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Abstract

We consider state and parameter estimation in multiple target tracking prob-

lems with data association uncertainties and unknown number of targets.

We show how the problem can be recast into a conditionally linear Gaus-

sian state-space model with unknown parameters and present an algorithm

for computationally efficient inference on the resulting model. The proposed

algorithm is based on combining the Rao-Blackwellized Monte Carlo data

association algorithm with particle Markov chain Monte Carlo algorithms

to jointly estimate both parameters and data associations. Both particle

marginal Metropolis–Hastings and particle Gibbs variants of particle MCMC

are considered. We demonstrate the performance of the method both using

simulated data and in a real-data case study of using multiple target tracking

to estimate the brown bear population in Finland.
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1. Introduction

This paper is concerned with multiple target tracking (MTT), that is,

with the problem of estimating the locations or states of several moving

objects (targets) based on noisy measurements (see, e.g., Blackman and

Popoli, 1999; Bar-Shalom et al., 2001; Kirubarajan and Bar-Shalom, 2005;

Mahler, 2007b; Challa et al., 2011). The challenge in MTT is that in addition

to estimating the locations, one needs to solve the subproblems of estimat-

ing the number of targets and determining which target each measurement

comes from, known as the data association problem. MTT methods have

been applied, for example, to aircraft tracking (Hwang et al., 2004), video

surveillance (Rao and Satyanarayana, 2013), evolutionary clustering (Mestre

and Fitzgerald, 2013), and estimating the size of animal population (Abbas,

2011). In this paper we formulate the multiple target tracking problem as

a Rao-Blackwellized particle filtering problem following Särkkä et al. (2007)

and then show how we can use state-of-the-art particle Markov chain Monte

Carlo (PMCMC) methods (Andrieu et al., 2010) to estimate the parameters

of the model.

In the Rao-Blackwellized Monte Carlo data association (RBMCDA) algo-

rithm proposed by Särkkä et al. (2007), target movements and measurements

given targets are assumed to follow a linear-Gaussian state-space model.

Thus, conditional on the data associations, posterior distributions for the
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target locations are obtained in closed form using the Kalman filter (Kalman,

1960). This enables the use of the Rao-Blackwellized particle filter (RBPF,

Akashi and Kumamoto, 1977; Doucet et al., 2000b,a; Chen and Liu, 2000;

Särkkä, 2013) to sample the data associations. Vihola (2007) proposed a sim-

ilar RBPF filter, where the conditional linear-Gaussian model is formulated

in the random set framework.

In this paper we show how the RBMCDA algorithm of Särkkä et al. (2007)

can be extended to joint estimation of unknown parameters along with the

target states. In the Bayesian framework (Gelman et al., 2013; Särkkä, 2013),

parameters are modeled as random variables and the goal of parameter esti-

mation is to compute the posterior probability distributions over parameters

conditional on observations. Markov chain Monte Carlo (MCMC) methods

are typically used to produce samples from the posterior distributions. In

the context of state-space models, such as tracking problems, one needs to

jointly sample both from the posterior of the parameters and the posterior

of the states. Particle MCMC (PMCMC) algorithms (Andrieu et al., 2010)

are a special class of MCMC algorithms that use particle filter algorithms to

produce samples of state variables within MCMC. In this paper, we propose

combining the RBMCDA and PMCMC algorithms to sample from the joint

posterior distribution of data associations and parameters. This combined al-

gorithm is intended for models where the movement and measurements from

individual targets follow a linear-Gaussian state-space model conditional on

the fixed number of unknown parameters. However, it is also possible to treat

approximately linear-Gaussian state-space models by replacing the Kalman

filters with extended Kalman filters (EKF), unscented Kalman filters (UKF),
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or other non-linear filters (see, e.g., Särkkä, 2013).

Using PMCMC in MTT has been suggested previously by Vu et al. (2014)

and Duckworth (2012). These approaches use MCMC to propose data as-

sociations and the particle filter to sample target states conditional on the

data associations. The algorithm of Vu et al. (2014) does not sample static

parameters at all, while Duckworth (2012) samples static parameters within

the particle filter. Our proposed algorithm differs from these in that the

MCMC is used to propose static parameters while data associations and the

number of targets are sampled in the RBMCDA filter.

The use of PMCMC in combination with Rao-Blackwellized particle filters

has been proposed before in other contexts (e.g. Chopin, 2010; Peters and

Cornebise, 2010). However, the particular method proposed in this article

is novel since the combination of PMCMC and Rao-Blackwellized particle

filters, in particular RBMCDA, has, to our knowledge, not been used in the

multiple target tracking context.

The remainder of the article is structured as follows. In Section 1.1,

we present a brief survey of the multiple target tracking literature. In Sec-

tion 2, we review the particle filtering and particle MCMC algorithms, and

in Section 3 the RBMCDA algorithm. In Section 4, we present the combined

RBMCDA–PMCMC algorithms. In the numeric experiments in Section 4,

we use simulated data to compare the performance of the particle Gibbs with

varying numbers of particles. We also present a real-data application of the

algorithm to estimating the bear population of Finland based on a database

of field-signs and direct observations. Pseudocodes for the algorithms are

presented in Appendix A.
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1.1. Multiple Target Tracking Methods

Various filtering approaches for multiple target tracking have been pro-

posed in literature. Joint probabilistic data association (JPDA) (Fortmann

et al., 1980) approximates the joint density by a Gaussian distribution. In the

update step, the measurements are weighted by data association probabili-

ties. In multiple hypothesis tracking (MHT) (Reid, 1979; Blackman, 2004),

target state distributions are maintained for different data association histo-

ries. To prevent combinatorial explosion, heuristics are employed to discard

unlikely hypotheses.

Multiple particle filtering (Bugallo et al., 2007; Djuric and Bugallo, 2009)

is based on tracking each target with a separate particle filter and approx-

imatively combining the information in the weight update. More recently,

Closas and Bugallo (2012) proposed a refinement where the weight com-

putation is iterated in a game-theory-inspired manner. Another approach

based on partitioning the state is the Independent partition particle filter

(Orton and Fitzgerald, 2002), where the state is partitioned so that states of

clearly separate targets are sampled independently. Yi et al. (2013) provided

a different view of the target independence approximation - they used the

assumption to improve approximation of the filter predicted density rather

than for independently propagating target states.

Random set based MTT approaches such as probability hypothesis den-

sity (PHD) (Mahler, 2003, 2007b) filtering are based on the theory of finite

set statistics (FISST, Mahler, 2007b). The joint random set distribution is

often approximated with the PHD, which a density whose integral gives the

expected number of targets in the region. The PHD may further be approxi-
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mated by Gaussian mixtures (Vo and Ma, 2006) or particle filters (Vo et al.,

2003). For the particle filter PHD approach, Clark and Bell (2007) proposed

to assign the particles to target labels by expectation–maximization or k-

means clustering. Clark et al. (2007) proposed a particle PHD filter where

the particles represent a mixture of Gaussians rather than point masses. In

cardinalized PHD (Mahler, 2007a), the probability distribution over num-

ber of targets is propagated along the PHD. Multi-target multi-Bernoulli

filtering (MeMBer) (Vo et al., 2009) is based on target-wise densities and

independent existence probabilities. More recently, Ravindra et al. (2012)

proposed a MeMBer filter where the independence of existence probabilities

is preserved by modifying the posterior densities of targets while preserving

the random finite set (RFS) density. A related idea is the set JPDA method

(Svensson et al., 2011) where the posterior after JPDA update is modified

to improve Gaussian mixture estimation while preserving the RFS density.

Recently, Svensson and Morelande (2014) proposed formulating the multiple

target tracking problem as computing posterior distributions over random

finite sets of trajectories directly, rather than random finite sets of states.

The RBMCDA (Särkkä et al., 2007) algorithm used in this paper is based

on assuming linear-Gaussian target dynamics and measurements and then us-

ing a Rao-Blackwellized particle filter, where Kalman filter is used to track

target states and the particle approximation to approximate the distribution

over data associations. A related idea by Vihola (2007) proposed a RBPF

filter, where the conditional linear-Gaussian model is formulated in the ran-

dom set framework. Petetin et al. (2014) used a Rao-Blackwellized particle

filter within the PHD framework.
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2. Particle Filtering and Particle MCMC

Consider a state-space model (see, e.g., Särkkä, 2013) with measurements

y1, . . . ,yT ∈ Rm, hidden states x0, . . . ,xT ∈ Rn, and parameters θ ∈ Rd,

which consists of the Markovian dynamic model

xk ∼ p(xk | xk−1,θ) (1)

and the measurement model

yk ∼ p(yk | xk,θ). (2)

When the parameters θ are fixed, the state sequence x0:T is assumed to be

Markovian and the measurements are assumed to be conditionally indepen-

dent given the states. In the following, we briefly review the particle filtering

(sequential importance resampling, SIR) algorithm for approximating the

filtering distributions of the states, that is, p(xk | y1:k,θ) and the particle

MCMC algorithms that combine particle filtering with MCMC to sample

from the joint posterior of the parameters and the states, p(θ,x0:T | y1:T ).

2.1. Particle filtering

In sequential importance resampling type particle filtering (Doucet et al.,

2000b), the filtering distribution at time step k, p(xk | y1:k), is approximated

by a finite set ofN discrete particles with weights, {(w(i)
k , x̃

(i)
k ) : i = 1, . . . , N}.

This is interpreted as the density approximation

p(xk | y1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x̃

(i)
k ), (3)

where δ(·) is the Dirac delta function. The particle filtering algorithm iterates

the following steps through the measurements k = 1, . . . , T :
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1. Sample new particles from an importance distribution: x̃
(i)
k ∼ π(xk |

x̃
(i)
k−1,yk).

2. Compute updated weights: v
(i)
k = w

(i)
k−1

p(x̃
(i)
k ) p(yk|x̃

(i)
k )

π(xk|x̃
(i)
k−1,yk)

.

3. Normalize weights: w
(i)
k =

v
(i)
k∑
i v

(i)
k

.

4. Resample: if necessary, draw N new particle values x̃
(i)
k from the orig-

inal x̃
(i)
k with probabilities wk.

The purpose of the resampling step is to avoid degeneracy where one

particle attains all weight. It may be performed periodically with a fixed

interval or adaptively based on effective sample size (Liu and Chen, 1995)

declining below a threshold.

For purposes of parameter estimation, the particle filter can also be used

to form an approximation to the marginal likelihood p(y1:T | θ) (see, e.g.,

Andrieu et al., 2004; Särkkä, 2013):

p̂(y1:T | θ) =
T∏
k=1

p̂(yk | y1:k−1,θ), (4)

where

p̂(yk | y1:k−1,θ) =
N∑
i=1

v
(i)
k . (5)

When combined with Markov chain Monte Carlo (MCMC), this leads to so

called particle MCMC (PMCMC) methods (Andrieu et al., 2010).

2.2. Rao-Blackwellized Particle Filter

For models, where the filtering problem is analytically tractable condi-

tional on some subset of variables, one may reduce the variance of the im-

portance weights by the Rao-Blackwellized particle filter (Akashi and Ku-
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mamoto, 1977; Doucet et al., 2000b,a; Chen and Liu, 2000), where the par-

ticle filter is employed only for the non-analytically tractable subset, and

the tractable part is marginalized analytically. For example, in conditionally

linear-Gaussian models of the form

xk ∼ N (Ak−1(uk−1)xk−1,Qk−1(uk−1))

yk ∼ N (Hk(uk)xk,Rk(uk))

uk ∼ p(uk | uk−1),

(6)

the particles of the Rao-Blackwellized particle filter contain samples of the la-

tent variables uk, and the states xk are marginalized out using the Kalman fil-

ter. Although we usually assume that the latent variables are a priori Marko-

vian, the algorithm generalizes without modification to the non-Markovian

(but causal) case. That is, the last equation above may be generalized to

p(uk | u1:k−1).

2.3. Particle MCMC

The idea of using particle filters within a Markov chain Monte Carlo

(MCMC) sampler was suggested by, for example, Fernández-Villaverde and

Rubio-Ramı́rez (2007); Jones et al. (2010). Theoretical justification that

these particle MCMC algorithms indeed produce Markov chains that con-

verge to the joint posterior of the states and parameters was provided by

Andrieu et al. (2010). In this section, we discuss two different particle MCMC

algorithms, both introduced by Andrieu et al. (2010). First, we discuss par-

ticle marginal Metropolis–Hastings, which is based on the likelihood approx-

imation produced by the particle filter. Second, we discuss particle Gibbs

where a modification of the particle filter called conditional sequential Monte

Carlo is used to move in the space of state sequences.
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The particle marginal Metropolis–Hastings (PMMH) algorithm is a vari-

ant of the Metropolis–Hastings algorithm, where the exact evaluation of the

likelihood (and posterior) is replaced by running the particle filter and using

the approximate likelihood. The algorithm is initialized by selecting initial

parameters θ0 and running the particle filter to obtain approximate marginal

likelihood p̂(θ | y1:T ). Then, the algorithm produces samples from the pa-

rameters and particle sets, (θ1,x
1,(1:N)
1:T , w

1,(1:N)
T ), (θ2,x

2,(1:N)
1:T , w

2,(1:N)
T ), . . . by

iterating the following steps

1. Draw proposed parameters: θ∗ ∼ q(θ∗ | θj−1)

2. Run the particle filter (Section 2.1) using the parameters θ∗ to obtain

weighted set of particles (w
∗,(1:N)
T ,x

∗,(1:N)
1:T ) and a marginal likelihood

estimate p̂(y1:T | θ∗) (Eq. 4)

3. With probability

αj = min

(
1,
q(θj−1 | θ∗)
q(θ∗ | θj−1)

p̂(y1:T | θ∗)
p̂(y1:T | θj−1)

p(θ∗)

p(θj−1)

)
(7)

accept the proposal, that is:(
θj, w

j,(1:N)
T , x

j,(1:N)
1:T , p̂(y1:T | θj)

)
:=
(
θ∗, w

∗,(1:N)
T , x

∗,(1:N)
1:T , p̂(y1:T | θ∗)

)
. (8)

4. If the proposal is not accepted, copy the values from previous iteration:(
θj, w

j,(1:N)
T , x

j,(1:N)
1:T , p̂(y1:T | θj)

)
:=
(
θj−1, w

j−1,(1:N)
T , x

j−1,(1:N)
1:T , p̂(y1:T | θj−1)

)
. (9)

Samples from the state, xj1:T , may be obtained by drawing one particle

from the accepted particles x
j,(1:N)
1:T with using the importance weights w

j,(1:N)
T
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as probabilities. The Markov chain produced by the PMMH algorithm is

ergodic in an extended space consisting of the parameters and the particle

sets so that the marginal stationary distribution in the states-and-parameters

space is the correct posterior distribution (Andrieu et al., 2010). The particle

Metropolis-Hastings algorithm may also be interpreted as a Multiple Try

Metropolis algorithm, as Martino et al. (2015) point out.

The particle Gibbs algorithm is an MCMC algorithm moving in the joint

space of (θ,x1:T ). The particle Gibbs uses a regular MCMC, namely Gibbs

sampling, step to draw new parameter values conditional on the states and

a variant of particle filter, conditional SMC, to sample new states. The con-

ditional SMC is a variant of the particle filter that takes the current state

sequence as input and fixes the states for one particle to the input sequence

instead of drawing them from the importance distributions. That is, instead

of drawing x
(1)
k from the importance distribution q(xk | x(1)

k−1,yk), the value

of x
(1)
k is set to the old value of xk. For particles 2, . . . , N the algorithm

proceeds exactly as the particle filter. Note that the weights are nevertheless

recomputed even for the fixed particle as if the states were sampled from the

importance distribution. After running the CSMC, xj1:T is sampled among

the particles using the importance weights. In total, the particle Gibbs algo-

rithm iterates the following steps:

1. Draw θj ∼ p(θ | xj−11:T )

2. Generate (x
j,(1:N)
1:T , w

j,(1:N)
1:T ) by running the conditional SMC using pa-

rameters θj and fixing the first particle to xj−11:T .

3. Draw xj1:T from x
j,(1:N)
1:T with probabilities w

j,(1:N)
T .

Since the joint posterior distribution p(x0:T ,θ | y1:T ) is an invariant dis-
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tribution for both the CSMC move and the parameter sampling move, the

resulting particle Gibbs algorithm is a MCMC sampler targeting the joint

posterior distribution (Andrieu et al., 2010).

Andrieu et al. (2010) also show that it is possible to improve the MCMC

estimates by using the state sequences produced by all particles rather than

only one state sequence selected per MCMC step. In particle Gibbs, all

particles may be taken as samples weighted by their respective importance

weights. Furthermore, in PMMH one may also use the particles correspond-

ing to rejected parameter proposals by weighting the new particle set and the

particle set corresponding to the last accepted proposal by the Metropolis–

Hastings acceptance probability.

Combining Rao-Blackwellized particle filters with PMCMC was already

suggested by Chopin (2010) and Peters and Cornebise (2010). Naturally,

since the RBPF is a particle filter in the state space of the latent variables

u, using it in a PMCMC algorithm produces a MCMC sampler targeting the

joint posterior p(u0:T ,θ | y1:T ). Whiteley et al. (2010) combined the discrete

particle filter (Fearnhead and Clifford, 2003) with PMCMC to do inference

in switching state-space models. In addition, Rao-Blackwellized PMCMC

has been used by Nevat et al. (2011) in channel tracking in wireless relay

networks, by Minvielle et al. (2014) in an electromagnetic inverse problem,

and by Peters et al. (2013) in the context of a financial commodity model.

3. Rao-Blackwellized Monte Carlo Data Association

In this section, we review the RBMCDA algorithm proposed by Särkkä

et al. (2007). The algorithm is formulated for models where the target dy-
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namics are linear with Gaussian process noise, and the measurements condi-

tional on data associations are a linear function of target states plus Gaussian

measurement noise. However, as was shown in Särkkä et al. (2007), it is also

possible to handle non-linear state-space models by replacing the Kalman

filters in the algorithm non-linear extensions such as extended Kalman filters

(EKF), unscented Kalman filters (UKF), or more general non-linear Gaus-

sian filters Särkkä (2013).

We denote the state of the jth target at kth time step by xk,j. The

dynamics are assumed to be linear with Gaussian noise, that is,

p(xk,j | xk−1,j) = N (xk,j | Ak−1xk−1,j,Qk−1), (10)

where Ak−1 is the time dependent transition matrix and Qk−1 is the time

dependent process noise covariance matrix. The dynamics of different targets

are assumed to be independent. The measurement model is such that each

measurement corresponds to a randomly selected target, denoted by ck and

conditional on the association, the measurement depends only on the state

of target ck. In particular, the measurements conditional on target states

and associations are linear Gaussian:

p(yk | xk,j, ck = j) = N (yk | Hkxk,j,Rk), (11)

where Hk is the measurement matrix and Rk is the measurement noise co-

variance matrix.

Unknown and varying number of targets is handled by defining an in-

dicator variable ek which tells which of the targets are alive at the current

time step. The initial state has no targets and the targets are assumed to

enter the state at the time of their first observation. Targets are removed
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from consideration by setting the indicator to 0 after a target has not been

observed for a while. Särkkä et al. (2007) also consider removing targets

probabilistically based on time since last observation. Since the targets are

labeled according to the order they are first observed, the data association

prior p(ck | ck−1, . . . , c1, ek−1) contains positive probabilities only for the tar-

gets contained in c1, . . . , ck−1 that are visible in ek−1 as well as one new

target. Clutter measurements, that is, measurements that are not related to

any target, are modeled by specifying that p(yk | ck = 0,xk,:) is some fixed

distribution independent of the target states. The state of a new target at the

time of its first observation is assumed to follow N (m0,P0). The resulting

RBMCDA filter is shown in pseudocode in Algorithm 2.

The model defined above is of the conditionally linear-Gaussian form (6)

so that the latent variable uk consists of the data association ck and the

visibility indicator ek. Thus, a RBPF may be applied. Furthermore, since

the state-space of possible data associations is finite, the optimal importance

distribution may be used for sampling the data association ck.

In practice, a computational speedup may be obtained by performing

the Kalman filter prediction and updates need only for each unique data

association history instead of all particles, some of which are identical. For

simplicity of the presentation, this speedup is not explicitly written out in

Algorithm 2.

The algorithm state consists of N particles that represent an approxima-

tion of the posterior distribution over data association histories at step k.

The following information is stored for each particle i ∈ {1, . . . , N}:

Particlei =
(
c
(i)
1:k,m

(i)
k,1,m

(i)
k,2, . . . ,mk,T

(i)
k
,P

(i)
k,1,P

(i)
k,2, . . . ,Pk,T

(i)
k
, w

(i)
k

)
, (12)
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where

• c(i)1:k is the data association history for measurements 1, . . . , k

• T (i)
k is the number of different targets seen so far, i.e., maximum of c

(i)
1:k

• m
(i)
k,j,P

(i)
k,j are the mean and covariance of the distribution of the state

of target j conditional on c
(i)
1:k

• w(i)
k is the importance weight of the particle.

The algorithm proceeds through the measurements as follows:

1. For all particles i ∈ {1, . . . , N}:

(a) For all targets j ∈ {1, . . . , T (i)
k }, propagate the target state distri-

bution moments through the Kalman filter prediction step to ob-

tain the moments m
(i)−
k,j ,P

(i)−
k,j of the distributions p(xk,j | y1:k−1, c

(i)
1:k−1).

m
(i)−
k,j = Ak−1m

(i)
k−1,j, P

(i)−
k,j = Ak−1Pk−1,j A

T
k−1 + Qk−1. (13)

(b) For all targets j ∈ {1, . . . , T (i)
k } , run the Kalman filter update

step conditional on the data association to obtain the moments

m
(i)∗
k,j ,P

(i)∗
k,j of the distributions p(xk,j | y1:k, c

(i)
1:k−1, ck = j) and the

likelihoods p(yk | c(i)1:k,y1:k−1) (See Algorithm 3).

(c) Evaluate the optimal importance distribution

P (ck = j) =
p(ck = j | c(i)1:k) p(yk | c

(i)
1:k,y1:k−1)∑T

(i)
k +1

j=1 p(ck = j | c(i)1:k) p(yk | c
(i)
1:k,y1:k−1)

(d) Draw c
(i)
k from the optimal importance distribution

(e) Set (m
(i)
k,ck

,P
(i)
k,ck

) = (m
(i)∗
k,ck

,P
(i)∗
k,ck

),
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(f) For j 6= ck: set (m
(i)
k,j,P

(i)
k,j) = (m

(i)−
k,j ,P

(i)−
k,j ), the predicted distri-

butions

(g) Update particle weight: w
(i)
k := w

(i)
k−1

∑T
(i)
k +1

j=1 p(ck = j | c(i)1:k) p(yk |

c
(i)
1:k,y1:k−1)

2. Normalize particle weights to sum to unity

3. Possible resampling step

The marginal likelihood approximation similar to Eq. 4 in Section 2.1 is

computed by

p̂(y1:T | θ) =
T∏
k=1

p̂(yk | y1:k−1,θ), (14)

where

p̂(yk | y1:k−1,θ) =
N∑
i=1

kw
(i)
k−1

T
(i)
k +1∑
j=1

p(ck = j | c(i)1:k) p(yk | c
(i)
1:k,y1:k−1)

 .

(15)

4. PMCMC for RBMCDA

In this section, we show how the RBMDCA algorithm described in Sec-

tion 3 can be combined with the PMCMC algorithms described in Section 2.

The model is assumed to be of the linear-Gaussian form specified in Sec-

tion 3 with the extension that the dynamic model transition matrices Ak(θ),

process noise covariances Qk(θ), measurement model matrices Hk(θ) and

measurement noise covariance matrices Rk(θ) depend on some parameter

vector θ of fixed dimension.

The particle marginal Metropolis–Hastings is based on using the particle

filter based likelihood approximation. In the RBMCDA context, the PMMH
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algorithm produces a Markov chain moving in the joint space of the param-

eters and particle sets of the data associations, that is, the samples are of

the form (θj, c
j,(1:N)
1:T , w

j,(1:N)
T ). The algorithm iterates the following at steps

j = 1, 2, . . .:

1. Draw proposed parameters: θ∗ ∼ q(θ∗ | θj−1)

2. Run the RBMCDA filter (see Section 3 or Algorithm 2) using the pa-

rameters θ∗ to obtain weighted set of particles (w
∗,(1:N)
T , c

∗,(1:N)
1:T ) and a

marginal likelihood estimate p̂(y1:T | θ∗)

3. With probability

αj = min

(
1,
q(θj−1 | θ∗)
q(θ∗ | θj−1)

p̂(y1:T | θ∗)
p̂(y1:T | θj−1)

p(θ∗)

p(θj−1)

)
(16)

accept the proposal, that is:(
θj, w

j,(1:N)
T , c

j,(1:N)
1:T , p̂(y1:T | θj)

)
:=
(
θ∗, w

∗,(1:N)
T , c

∗,(1:N)
1:T , p̂(y1:T | θ∗)

)
. (17)

4. If the proposal is not accepted, copy the values from previous iteration:(
θj, w

j,(1:N)
T , c

j,(1:N)
1:T , p̂(y1:T | θj)

)
:=
(
θj−1, w

j−1,(1:N)
T , c

j−1,(1:N)
1:T , p̂(y1:T | θj−1)

)
. (18)

Samples from the posterior of data associations are obtained by drawing from

(c
j,(1)
1:T , c

j,(2)
1:T , . . . , c

j,(N)
1:T ) with probabilities w

j,(1:N)
T . In this work, we use sym-

metric multivariate Gaussian random-walk proposals for parameters. The

covariance of the proposal distribution is adapted using the sample covari-

ance of the samples produced so far, following the idea of Haario et al. (2001).
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We adapt the covariance only during initial warmup to ensure the ergodic-

ity of the adapting process is maintained in particle MCMC. The resulting

RBMCDA–PMMH algorithm is shown in pseudocode in Algorithm 5.

Following the idea of conditional SMC, also the RBMCDA algorithm can

be modified so that one particle is fixed to a given data association history.

This also results in a MCMC move whose invariant distribution is the con-

ditional posterior of data associations given parameters. This conditional

RBMCDA algorithm is shown in pseudocode in Algorithm 6. Since in gen-

eral models, the conditional posterior of parameters conditional on the data

associations may not be available in closed-form, we replace the Gibbs step

of PGibbs by Metropolis–Hastings steps for parameters. Thus, RBMCDA–

PGibbs algorithm iterates the following steps:

1. Propose new θ∗ ∼ q(θ∗ | θj−1)

2. With probability

αj = min

(
1,
q(θj−1 | θ∗)
q(θ∗ | θj−1)

p(y1:T | θ∗, cj−11:T )

p(y1:T | θj−1, cj−11:T )

p(θ∗)

p(θj−1)

)
, (19)

accept the proposal, that is, set θj := θ∗. Else, set θj := θj−1.

3. Generate (c
j,(1:N)
1:T , w

j,(1:N)
1:T ) by running the conditional RBMCDA (Al-

gorithm 6 using parameters θj and fixing the data associations in the

first particle to cj−11:T .

4. Sample a data association sequence cj1:T from c
j,(1:N)
1:T with probabilities

w
j,(1:N)
T .

To evaluate the acceptance ratios, the likelihood conditional on data as-

sociations, p(y1:T | θ, cj−11:T ), needs to be evaluated using the Kalman filter as

18



shown in Algorithm 7. For the Metropolis–Hastings proposal distributions

q, we use the multivariate Gaussian random walk proposal adapted similarly

as in the RBMCDA–PMMH algorithm. The resulting RBMCDA–PGibbs

algorithm is shown in pseudocode in Algorithm 8.

In some preliminary experiments, we observed that the conditional RBM-

CDA move sometimes led to poor mixing as the targets associated to early

measurements usually did not change. To improve mixing, we also intro-

duced additional Gibbs sampling steps where the targets associated to some

particular measurements are redrawn from their conditional distributions.

5. Experimental Results

5.1. Simulated Data

In this section we compare the performance of the RBMCDA–PGibbs

algorithms with varying number of particles. We generate a simulated dataset

and run different MCMC algorithms to estimate the posterior distribution

of parameters and data associations. We look at the convergence of the

distribution of the number of targets in terms of Kolmogorov distance to a

distribution obtained by a longer RBMCDA–PGibbs run. The Kolmogorov

distance is compared against the total number of Kalman filter predict and

update function calls.

We simulated 30 two-dimensional target trajectories using the Ornstein–

Uhlenbeck mean-reverting model:

dx = λ(x0 − x)dt+
√
qdW, (20)

where x is the target location and x0 is a fixed mean location of the target.

The parameters were set to λ = 0.5,
√
q = 10. The mean locations were
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sampled uniformly randomly in the window [0, 100]× [0, 100]. Initial target

locations were drawn from the steady-state distribution of the Ornstein–

Uhlenbeck process. Then, 150 observation times were sampled uniformly

randomly in [0, 1], and data associations were generated so that the tar-

get associated to each measurement was selected randomly, but the data-

associations were resampled until an association history where every target

is obtained at least once was obtained. The measurements were the locations

plus uncorrelated Gaussian noise with standard deviation σ = 0.5 in both

coordinates. The simulated target movements and observations are shown in

Figure 1.

0 50 100

0

50

100

Figure 1: Visualization of the simulated scenario. Trajectories of the targets are shown as

gray lines, measurements as black dots and final target locations as black pluses.

10 chains of RBMCDA–PGibbs were run for 106 steps. First half was

discarded as warmup and the remaining samples from all chains pooled. The

Ornstein–Uhlenbeck model was used for the target dynamics so that the tar-
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get state is 4-dimensional consisting of the (constant) mean location and the

actual location. The initial density of new targets, N (m0,P0), was obtained

by taking the sample mean and sample covariance of all observations, and us-

ing these for the distribution of the mean location coordinates. For the actual

location coordinates, the corresponding steady-state distribution was used.

Note that the initial density thus depends on the model parameters. For the

model parameters we used Gamma priors with scale 2 (Chung et al., 2013)

and modes (
√
q = 15, λ = 1/3, σ = 0.75). These modes were selected so that

the prior mode is somewhat off from the ground truth and favors a smaller

number of targets. The data association prior p(ck | c1:k−1) was obtained as

follows. The probability of new target is set to the conditional probability

of a new target appearing conditional on a latent number of targets drawn

uniformly from {1, . . . , number of observations} and each association being

drawn uniformly from the latent number of targets. All old targets have

equal probability. No clutter measurements nor target deaths were used.

We checked MCMC convergence using the potential scale reduction factor

(Gelman et al., 2013) with the implementation in GPStuff (Vanhatalo et al.,

2013). Using the latter halves of the 10 chains, the PSRF for all 3 static

parameters was below 1.01, so we conclude that the chains have converged

and pooling samples from the different chains is justified. The results are

shown in Figure 2. The number of targets is slightly underestimated, which

is natural as the parameter prior modes was set to favor a smaller number

of targets compared to the true parameters. The posteriors of
√
q and the

measurement error σ are clearly thinner than the prior and the modes are

moved towards the truth. The posterior of the mean-reversion rate λ is rather
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Table 1: The simulated experiment. Comparison of RBMCDA–PGibbs with and without

parameter estimation. Posterior probability of 30 targets (the ground truth) as well as

mean OSPA metric of the final target locations.

Parameter estimation P(Correct number of targets) Mean OSPA

Yes 0.14 5.95

No 0.005 8.02

wide. This is explained by the fact that the time window of the simulation

was quite short relative to the value of λ. However, the posterior of λ, too,

was slightly moved towards true value.

To investigate the usefulness of parameter estimation, we also ran the

RBMCDA–PGibbs with the same number of particles and chain lengths

without sampling for parameters, that is, using the initial parameter val-

ues. We compared the accuracy based on the probability of the true number

of targets as well as the OSPA metric (Schuhmacher et al., 2008) for the

posterior mean locations for all targets at the time of the 150th measure-

ment. The results are shown in Table 1. To save computational resources,

the OSPA metric was computed using only every 500th step of the MCMC

chains.

We tried RBMCDA–PGibbs with 5 and 100 particles both with and with-

out additional Gibbs steps. For each algorithm, 5 independent chains were

used. Figure 3 shows Kolmogorov distances to the distribution of Figure 2

as a function of Kalman filter function evaluations. These are evaluated by

cutting the chains at selected sample sizes, pooling results from all 5 chains
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and discarding first half as warmup1.

20 30 40 50

Number of targets

0 0.5 1

Measurement error, σ

0 1 2

Mean-reversion rate, λ

5 10 15

Square root of spectral density,
√
q

Figure 2: Posterior distributions of the parameters (
√
q, σ, λ) and the number of targets

in the simulated scenario. The corresponding prior densities for parameters are shown as

solid lines. Ground-truth parameters are marked as dots on the axis.

5.2. Real Data: Estimating Brown Bear Population

We consider a dataset of location records of direct sightings and field-

sign observations of brown bears in Finland provided by Finnish Game and

Fisheries Research institute. The main quantity of interest in this study is

the number of distinct packs (families) observed, which can then be used to

1To save computation time, the chains used for RBMCDA–PGibbs with Gibbs steps

and 5 particles are 5 first chains of the 10 that were used to produce the ground truth.

However, all samples used to this plot are discarded as warmup in the gold-standard

distribution, so this is unlikely to bias the results.
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Figure 3: Convergence of the distribution of the number of targets with varying algorithms.

Kolmogorov distance vs. number of Kalman filter function evaluations.

estimate the overall population size by using an extrapolation factor (Ko-

jola, 2007). We use a probabilistic approach for estimating the number of

distinct families by formulating the problem as a multiple target tracking

problem, where the targets are the packs. The posterior distribution for

the number of packs is then obtained as a byproduct of the multiple target

tracking solution. We used data of observations from year 2013 selecting

only observations where cubs were present. We selected observations from

one game management district (Kaakkois-Suomen riistanhoitopiiri). Abbas

(2011) used RBMCDA in his Master’s thesis for population estimation with

this type of data, but this work did not use PMCMC for parameter estima-

tion.

For target movement, we used the Ornstein–Uhlenbeck mean-reverting

model (cf. Section 5), and measurement locations were assumed to be the
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actual target location plus Gaussian noise independent in both coordinates.

Conditional on the parameters, the target dynamics of each year was assumed

to be independent. Weakly informative Gamma(2, µ)-priors were used for the

parameters with modes:
√
q = 2500 m/d, λ = 0.5 d−1, σ = 100 m. We used

5 particles and 10 separate MCMC chains were run for 100, 000 steps each.

The results presented here are based on discarding the first half of each chain

as warmup and combining the remaining samples from all 10 chains.

Histograms of the posterior distributions of parameter and number of

targets compared to prior densities are shown in Figure 4. Compared to the

expert estimates by Finnish Game and Fisheries Research institute (FGFRI,

2014), the model clearly overestimates the number of packs - the expert esti-

mate was 20− 22 while our model predicts about 60− 80 targets. However,

this may be due to experts having more information about, for example,

which observations are unreliable. Furthermore, it may be that our prior dis-

tributions were too noninformative, placing considerable mass on unrealistic

parameter values. Indeed, the posterior for the parameter q in the posterior

is much smaller than the prior expectation, which naturally explains the high

number of targets.

6. Conclusions and Discussion

In this paper, we have presented a novel algorithm for parameter esti-

mation in multiple target tracking problems. The algorithm is based on

combining the Rao-Blackwellized Monte Carlo data association (RBMCDA)

algorithm (Särkkä et al., 2007) with particle Markov chain Monte Carlo (PM-

CMC) methods (Andrieu et al., 2010). We considered two different varia-
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Figure 4: Posterior distributions of the number of brown bear families in the Kaakkois-

Suomi district in year 2013, and the model parameters. Solid lines denote the correspond-

ing prior densities.

tions of the algorithm based on the particle marginal Metropolis–Hastings

and particle Gibbs algorithms known in the particle MCMC literature.

In the numeric experiments section, we tested the method with a simu-

lated example and then applied it to a real-data application of estimating the

brown bear population in Finland. With the simulated data, we also com-

pared the convergence of the distribution of targets with different variations

of our algorithm.
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This research could be continued in several directions. To speed up com-

putations, one could combine gating techniques with RBMCDA (Wang and

Zhang, 2014). It may be possible to derive an upper bound for the mea-

surement likelihoods such that early rejection (Solonen et al., 2012) could be

applied in RBMCDA–PMMH. That is, computational speedup would be ob-

tained by sometimes deducing during a RBMCDA step that a proposal will

be rejected, without processing through all measurements. Besides sampling

the parameters of the dynamic and measurement models, one could sam-

ple the data association priors as well as the initial densities. Särkkä et al.

(2007) showed that the RBMCDA algorithm can be easily extended to non-

linear models by using an approximative filter, such as the EKF or the UKF

(Särkkä, 2013). This extension could as well be combined with PMCMC.

Rao-Blackwellized particle smoothing (Särkkä et al., 2012; Lindsten et al.,

2013) could be used to obtain smoothing distributions of the target states.

The model could be extended to allow separate parameters for each target.

With unknown number of targets, this would require reversible jump MCMC

(Green, 1995; Punskaya et al., 2002) or similar techniques. Allowing interac-

tion among target states would enable group tracking (see Mihaylova et al.,

2014, and references therein). Besides particle MCMC, one could investigate

other methods combining particle filters with inference on static parameters,

such as SMC2 (Chopin et al., 2013) and particle learning (Carvalho et al.,

2010), in the RBMCDA context.
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Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., Ve-

htari, A., 2013. GPstuff: Bayesian modeling with Gaussian processes. The

Journal of Machine Learning Research 14 (1), 1175–1179.

Vihola, M., 2007. Rao-Blackwellised particle filtering in random set multi-

target tracking. Aerospace and Electronic Systems, IEEE Transactions on

43 (2), 689–705.

Vo, B.-N., Ma, W.-K., 2006. The Gaussian mixture probability hypothesis

density filter. Signal Processing, IEEE Transactions on 54 (11), 4091–4104.

35



Vo, B.-N., Singh, S., Doucet, A., 2003. Sequential Monte Carlo implemen-

tation of the PHD filter for multi-target tracking. In: Proc. Intl Conf. on

Information Fusion. pp. 792–799.

Vo, B.-T., Vo, B.-N., Cantoni, A., 2009. The cardinality balanced multi-

target multi-Bernoulli filter and its implementations. Signal Processing,

IEEE Transactions on 57 (2), 409–423.

Vu, T., Vo, B.-N., Evans, R., 2014. A particle marginal Metropolis-Hastings

multi-target tracker. Signal processing, IEEE Transactions on 62 (15),

3953–3964.

Wang, Y., Zhang, P., 2014. Gating techniques for Rao-Blackwellized Monte

Carlo Data Association filter. The Scientific World Journal 2014.

Whiteley, N., Andrieu, C., Doucet, A., 2010. Efficient Bayesian inference for

switching state-space models using discrete particle Markov chain Monte

Carlo methods. arXiv preprint arXiv:1011.2437.

Yi, W., Morelande, M. R., Kong, L., Yang, J., 2013. A computationally

efficient particle filter for multitarget tracking using an independence ap-

proximation. Signal Processing, IEEE Transactions on 61 (4), 843–856.

36



Appendix A. Algorithms

In this section, we present the algorithms discussed in the paper in pseu-
docode.

Algorithm 1 The Kalman filter prediction step.
Input: State mean m and state covariance P after step k − 1. Time step k.

Output: Predicted state mean m− and state covariance P− at time step k without conditioning on measurements.

function Predict(m,P, k)

m− ← Ak−1m

P− ← Ak−1 PAT
k−1 + Qk−1

end function
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Algorithm 2 The Rao-Blackwellized Monte Carlo data association algo-

rithm.
Input: Measurements y1:M . Model parameters θ. Number of particles N .

Output: Samples of the data association histories and corresponding weights:
(
c
(1:N)
1:T

, w(1:N)
)
, likelihood approximation

p̂(y1:T | θ).

function RBMCDA(y1:M , θ, N)

for i = 1, . . . , N do . Initialize the particles

w(i) = 1/N

T
(i)
0 = 0

end for

e
(1:N)
0 ← ∅ . No targets exist initially

p̂(y1:0 | θ)← 1 . Likelihood approximation

for k = 1, . . . ,M do

for i = 1, . . . , N do

for j = 1, . . . , T
(i)
k−1

do

m
(i)
k,j

,P
(i)
k,j
← Predict(m

(i)
k−1,j

,P
(i)
k−1,j

, k)

end for

m∗,P∗, π ←

EvalImpDist(m
(i)
1:Tk−1,k

,P
(i)
1:Tk−1,k

,y, c
(i)
1:k−1

, e
(i)
k−1

)

v
(i)
k
← w

(i)
k−1

×
∑
πj

∀j ∈ {1, . . . , T (i)
k−1

+ 1} : πj ←
πj∑
πj

Draw l with probabilities

(
π1, . . . , π

T
(i)
k−1

+1

)
e
(i)
k
← e

(i)
k−1

if l 6= 0 then

m
(i)
k,l
,P

(i)
k,l
← m∗l ,P

∗
l

end if

if l = T
(i)
k−1

+ 1 then

T
(i)
k
← T

(i)
k−1

+ 1

e
(i)
k

(l)← 1

else

T
(i)
k
← T

(i)
k−1

end if . Remove targets:

for m ∈ {1, . . . , T (i)
k
} do

if Time since last observation associated to m in particle i > threshold then

e
(i)
k

(m)← 0

T
(i)
k
← T

(i)
k
− 1

end if

end for

end for

p̂(yk | y1:k−1, θ)←
∑N
i=1 v

(i)
k
w

(i)
k−1

p̂(y1:k | θ)← p̂(yk | y1:k−1, θ) p̂(y1:k−1 | θ)

∀i : w
(i)
k
←

v
(i)
k∑N

j=1
v
(j)
k

Resample.

end for

end function
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Algorithm 3 Kalman filter update step.
Input: Predicted state mean m−, state covariance P−, measurement y and time step k.

Output: Updated mean m and covariance P of the state distribution conditional on the measurement y. Likelihood lh

of the measurement.

function Update(m−,P−,y, k)

v ← y −Hkm
−

S← Hk P−HT
k + Rk

K← P−HT
kS
−1

lh← |2πS|−
1
2 e
− 1

2
vT S−1v

m← m− + Kv

P← P− −KSKT

end function

Algorithm 4 Algorithm for evaluating the unnormalized optimal impor-

tance distribution and updated target states conditional on associations.
Input: Predicted target state distribution moments m1:T ,P1:T , measurement y, number of targets T , association history

c1:k−1, visibility indicator ek−1. Implicitly: time step k, time- and model specific Update function performing the

Kalman filter update step and evaluating measurement likelihood.

Output: Unnormalized optimal importance distribution (π1, . . . , πT+1), target state distribution moments

m∗1:T+1,P
∗
1:T+1 conditional to associating the measurement to each particular target. Optionally (cf. Alg. 6) re-

turns also the measurement likelihoods lh1:T+1.

function EvalImpDist(m1:T ,P1:T ,y, c1:k−1, ek−1)

lh0 ← p(y | ck = 0)

π0 ← p(ck = 0 | c1:k−1, ek−1)

for j = 1, . . . , T do

if ek−1(j) = 1 then

(m∗j ,P
∗
j , lhj)← Update(mj ,Pj ,y, k)

πj ← lhj × p(ck = j | c1:k−1, ek−1)

end if

end for(
m∗T+1,P

∗
T+1, lhT+1

)
← Update(m0,P0,y, k)

πT+1 ← lhT+1 × p(ck = T + 1 | c1:k−1)

end function
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Algorithm 5 The particle marginal Metropolis–Hastings algorithm with

RBMCDA.
Input: Measurements y1:T , initial parameters θ0. Sample size I. Number of particles used in RBMCDA (N). Covari-

ance adaptation period i1, i2 Implicitly: dimension of parameters d, model-specific functions Update,Predict used in

RBMCDA.

Output: Samples from the posterior distribution of parameters, θ1, θ2, . . . , θi. Weighted samples from the (marginal)

posterior distribution of data association histories, ∀i ∈ {0, . . . , I} : ui, w
(1:N),i
T

, c
(1:N),i
1:T

where the total weight of

data association history c
(j),i
1:T

is ui w
(j)
i .

function PMMH(y1:T , θ
0)

Σ← Σ0 . Initialize proposal covariance(
c
(1:N)
1:T

, w
(1:N),0
T

)
, p̂0 ← RBMCDA(y1:T , θ

0)

lastaccept ← 0 . Used to update the weights u

for i = 1, 2, . . . , I do

if i1 ≤ i ≤ i2 then

Σ← ( 2.4
d

)2Cov(θ0, . . . , θi) + ε Id

end if

Draw θ∗ ∼ N (θ∗ | θi−1,Σ)(
c
(1:N),i
1:T

, w
(1:N),i
T

)
, p̂∗ ← RBMCDA(y1:T , θ

∗, N)

α← min

(
1,

p̂∗p(θ∗)
p̂i−1p(θi−1)

)
ui ← α, ulastaccept ← ulastaccept + (1− α)

Draw Z ∼ U(0, 1)

if Z < α then

θi, p̂← θ∗,x∗0:T , p̂
∗

lastaccept ← i

else

θi, p̂i ← θi−1, p̂i−1

end if

end for

end function
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Algorithm 6 The conditional Rao-Blackwellized Monte Carlo data associa-

tion algorithm.
Input: Measurements y1:M . Model parameters θ. Number of particles N . Fixed data association history c

(1)
1:T

Output: Samples of the data association histories and corresponding weights:
(
c
(1:N)
1:T

, w
(1:N)
T

)
. Conditional likelihood

for each data association history: pi∈{1,...,I}(y | θ, c
(i)
1:T

)

function CRBMCDA(y1:M , θ, N, c
(1)
1:T

)

for i = 1, . . . , N do . Initialize the particles

w(i) ← 1/N

T
(i)
0 ← 0

end for

for k = 1, . . . ,M do

for i = 1, . . . , N do

for j = 1, . . . , T
(i)
k−1

do

m
(i)
k,j

,P
(i)
k,j
← Predict(m

(i)
k−1,j

,P
(i)
k−1,j

, k)

end for(
m∗,P∗, π, lh

)
1:T

(i)
k−1

+1
←

EvalImpDist(m
(i)
1:Tk−1,k

,P
(i)
1:Tk−1,k

,y, c
(i)
1:k−1

, k)

v
(i)
k
← w

(i)
k−1

×
∑
πj

∀j ∈ {1, . . . , T (i)
k−1

+ 1} : πj ←
πj∑
πj

if i > 1 then

Draw l with probabilities π
1:T

(i)
k−1

+1

else

l← c
(1)
k

end if

ek ← ek−1

if l 6= 0 then

m
(i)
k,l
,P

(i)
k,l
← m∗l ,P

∗
l

end if

if l = T
(i)
k−1

+ 1 then

T
(i)
k
← T

(i)
k−1

+ 1

e
(i)
k

(l)← 1

else

T
(i)
k
← T

(i)
k−1

end if . Remove targets:

for m ∈ {1, . . . , T (i)
k
} do

if Time since last observation associated to m in particle i > threshold then

e
(i)
k

(m)← 0

T
(i)
k
← T

(i)
k
− 1

end if

end for

m
(i)
k,l
,P

(i)
k,l
← m∗l ,P

∗
l

end for

∀i : w
(i)
k
←

v
(i)
k∑N

j=1
v
(j)
k

Resample – first particle is not changed.

end for

end function
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Algorithm 7 Evaluating the likelihood conditional on a given data associ-

ation history.
Input: Measurements y1:T . Model parameters θ. Data association history c1:T .

Output: Likelihood p(y1:T | θ, c1:T ).

function EvaluateLH(y1:T , θ, c1:T )

N ← 0 . Targets seen so far

p(y1:0 | θ, c1:0)← 1 . Initialize likelihood

for k = 1, . . . , T do

for i = 1, . . . , N do

mi,Pi ← Predict(mi,Pi, k, θ)

end for

if ck = N + 1 then . New target

mN+1,PN+1 ← m0,P0

N ← N + 1

end if

mck
,Pck , lh←Update(mck

,Pck ,yk, k, θ)

p(y1:k | θ, c1:k)← lh× p(y1:k−1 | θ, c1:k−1)

end for

end function
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Algorithm 8 The particle Gibbs algorithm with RBMCDA.
Input: Measurements y1:T , initial parameters θ0. Sample size I. Number of particles used in RBMCDA (N). Covariance

adaptation period i1, i2 Implicitly: dimension of parameters d, model-specific functions Update and Predict used in

RBMCDA.

Output: Samples from the posterior distribution of parameters, θ1, θ2, . . . , θi. Weighted samples from the (marginal)

posterior distribution of data association histories, ∀i ∈ {0, . . . , I} : w
(1:N),i
T

, c
(1:N),i
1:T

.

function PGibbs(y1:T , θ
0)

c
(1:N),0
1:T

, w
(1:N),0
T

← RBMCDA(y1:T , θ
0, N)

Draw l ∈ {1, . . . , N} with probabilities w
(1:N),0
T

c̄1:T ← c
(l),0
1:T

p(y | θ0, c̄1:T )← EvaluateLH(y1:T , θ
0, c̄1:T )

Σ← Σ0 . Initialize proposal covariance

for i = 1, 2, . . . , I do

if i1 ≤ i ≤ i2 then

Σ← ( 2.4
d

)2Cov(θ0, . . . , θi) + ε Id

end if

Draw θ∗ ∼ N (θ∗ | θi−1,Σ)

p(y | θ∗, c̄1:T )← EvaluateLH(y1:T , θ
∗, c̄1:T )

Draw Z ∼ U(0, 1)

if Z <
p(θ∗)p(y|θ∗,c̄1:T )

p(θi−1)p(y|θi−1,c̄1:T )
then

θi ← θ∗

else

θi ← θi−1

end if

c
(1:N),i
1:T

, w
(1:N),i
T

, pj∈{1,...,N}(y | θ
i, c

(j),i
1:T

)←

CRBMCDA(y1:T , θ
i, N, c̄1:T )

Draw l ∈ {1, . . . , N} with probabilities w
(1:N),i
T

c̄1:T , p(y | θi, c̄1:T )← c
(l)
1:T

, p(y | θi, c(l)i
1:T

)

end for

end function

43


	1 Introduction
	1.1 Multiple Target Tracking Methods

	2 Particle Filtering and Particle MCMC
	2.1 Particle filtering
	2.2 Rao-Blackwellized Particle Filter
	2.3 Particle MCMC

	3 Rao-Blackwellized Monte Carlo Data Association
	4 PMCMC for RBMCDA
	5 Experimental Results
	5.1 Simulated Data
	5.2 Real Data: Estimating Brown Bear Population

	6 Conclusions and Discussion
	Appendix  A Algorithms

