versus
of detecting theK sources withinA¢@ degrees from the true NV, and the order of the algorithms is the same as in Figlre 6.
DOA, P; = Pr{|0; — 9}| < Af,Vi}. Here we setAf to half Recall that 8im is set to terminate after 5 iterations.
of the distance between the two closely-spaced DOAs, i.e.,
A6 = 1.8°. For this metric, AA turns out to perform at least VII. CONCLUSIONS
slightly better than the other algorithms which all locadte t In this article we have presented a framework for sparse
peaks substantially better than the beamforrRer. a further parameter estimation based on thei&E fitting criterion and
analysis of the resolution limit of sparse methods, $eé, [36] gradient optimization approach. This framework was shown
[37]. to have several appealing features:
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perform slightly better than the rest.

T T
—+— SPICE

APPENDIXA
THE MULTISNAPSHOT CASE

The SPicE criterion [1) extends to the multisnapshot sce-
nario as follows:

IR"V*(R-R)|} =tr{(R— RR"'(R- R)}

Average time [s]

e (43)
i 3 =tr{RR "R} + tr{R} + const,
0s ] whereR 2 L ST y,yr andT is the number of snapshots
(possiblyT < N). The derivative of[(4B3) w.r.tp; is equal to
. S e e — A A A OR
10 20 30 40 50 60 70 80 90 100 — — —
o {RleRIR} +wy, = —||ai R R3 + w.
k

Fig. 10. Average computation time vershsfor steering-vector regressors, Then the $iCE algomhms m) andﬂG) become
SNR = 20 dB.

" v 1=
Pt = pillaiR; Rl2/w,® (SPICE)  (44)

o It unifies four hyperparameter-free methods, namebnd, respectively,
SPICE, LIKES, SLIM and IAA, the latter three methods . _ L
being instances of BCE with adaptive weights. Pt =pillai R, R||3/wp (SPICE). (45)

« It enables further insights into the above four algorithms,
including the analysis of their convergence properties a4hen the number of snapshdts> N one may use a modified
statistical performance. In particular, we showed how trest function, viz||R™"/2(R — R)R™"/?||2, cf. [15].
weights used by these methods determine the sparsity of
their corresponding estimates.

o Finally, it makes it possible to derive new versions of the
algorithms by considering different step-lengths in the
gradient approach. Lemma 1

We also investigated the covariance model upon which the.l.h
SPICE criterion is based, and:

APPENDIXB
LEMMA PROOFS

e inquality in [6) follows if we can

-1 ~—1
sho that P - A*R A or, equivalently,
. Provided identifiability conditions for this model. W = quva ently

=172 L~ 12 ) L
« Showed that depending on whether the noise powers a(rféf__ P A (A_PA ) AP = 0 hc_)wever this is
modeled nonuniformly or uniformly, the &ce method obviously true since the left hand side /IS the orthogonal
! . . . ~1/2
coincides with the/;-penalized laD or the square-root Projection matrix onto the null space ofP = .
LAssoproblems. This fact also established a connection
between the latter two methods.
. .Lemma 2
The four hyperparameter-free methods were evaluated in two
different inference problems with IID and steering-vector We have that

regressors, respectively. The results indicated that:
o The a-version algorithms appear to be better than the b- cf(ﬁ)\

M+N
= cy*(AcPA") 'y +c Z WCPk

versions in terms of convergence and statistical perfor- p=cp =1
mance. M+N

o In problems with 1ID regressors bothP&E and LIKES =y'R'y+¢ Z WE Pk
perform similarly and they exhibit a graceful degradation k=1
as the number of samples decreases. For a sufficient =g(p)

number of samples, such thaf + N < N2, the ‘quasi-
sparse’ hA method, however, was found tprovide and thus
smaller parameter estimatfes the true zero coefficients. . .
« In the steering-vector regressor case the peaks of the cf(ep) = g(P) < g(p) = cf(cp), V{px = 0}
amplitude spectrum using the Capc_)n formula were legs,ich implies:
biased towards zero than when using the LMMSE for-
mula. LIKES was computationally more demanding than f(®) < f(®),Y{pr > 0},
the rest, but produced a sparser amplitude spectrum.
For locating spectral peaks, howevexal was found to and this concludes the proof.



Lemma 3
A simple calculation yields:

(y — Bz)*S™'(y — Bz)
=y'Sly—y*S'Bx—a2*B*S 'y +2*B*S 'Bx
Therefore the criterion i {11) can be re-written as:
z*(B*S™'B+II Yz —2*B*S 'y—y*S ' Bx+constant
which yields the minimizer
&= (B*S'B+11 1) 'B*Sy.
Next, note that
(B*S™'B+ 1 HIIB* = B*S 'BIIB* + B*
= B*S Y(BIIB* + S)

(46)

or equivalently,

(B*S™'B+m ')"'B*S™' =TIB*(BIIB* + S) !,
which means tha{(46) can be re-written as[inl (12).
It remains to evaluate the criterion &t Because

y— Bi = (I, — BIIB*R ')y
=(R- BIIB*)R 'y
=SR 'y
we have
(y — Bz)*S™'(y — Bz) + ' '&
=y*R 'SR 'y +y*R 'BIIB*R 'y
_ y*R—ly
which concludes the proof.

APPENDIXC
SPICE FOR IDENTICAL NOISE POWERS

In this case the covariance model becomes:
R = BIIB* + Iy
and [11) becomes

(47)

M
min ||y — Be|3/0° + ) |2il* /o =y R™'y.
* k=1
It follows that the minimizer{p;.} of the SPICE criterion can
also be obtained by minimizing the function:

M M M+N
|y—Bm||§/o'2+Z|xk|2/pk+2wkpk+( > wk> o’
k=1 k=1 k=M+1
2
(48)
Minimization of (48) w.r.t.c? and{p;} gives:
2
= - B
o> = lly - Bal/u )

pr = |zk|/Vwr, k=1,..., M.
Inserting [49) in[(4B) yields (to within a multiplicativedtor):

wlly — Bz|ls + [|diagy/wr, .. ., Vwar)z|

which is the criterion of the square-rooakso (with weights

for the /;-norm of ). The above proof is more direct than

the one in[[26], [[2V].
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APPENDIXD
CYCLIC MINIMIZATION INTERPRETATION

The gradient approach in Sectibnl IV is simple and quite

flexible; unlike the cyclic minimization approach in [14L9],
[16], the gradient approach produced not only the original
algorithms but also different versions of them. Howevee th
gradient approachannotbe used to conclude the monotonic
decrease property used in the convergence analysis in Sec-
tion[Vl Indeed, while the function

M+N

fp)=y" R 'y+ > wipr (wg given)

k=1
is convex, the gradient-based algorithms might overshust t
minimum, and hence they are not guaranteed to monotonically
decrease this function. To prove such a property we need the
cyclic minimization framework.

Let
§f|mP
9(B,p) = <
1 Pk
(the augmented function used by this framework). As shown

in [14], [15], [1€]

+ww0 (50)

M+N
ming(8,p) = y"R 'y + > wpr (st AB=y) (51)
k=1
and the minimum is attained at

Br = prajR™'y. (52)

To show this result, let

X
o= [y - Bw}
which satisfies the constraint ih {51); then clearly the ltesu
equivalent to Lemma 3.

It follows from (&1) that to gefp that minimizesf(p) we
can cyclically minimizey(3, p) w.r.t. 3 andp. For givenp, the
minimizing 3 is given by [52). For a givef, the minimization
of ¢(8,p) w.r.t. p yields

1/2

Py = |Bkl/wy (53)

Iteratively, this means (combinind_(52) and (53) into one
equation): _

Pt (54)
which is [23). Therefore, fol(24) the monotonic decreasing
property of f(p) is guaranteed:

i T 1/2
= prlapR; 1y|/wk/

f@@—ﬂﬁﬁUZMﬁﬁ”UZﬂﬁ“ﬁ”ﬂzf@T%
55

But does this property hold fof (26) as well? Fbrl(26), i.e.,

Pr = pilai Ryl fwy,
we have that:
A . ~—1 ) ~—1
61 2 y A7\ 2 a*R» 2 A7 a*R- 2
|Aii|1 +w1€p2+1= (pk) | li_zl Y| wk+wkpk| KLY Y|
Py pilaiR; yl? Wk
1B
= wiPy, + |A—f|

Py,



Hence

and the monotonic decrease property holds[fal (26) too (g)WiW]

9B =98, p)

to the second inequality ih (b5)).
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