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Weighted SPICE: A Unifying Approach for
Hyperparameter-Free Sparse Estimation

Petre Stoica, Dave Zachariah, Jian Li

Abstract—In this paper we present the SPICE approach for
sparse parameter estimation in a framework that unifies it
with other hyperparameter-free methods, namely LIKES, SLIM
and IAA. 1 Specifically, we show how the latter methods can
be interpreted as variants of an adaptively reweighted SPICE
method. Furthermore, we establish a connection between SPICE
and the ℓ1-penalized LAD estimator as well as the square-root
LASSO method. We evaluate the four methods mentioned above
in a generic sparse regression problem and in an array processing
application.

I. I NTRODUCTION

During the past two decades, sparse parameter estimation
for the ubiquitous linear model

y = Bx+ e ∈ C
N , B ∈ C

N×M (1)

has become an important problem in signal processing, statis-
tics and machine learning [1], [2], [3], with applications rang-
ing from spectral analysis and direction-of-arrival estimation to
magnetic resonance imaging and biomedical analysis [4], [5],
[6], [7]. In this modelx ∈ CM denotes the unknown sparse
parameter vector andy ∈ CN is the vector of observations
with typically M ≫ N . The matrix of regressorsB is
assumed to be given and the unknown noisee is assumed
to have zero mean.For M > N , the problem is ill-posed,
unless the knowledge about the sparsity ofx is exploited.

Exploiting sparsity also enables one to tackle nonlinear
estimation problems. Consider, for example, a nonlinear model
which consists of the superposition of an unknown number of
mode vectors

y =
∑

i

h(θ̃i)x̃i + e,

whereh(θ̃) is a given function of unknown parametersθ̃i ∈
Θ. Each mode has an amplitudẽxi. This model is relevant
to spectral analysis and related applications. By griding the
parameter spaceΘ using a sufficiently large number of points
{θk}Mk=1, we can approximate the nonlinear model by means
of a dictionary of mode vectors evaluated at the fixed grid
pointsB = [h(θ1) · · · h(θM )] such thatx = [x1 · · · xM ]⊤
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1All abbreviations used in this paper are explained at the endof the
Introduction.

becomes a sparse vector and (1) applies. Identification of a
nonzero componentxk therefore concomitantly identifies the
corresponding gridpointθk which becomes an estimate of
the nonlinear parameter. Another example, that appears in
applications of machine learning and statistics, is findinga
general input-output mapping

yi = h(θi) + ei,

from data {θi, yi}Ni=1. The nonlinear mapping is modeled
by a sparse linear combination of kernel functions,h(θi) =∑N

j=1 k(θi, θj)xj , where {xj} denote the expansion coef-
ficients [8]. Thus the sparse linear model (1) applies and
identification of the nonlinear mapping can be posed as a
sparse parameter estimation problem, where theijth element
of B is given by the kernel functionk(θi, θj).

Many popular sparse estimation methods are based on reg-
ularizing the least-squares method by penalizing a norm of the
parameter vectorx, in an attempt to strike a balance between
data fidelity and parameter sparsity.While such sparsifying
methods can estimatex in highly underdetermined scenarios,
most of them require the careful selection of user-defined
regularization hyperparameters [9], [10], [11], [12], cf.[13]
for a critical discussion.

Recently, a sparse iterative covariance-basedestimation
method (SPICE) was proposed which does not require any
hyperparameters, yet has good statistical properties [14], [15],
[16]. In this tutorial paper:

• We set out to derive four different hyperparameter-free
methods in a unifying SPICE-like manner: the methods
are SPICE, L IKES, SLIM and IAA [16], [17], [18]. In
the process we provide insights into these methods, and
derive new versions of each of them.

• Furthermore, we establish the connection between SPICE

andℓ1-penalized LAD as well as the square-root LASSO

methods [19], [20].
• Finally, we evaluate the four methods in two different

scenarios: a generic sparse regression problem and a
direction-of-arrival estimation application.

Notation:Matrices, vectors and scalars are distinguished by
A, a and a, respectively. Re{a} denotes the real part ofa.
Defined variables are signified by,. A1/2 is a matrix square-
root ofA andA−1/2 is its inverse.A⊗B andA⊙B denote
the Kronecker and Khatri-Rao matrix products.A⊤ andA∗

denote the transpose and Hermitian transpose ofA. vec(A)
is the column-wise vectorization ofA. ‖ · ‖1, ‖ · ‖2 and‖ · ‖F
are theℓ1, ℓ2 and Frobenius norms, and‖ · ‖0 denotes theℓ0
‘quasi-norm’ which equals the number of nonzero entries of
a vector. tr{A} and |A| denote the trace and determinant of
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a square matrixA. We use diag(d1, . . . , dN ) or diag(d) to
compactly denote a diagonal matrix with entries fromd. A �
B signifies the Löwner order between Hermitian matricesA

and B. The Kronecker delta is denoted byδjk. The proper
complex Gaussian distribution with meanµ and covariance
matrix Σ is denotedCN (µ,Σ). The probability of eventE
is written asPr{E}.

Abbreviations: If and only if (iff). Subject to (s.t.).
With respect to (w.r.t.). Identically and independently dis-
tributed (IID). Signal-to-noise ratio (SNR). Mean square er-
ror (MSE). Linear minimum mean square error (LMMSE).
Least squares (LS). Second-order cone program (SOCP).
Direction-of-arrival (DOA). Uniform linear array (ULA).
Least absolute deviation (LAD). Least absolute shrinkage and
selection operator (LASSO). Focal underdetermined system
solver (FOCUSS). Sparse iterative covariance-based estimation
(SPICE). Likelihood-based estimation of sparse parameters
(L IKES). Sparse learning via iterative minimization (SLIM ).
Iterative adaptive approach (IAA ).

II. B RIEF REVIEW OF THE BASICSPICE APPROACH

SPICE was introduced as a covariance fitting approach
in [14], [15], [16]. In what follows we consider the one-
snapshot case of (1), but the method is easily extended to
the multisnapshot case as we show in Appendix A. Consider
the following ‘model’ for the covariance matrix of the data
vectory:

R = B



p1 0

. . .
0 pM


B∗ +



pM+1 0

. . .
0 pM+N




= APA∗ ∈ C
N×N ,

(2)

where
A , [B IN ], P , diag(p),

and whereA = [a1 a2 · · · aM+N ] ∈ CN×(M+N) andp ,

[p1, . . . , pM+N ]⊤ ∈ R
M+N
+ . The covariance matrixR(p) is

a function of the parameters{pk} which can be interpreted
as the variances of{xk} and {ek}. In the next section, we
will discuss the covariance model (2) in more detail. While it
appears to assume that{xk, ek} are uncorrelated, this should
not be interpreted as a restriction, as will be explained.

In the spectral analysis applications of sparse parameter
estimation, the main goal is to estimate{pk}. In most of the
other applications, the goal is the estimation ofx. Even in the
latter case, there exists a class of methods (that includes those
discussed here) which first obtain estimates{p̂k} of {pk} and
then, if desired, estimatex via the usual LMMSE estimator
formula [21]:

x̂k = p̂ka
∗
kR̂

−1
y, k = 1, . . . ,M, (3)

where R̂ = AP̂A∗. As we show in the next sections, this
estimate also occurs naturally within an augmented version
of the SPICE approach. An alternative is to use the Capon
formula [22]:

x̂k =
a∗
kR̂

−1
y

a∗
kR̂

−1
ak

, k = 1, . . . ,M. (4)

In general one can expected (4) to be a less biased estimate
than (3), but (3) to have a smaller MSE. Interestingly, if the
sameP̂ is used in both (3) and (4) then:

|x̂k|(3) ≤ |x̂k|(4). (5)

In particular this means that the estimate (3) ofx is always
sparser than (4). This fact follows from the following simple
result:

Lemma 1.
p̂k ≤

1

a∗
kR̂

−1
ak

. (6)

The proof of this lemma, as well as of the subsequent ones,
can be found in Appendix B.

If a K-sparse estimate ofx is desired, that is an estimate
{x̂k} where onlyK elements are nonzero, then we can apply
the LS method to (1) where we retain only the columns ofB

whose indices correspond to theK largest peaks of{p̂k}Mk=1.
SPICE estimates{pk} by minimizing the following covari-

ance fitting criterion:

‖R−1/2(yy∗ −R)‖2F = tr{(yy∗ −R)R−1(yy∗ −R)}
= ‖y‖22y∗R−1y + tr{R}+ const.,

(7)

or equivalently,

y∗R−1y +
1

‖y‖22

M+N∑

k=1

wkpk, wk = ‖ak‖22. (8)

Next we note the following result:

Lemma 2. Let

p̂ = argmin
p

g(p), g(p) = y∗R−1(p)y + c2
M+N∑

k=1

wkpk,

where c > 0, and let

ˆ̄p = argmin
p̄

f(p̄), f(p̄) = y∗R−1(p̄)y +

M+N∑

k=1

wkp̄k.

Then
ˆ̄p = cp̂.

Note also that a uniform scaling of{p̂k} leaves {x̂k}
unchanged whether using LMMSE, Capon or LS. It follows
from these observations that the constant factor‖y‖22 in (8)
can be omitted. Thus we can reformulate the SPICE criterion
as:

min
{pk}

y∗R−1y +

M+N∑

k=1

wkpk. (9)

When‖ak‖2 ≡ const., the weights in (9) can be replaced by
1’s.

The problem in (9) is convex, namely an SOCP [15], and
hence it can be solved globally [23]. Rather than solving it by
an off-the-shelves SOCP code, the following iterative cyclic
minimizer, which monotonically decreases (9) at each iteration
and converges globally [14], [15], was found to be preferable
from a computational standpoint:

p̂i+1
k = p̂ik|a∗

kR̂
−1

i y|/√wk, (SPICEa) (10)



3

where k = 1, 2, . . . ,M + N and R̂i = Adiag(p̂i)A∗

denotes the covariance matrix estimate at iterationi; we use a
subindex ‘a’ for the SPICE algorithm in (10) to differentiate it
from a variation that will be presented later on, see SectionIV
below.

We remark on the fact that we have allowed the noise
e to have different powers, sayσ2

1 = pM+1, σ2
2 =

pM+2, . . . , σ
2
N = pM+N , in different data samples for three

reasons:

• notational simplicity (it allows treating the noise powers
similarly to {pk}Mk=1 and not differently as is the case
when the conditionσ2

k ≡ σ2, ∀k, is enforced).
• generality (in some applications,σ2

1 , σ
2
2 , . . . , σ

2
N , may

well be different from one another).
• even if the noise powers are uniform,σ2

k ≡ σ2, ∀k, but
we either do not know that or prefer not to impose this
condition, SPICE with different noise powers works well.
Indeed, the degradation of accuracy compared with that
achieved by imposingσ2

k ≡ σ2, ∀k, is not significant –
we explain why this is so in the next section. On the
other hand, if we are sure thatσ2

k ≡ σ2, ∀k, and want
to enforce this condition, then we can do so with only
some minor modifications of the algorithms (see [14],
[15], [16] and Appendix C).

Finally, we note that the form of SPICEa iteration, (10), is sim-
ilar to that associated with FOCUSS [24]; the main difference
between the two methods lies in the way the noise powers are
treated: FOCUSS assumes that the noise powers are identical
andgiven (possibly estimated by some other method), whereas
SPICE does not make this restrictive assumption.

III. O N THE COVARIANCE MODEL AND THE LINK OF SPICE

TO ℓ1-PENALIZED LAD

There are several important questions about the covariance
model in (2):

a) Assume thatx and e are drawn from correlated distri-
butions (i.e. distributions whose covariance matrices are
not diagonal). Then will SPICE, and the other estimation
methods discussed later, still work despite seemingly rely-
ing on the diagonal covariance matrix in (2)? Note that in
the Bayesian approach to sparse estimation (see e.g. [25]),
(2) is viewed as a ‘prior information’ – however this does
not offer any satisfactory answer to the above equation,
as priors are not ‘forgotten’ in problems with many more
unknowns than data samples (i.e.M ≫ N), as in the case
considered here.

b) In fact what do{p̂k} estimate? Do they estimate{|xk|2}?
c) If indeedσ2

k ≡ σ2, ∀k, do we significantly degrade the
accuracy by using a nonuniform noise power model as in
(2)?

d) Is (2) a unique description, i.e. for a givenP can we find
a P̄ 6= P such thatAPA∗ = AP̄A∗?

We will provide answers to questions a)-c) by establishing
the connection between the SPICE criterion in (9) and theℓ1-
penalized LAD criterion. Then we will address the question in
d) by means of a separate analysis.

To understand the role ofp in the estimation ofx, we
rewrite the criterion in (9) in terms of the original model (1),
with the help of the following result.

Lemma 3. Let

S =



pM+1 0

. . .
0 pM+N


 , Π =



p1 0

. . .
0 pM


 .

Then

min
x

(y −Bx)∗S−1(y −Bx) +
M∑

k=1

|xk|2/pk = y∗R−1y

(11)
and the minimum value occurs at

x̂ = ΠB∗R−1y. (12)

It follows from the above lemma that the minimizer of the
SPICE criterion in (9) can also be obtained by minimizing the
following function (w.r.t.bothx and p):

N∑

k=1

|yk − b∗kx|2/pM+k +

M∑

k=1

|xk|2/pk +

M+N∑

k=1

wkpk, (13)

where b∗k denotes thekth row of B. Minimization of (13)
w.r.t. {pk} yields:

pk = |xk|/
√
wk, k = 1, . . . ,M

pM+k = |yk − b∗kx|/
√
wM+k, k = 1, . . . , N.

(14)

Insertion of (14) into (13) gives:

‖W 1/2
1 (y −Bx)‖1 +

∥∥∥W 1/2
2 x

∥∥∥
1
, (15)

where W 1 = diag(wM+1, . . . , wM+N ) and W 2 =
diag(w1, . . . , wM ); this is recognized as a (weighted)ℓ1-
penalized LAD criterion [19].

The above analysis has several implications, some for LAD:

• The ℓ1-penalized LAD estimate ofx can be obtained
using the SPICEa algorithm, (10), to estimate{pk} and
then getx̂ from (12) (note that (12) is identical to (3)).
For the complex-valued data case, SPICE can be expected
to be faster than other convex programming techniques
that are used to get̂x from (15) directly.

• If the condition σ2
1 = σ2

2 = · · · = σ2
N is enforced,

then the SPICE approach was shown in [26], [27] to
be equivalent to the square-root LASSO method of [20]
(see also Appendix C for a more direct proof of this
equivalance result). This fact establishes an interesting
connection between square-root LASSO andℓ1-penalized
LAD.

and some for SPICE:

• The SPICE estimates{p̂k} of {pk} are not estimates of
|xk|2 and|ek|2 but of (scaled versions of) the square-roots
of these quantities. However, whenwk is an estimate of
1/pk, or a quantity related to1/pk (see Section IV), then
it follows from (14) that{p̂k} estimates|xk|2.

• SPICE will still work even if the{xk} and{ek} in (1) are
drawn from correlated distributions; indeed, when SPICE
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is viewed from the perspective of its equivalence withℓ1-
penalized LAD (or square-root LASSO), its performance
does not depend significantly on the wayx ande were
generated because the performance of theℓ1-penalized
LAD or square-root LASSO is not strongly dependent on
that [19], [20]; in this light,{pk} and the ‘covariance
model’ in (2) can be viewed as being nothing but instru-
ments employed to achieve the equivalence proven above;
and hence not for necessarily providing a true description
of the data covariance matrix. Similarly, by not imposing
the conditionσ2

1 = σ2
2 = · · · = σ2

N , when this was
known to be true, we basically do nothing but choose
to useℓ1-penalized LAD in lieu of square-root LASSO,
and the difference in accuracy between the latter methods
is usually not significant.

In the above discussion we have provided answers to
questions a)-c). Next, we turn our attention to question d).
The parameterization/description (2) ofR is unique iff there
is no diagonal matrixQ = diag(q) 6= 0 (whereq ∈ RM+N )
which is such that:

AQA∗ = 0 (16)

and
P +Q � 0, (17)

Equation (16) can be re-written as:

vec(AQA∗) = vec

(
M+N∑

k=1

qkaka
∗
k

)

= [a∗⊤
1 ⊗ a1 · · · a∗⊤

M+N ⊗ aM+N ]q = 0,

i.e., equivalently,

(A∗⊤ ⊙A)q = 0. (18)

Also, for easy reference, we can write (17) asp+ q ≥ 0. In
the analysis of (18), the rank of the matrix̃A , A∗⊤ ⊙ A

clearly is an essential factor:

i) Assume thatM < N (i.e.M+N < 2N ) and that anyN
columns ofA are linearly independent. Then rank(Ã) =
M +N [28] and thus (18) impliesq = 0, which means
that the description (2) ofR is unique.

ii) If M +N < N2, thenÃ has full rank (equal toM +N )
for almost any matrixA (assumed to be drawn from a
continuous distribution) [29] and hence (2) is generically
unique.

iii) For M + N > N2, rank(Ã) < M + N and there exists
q 6= 0 that satisfy (18). In this scenario one must consider
two cases. Letr be the maximum integer such that anyr
columns ofÃ are linearly independent. Then, if‖p‖0 >
r, (2) is not unique, whereas if‖p‖0 ≤ r then (2) may
be unique or nonunique depending on the instance ofA

andp under consideration. To see this, letĀ denote the
matrix made from the columns of̃A corresponding to
the nonzero elements ofp. When‖p‖0 > r there exists
a vectorq̄ 6= 0 such thatĀq̄ = 0. By appendinḡq with
zeros we can therefore form a vectorq that fulfills both
Ãεq = 0 andp+ εq ≥ 0, for a sufficiently smallε. On
the other hand, when‖p‖0 ≤ r then such a vectorq in the

nullspace ofÃ may or may not satisfy (17) depending on
whether the signs of the coefficients which do not belong
to the support ofp are all the same.

IV. L IKES, SLIM , IAA (AND NEW VERSIONS THEREOF) AS

(RE)WEIGHTED SPICE

Consider the SPICE fitting criterion in (9) with general
weights{wk > 0} (possibly different than the weights in (9)).
For fixed weights, (9) is a convex function of{pk}, which
can be globally minimized, for example, by the algorithm in
(10). In the following we will derive (10) by using agradient
approachthat is simpler than the cyclic minimization approach
employed in [14], [15], [16]. The gradient approach is also
more flexible in that it suggests alternatives to (10) which
may be interesting in their own right.

A. WeightedSPICE

The derivative of (9) w.r.t.pk is equal to

− y∗R−1 ∂R

∂pk
R−1y + wk = −|a∗

kR
−1y|2 + wk. (19)

Consequently, the(i + 1)th iteration of a gradient algorithm
(with variable step length) applied to (9) is given by:

p̂i+1
k = p̂ik − ρik(wk − |a∗

kR̂
−1

i y|2), (20)

whereR̂i is made from{p̂ik}, as before, and the step sizeρik
must be non-negative

ρik ≥ 0. (21)

Because{pk ≥ 0} by definition, we shall also chooseρik such
that:

p̂ik ≥ 0 ⇒ p̂i+1
k ≥ 0. (22)

Let us choose

ρik =
p̂ik

wk + w
1/2
k |a∗

kR̂
−1

i y|
(23)

which satisfies (21). A simple calculation gives:

p̂i+1
k =

p̂ikwk + p̂ikw
1/2
k |a∗

kR̂
−1

i y| − p̂ikwk + p̂ik|a∗
kR̂

−1

i y|2

wk + w
1/2
k |a∗

kR̂
−1

i y|

=
p̂ik|a∗

kR̂
−1

i y|
w

1/2
k

,

that is,
p̂i+1
k = p̂ik|a∗

kR̂
−1

i y|/w1/2
k (SPICEa) (24)

and thus (22) is satisfied too. Note that whenwk = ‖ak‖22,
(24) is nothing but the SPICEa algorithm in equation(10),
whose derivation above is more direct than the derivation in
[14], [15], [16] which was based on cyclically minimizing an
augmented criterion function.

As already mentioned, the gradient approach is also more
flexible in the sense thatρik in (20) can be chosen in several
different ways than (23) to obtain alternative algorithms to
(24). A particularly simple such choice (that satisfies (21)) is:

ρik = p̂ik/wk (25)
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which leads to

p̂i+1
k = p̂ik|a∗

kR̂
−1

i y|2/wk (SPICEb) (26)

(therefore (22) is satisfied as well). Whenwk = ‖ak‖22, (26)
minimizes the same criterion as (24) and will therefore be re-
ferred to as SPICEb. Both algorithms share the same stationary
points, but they may have different rates of convergence. In
particular observe that the step length in (23) is smaller than
(25), when both are evaluated using the same{p̂ik}.

In the next sections we will consider different choices
of the weights than SPICE’s, which will lead to other
hyperparameter-free methods, namely LIKES, SLIM and IAA .
Unlike SPICE, whose weights are constant, these algorithms
use data-dependent weights that change with the iteration.

B. L IKES

The current problem of estimating{pk} from y is not
a standard one especially owing to the fact thatM + N
= number of unknowns≫ 2N = number of (real-valued)
data. Even so, the analysis in [30], as well as data-whitening
considerations, suggest that a possibly (statistically) better
covariance matching criterion than (7) is the following one:

‖R−1/2(yy∗ −R)R̂
−1/2‖2F , (27)

where R̂ is an available estimate ofR. A straightforward
calculation shows that (27) can be re-written as:

tr
[
(yy∗ −R)R̂

−1
(yy∗ −R)R−1

]

= (y∗R̂
−1

y)(y∗R−1y) + tr(R̂
−1

R) + const.

= (y∗R̂
−1

y)(y∗R−1y) +

M+N∑

k=1

(a∗
kR̂

−1
ak)pk + const.

(28)

In view of Lemma 2 we can omit the constant factor
(y∗R̂

−1
y) in (28), which leads to the following weighted

SPICE criterion:

y∗R−1y +

M+N∑

k=1

wkpk, wk = (a∗
kR̂

−1
ak). (29)

Unlike SPICE’s weights, which are data independent, the{wk}
in (29) depend on the data (viâR). Note thatwk in (29) can
be interpreted as the Capon estimate of1/pk (see e.g. [22]).
This means that the penalty term in (29) is an approximation
of ‖p‖0 rather than just being proportional to theℓ1-norm
of p as for SPICE. It is well known that theℓ0-(quasi)norm
is the most sensible measure of the sparsity of a parameter
vector because it is not dependent on the size of the elements
of that vector, as is theℓ1-norm (see, e.g., [31] for a general
discussion on this aspect).

It follows from the above discussion that the weights in
(29) are intuitively a more appealing choice than the SPICE’s
weights in (9). The data-dependent weights in (29) can be
updated in the following way:

i) Fix R̂ in {wk} and use (24) or (26) to minimize (29),
or at least monotonically decrease this function for a pre-
specified number of iterations.

ii) UpdateR̂ in (29), and the weights{wk}, and go to step
i).

This leads to the following iterative schemes:

p̂i+1
k = p̂ik|a∗

kR̂
−1

i y|/(a∗
kR̂

−1

ℓ ak)
1/2, (L IKESa) (30)

or, alternatively,

p̂i+1
k = p̂ik|a∗

kR̂
−1

i y|2/(a∗
kR̂

−1

ℓ ak) (L IKESb). (31)

Initially, we setℓ = 0, and the above updates are executed as
follows:

1) Iterate fori = ℓ, ℓ + 1, . . . , ℓ + m − 1, wherem is the
number of iterations in which the weights are kept fixed.

2) Resetℓ← ℓ+m, and go to 1).

The algorithm in (30) is recognized as LIKES [16], whereas
the one in (31) is a new version. To distinguish between them
we have designated them as LIKESa and LIKESb, respectively.
Because these algorithms update the weights in (29), they can
only be interpreted as minimizers of the criterion in (29) using
the weights obtainedat convergence. This does not say much
as to the convergence properties of (30) or (31), an aspect
that will be addressed in the next section. Here we only note
that the two iterative algorithms above clearly have the same
stationary points. However, their rates of convergence to a
stationary point may be different from one another.

C. SLIM

Consider (29) with different weights:

wk = 1/p̂k. (32)

The corresponding penalty term in (29) would then be a more

direct approximation of‖p‖0 than whenwk = a∗
kR̂

−1
ak as

for L IKES. In fact it follows from Lemma 1 that the weights in
(32) arelarger than LIKES’ weights. Consequently the use of
(32) should yield sparser estimates of{pk} than LIKES does.
Note that this interpretation is valid as long as the weightsare
kept fixed and therefore it does not extend necessarily to the
case in which the weights are updated (because in the latter
case different weights lead to different estimates of{pk} and
hence the weights at different iterations do not correspond
to the same{p̂k} any longer). However, empirical evidence
suggests that the above observation remains typically valid
even in that case.

Using (32) in (24) and (26) yields the algorithms:

p̂i+1
k = (p̂ik)

3/2|a∗
kR̂

−1

i y| (SLIM a) (33)

and
p̂i+1
k = (p̂ik)

2|a∗
kR̂

−1

i y|2 (SLIM b) (34)

where (34) is recognized as SLIM [17] (more precisely, an
extension of the SLIM -0 algorithm in the cited reference to
the case of different noise powers) and (33) is a new version
thereof that we call SLIM a. Most comments made in the
previous subsection about the LIKES algorithm apply to (33)
and (34) as well. In particular, (33) and (34) clearly have the
same stationary points.
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D. IAA

The weights in (32) were larger than LIKES’. Next consider
the following weights:

wk = p̂k(a
∗
kR̂

−1
ak)

2 (35)

which, in view of Lemma 1, aresmaller than LIKES weights
(whenever both sets of weights are computed from the same
{p̂k}). The estimates of{pk} corresponding to (35) can
therefore be expect to beless sparsethan LIKES estimates;
and this fact, despite the cautionary note following (32), is
confirmed by empirical evidence.

Using (35) in (24) and (26), in the same fashion as done
above for SLIM , we get:

p̂i+1
k = (p̂ik)

1/2|a∗
kR̂

−1

i y|/(a∗
kR̂

−1

i ak) (IAA a) (36)

and
p̂i+1
k = |a∗

kR̂
−1

i y|2/(a∗
kR̂

−1

i ak)
2 (IAA b) (37)

The same comments, made previously on the LIKES and
SLIM algorithms, apply verbatim to IAA a and IAA b as well.
Note that IAA b concides with the original IAA algorithm
introduced in [18] whereas IAA a is a new version.

V. STATISTICAL INTERPRETATIONS AND CONVERGENCE

PROPERTIES

A. SPICE

The SPICE algorithms minimize the convex covariance
fitting criterion in (9), and they can be shown to be globally
convergent from any initial estimate{p̂k > 0} ([14], [15],
[16]). This property basically follows from the convexity of
the problem, and the fact that both SPICEa and SPICEb mono-
tonically decrease the optimization criterion (as explained in
Appendix D).

The other algorithms discussed here also globally minimize
their corresponding covariance fitting criteria provided that the
weights are kept fixed. This is a useful property as long as
the weights are reasonable approximations of1/pk. However,
when the weights are continuously updated, as in (29), (32)
and (35), this property is no longer valid and a separate
analysis is needed to provide statistical interpretationsof these
algorithms, as well as analyze their convergence properties, see
the next subsections.

B. L IKES

Under the covariance model in (2) and the additional
Gaussian data assumption, the negative log-likelihood function
of y is (to within an additive constant):

y∗R−1y + ln |R|. (38)

The first term in (38) is a convex function whereas the second
is an increasing concave function of{pk > 0} [16]. This
implies that the second term in (38) acts as a sparsity-inducing
penalty. The previous fact also means that the functionln |R|
in (38) is majorized by its tangent plane at any pointp̂, that is

by the following linear function of{pk} (after omitting some
uninteresting additive constants):

M+N∑

k=1

∂(ln |R|)
∂pk

∣∣∣
pk=p̂k

pk =

M+N∑

k=1

tr

[
R−1 ∂R

∂pk

] ∣∣∣
pk=p̂k

pk

=

M+N∑

k=1

(a∗
kR̂

−1
ak)pk

(39)

Inserting (39) into (38) we get the criterion in (29). The LIKES

algorithms decrease (29) at each iteration (see, once again
Appendix D) and therefore, by the properties of majorization-
minimization approaches (e.g. [32]), they decrease (38) mono-
tonically. This fact implies that the sequence of LIKES esti-
mates converges to a local minimum of (38), or at least that
it contains such a convergent sub-sequence [33]. Because the
current estimation problem is not a standard one, as already
mentioned, convergence to a minimum of the negative log-
likelihood function in (38) does not automatically guarantee
good statistical properties; nevertheless it is an interesting
statistical interpretation of LIKES.

Remark: In the light of the above discussion, the SPICE

criterion can also be related to (38) by replacing the penalty
term ln |R| in (38) with tr{R}. The criterion associated with
SLIM can be similarly interpreted, see below.

C. SLIM

If ln |R| in (38) is replaced byln |P |, which is also an
increasing concave function of{pk > 0} and thus can serve
as a penalty term, we obtain the criterion:

y∗R−1y +
M+N∑

k=1

ln pk. (40)

The tangent plane for the second term in (40), at any{p̂k}, is
given by (to within an additive constant);

M+N∑

k=1

∂(ln pk)

∂pk

∣∣∣
pk=p̂k

pk =

M+N∑

k=1

1

p̂k
pk. (41)

Insertion of (41) in (40) yields a majorizing function for (40)
that coincides with the SLIM criterion (32). Consequently,
similarly to what was concluded following (39) about LIKES,
the SLIM algorithms generate a sequence of estimates that
monotonically decreases (40) and converges to a minimum of
this function, or at least comprises a sub-sequence that does
so.

D. IAA

Both LIKES and SLIM monotonically decrease a cost func-
tion of the form

y∗R−1y + h(p), (42)

whereh(p) is an increasing concave function. For IAA , on the
other hand, no function of this form can be found.
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The proof is by contradiction. If indeed a concave function
h(p) existed whose derivatives w.r.t.pk were the weights{wk}
of IAA , i.e.,

∂h(p)

∂pk
= pk(a

∗
kR

−1ak)
2,

then the Hessian matrix of that function would have the
elements:

∂2h(p)

∂pk∂pj
= (a∗

kR
−1ak)

2δkj − 2pk(a
∗
kR

−1ak)|a∗
kR

−1aj |2.

But this matrix is not symmetric as required, let alone negative
definite, and thus we reached a contradiction.

A partial statistical motivation of IAA along with a lo-
cal convergence proof can be found in [18], [34]. A more
definitive statistical interpretation of IAA and a global analysis
of its convergence properties are open problems that await
resolution. A possible way of attacking these problems is to
view the IAA algorithms as fixed-point iterations and attempt
to make use of the available results on the convergence of such
iterations in the literature (see, e.g., [35]) to settle at least the
question about IAA ’s convergence properties.

E. Implementational aspects

Version-a vs. version-b algorithms:Empirical experience
with the previous algorithms suggests that the convergence
of SPICEb and LIKESb can be significantly slower than that of
SPICEa and LIKESa. A plausible explanation for this follows
from the analysis in Appendix D: when using (26) instead of
(24) we get equality in (55), instead of inequality, possibly
leading to a smaller reduction of the cost function. Further-
more, the new IAA a, was found to work at least as well or
better than the original IAA b. These findings suggest using
the a-versions of the algorithms rather than the b-versions.

Initialization and termination:Unless otherwise stated, the
algorithms are initialized with power estimates obtained from
a matched filter,̂p0k = |a∗

ky|2/‖ak‖42, ∀k and the convergence
tolerance for terminationε in ‖p̂i+1 − p̂i‖2/‖p̂i‖2 < ε is set
to 10−3. The algorithms are set to terminate if the number of
iterations exceeded 1000.

SPICE: The implementation as in (24) follows the original
setup of the algorithm [15], and was found to be numerically
stable for all the tested cases.

L IKES: The original version of LIKES was formulated as
an iterative application of the SPICE algorithm in which the
weights are refined repeatedly [16]. LIKES minimizes a non-
convex function with a number of local minima that typically
increases asN grows. Empirically we found that initializing
the algorithm with the power estimates from SPICE, as in the
original formulation, produces better results than when using
the matched filter. This is how we will initialize LIKES in the
numerical evaluations. Further, we update the weights as in
(30) with m = 30. It was found that too frequent updates led
to performance degradation.

SLIM : As we have seen SLIM decreases a cost function
with a concave penality term. This function, however, lacks
a global minimum; it assumes−∞ if any power estimate is
0. Therefore it is advisable to terminate after a small number

of iterations, which is corroborated by empirical experience,
cf. [17]. Unlike SPICE, which solves the powers of anℓ1-
penalized problem, SLIM can be understood as a heuristic
approach to approximate anℓ0-penalized problem. We set
the number of iterations, somewhat aribitrarily, to 5 in the
numerical evaluations.

IAA : Empirically we found that whenN grows large
numerical instabilities could occur due to numerical errors
when computinga∗

kR
−1
i ak > 0, which make the quantity

complex-valued. We ensure that this quantity is real-valued
when numerically evaluating the weights of IAA and LIKES,
i.e., use Re{a∗

kR
−1
i ak}.

Remark: In the interest of reproducible research we have
made the codes for SPICE, L IKES, SLIM and IAA , as well
as for the simulations in the subsequent section, availableat
https://www.it.uu.se/katalog/davza513.

VI. N UMERICAL COMPARISONS

In this section we compare the four hyperparameter-free
methods, SPICE, L IKES, SLIM and IAA , by means of numeri-
cal examples.The standard LASSOwith cross-validation based
hyperparameter selection has already been compared withℓ1-
penalized LAD in [19]. In the cited paper and in [20], the
robustness ofℓ1-penalized LAD and square-root LASSO with
respect to the hyperparameter choice was demonstrated and
shown to be an important advantage over the standard LASSO.
Here, two different sparse parameter inference problems are
addressed for the linear model in (1) withe ∼ CN (0, σ2IN ).
Note that despite generating noise with uniform powers, we
will not impose this constraint but rather use the general
algorithms derived in the previous sections.

First we consider a generic regression problem with IID
regressors,bij ∼ CN (0, 1). In this case the cross-correlation
between the columns ofB is low. Next, we consider a DOA
estimation problem in which the adjacent columns ofB are
highly correlated with each other. In both problems we let
M = 1000.

We define the signal-to-noise ratio as SNR,
E[‖Bx‖22]/E[‖e‖22] =

∑
k∈S |xk|2/σ2, whereS denotes the

true support set of nonzero coefficients. The performance
metrics are evaluated using 1000 Monte Carlo simulations.
We used a PC with Intel i7 3.4 GHz CPU and 16 GB RAM.
The algorithms were implemented in MATLAB (MS Win7) in
a rather direct manner without paying significant attentionto
computational details.

A. IID regressors

The regressor matrixB is randomized in each Monte
Carlo run. We considerK-sparse vectorsx ∈ C1000, where
K = 3, with a fixed support setS = {400, 420, 600}. The
nonzero coeffientsxk = |xk|ejφk have fixed powers,{1, 9, 4},
respectively, and uniformly drawn phases, fork ∈ S. The
estimatesx̂k are computed using the LMMSE formula (3).
The Capon formula (4) produces less sparse estimates with
higher MSE.

Figure 1 illustrates the ability of the four algorithms to
locate the active coefficients{xk}k∈S and provide reasonably
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Fig. 1. Estimates|x̂k| versusk for a randomly selected realization.N = 35 samples and SNR= 20 dB.

small estimates of{xk}k 6∈S , for a randomly selected realiza-
tion. LIKES and IAA produce sparser respectively denser esti-
mates than SPICE. Note that the magnitude of IAA estimates
for k 6∈ S is substantially lower than for the other algorithms.
A plausible explanation of this is that the power estimates for
k 6∈ S capture a fraction of the residual power. Thus a ‘quasi-
sparse’ method like IAA will spread this residual power more
evenly acrossk 6∈ S, than a sparse method such as SLIM

which will concentrate it into fewer nonzero estimates.
Figures 2 and 3 show the mean square error metric MSE,

E[‖x − x̂‖22], normalized by the signal powerE[‖x‖22]. This
metric quantifies the ability of the methods to localizek ∈ S as
well as provide reasonably small estimates fork 6∈ S. For ref-
erence we have added the performance of an ‘oracle’ estimator
for which the unknown support setS is given; it computes the
LS estimate for these coefficients, the performance of which
provides a lower MSE bound. Note that asM = 1000, the
uniqueness conditionM+N < N2, is satisfied whenN ≥ 33,
cf. Section III. Observe that whenN is above this threshold,
IAA performs better than the other algorithms in terms of
MSE. This MSE reduction is mainly attributable to IAA ’s
ability to provide smaller coefficient estimates fork 6∈ S.
The next two figures show plots of the support-set detection
rate,Pd , Pr{S = Ŝ}. We obtain the estimated support set,
Ŝ, for each algorithm as the set of indices corresponding to
theK = 3 largest values of̂pk, k = 1, . . . ,M . Figures 4 and
5 showPd as a function of SNR andN . We can see thatPd

approaches 1 for all algorithms asN increases, and also that
SPICE and LIKES perform the best in the low sample scenario.
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Fig. 2. Normalized MSE versus SNR for the IID regression problem,N = 35

samples.

The performance of the standard beamformer was too low for
visibility and therefore omitted.

Finally, Figure 6 shows the average computation time until
convergence for each algorithm. While the implementations
are not carefully optimized, the figure should illustrate atleast
the relative order of the algorithms. Noticeably, in the IIDcase
with the present signal dimensions, SPICE tends to be slower
than SLIM and IAA which update their weights adaptively.
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Fig. 3. Normalized MSE versusN for the IID regression problem, SNR=
20 dB.
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Fig. 4. Probability of correct support-set detectionPd versus SNR for the
IID regression problem,N = 35 samples.

Not only does the performance of IAA degrade whenN <
33, but the algorithm tends to require more iterations until
convergence.

B. Steering-vector regressors

We now consider estimating the directions of arrival of
the source signals impinging on a uniform linear array
(ULA) with half-wavelength separation between elements.
In this problem the locations of the nonzero components
of x are of interest rather thanx itself. The columns of
B = [b(θ1) · · · b(θM )] are given by the array steering vector
b(θ) = [1 e−jκ sin θ · · · e−j(N−1)κ sin θ]⊤ [22], and a uniform
grid of angles{θk}Mk=1 ⊂ [−90◦, 90].2 We considerK = 3
sources located atθk, k ∈ S = {400, 420, 600} on the grid.
This corresponds to DOAs at approximately−18.1◦, −14.5◦

2Here κ = ωcd/c, whereωc is the signal frequency,d is the element
spacing andc is the propagation velocity. We setκ = π.
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Fig. 5. Probability of correct support-set detectionPd versusN for the IID
regression problem, SNR= 20 dB.
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Fig. 6. Average computation time versusN for the IID regression problem,
SNR= 20 dB.

and 17.9◦, respectively. As before the amplitudes fork ∈ S
are generated asxk = |xk|ejφk with fixed powers{1, 9, 4},
respectively, and uniformly drawn phases.

Figure 7 illustrates the ability of the four algorithms to
locate the sources and estimate their amplitudes in a randomly
selected realization. The estimatesx̂k are computed using the
Capon formula (4) which in the present case is less biased
towards zero than (3). Note that LIKES produces sharper
spectral estimates than the other algorithms. Next, we quantify
the accuracy of the DOA estimates{θ̂k} obtained from the
locations of the three peaks of{p̂k}Mk=1. In Figure 8 we plot

the root MSE per source, RMSE,
√

1
K E[‖θ − θ̂‖22], where

θ and θ̂ denote the vectors of ordered DOAs and estimates,
respectively. For reference, we have also included the standard-
beamformer performance. As SNR increases above 10 dB
the errors of SPICE, L IKES and IAA fall well below the
RMSE of the beamformer. Figure 9 shows the probability
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Fig. 7. Estimates|x̂k| in a randomly selected realization.N = 35 sensors and SNR= 20 dB.
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Fig. 8. Root mean square error of DOA estimates, per source, versus SNR.
N = 35 sensors.

of detecting theK sources within∆θ degrees from the true
DOA, Pd , Pr{|θi − θ̂i| < ∆θ, ∀i}. Here we set∆θ to half
of the distance between the two closely-spaced DOAs, i.e.,
∆θ = 1.8◦. For this metric, IAA turns out to perform at least
slightly better than the other algorithms which all locate the
peaks substantially better than the beamformer.For a further
analysis of the resolution limit of sparse methods, see [36],
[37].
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Fig. 9. Probability of detectionPd versus SNR for steering-vector regressors,
N = 35 sensors.

Figure 10 illustrates the average computation time versus
N , and the order of the algorithms is the same as in Figure 6.
Recall that SLIM is set to terminate after 5 iterations.

VII. C ONCLUSIONS

In this article we have presented a framework for sparse
parameter estimation based on the SPICE fitting criterion and
a gradient optimization approach. This framework was shown
to have several appealing features:
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• It unifies four hyperparameter-free methods, namely
SPICE, L IKES, SLIM and IAA , the latter three methods
being instances of SPICE with adaptive weights.

• It enables further insights into the above four algorithms,
including the analysis of their convergence properties and
statistical performance. In particular, we showed how the
weights used by these methods determine the sparsity of
their corresponding estimates.

• Finally, it makes it possible to derive new versions of the
algorithms by considering different step-lengths in the
gradient approach.

We also investigated the covariance model upon which the
SPICE criterion is based, and:

• Provided identifiability conditions for this model.
• Showed that depending on whether the noise powers are

modeled nonuniformly or uniformly, the SPICE method
coincides with theℓ1-penalized LAD or the square-root
LASSO problems. This fact also established a connection
between the latter two methods.

The four hyperparameter-free methods were evaluated in two
different inference problems with IID and steering-vector
regressors, respectively. The results indicated that:

• The a-version algorithms appear to be better than the b-
versions in terms of convergence and statistical perfor-
mance.

• In problems with IID regressors both SPICE and LIKES

perform similarly and they exhibit a graceful degradation
as the number of samples decreases. For a sufficient
number of samples, such thatM +N < N2, the ‘quasi-
sparse’ IAA method, however, was found toprovide
smaller parameter estimatesfor the true zero coefficients.

• In the steering-vector regressor case the peaks of the
amplitude spectrum using the Capon formula were less
biased towards zero than when using the LMMSE for-
mula. LIKES was computationally more demanding than
the rest, but produced a sparser amplitude spectrum.
For locating spectral peaks, however, IAA was found to

perform slightly better than the rest.

APPENDIX A
THE MULTISNAPSHOT CASE

The SPICE criterion (7) extends to the multisnapshot sce-
nario as follows:

‖R−1/2(R̄−R)‖2F = tr{(R̄−R)R−1(R̄ −R)}
= tr{R̄R−1R̄}+ tr{R}+ const.,

(43)

whereR̄ , 1
T

∑T
t=1 yty

∗
t andT is the number of snapshots

(possiblyT < N ). The derivative of (43) w.r.t.pk is equal to

−tr

{
R̄R−1 ∂R

∂pk
R−1R̄

}
+ wk = −‖a∗

kR
−1R̄‖22 + wk.

Then the SPICE algorithms (24) and (26) become

p̂i+1
k = p̂ik‖a∗

kR̂
−1

i R̄‖2/w1/2
k (SPICEa) (44)

and, respectively,

p̂i+1
k = p̂ik‖a∗

kR̂
−1

i R̄‖22/wk (SPICEb). (45)

When the number of snapshotsT ≥ N one may use a modified
cost function, viz.‖R−1/2(R̄−R)R̄

−1/2‖2F , cf. [15].

APPENDIX B
LEMMA PROOFS

Lemma 1

The inquality in (6) follows if we can

show that P̂
−1 � A∗R̂

−1
A or, equivalently,

IM − P̂
1/2

A∗(AP̂A∗)−1AP̂
1/2 � 0; however this is

obviously true since the left hand side is the orthogonal

projection matrix onto the null space ofAP̂
1/2

.

Lemma 2

We have that

cf(p̄)
∣∣
p̄=cp

= cy∗(AcPA∗)−1y + c
M+N∑

k=1

wkcpk

= y∗R−1y + c2
M+N∑

k=1

wkpk

= g(p)

and thus

cf(cp̂) = g(p̂) ≤ g(p) = cf(cp), ∀{pk ≥ 0}

which implies:

f(ˆ̄p) ≤ f(p̄), ∀{p̄k ≥ 0},

and this concludes the proof.
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Lemma 3

A simple calculation yields:

(y −Bx)∗S−1(y −Bx)

= y∗S−1y − y∗S−1Bx− x∗B∗S−1y + x∗B∗S−1Bx

Therefore the criterion in (11) can be re-written as:

x∗(B∗S−1B+Π
−1)x−x∗B∗S−1y−y∗S−1Bx+constant,

which yields the minimizer

x̂ = (B∗S−1B +Π
−1)−1B∗S−1y. (46)

Next, note that

(B∗S−1B +Π
−1)ΠB∗ = B∗S−1BΠB∗ +B∗

= B∗S−1(BΠB∗ + S)

or equivalently,

(B∗S−1B +Π
−1)−1B∗S−1 = ΠB∗(BΠB∗ + S)−1,

which means that (46) can be re-written as in (12).
It remains to evaluate the criterion atx̂. Because

y −Bx̂ = (IM −BΠB∗R−1)y

= (R−BΠB∗)R−1y

= SR−1y

we have

(y −Bx̂)∗S−1(y −Bx̂) + x̂∗
Π

−1x̂

= y∗R−1SR−1y + y∗R−1BΠB∗R−1y

= y∗R−1y

which concludes the proof.

APPENDIX C
SPICE FOR IDENTICAL NOISE POWERS

In this case the covariance model becomes:

R = BΠB∗ + σ2IN (47)

and (11) becomes

min
x
‖y −Bx‖22/σ2 +

M∑

k=1

|xk|2/pk = y∗R−1y.

It follows that the minimizers{pk} of the SPICE criterion can
also be obtained by minimizing the function:

‖y−Bx‖22/σ2+
M∑

k=1

|xk|2/pk+
M∑

k=1

wkpk+

(
M+N∑

k=M+1

wk

)

︸ ︷︷ ︸
w2

σ2.

(48)
Minimization of (48) w.r.t.σ2 and{pk} gives:

σ2 = ‖y −Bx‖2/w
pk = |xk|/

√
wk, k = 1, . . . ,M.

(49)

Inserting (49) in (48) yields (to within a multiplicative factor):

w‖y −Bx‖2 + ‖diag(
√
w1, . . . ,

√
wM )x‖1

which is the criterion of the square-root LASSO (with weights
for the ℓ1-norm of x). The above proof is more direct than
the one in [26], [27].

APPENDIX D
CYCLIC MINIMIZATION INTERPRETATION

The gradient approach in Section IV is simple and quite
flexible; unlike the cyclic minimization approach in [14], [15],
[16], the gradient approach produced not only the original
algorithms but also different versions of them. However, the
gradient approachcannotbe used to conclude the monotonic
decrease property used in the convergence analysis in Sec-
tion V. Indeed, while the function

f(p) = y∗R−1y +

M+N∑

k=1

wkpk (wk given)

is convex, the gradient-based algorithms might overshoot the
minimum, and hence they are not guaranteed to monotonically
decrease this function. To prove such a property we need the
cyclic minimization framework.

Let

g(β,p) =
M+N∑

k=1

( |βk|2
pk

+ wkpk

)
(50)

(the augmented function used by this framework). As shown
in [14], [15], [16]

min
β

g(β,p) = y∗R−1y+
M+N∑

k=1

wkpk (s.t.Aβ = y) (51)

and the minimum is attained at

β̂k = pka
∗
kR

−1y. (52)

To show this result, let

β =

[
x

y −Bx

]

which satisfies the constraint in (51); then clearly the result is
equivalent to Lemma 3.

It follows from (51) that to getp that minimizesf(p) we
can cyclically minimizeg(β,p) w.r.t.β andp. For givenp, the
minimizingβ is given by (52). For a givenβ, the minimization
of g(β,p) w.r.t. p yields

p̂k = |βk|/w1/2
k . (53)

Iteratively, this means (combining (52) and (53) into one
equation):

p̂i+1
k = p̂ik|a∗

kR
−1
i y|/w1/2

k (54)

which is (24). Therefore, for (24) the monotonic decreasing
property off(p) is guaranteed:

f(p̂i) = g(β̂
i
, p̂i) ≥ g(β̂

i
, p̂i+1) ≥ g(β̂

i+1
, p̂i+1) ≥ f(p̂i+1).

(55)
But does this property hold for (26) as well? For (26), i.e.,

p̂i+1
k = p̂ik|a∗

kR
−1
i y|2/wk

we have that:

|β̂i
k|2

p̂i+1
k

+ wkp̂
i+1
k =

(p̂ik)
2|a∗

kR̂
−1

i y|2

p̂ik|a∗
kR̂

−1

i y|2
wk + wk

p̂ik|a∗
kR̂

−1

i y|2
wk

= wkp̂
i
k +
|β̂i

k|
p̂ik

.
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Hence
g(β̂

i
, p̂i) = g(β̂

i
, p̂i+1)

and the monotonic decrease property holds for (26) too (owing
to the second inequality in (55)).

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition.
Springer series in statistics, Springer, 2009.

[2] E. Candes and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[3] M. Elad, Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. Springer, 2010.

[4] D. Malioutov, M. Cetin, and A. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,”IEEE Trans.
Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[5] S. Bourguignon, H. Carfantan, and J. Idier, “A sparsity-based method for
the estimation of spectral lines from irregularly sampled data,” IEEE J.
Selected Topics in Signal Processing, vol. 1, no. 4, pp. 575–585, 2007.

[6] M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing
MRI,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72–82,
2008.

[7] R. Tibshirani, “Regression shrinkage and selection viathe lasso,”J.
Royal Statistical Society. Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[8] V. Roth, “The generalized LASSO,”IEEE Trans. Neural Networks,
vol. 15, no. 1, pp. 16–28, 2004.

[9] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[10] J. Tropp, “Just relax: convex programming methods for identifying
sparse signals in noise,”IEEE Trans. Information Theory, vol. 52, no. 3,
pp. 1030–1051, 2006.

[11] J.-J. Fuchs, “On sparse representations in arbitrary redundant bases,”
IEEE Trans. Information Theory, vol. 50, no. 6, pp. 1341–1344, 2004.

[12] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,”Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[13] A. Maleki and D. Donoho, “Optimally tuned iterative reconstruction
algorithms for compressed sensing,”IEEE J. Selected Topics in Signal
Processing, vol. 4, no. 2, pp. 330–341, 2010.

[14] P. Stoica, P. Babu, and J. Li, “New method of sparse parameter
estimation in separable models and its use for spectral analysis of
irregularly sampled data,”IEEE Trans. Signal Processing, vol. 59, no. 1,
pp. 35–47, 2011.

[15] P. Stoica, P. Babu, and J. Li, “SPICE: A sparse covariance-based
estimation method for array processing,”IEEE Trans. Signal Processing,
vol. 59, no. 2, pp. 629–638, 2011.

[16] P. Stoica and P. Babu, “SPICE and LIKES: Two hyperparameter-free
methods for sparse-parameter estimation,”Signal Processing, vol. 92,
no. 7, pp. 1580–1590, 2012.

[17] X. Tan, W. Roberts, J. Li, and P. Stoica, “Sparse learning via iterative
minimization with application to MIMO radar imaging,”IEEE Trans.
Signal Processing, vol. 59, no. 3, pp. 1088–1101, 2011.

[18] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. Baggeroer, “Source
localization and sensing: A nonparametric iterative adaptive approach
based on weighted least squares,”IEEE Trans. Aerospace and Electronic
Systems, vol. 46, no. 1, pp. 425–443, 2010.

[19] L. Wang, “The penalized LAD estimator for high dimensional linear
regression,”J. Multivariate Analysis, vol. 120, pp. 135–151, 2013.

[20] A. Belloni, V. Chernozhukov, and L. Wang, “Square-rootLASSO:
pivotal recovery of sparse signals via conic programming,”Biometrika,
vol. 98, no. 4, pp. 791–806, 2011.

[21] S. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. No. v. 1, Prentice-Hall PTR, 1998.

[22] P. Stoica and R. Moses,Spectral Analysis of Signals. Prentice Hall,
2005.

[23] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[24] I. Gorodnitsky and B. Rao, “Sparse signal reconstruction from limited
data using FOCUSS: a re-weighted minimum norm algorithm,”IEEE
Trans. Signal Processing, vol. 45, no. 3, pp. 600–616, 1997.

[25] M. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
2001.

[26] P. Babu and P. Stoica, “Connection between SPICE and square-root
LASSO for sparse parameter estimation,”Signal Processing, vol. 95,
pp. 10–14, 2014.

[27] C. Rojas, D. Katselis, and H. Hjalmarsson, “A note on theSPICE
method,” IEEE Trans. Signal Processing, vol. 61, no. 18, pp. 4545–
4551, 2013.

[28] N. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor analysis in
sensor array processing,”IEEE Trans. Signal Processing, vol. 48, no. 8,
pp. 2377–2388, 2000.

[29] T. Jiang, N. Sidiropoulos, and J. ten Berge, “Almost-sure identifiability
of multidimensional harmonic retrieval,”IEEE Trans. Signal Processing,
vol. 49, no. 9, pp. 1849–1859, 2001.

[30] B. Ottersten, P. Stoica, and R. Roy, “Covariance matching estimation
techniques for array signal processing applications,”Digital Signal
Processing, vol. 8, no. 3, pp. 185–210, 1998.

[31] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted
l1 minimization,” J. Fourier Analysis and Applications, vol. 14, no. 5-6,
pp. 877–905, 2008.

[32] P. Stoica and Y. Selen, “Cyclic minimizers, majorization techniques,
and the expectation-maximization algorithm: a refresher,” IEEE Signal
Processing Magazine, vol. 21, no. 1, pp. 112–114, 2004.

[33] W. I. Zangwill, Nonlinear Programming: a Unified Approach. Prentice-
Hall Englewood Cliffs, NJ, 1969.

[34] W. Roberts, P. Stoica, J. Li, T. Yardibi, and F. Sadjadi,“Iterative adaptive
approaches to MIMO radar imaging,”IEEE J. Selected Topics in Signal
Processing, vol. 4, no. 1, pp. 5–20, 2010.

[35] C. Kelley, Iterative Methods for Linear and Nonlinear Equations.
Frontiers in Applied Mathematics, Society for Industrial and Applied
Mathematics, 1995.

[36] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Information Theory, vol. 52, no. 2, pp. 489–509,
2006.

[37] S. Fortunati, R. Grasso, G. R., and M. Greco, “Single snapshot DOA es-
timation using compressed sensing,” inProc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP), pp. 2316–2320, May 2014.


	I Introduction
	II Brief review of the basic Spice approach
	III On the covariance model and the link of Spice to 1-penalized Lad
	IV Likes, Slim, Iaa (and new versions thereof) as (re)weighted Spice
	IV-A Weighted Spice
	IV-B Likes
	IV-C Slim
	IV-D Iaa

	V Statistical interpretations and convergence properties
	V-A Spice
	V-B Likes
	V-C Slim
	V-D Iaa
	V-E Implementational aspects

	VI Numerical comparisons
	VI-A IID regressors
	VI-B Steering-vector regressors

	VII Conclusions
	Appendix A: The multisnapshot case
	Appendix B: Lemma proofs
	Appendix C: Spice for identical noise powers
	Appendix D: Cyclic minimization interpretation
	References

