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Abstract

Olfaction, the sense of smell, has received scant attention from a signal pro-

cessing perspective in comparison to audition and vision. In this paper, we

develop a signal processing paradigm for olfactory signals based on new sci-

entific discoveries including the psychophysics concept of olfactory white. We

describe a framework for predicting the perception of odorant compounds from

their physicochemical features and use the prediction as a foundation for sev-

eral downstream processing tasks. We detail formulations for odor cancellation

and food steganography, and provide real-world empirical examples for the two

tasks. We also discuss adaptive filtering and other olfactory signal processing

tasks at a high level.

Keywords: Adaptive filtering, food steganography, noise cancellation, odor

cancellation, olfactory signal processing, perception, structured sparsity

1. Introduction

Audition, vision, and olfaction are the three ways that people remotely sense

stimuli; much signal processing research has dealt with audio and video signals,

✩Portions of the material in this paper were first presented in [1] and [2].
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but study of olfactory signal processing has been neglected. One reason is

the difficulty in compactly specifying the fundamental inputs to the human

perceptual system. Whereas vibration and light signals interacting with the

ears and eyes are compactly parameterized by amplitude, phase, and frequency,

olfactory signals interacting with the nose manifest as collections of chemical

compound molecules drawn from a very large set. Despite the possible input set

having very large cardinality, recent evidence suggests that the space of olfactory

perception is fairly low-dimensional [3, 4, 5]. The most basic dimension, akin to

the DC component of a waveform, is pleasantness [6, 7]. Another recent finding

shows the existence of olfactory white in human psychophysics with similar

perceptual properties as white light and white audio signals [8].

In this paper, we investigate olfactory signals and systems at a level of ab-

straction removed from the physical sensing and actuation of chemical com-

pounds. Prior work in olfactory signal processing at the lower physical level

includes the following. One long-standing area of research has been developing

chemical sensors and so-called electronic noses, see e.g. [9, 10, 11], references

therein and thereto. A variety of sensing technologies including chemical gas

sensors, optical sensor systems, infrared spectroscopy, and microelectromechani-

cal sensors have been developed, and the signal processing and machine learning

challenge is using raw sensor data to identify the specific composition of com-

pounds present, cf. [12, 13, 14]. Gas chromatography mass spectrometry is

considered the gold standard in laboratories, but the goal is to make portable,

low-power, and low-cost systems with similar performance. In all such systems,

human perception is not considered and the goal is simply to classify according

to physicochemical properties [15].

Moving from sensors to actuators, physical devices used for actively pro-

ducing odor signals are called virtual aroma synthesizers [16] and function by

mixing compounds from several cartridges into an airstream, much like how

inkjet printers produce arbitrary colors. These devices have been put together

in a variety of old and new odor communication technologies [17, 18]. Classi-

cal examples like AromaRama and Smell-O-Vision attempted to enhance the
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experience of cinema viewers through a greater degree of immersion, whereas

modern examples like oPhone aim to enable multi-odiferous messages transmit-

ted to individuals. With the practice of olfactory communication, there is also

an information theory of olfaction concerned with bounding the human capacity

to perceive and differentiate odors [19, 20].

There has been much new understanding of olfactory perception and many

new developments in the science of smell, see e.g. [21], which in contrast to

the low-level signal processing described above, is what we build upon in this

work. An important finding is that the full gamut of odor perception for a

compound or mixture of compounds (including pleasantness and whiteness)

can be predicted from the physicochemical properties of the molecules [22],

in part via information processing models of cortex [23]. Moreover, human

olfactory perception is primarily synthetic rather than analytic. What this

means is that when people smell mixtures of compounds, they do not perceive

a mixture of individual compound percepts. Instead, they perceive a single

physicochemical object all at once, where that single physicochemical object

is a weighted combination of the individual physicochemical features of the

compounds in the mixture.

One may ask how the olfactory perception space is represented. Experiments

have human subjects describe the smell of pure chemical compounds in words—

tolualdehyde smelling ‘fragrant,’ ‘aromatic,’ ‘almond,’ and ‘sweet;’ or valeric

acid smelling ‘rancid,’ ‘sweaty,’ ‘putrid,’ ‘fecal,’ and ‘sickening’ [24]—resulting

in a perceptual space whose dimensions are these odor descriptors. By averaging

odor descriptor judgements over several subjects, each compound can be placed

as a point in a real-valued perceptual space where the coordinate value is a

function of the percentage of subjects who use a descriptor for a compound.

Such experiments have only been conducted on a small set of compounds, but

we estimate the perception of uncharacterized compounds and mixtures from

their physicochemical structure represented as a vector of features describing

the molecule.

In particular, we learn the mapping between the physicochemical description
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of odorant compounds and their perceptual descriptions from a small amount of

training data so it generalizes to all compounds. We pose the learning problem

as one of multivariate regression. Our training set includes odor descriptor data

(labels) and physicochemical data (features) from the small subset of compounds

for which experimentally-determined odor descriptors exist. As it is believed ol-

factory perception is fairly low-dimensional, we use nuclear norm regularization

to keep the rank of the estimated mapping operator small [25].

An aspect of odor perception not yet fully resolved in the literature is how

perceived odor intensity is determined by the concentration and molecular prop-

erties of compounds and the medium in which they are suspended [26]. We use

straightforward concentration as an acceptable first-order approximation [27].

Given recent scientific progress on understanding olfactory perception, the

time is ripe to develop engineering theories and technologies that build upon

the science for applications in indoor air quality [28, 1], virtual reality [17, 18],

culinary arts1 [30, 2, 31, 32], hunting [33], and numerous others. In this work,

our contribution is to take a statistical signal processing perspective on systems

involving olfaction and develop the basic tools needed to engineer them. Upon

showing how to learn the olfactory physicochemical–perceptual mapping, we

develop specific example designs for problems of active odor cancellation [1]

and food steganography [2], and discuss many other olfactory operations at a

high level, including filtering and smoothing, enhancement, lossy compression,

communication and storage, and retrieval. As far as we know, there is no prior

work on active odor cancellation or olfactory steganography.

The remainder of this paper is organized as follows. In Section 2, we describe

the common first step for olfactory signal processing of learning the mapping

between the physicochemical and perceptual spaces. We detail the formulation

of one example olfactory signal processing system, active odor cancellation, in

Section 3 and another, food steganography, in Section 4. We provide high-level

1The primary contributors to human flavor perception are retronasal and orthonasal smell

[29].

4



views on several other systems involving olfactory signals in Section 5. Section 6

presents empirical studies on learning, cancellation, and steganography. Finally,

Section 7 summarizes the work and presents an outlook of future work in this

area.

2. Learning the Mapping Between Physicochemical and Perceptual

Spaces

The guiding principle of psychophysics, verified over centuries of experiments

with human subjects, is that the physical properties of a stimulus largely de-

termine its percept. For olfactory signals, we assume there is some general

nonlinear mapping from the physicochemical attributes of a compound to its

perceptual odor description. In this section we develop a statistical methodol-

ogy to learn a generalizable mapping from molecular structure of compounds

to their percept. The goal is to estimate the perceptual representation of com-

pounds and mixtures of compounds for which no experimental ground truth on

perception exists, but for which physicochemical properties are readily available.

Human olfactory perception is difficult to pin down precisely; the most com-

mon technique used in the psychology and science literatures is to present an

observer with a list of odor descriptor words or concepts and have him or her

evaluate whether a given chemical’s smell matches each odor descriptor. Aver-

aging over many individual observers yields a real-valued odor descriptor space

in which each chemical compound has coordinates. The physicochemical prop-

erties we consider are also numerical, so our goal is to learn a functional mapping

between the two spaces. In this work, we restrict ourselves to linear mappings,

the validity of which is suggested by human olfaction studies [6]. (More com-

plex mappings, including polynomial mappings suggested in [4] and kernel-based

mappings [34], can be accomodated in the same type of linear model described

below.)

Thus, we are given a set of training samples {(x1,y1), . . . , (xn,yn)} where

the xi ∈ R
k are physicochemical features of compounds and the yi ∈ R

l are
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the perceptual vectors in the odor descriptor space. Desiring a low-dimensional

mapping, we use nuclear norm-regularized multivariate linear regression to learn

a matrix A∗ ∈ R
l×k that maps unseen compounds from the chemical to the

perceptual space. In particular, if we concatenate all the training samples into

matrices X ∈ R
k×n and Y ∈ R

l×n, the problem to solve is:

A∗ = argmin
A

‖Y −AX‖F + λ‖A‖∗ (1)

where λ trades data fidelity for sparsity of the singular values of A∗. This

problem is convex and can be solved by interior point methods and a variant of

Nesterov’s smooth method [25].

Note that Euclidean norms make sense as both optimization objectives

(Frobenius norm) and characterizations of system performance (RMSE), since

they are used in olfactory psychophysics studies with human subjects from sev-

eral different laboratories [4, 5, 22, 35], and in the recent DREAM Olfaction

Prediction Challenge, a part of the Rockefeller University Smell Study.2

3. Active Odor Cancellation

Noise cancellation is one of the most basic of signal processing tasks [36, 37],

and thus we use it as the first task within which to describe olfactory signal

processing. There are often settings where chemical signals should be canceled:

poor indoor air quality and malodors are not only a nuisance and source of

dissatisfaction, but can decrease the productivity of office workers six to nine

percent [28]. Four general categories of techniques are currently used for reduc-

ing or eliminating odors: masking, which attempts to ‘overpower’ the offending

odor with a single pleasant odor; absorbing, which uses active ingredients like

baking soda and activated carbon; eliminating, in which chemicals react with

odor molecules to turn them into inert, odorless compounds; and oxidizing,

which accelerates the break-down of malodorous compounds. Instead, here we

2https://www.synapse.org/#!Synapse:syn2811262
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develop a statistical signal processing method for performing active odor cancel-

lation, with some resemblance to active noise and vibration cancellation [38, 39].

We approach the problem by taking advantage of the psychophysical prop-

erties of human end-consumers of odor. In particular, there is a recently dis-

covered percept called olfactory white, which is the neutral smell generated

by equal-intensity stimuli well-distributed across the physicochemical space [8],

much like white light or auditory noise. More specifically, the set of all odor-

ant compounds spans a particular subspace of physicochemical attribute values;

when more than approximately thirty compounds, all diluted to a concentration

having equal perceived intensity, are smelled together in a mixture, the result-

ing percept is a neutral odor that is the same no matter which compounds are

included in the mixture, but only if the compounds in the set are fairly uni-

formly distributed in the subspace [8]. Whiteness is a central concept in active

signal cancellation generally speaking [37]. Our goal in this section is to sense

an existing malodor and to output a compound mixture from a virtual aroma

synthesizer such that the resulting combined odor is white.

In the active odor cancellation applications of interest to us, several different

malodors may be sensed and canceled by the same virtual aroma synthesizer.

Therefore, in addition to providing excellent cancellation performance, we also

desire the cardinality of the compound set in the system to be minimized be-

cause it is costly to have many cartridges. Toward this goal, we use the group

lasso or simultaneous sparsity-inducing ℓ1/ℓ2 norm [40]. We also require a non-

negativity constraint because optimized compound mixtures can only be output

into the air, not subtracted [41]. Due to the synthetic nature of human olfaction,

the generally nonlinear perceptual mapping (simplified to linear in this paper) is

applied to the physicochemical representation of mixtures of compounds exhaled

by the system.

As a starting point, we collect a set of n compounds that could possibly be

used in the aroma synthesizer. Let the physicochemical representation of this

dictionary be Xdict ∈ R
k×n. We would like to design the system to optimally

cancel m different malodors with perceptual representations Ymal ∈ R
l×m. We
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would like to determine a simultaneously sparse set of non-negative coefficients

W∗ ∈ R
n×m
+ that minimize:

1
2
‖Ymal +A∗ (XdictW) ‖2F + µ‖W‖1,2, s. t. W ≥ 0, (2)

where µ is a regularization parameter, and the ℓ1/ℓ2 norm takes ℓ2 norms of

each of the n length-m rows of W first and then takes the ℓ1 norm of the re-

sulting length-n vector. The physicochemical-to-perceptual mapping A∗ comes

from the learning problem described in Section 2. The data fidelity term is

‖Ymal +A∗ (XdictW) ‖2F because the all-zeros vector in the perceptual space is

an olfactory white.

A more general formulation for the optimization can incorporate the fact

that there is not a single olfactory white, but a family of them. The more

general optimization problem is then a minimization over the coefficients and

the particular olfactory whites in the family:

1
2
‖Ymal+A∗ (XdictW)−Ywhite‖

2
F +µ‖W‖1,2, s. t. W ≥ 0, Ywhite ∈ Ywhite.

(3)

The family Ywhite can be specified as the set of matrices with all rows within

a column having the same value, i.e., of the form 1cT , where 1 is the length l

all-ones vector and c is a length m vector that is free to be decided upon.

4. Food Steganography

Many children (and adults) are picky eaters to whom junk food is more at-

tractive than healthy food. This instinct was useful for hunter-gatherers that

depended heavily on their senses to decide what to eat: in nature, sweet foods

are almost always safe and nutritious whereas foods that smell odd are poten-

tially toxic or spoiled. In modern environments, this same instinct often serves

to make people obese and chronically ill. Hiding a nutritious, averse food in a

delectable food may therefore aid people in eating healthier.

A second problem, closely related to active odor cancellation, is hiding the

flavor of one food inside the flavor of another food through the use of an addi-
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Figure 1: Depiction of food steganography in the perceptual domain, where macaroni & cheese

is delectable, cauliflower is averse, and the white powder is the additive.

tive: food steganography. Steganography is the very old concept of impercep-

tibly hiding a signal into a cover medium [42, 43, 44, 45], which has a signal

processing flavor in approaches like spread spectrum image steganography [46].

We demonstrate a statistical signal processing approach to optimally design a

food additive (either using pure compounds or natural ingredients) to act as a

steganographic key for this food steganography problem. The steganographic

percepts are depicted in Fig. 1, illustrated using the hiding of cauliflower inside

of macaroni and cheese as an example. Note that there are many possible goals

in steganography; herein the goal is not for the receiver to decipher a hidden

message, but only to make imperceptible a food to which the receiver is averse

(and which may have good nutritional properties).

A food additive (steganographic key) combines with the averse food (hidden

signal), and the delectable food (cover medium) such that the combination

is perceived as only the delectable food’s flavor; the olfactory white signal is

used as a mathematical intermediary. The food additive may be composed of

some weighted mixture of pure compounds or some weighted mixture of food

ingredients from a dictionary. We may also want to regularize the problem by

including a sparsity or other cost-related penalty on the food additive.

There are typically tens to hundreds of different chemical compounds con-

tributing to flavor per food ingredient. Using data on the concentrations of

compounds in foods, we take a weighted combination of the physicochemical

vectors of the constituent compounds of a food to determine its perceptual rep-

resentation using the mapping learned in Section 2. Next, we solve a regularized
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inverse problem with a non-negativity constraint to find compounds or foods

and their coefficients required to synthesize an additive that produces olfactory

white when combined with an averse food of interest.

Let Xcov be the physicochemical representation of the cover medium’s com-

pounds and wcov be the concentrations of the cover medium’s compounds. Like-

wise let us introduce Xhid and whid for the hidden data. Let Xdict be a dictio-

nary of n possible compounds from which we can construct the steganographic

key (food additive) along with its weight vector wdict, which is the subject of

design. First, with a general nonlinear physicochemical-to-perceptual mapping

A∗(·), the perceptual hiding we want to perform is to choose wdict to satisfy:

A∗ (Xcovwcov +Xhidwhid +Xdictwdict) ≈ A∗ (Xcovwcov) . (4)

With the linear mapping that we are assuming in this work, the objective

simplifies to:

A∗Xhidwhid ≈ −A∗Xdictwdict. (5)

The determination of the steganographic key does not depend on the cover

medium, and is simply the odor cancellation signal from Section 3. Specifically,

we solve the following optimization problem:

min
wdict

‖A∗Xhidwhid +A∗Xdictwdict‖
2
2 + νJ (wdict) (6)

s. t. wdict ≥ 0

where J(·) could be one of a number of possible regularization terms meant to

promote secondary objectives such as monetary frugality, sparsity, or nutrition.

In the case that we only want to use a set of n′ food ingredients to compose

the additive, we first use data on the known concentrations of compounds in

food ingredients to construct an n × n′ weight matrix Wingr that multiplies

Xdict to obtain a dictionary of food ingredient physicochemical features. The

weight vector to be solved for is then an n′ × 1 vector wingr:

min
wingr

‖A∗Xhidwhid +A∗XdictWingrwingr‖
2
2 + νJ (wingr) (7)

s. t. wingr ≥ 0.
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5. Other Systems

We have detailed two specific olfactory signal processing systems in the pre-

vious two sections. However, the variety of possible tasks one may want to

perform in the olfactory modality is as broad as in other modalities. In this

section, we discuss formulations for several of those other possible tasks. This

section is not meant to be an exhaustive coverage of all possible olfactory signal

processing tasks, but is meant to showcase the realm of possibilities and spur

future research.

The main terms in the objectives of cancellation and steganography (2),

(6), and (7) are as they are because we desire a neutral all-zeros perception as

output in those tasks. However, there is nothing preventing us from inserting a

desired target or output odor percept into the objective (as we did for the full

family of olfactory whites), which would allow us to perform general filtering

or equalization operations. With a given desired perceptual output ydes, the

problem is:

min
w

‖A∗xin +A∗Xdictw − ydes‖
2
2 + µJ (w) , s. t. w ≥ 0, (8)

Olfactory cancellation, filtering, or equalization will, in general, take place

in dynamic rather than static environments. For example, think of the indoor

air quality of an automobile traveling from a chemical plant to an urban envi-

ronment via a garbage dump. Problem (8) can be extended to include a time

variable t that applies to xin, w, and possibly ydes. The dynamic version of

the problem can be addressed using the theory of adaptive filtering; one specific

way to formulate the adaptive version is through a variation on a regularized

LMS algorithm with nonnegativity constraint [47, 48, 49].

The difference from the standard adaptive linear combiner here is that wt

is multiplied by the dictionary of available compounds and xin,t is an additive

term; wt and xin,t are not multiplied or convolved with each other. The update
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rule for an LMS-like adaptive filter is:

wt+1 = wt − 2η diag{wt}

×
(

(A∗Xdict)
T (A∗xin,t +A∗Xdictwt − ydes,t) + µ∂J(wt)

)

, (9)

where η is the step size of the LMS algorithm.

Virtual reality applications may require a ‘smelltrack’ similar to a sound-

track to accompany motion pictures. In such applications, we can assume that

the desired olfactory perception signal over the entire time period is known in

advance and that there is no ambient odor to overcome. Therefore, we may

be able to do better than adaptive filtering. The difficulty is that compounds

exhaled into an environment linger for some duration. If we develop a stochastic

model for this persistence, perhaps using a Gaussian puff model [50, 51] com-

posed with a psychophysical sniff model [52, 53], then we can use appropriate

extensions of the Rauch-Tung-Striebel smoother to obtain an optimal control

strategy of virtual aroma synthesizer actuation. Such an approach can also al-

low the composer to only specify ‘key frames’ of smell with the signal processing

algorithm interpolating the rest.

An alternative to specifying a desired output signal ydes, as in adaptive

filtering, is to specify the desired behavior and requirements of the filter to be

designed without using a specific input signal realization in the objective [54].

For example, a desired behavior might be to allow pleasant odor components

to pass through the filter unchanged and to cancel unpleasant odor components

(similar to a low-pass filter), or to allow all odors except for the odor descriptor

‘vomit’ to pass (similar to a notch filter). Such filters do not depend on the

input signal, but have the same multiplicative or convolutive behavior for all

inputs.

Unfortunately in our signal processing approach, we affect the synthesized

perceptual representation of the output through the superposition of the input

and a set of compounds we design, not by physically filtering different com-

pounds or types of compounds. This means, as previously noted, that the

specification w does not multiply (or convolve) the input signal xin, but adds

12



to it after being modulated by the dictionary Xdict. This implies filters imple-

menting multiplicative behavior are not possible for olfactory signals. Letting

yin = A∗xin and yw = A∗Xdictw, we are saying that it is not possible to choose

a yw such that yin + yw = 0 for all yin.

Furthermore, we cannot define general filterbank decompositions either. What

is not precluded, however, is decomposing specific realizations of odor signals.

For example, extending the idea of Kisstixx lip balm,3 we can decompose a

well-recognized perceived odor into two different perceived odors which are each

well-recognized separately, just like decomposing into parts with non-negative

matrix factorization [55].

The learned perceptual mapping A∗ allows us to define a distortion function

between compound mixtures that can be used for a variety of processing tasks

including lossy compression (i.e. choosing a different, less costly set of com-

pounds to approximately reproduce the odor of the original set of compounds),

denoising, hashing, and retrieval. Moreover, the storage and communication of

olfactory signal data only needs to be in the synthetic perceptual domain; data

on the analytic physical compounds of smells is not required.

Going one step further, since pleasantness is the main component of odor

signals, storing and communicating only the pleasantness scalar value or scalar

time series is often the only desire [56]. For example, pleasantness and not any

higher-order odor dimensions, is one of the two main criteria in the selection step

of a successful computational creativity system for culinary recipes [30, 32, 31].

Finally, we conjecture that odor enhancement can be approached in much

the same way as image enhancement via hue and saturation. As we noted earlier,

olfactory white emerges only with a large number of compounds that span the

perceptual space. Olfactory white can be viewed as a fully desaturated odor.

This reasoning implies that we can start with an odor and decrease its saturation

by gradually adding many compounds from different parts of the space, and

increase its saturation by adding to the concentration of a few compounds from

3http://kisstixx.com/
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one part of the space. We can change the hue of an odor, e.g. start with the

smell of a rose and make it ‘fishier’ [57], by adding appropriate compounds while

ensuring not to alter the saturation.

6. Empirical Results

In this section, we present illustrative empirical results on learning the map-

ping from physicochemical features to odor descriptors and using this mapping

for active odor cancellation in a setting that may arise in the break room or

lunch room of a small office. We also illustrate the use of this mapping for

food steganography where the hidden food is cooked broccoli, which has many

positive nutritional qualities but to which many have aversion.

6.1. Learning the Mapping

The first step in our empirical study is to learn the mapping A∗ from physic-

ochemical properties of compounds to the olfactory perception of those com-

pounds. We collect a (k = 18)-dimensional physicochemical feature vector for

each of 143 different chemical compounds that have been judged by human ob-

servers against l = 146 different odor descriptors as diverse as ‘almond,’ ‘cat

urine,’ ‘soapy,’ ‘stale tobacco smoke,’ and ‘violets.’ The 18 physicochemical fea-

tures are obtained from the National Center for Biotechnology Information’s

PubChem Project and include among others: topological polar surface area,

partition coefficient prediction (XLogP), molecular weight, complexity, heavy

atom count, hydrogen bond donor count, and tautomer count. The feature val-

ues are the properties exhibited by a single molecule of the compound, e.g., for

ethyl pyrazine, topological polar surface area = 25.8, XLogP = 0.7, molecular

weight = 108.14112, and so on. The human judgements on odor descriptors

are obtained from the Atlas of Odor Character Profiles (AOCP) [24], which

pools data from a panel of hundreds of flavor/fragrance experts.4 The two data

4We use the percentage of applicability data from AOCP. For each compound, many human

experts evaluate it against each of the 146 descriptors on a zero to five scale. The percentage
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Figure 2: Five-fold cross-validation testing root mean squared error of the mapping between

physicochemical and perceptual spaces averaged across the 146 perceptual dimensions.

sets are matched and joined using Chemical Abstracts Service (CAS) Registry

numbers.

Using the percept matrix Y ∈ R
146×143 from AOCP and the physicochem-

ical matrix X ∈ R
18×143 from PubChem, we learn the mapping by solving

the nuclear norm-regularized multivariate linear regression problem discussed

in Section 2 using the method of [25]. We conduct five-fold cross-validation to

determine the best value of λ. As a figure of merit, we consider the root mean

squared error (RMSE) averaged over the 146 dimensions; Fig. 2 shows the cross-

validation testing average RMSE as a function of λ. The error is minimized at

approximately λ = 104 and is the value we use going forward.

6.2. Active Odor Cancellation

We consider m = 4 different offending odors that we wish to cancel with

the same, small-cardinality set of olfactory compounds. The four smells are:

durian (Durio zibethinus), onion (Allium cepa L.), katsuobushi (dried bonito),

and sauerkraut. With an optimal solution to the problem (2), we can create a

device with minimal complexity that senses the current odor and outputs the

appropriate concentrations of compounds to cancel it. When placed in a lunch

of applicability for a given descriptor ranges from zero to one hundred and is the geometric

mean of the percentage of experts who give a score greater than zero and the ratio of the sum

of the scores and five times the number of experts as a percentage [24]. When interpreting

accuracy results in this section, the definition of percentage of applicability should be kept in

mind.
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Figure 3: Perceptual projection of the mixture of compounds contained in durian, katsuobushi,

sauerkraut, and onion.

room, the device will be able to cancel these four odors, but also many others.

The perceptual representation of the four odor mixtures of interest can be

predicted from the learned mapping. First, in the same spirit as the synthesis

that takes place in human olfactory perception, we take a linear combination

of the physicochemical features of the components of the odor and then map

the resulting physicochemical vector to perceptual space. We obtain the set of

olfactory compounds present in the four odors and their concentrations from the

Volatile Compounds in Food 14.1 database (VCF) and obtain physicochemical

features of those compounds from PubChem. The resulting predicted percep-

tions of durian, katsuobushi, sauerkraut, and onion are shown in Fig. 3. For

example, it can be seen in the figure that sauerkraut is perceived most like the

‘oily, fatty’ descriptor and least like the ‘fruity, citrus’ descriptor. The odor de-

scriptors with largest positive coefficients for the other three malodors are ‘sick-

ening,’ ‘fragrant,’ and ‘sweet,’ respectively. The odor descriptors with largest

negative coefficients for the other three malodors are ‘fragrant,’ ‘chemical,’ and

‘chemical,’ respectively.

Having predicted the perception of the four odors of interest, the next step is

to find compounds that can be used to cancel their smells perceptually. Toward

this end, we first construct a dictionary of compounds from which we can find

the cancellation set. We extract n = 5736 compounds from VCF found nat-

urally in food and find their physicochemical properties from PubChem. This

dictionary, with members only from natural edible products has certain lim-

itations, which we comment on later. We use the non-negative simultaneous
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Figure 4: Dictionary coefficient values in optimal cancellation solution with µ = 1.
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Figure 5: Perceptual representation of residual odor after cancellation of durian, katsuobushi,

sauerkraut, and onion with µ = 1.

sparsity formulation given in Section 3 with this dictionary to find the optimal

sparse set of compounds for active odor cancellation with different values of the

regularization parameter µ. We use SDPT3 to solve the optimization problem

[58].

The set of coefficients W found for µ = 1 is shown in Fig. 4. There are 22

compounds with positive coefficient value in at least one of the four cancellation

additives. The residual odor remaining after cancellation is shown in Fig. 5.

The Frobenius norm of the residual is 17.13 and the ℓ2 norms of the individual

odors are 1.41 for durian, 4.38 for katsuobushi, 16.30 for sauerkraut, and 2.50

for onion. By reducing µ, we can improve the cancellation at the expense

of increasing the number of compounds used. The coefficients in the optimal

solution for µ = 0.25 are shown in Fig. 6 and the residual perception in Fig. 7. In

this solution, 38 compounds have positive coefficients and the Frobenius norm

of the residual is 2.30. Residual ℓ2 norms of individual odors are: durian 0.04,
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Figure 6: Dictionary coefficient values in optimal cancellation solution with µ = 0.25.

A
L
C

O
H

O
L
IC

A
L
M

O
N

D
A

M
M

O
N

IA
A

N
IM

A
L

A
N

IS
E

 (L
IC

O
R

IC
E

)
A

P
P

L
E

 (F
R

U
IT

)
A

R
O

M
A

T
IC

B
A

K
E

R
Y

 (F
R

E
S

H
 B

R
E

A
D

)
B

A
N

A
N

A
B

A
R

K
, B

IR
C

H
 B

A
R

K
B

E
A

N
Y

B
E

E
R

Y
B

IT
T

E
R

B
L
A

C
K

 P
E

P
P

E
R

B
L
O

O
D

, R
A

W
 M

E
A

T
B

U
R

N
T

 C
A

N
D

L
E

B
U

R
N

T
 M

IL
K

B
U

R
N

T
 P

A
P

E
R

B
U

R
N

T
 R

U
B

B
E

R
B

U
R

N
T

, S
M

O
K

Y
B

U
T

T
E

R
Y

, F
R

E
S

H
 B

U
T

T
E

R
C

A
D

A
V

E
R

O
U

S
 (D

E
A

D
 A

N
IM

A
L
)

C
A

M
P

H
O

R
C

A
N

T
A

L
O

U
P

E
, H

O
N

E
Y

 D
E

W
 M

E
L
O

N
C

A
R

A
M

E
L

C
A

R
A

W
A

Y
C

A
R

D
B

O
A

R
D

C
A

T
 U

R
IN

E
C

E
D

A
R

W
O

O
D

C
E

L
E

R
Y

C
H

A
L
K

Y
C

H
E

E
S

Y
C

H
E

M
IC

A
L

C
H

E
R

R
Y

 (B
E

R
R

Y
)

C
H

O
C

O
L
A

T
E

C
IN

N
A

M
O

N
C

L
E

A
N

IN
G

 F
L
U

ID
C

L
O

V
E

C
O

C
O

N
U

T
C

O
F

F
E

E
C

O
L
O

G
N

E
C

O
O

K
E

D
 V

E
G

E
T

A
B

L
E

S
C

O
O

L
, C

O
O

L
IN

G
C

O
R

K
C

R
E

O
S

O
T

E
C

R
U

S
H

E
D

 G
R

A
S

S
C

R
U

S
H

E
D

 W
E

E
D

S
D

IL
L

D
IR

T
Y

 L
IN

E
N

D
IS

IN
F

E
C

T
A

N
T

, C
A

R
B

O
L
IC

D
R

Y
, P

O
W

D
E

R
Y

E
G

G
Y

 (F
R

E
S

H
 E

G
G

S
)

E
T

H
E

R
IS

H
, A

N
A

E
S

T
H

E
T

IC
E

U
C

A
L
IP

T
U

S
F

E
C

A
L
 (L

IK
E

 M
A

N
U

R
E

)
F

E
R

M
E

N
T

E
D

 (R
O

T
T

E
N

) F
R

U
IT

F
IS

H
Y

F
L
O

R
A

L
F

R
A

G
R

A
N

T
F

R
E

S
H

 G
R

E
E

N
 V

E
G

E
T

A
B

L
E

S
F

R
E

S
H

 T
O

B
A

C
C

O
 S

M
O

K
E

F
R

IE
D

 C
H

IC
K

E
N

F
R

U
IT

Y
, C

IT
R

U
S

F
R

U
IT

Y
, O

T
H

E
R

 T
H

A
N

 C
IT

R
U

S
G

A
R

L
IC

, O
N

IO
N

G
A

S
O

L
IN

E
, S

O
L
V

E
N

T
G

E
R

A
N

IU
M

 L
E

A
V

E
S

G
R

A
IN

Y
 (A

S
 G

R
A

IN
)

G
R

A
P

E
 J

U
IC

E
G

R
A

P
E

F
R

U
IT

G
R

E
E

N
 P

E
P

P
E

R
H

A
Y

H
E

A
V

Y
H

E
R

B
A

L
, G

R
E

E
N

, C
U

T
 G

R
A

S
S

H
O

N
E

Y
H

O
U

S
E

H
O

L
D

 G
A

S
IN

C
E

N
S

E
K

E
R

O
S

E
N

E
K

IP
P

E
R

Y
 (S

M
O

K
E

D
 F

IS
H

)
L
A

U
R

E
L
 L

E
A

V
E

S
L
A

V
E

N
D

E
R

L
E

A
T

H
E

R
L
E

M
O

N
L
IG

H
T

M
A

L
T

Y
M

A
P

L
E

 S
Y

R
U

P
M

E
A

T
Y

 (C
O

O
K

E
D

, G
O

O
D

)
M

E
D

IC
IN

A
L

M
E

T
A

L
L
IC

M
IN

T
Y

, P
E

P
P

E
R

M
IN

T
M

O
L
A

S
S

E
S

M
O

T
H

B
A

L
L
S

M
O

U
S

E
M

U
S

H
R

O
O

M
M

U
S

K
M

U
S

T
Y

, E
A

R
T

H
Y

, M
O

L
D

Y
N

A
IL

 P
O

L
IS

H
 R

E
M

O
V

E
R

N
E

W
 R

U
B

B
E

R
N

U
T

T
Y

 (W
A

L
N

U
T

 E
T

C
)

O
A

K
 W

O
O

D
, C

O
G

N
A

C
O

IL
Y

, F
A

T
T

Y
O

R
A

N
G

E
P

A
IN

T
P

E
A

C
H

 (F
R

U
IT

)
P

E
A

N
U

T
 B

U
T

T
E

R
P

E
A

R
P

E
R

F
U

M
E

R
Y

P
IN

E
A

P
P

L
E

P
O

P
C

O
R

N
P

U
T

R
ID

, F
O

U
L
, D

E
C

A
Y

E
D

R
A

IS
IN

S
R

A
N

C
ID

R
A

W
 C

U
C

U
M

B
E

R
R

A
W

 P
O

T
A

T
O

R
O

P
E

R
O

S
E

S
A

U
E

R
K

R
A

U
T

S
E

A
S

O
N

IN
G

 (F
O

R
 M

E
A

T
)

S
E

M
IN

A
L
, S

P
E

R
M

S
E

W
E

R
S

H
A

R
P

, P
U

N
G

E
N

T
, A

C
ID

S
IC

K
E

N
IN

G
S

O
A

P
Y

S
O

O
T

Y
S

O
U

P
Y

S
O

U
R

 M
IL

K
S

O
U

R
, V

IN
E

G
A

R
S

P
IC

Y
S

T
A

L
E

S
T

A
L
E

 T
O

B
A

C
C

O
 S

M
O

K
E

S
T

R
A

W
B

E
R

R
Y

S
U

L
F

ID
IC

S
W

E
A

T
Y

S
W

E
E

T
T

A
R

T
E

A
 L

E
A

V
E

S
T

U
R

P
E

N
T

IN
E

 (P
IN

E
 O

IL
)

U
R

IN
E

V
A

N
IL

L
A

V
A

R
N

IS
H

V
IO

L
E

T
S

W
A

R
M

W
E

T
 P

A
P

E
R

W
E

T
 W

O
O

L
, W

E
T

 D
O

G
W

O
O

D
Y

, R
E

S
IN

O
U

S
Y

E
A

S
T

Y

Durian

Katsuobushi

Sauerkraut

Onion

 

 

−5

0

5

10

Figure 7: Perceptual representation of residual odor after cancellation of durian, katsuobushi,

sauerkraut, and onion with µ = 0.25.

katsuobushi 0.12, sauerkraut 2.29, and onion 0.24.

The µ = 1 solution does provide a certain level of odor cancellation, but just

by decreasing the sparsity a little bit, we are able to get very good cancellation.

Only the residual of sauerkraut is non-negligible in the µ = 0.25 solution, and

even that is nearing negligibility. We note that certain parts of the various

odor signatures are easier to cancel than others. For example, the descriptor

‘medicinal’ is mostly removed from the sauerkraut solution with µ = 1 but

‘eucalyptus’ is not. With a limited budget on their number, compounds that

affect all four odors are at a premium. Thirteen compounds (out of 22 and 38,

respectively) are common to the two solutions: ‘(+)-cyclosativene,’ ‘(E,E,Z)-

1,3,5,8-undecatetraene,’ ‘(R)-3-hydroxy-2-pentanone,’ ‘1,3,5,8-undecatetraene,’

‘10-methyl-2-undecenal,’ ‘cis-piperitol oxide,’ ‘cubenene,’ ‘cyclooctatetraene,’

‘dehydrocurdione,’ ‘ethylpyrrole (unkn.str.),’ ‘heptatriacontane,’ ‘juniper cam-

phor,’ and ‘methane.’
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Figure 8: Principal component projection of perceptual vectors of dictionary and four odors.

The blue squares are the four odors to be canceled, the red triangles are compounds selected

only in the µ = 1 solution, the magenta diamonds are compounds selected only in the µ = 0.25

solution, the maroon circles are the compounds selected in both the µ = 1 and µ = 0.25

solutions, and the black points are all other compounds in the dictionary.

As discussed in Section 1, our formulation of active odor cancellation is as-

sociated with the concept of olfactory white, which emerges with around thirty

(but not with fewer) compounds of equal intensity covering the space of com-

pounds fairly evenly. We visualize the space of compounds using the first two

principal components of the perceptual vectors of the compounds in the dictio-

nary and the four odors under consideration in Fig. 8. The compounds with

non-zero coefficient values do span the space as best as they can to produce

something akin to olfactory white. It is interesting to note that the modest in-

crease from 22 to 38 compounds yields such a large improvement in cancellation

quality where these two values are on either side of the number required for

olfactory white. In the visualization, we also see that the dictionary we have

used does not well-cover the full space; this is partly because the only com-

pounds we have used are present in food products, suggesting that for improved

cancellation, we should consider a more diverse dictionary that covers the space

of olfactory perception better.
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Figure 9: Perceptual projection of the mixture of compounds contained in broccoli.

6.3. Food Steganography

To demonstrate our approach to food steganography, we design food addi-

tives to act as steganographic keys for cooked broccoli, where the cover medium

may be cheese or mango juice. (As discussed in Section 4, the cover medium does

not matter under the linearity assumption.) Similarly to durian, katsuobushi,

sauerkraut, and onion, we first characterize broccoli physicochemically and per-

ceptually. The 21 compounds in cooked broccoli from VCF are given in Table 1.

We take the concentration values as the weights wj and normalize to unit ℓ2

norm, obtaining the physicochemical representation of the mixture Xhidwhid.

The result of projecting the mixture into perceptual space using A∗ is shown

in Fig. 9. The most prominent predicted odor descriptors for cooked broccoli

are sickening, garlic/onion, and sharp/pungent/acid, which speaks to why many

people dislike it.

The pure compounds dictionary associated with inverse problem (6) is the

same one used in the active odor cancellation study of compounds found nat-

urally in food with n = 5736. We also construct an n′ = 297 food ingredients

dictionary from VCF data associated with the inverse problem (7). Specifically,

we only include food products with at least 15% of their listed compounds hav-

ing both a match in PubChem and having a concentration value listed. If a

range of concentrations is listed in VCF we use the midpoint of the range; if

the value is listed as ‘trace,’ we use the value 10−6 parts per million. All food

ingredient concentrations are normalized to have unit ℓ2 norms. The union of

compounds found in the 297 food ingredients is a subset of the 5736 compounds

in the pure compound dictionary.
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Conc. Compound Name

0.0065 benzaldehyde

0.0324 1-octanol

0.0162 4-methylacetophenone

0.0811 phenylacetaldehyde (=benzeneacetaldehyde)

0.2596 nonanal (=pelargonaldehyde)

0.0162 limonene

0.0973 phenethyl isothiocyanate

0.0162 (E,E)-2,4-decadienal

0.0649 dimethyl trisulfide (=2,3,4-trithiapentane, methyltrithiomethane)

0.0162 2-pentylfuran

0.0162 2,3,5-trithiahexane

0.0162 (E,Z)-2,4-heptadienal

0.0973 (E,E)-2,4-heptadienal

0.4867 4-(methylthio)butyl isothiocyanate

0.0162 2-hexenal

0.6489 5-(methylthio)pentanenitrile

0.0162 dimethyl disulfide (=methyldithiomethane)

0.4867 3-phenylpropanenitrile (=phenethyl cyanide, benzenepropanenitrile)

0.0227 1,2-dimethoxybenzene (=veratrole)

0.0649 (Z)-3-hexen-1-ol (=leaf alcohol)

0.0162 benzothiazole

Table 1: Compounds in cooked broccoli with concentrations.
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Conc. Compound

10.4520 methane

5.6617 2,5-hexanedione (=acetonylacetone)

4.6890 cyclotetracosane

3.1862 cubenene

1.7275 1,1’-dioxybis(1-decanol)

0.6456 2,4-diphenylpyrrole

0.5931 propanamide

0.5685 cyclooctatetraene

0.5044 heptatriacontene (unkn.str.)

0.3386 p-1,5-menthadien-7-ol

0.3376 2-ethyl-5-pentanoylthiophene

0.1209 ethylpyrrole (unkn.str.)

0.1106 docosahexaenoic acid (unkn.str.)

0.0224 10-methyl-2-undecenal

0.0055 α-maaliene

0.0041 2-(2-methylbutanoyl)furan

Table 2: Additive mixture composed of pure compounds for food steganography with cooked

broccoli as the hidden data.

We use a sparsity-promoting penalty for J as a demonstration. The result

based on the pure compound dictionary is shown in Table 2 and the result based

on the food ingredient dictionary is shown in Table 3. It is difficult to interpret

the pure compounds solution. The food ingredient solution is easier to inter-

pret. Angelica seeds, which are the main component of the food product-based

additive, have a very unique pleasant smell entirely unlike similar plants such as

fennel, parsley, anise, and caraway, and are used as a flavoring in Scandinavian

cuisine.
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Conc. Food Product Name

13.2999 ANGELICA SEED OIL

7.5619 CUMIN SEED (Cuminum cyminum L.)

7.5328 MUSSEL

4.3985 BARLEY (unprocessed)

2.8275 LOBSTER

2.7808 BLACKBERRY BRANDY

2.5717 ROSE WINE

2.3048 OTHER VITIS SPECIES

1.4727 TURNIP

1.3033 LAMB and MUTTON FAT (heated)

0.8432 INDIAN DILL ROOT (Anethum sowa Roxb.)

0.6520 LOGANBERRY (Rubus ursinus var. loganobaccus)

0.4794 ELDERBERRY FRUIT

0.1626 PEANUT (raw)

0.0989 MICROCITRUS SPECIES OIL

0.0285 PRAWN

Table 3: Additive mixture composed of food ingredients for food steganography with cooked

broccoli as the hidden data.

23



7. Conclusion

This paper represents a first foray for statistical signal processing into the

new multimedia domain of human olfaction, building on new developments in

the science of smell. The general framework was demonstrated through two

specific applications in active odor cancellation and in food steganography, and

methods for solving a broader class of problems were also indicated. Empiri-

cal results from the design procedures required bringing together data on the

flavor composition of ingredients (from gas chromatography–mass spectrome-

try), the molecular properties of odor compounds (from chemoinformatics), and

the human perception of flavors (from hedonic psychophysics) with algorithmic

techniques for function learning and inverse problem solution.

By addressing one of the fundamental problems of signal processing, noise

cancellation, this work opens up a new category of techniques for dealing with

bad odors beyond masking, absorbing, eliminating, and oxidizing; the most im-

portant application is to indoor air quality. Furthermore, since human food

aversion and food intake behavior can have significant consequence for health,

well-being, and happiness, ways to steganographically hide one food inside an-

other can be quite powerful. Although the signal processing results are promis-

ing, it remains to validate the efficacy of these methods with experimental tests

using human subjects.
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