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Abstract

The performances of the automatic speaker verification (ASV) systems degrade due to the reduction in
the amount of speech used for enrollment and verification. Combining multiple systems based on different
features and classifiers considerably reduces speaker verification error rate with short utterances. This
work attempts to incorporate supplementary information during the system combination process. We use
quality of the estimated model parameters as supplementary information. We introduce a class of novel
quality measures formulated using the zero-order sufficient statistics used during the i-vector extraction
process. We have used the proposed quality measures as side information for combining ASV systems based
on Gaussian mixture model-universal background model (GMM-UBM) and i-vector. The proposed methods
demonstrate considerable improvement in speaker recognition performance on NIST SRE corpora, especially
in short duration conditions. We have also observed improvement over existing systems based on different
duration-based quality measures.

Keywords: Duration Variability, Gaussian Mixture Model (GMM), Identity Vector (i-vector), Posterior
Probability, Quality Measure, Short Utterances, Speaker Verification, System Fusion, Total Variability,
Universal Background Model (UBM), Voice Authentication,

1. Introduction

The automatic speaker verification (ASV) technology uses the characteristics of human voice for the
detection of individuals [1, 2]. The technology provides a low cost biometric solution suitable for real-
world applications such as in banking [3], finance [4], and forensics [5]. Similar to other traditional pattern
recognition applications, an ASV system includes three fundamental modules [1, 6]: an acoustic feature
extraction unit that extracts relevant information from the speech signal in a compact manner, a modeling
block to represent those features and a scoring and decision scheme to distinguish between genuine speakers
and impostors. The state-of-the-art ASV system uses i-vector technology that represents a speech utterance
with a single vector of fixed length either using Gaussian mixture model-universal background model (GMM-
UBM) [7] or deep neural network (DNN) technology [8]. More recently, deep neural network (DNN) based
embeddings are used for speaker recognition [9]. First, a DNN trained in a supervised manner to classify
different speakers with known labels. Then, the trained DNN is employed to find a fixed-dimensional
representation, known as x-vectors [9], corresponding to a variable length speech utterance.

Despite of these recent technological advancements, the mismatch issues are still a major concern for its
real-world applications [10]. The performance of ASV system considerably degrades in presence of mismatch
due to intra-speaker variability caused by the variations in speech duration [10, 11], background noise [12],
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vocal effort [13], spoken languages [14], emotion [15], channels [16], room reverberation [17], etc. In this
paper, we focus on one of the most important mismatch factor, speech duration, the amount of speech data
used in enrollment and verification.

1.1. Short utterance in speaker recognition

State-of-the-art ASV systems exhibit satisfactory performance with adequately long ( 2 minutes) speech
data. However, reduction in amount of speech drastically degrades the ASV performance [10, 12, 18, 19, 20].
The requirement of sufficiently long speech for training or testing, especially in presence of large intersession
variability has limited the potential of widespread real-world implementations. An ASV system, in real
world, is naturally constrained on the amount of speech data. Though this requirement can be fulfilled in
training in some special cases, it is not always possible to maintain the same in verification for end-user
convenience. In forensics applications, it is less likely to get sufficient data even for enrollment also [10, 19].
Therefore, getting reliable performance for short duration speech is one of the most important requirement
in ASV application.

The performance of ASV systems are notably degraded with the reduction of amount of speech due
to the lack of information provided in short utterance condition [19, 18, 21, 22]. In [7], it is reported
that the i-vector based ASV systems are less sensitive to limited duration utterances than support vector
machine (SVM) and JFA. The performance still deteriorates considerably with limited duration utterance
as reported in [20, 18]. The duration variability problem is handled by extracting the duration pattern from
the automatic speech recognition prior to modeling and scoring process in [23]. In [24], the short duration
problem is approached, demonstrating the potential of fusion between GMM-UBM and SVM based systems
using logistic regression. The work in [25] attempted to model the duration variability as noise and also by a
synthetic process. The work in [26] has attempted to model variability caused by short duration segments in
i-vector domain. In [27, 28], i-vector based ASV system is calibrated for short duration using duration based
quality measures. The work in [29] attempted to improve short utterance speaker recognition by modeling
speech unit classes.

The latest DNN-based speaker embedding approaches have shown promising results for speaker recogni-
tion with short utterances [9, 30]. Another recent work demonstrates that DNN-based i-vector mapping is
useful for speaker recognition with short utterances [31]. Even though the DNN-based methods give good
recognition accuracy, they require massive amount of training data, careful selection of network architecture
and related tuning parameters. In this current work, we aim at improving the speaker recognition perfor-
mance by efficiently combining two popular ASV systems based on GMM-UBM and i-vector representation
which require lesser number of tuning parameters and amount of training data compared to the DNN-based
methods. Moreover, the GMM-UBM and i-vector method are suitable with limited computational resources.

1.2. Quality measure for duration-invariant speaker recognition

The research dealing with the effect of duration in speaker recognition have concentrated mostly on
the consequences of classification performance, expressed in terms of equal error rate (EER) and minimum
detection cost function (DCF) assuming the speaker model parameters are estimated satisfactorily. However,
the speaker models are affected due to duration variability in short duration. The idea of quality metric
was successfully applied in biometric authentication systems [32, 33]. The quality metrics were employed to
improve the efficiency of the multi-modal biometric systems [34, 35, 36]. The work in [37] was motivated by
a need to test claims that quality measures are predictive of matching performance. They also evaluated it
by quantifying the association between estimated quality metric values and observed matching results.

The quality metrics are also successfully used in speech based bio-metric systems [38, 39]. The work
in [39] studied a frame-level quality measure, obtaining encouraging results. However, the work in [38]
showed a conventional user-independent multilevel SVM-based score fusion, adapted for the inclusion of
quality information in the fusion process. The work in [40] focused on quality measure based system fusion,
giving the emphasis on noisy and short duration test conditions using NIST 2012 database. The commonly
used ASV systems, such as i-vector and GMM-UBM, do not include the information about the quality of
estimated speaker models and information of duration variability. The work documented in [41], analyzed
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several quality measures for speaker verification from the point of view of their utility in an authentication
task by selecting several quality measures derived from classic indicator like ITU P.563 estimator of subjective
quality, signal to noise ratio and kurtosis of linear predictive coefficients. Moreover, the work [41] proposed
a novel quality measure derived from what we have called universal background model likelihood (UBML).
The work in [42], analyzed the factors that negatively impact the biometric quality and also depict a review
of overall framework for the challenges of biometric quality.

The work in [28] used duration of speech segments to formulate the quality metrics and subsequently
utilized the same for the calibration of recognition scores. However, the duration based quality metrics may
not improve performance where the duration is fixed for either enrollment or verification or both. These
duration based quality measures ignored the information of quality of speaker-model estimation. The quality
of speaker-model parameters are not only dependent on duration, noise but also on phonetic distribution,
intelligibility of speech etc. However, to develop a solution by targeting the basic building blocks of an ASV
system, we attempted to incorporate the information of duration variability which degrades the quality of
speaker-models. The concept of quality may be defined as degree of goodness of an element [39, 38], which,
in our case, is the speaker-models. We treat BW statistics not only as the source of speaker information but
also as a source of quality of estimated speaker models.

The Baum-Welch (BW) statistics, which represent the speech features in the intermediate step of i-vector
extraction process, is affected by the duration variability. Consequently, the variability gets propagated
in the subsequent representation, i.e, i-vector. We hypothesize that BW statistics can help to extract
the quality of speaker-model parameters. We demonstrate through graphical analysis that the utterance
duration is associated with the dissimilarity measures between intermediate statistics and background model
parameters. We propose to use this measure as a quality measure. In this work, we propose to formulate
this quality measure from the BW statistics and universal background model (UBM) parameters.

The proposed quality measures can be infused as additional information in the ASV technique to improve
the system performance. The quality measures can be incorporated in potentially four possible stages of ASV
system: feature extraction, speaker-model training, score computation and fusion of scores [38]. The use of
quality measures in score fusion stage is most straightforward and has been successfully applied in speech,
finger-print, face based multimodal person authentication systems [43, 44]. In this paper, we incorporate
the proposed quality measures in score fusion stage to improve the performance of speaker recognition
system in various duration conditions. In short duration, the linear score fusion strategy showed efficient
performance with GMM and SVM based classification framework [24]. However, the i-vector based system
(with GPLDA based channel compensation) was reported to perform more efficiently over JFA and GMM-
SVM based framework in short utterance conditions [7]. Here, we show a comparative performance study
of i-vector and GMM-UBM on NIST corpora (Fig. 1). We observe that though i-vector system performs
better than GMM-UBM for long duration speech, the GMM-UBM system still shows comparable or even
better performance for short duration conditions [45, 46]. This observation inspire to fuse i-vector and
GMM-UBM to develop a more accurate and reliable solution for practical application of ASV systems. We
have incorporated the estimated quality measures while blending the GMM-UBM and i-vector based ASV
system. Incorporation of quality measures not only showed considerable improvement in performance but
also consistency in various duration conditions. The proposed systems showed more relative improvement
in short duration conditions which is more relevant for practical requirement. A preliminary version of this
work was presented in [45]. In this work, we conduct extensive analysis and experiments.

The rest of the paper is organized as follows. The theoretical aspects of classical GMM-UBM and i-vector
GPLDA system are discussed in Section 2. Analysis on intermediate subsystems under different duration
variability condition is presented in Section 3. Section 4 describes the proposed quality measures and
quality aided fusion based system. Details of experimental setup are provided in Section 5. The comparison
of performance metrics of baseline GMM-UBM and i-vector GPLDA based ASV system and results on
proposed quality aided fusion system are reported in Section 6. Finally, conclusion is drawn in Section 7.
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Figure 1: Plot of speaker recognition performance on (a) NIST 2008 corpus (short2-short3) with truncated enrollment and
truncated verification. (b) NIST 2008 short2-short3 corpus with full duration enrollment and truncated verification.

2. Automatic Speaker Recognition System

Speaker recognition system, based on Gaussian mixture model, has emerged as the most widely used
fundamental approach with the introduction of universal background model [47]. Subsequently, GMM
supervector based SVM [48], and JFA [49] were introduced in ASV technology. Recent state-of-the-art
speaker recognition concentrates on compact representation of GMM supervectors, named as i-vectors [7].
This work considers ASV system based on subspace modeling of i-vectors using PLDA [50]. This section
presents a brief explanation of GMM-UBM, i-vector and PLDA.

2.1. GMM-UBM based ASV system

In GMM-UBM, prior to enrollment phase, a single speaker independent universal background model is
created by using a large development data [47]. The UBM is represented as λUBM = {wi,µi,Σi}Ci=1 where C
is the total number of Gaussian mixture components, wi is the weight or prior of i− th mixture component,

µi is the mean and Σi represents the co-variance matrix. Parameter wi satisfies the constrain

C
∑

i=1

wi = 1.

A group of S speakers is represented by their corresponding model as {λ1,λ2, . . . ,λS}. In the GMM-
UBM system, we derive the target speaker model by adapting the GMM-UBM parameters. The model
parameters are adapted by maximum-a-posteriori (MAP) method. First, sufficient statistics Ni and Ei

from a hypothesised speaker’s utterance with T speech frames X = {x1,x2, . . . ,xT }, are calculated as,

Ni =

T
∑

t=1

Pr(i|xt) and Ei(X) =
1

Ni

T
∑

t=1

Pr(i|xt)xt (1)

where posterior probability of i-th component Pr(i|xt), is conditioned on speech data X = {x1,x2, . . . ,xT }.
In the testing phase, average log-likelihood ratio Λ(Xtest) is determined using test feature vector Xtest =

{x1,x2, . . . ,xT,test} against both target model and the background model.

ΛUBM(Xtest) = log p(Xtest|λtarget)− log p(Xtest|λUBM) (2)

Finally, a decision logic is applied to decide whether the claimant speaker will be accepted or rejected. A
decision threshold is used for decision, like if ΛUBM(Xtest) exceeds a predefined threshold then the claim
will be accepted, else rejected.

2.2. i-vector based ASV system

The i-vector represents the GMM supervector in a total variability space which reduces dimension of
GMM supervector [7]. In i-vector space, the GMM supervector, i.e, the concatenated means of GMM
mixture components, is represented as M = m+Φy, where Φ is a low-rank total variability matrix and y

represents i-vector, m is the speaker and channel independent supervector (taken to be UBM supervector)
and M is the speaker and channel dependent GMM supervector.
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Zeroth and first order BW statistics Ni and Ei respectively are used to obtain the i-vector y. The prior
distribution of i-vectors p(y) is assumed to be N (0, I) and posterior distribution of E, conditioned on the
i-vector y is hypothesized to be p(F|y) = N (Φy,N−1Σ). The MAP estimate of y conditioned on E is given
by

E(y|E) = (I+Φ⊤Σ−1NΦ)−1Φ
⊤
Σ−1N(E− m̄), (3)

where E(y|E), the expected value of the posterior distribution of y conditioned on E is considered as
the i-vector representation of a speech utterance. Here I refers to Identity matrix, the term Φ refers to
total variability matrix, estimated from the development data. The symbol Σ refers the co-variance matrix
adopted from UBM. The term m̄ represents the concatenated mean of the UBM components.

2.3. Gaussian Probabilistic Linear Discriminate Analysis (GPLDA)

A recent attempt to model speaker and channel variability in i-vector space is accomplished through
probabilistic LDA (PLDA) modeling approach. In this paper, we have used a simplified variant of PLDA,
named as Gaussian PLDA [50]. The inter-speaker variability is modeled by a full co-variance residual term.
The generative model for s-th speaker and j-th recording of new i-vector variability projected space is given
by

ys,j = η +Ψzs + ǫs,j , (4)

where η is the mean of the development i-vectors,Ψ is eigen-voice subspace and z is a vector of latent factors.
The residual term ǫ represents the variability not captured by the latent variables. This generative model
approach of i-vector space representation has been applied successfully with considerable improvement in
recognition accuracy [50].

2.4. Likelihood Computation

score calculation of GPLDA based i-vector system uses likelihood ratio [50]. For a projected enroll-
ment and verification i-vector ztarget and ztest respectively, the likelihood ratio ΛGPLDA(ztarget, ztest) can be
calculated as follows:

ΛGPLDA(ztarget, ztest) = log
p(ztarget, ztest|H1)

p(ztarget|H0) p(ztest|H0)
(5)

where H0: The i-vectors belong to different speaker.
H1: The i-vectors belong to the same speaker.

3. Analysis on BW statistics extraction procedure

Previous studies dealing with duration variability concentrated on the final performance metrics measured
in terms of EER, DCF, etc [18]. Some studies focused the variability in i-vector space [26]. However in this
work, we present a study on how duration variability affects the intermediate steps of ASV system. BW
statistics represent the total information from the speech and are transformed into i-vectors for decision
making. Since, in most of modern ASV systems, BW statistics is an indispensable and important step, we
initially conduct analysis on the BW sufficient statistics to investigate the characteristics and effect of the
short duration.

We have the relationship for zeroth order BW statistics as, Ni =

T
∑

t=1

Pr(i|xt), summing over all Gaussian

mixture components C we obtain,

C
∑

i=1

Ni =

C
∑

i=1

T
∑

t=1

Pr(i|xt) = T (6)
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Figure 2: Sorted distribution of normalized zeroth-order BaumWelch statistics (Ñi) corresponding to various duration condi-
tions (2 sec, 10 sec, 40 sec). Prior weights of GMM-UBM components (wi) are also shown in sorted ascending order.

Normalizing zeroth order statistics for a single Gaussian mixture component i we get

Ñi =
1

T

T
∑

t=1

Pr(i|xt) and
C
∑

i=1

Ñi = 1 (7)

Hence normalized zeroth order BW statistics (NBS) has the same property as weights of the GMM-UBM, i.e.,
∑C

i=1 wi = 1 . Moreover, Ñi can be regarded as the mixture weight indicator of the Gaussian component i for
a particular speech segment. It is a standard statistical hypothesis that BW statistics are better estimated
with sufficiently large speech data which capture all kinds of variability with meaningful proportion. Hence,
it is expected that the higher value of T with phonetically rich speech segment would lead to better quality
of estimation of Ñi. On the other hand, the intermediate statistics may be expected to be updated more
sparsely for reduced speech data or degraded quality of speech. On this core note, the characteristics of Ñi

are investigated. Systematic studies are presented separately on single utterance and multiple utterances
from multiple speakers.

3.1. Baum-Welch statistics for short-utterance

Initially, a telephone utterance from NIST SRE 2008 short-2 enrollment corpus of male speakers is taken
for analysis on NBS of different duration conditions, e.g., 2 sec, 10 sec and full length (1.5 - 2.5 mins). In
Fig. 2, Ñ is plotted in ascending order with respect to Gaussian mixture components for different duration
conditions. We observe from Fig. 2 that the gradient is steeper for short duration compared to the other
longer duration conditions, whereas that of the UBM showed more flat nature. This observation refers to
the fact that only a few number of Gaussian components are associated with most of the speech frames in
limited duration conditions. A large number of Gaussian components do not associates adequate speaker-
specific frames which finally affects the quality of model estimation. This effect reduces as the duration of
the utterance increases. As GMM-UBM is estimated from sufficiently large pool of speech data, most of the
Gaussian components are occupied by adequate speech frames. Thus, it shows more uniform nature in Fig.
2. We hypothesize that the introduction of greater variability in zeroth order statistics especially for short
duration condition indicates the lower quality of estimation of model parameters (NBS). This indicates the
quality of estimation of NBS is degraded in short duration condition. We treat NBS not only as a source of
speaker information, it can help measure the quality of estimated model of speakers.
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Figure 3: (a)Mean and (b)standard deviation of normalized Baum-Welch statistics (NBS) for each of the 512 Gaussian com-
ponents computed on three duration conditions (2 Sec, 10 Sec and full). Figure(a) includes the weights of GMM-UBM for
corresponding Gaussian. We have used all the male speakers of NIST 2008 (short2) corpus for this analysis.

3.2. Analysis of NBS in multiple speech utterances

In order to interpret the NBS, we have done an analysis on entire male part of NIST SRE 2008 consisting.
The effect of speech duration on the NBS is presented in Fig. 3 by showing mean (Fig. 3(a)) and standard
deviation(Fig. 3(b)) of NBS per Gaussian components for three duration conditions (2 sec, 10 sec and full
length). We have also shown the weights of GMM-UBM of corresponding mixture components (wi) are
presented in Fig. 3(a).

We observe in Fig. 3(a) that the means of Ñ for different duration condition follows the value of
UBM weight of corresponding Gaussian mixture component (wi). We also notice that for different duration
conditions, the means of different duration condition for a particular Gaussian component remains nearly
similar. This is observed in almost all Gaussian components shown in Fig. 3(a). These observations on
means of Ñ distribution and weights of corresponding Gaussian mixture component inspired us to use
GMM-UBM weights (wi) as reference to measure the variability in Ñ .

The short segments in Fig. 3(b) also show greater standard deviation referring greater variability intro-
duced in NBS. We observe gradual increment in the variability with a reduction in speech segment length.
As the variability in NBS is due to the duration, we hypothesize that the duration-related quality can be
reflected in the NBS.

4. Quality measures for speech segments

The observations in previous section illustrate that the variability in BW statistics is in someway asso-
ciated with the duration of speech. The work in [51] also attempted to model the sparsity and variability
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Table 1: Mathematical expression for quality measures formulated using normalized Baum-Welch statistics and UBM weights.

Quality Measure Short form

Q1(Ñs) =
∑C

i=1(Ñi,slog
Ñi,s

wi,ubm
) kl-1

Q2(Ñs) =
∑C

i=1(wi,ubmlog
wi,ubm

Ñi,s

) kl-2

Q3(Ñs) =
1
2

∑C

i=1(Ñi,slog
Ñi,s

wi,ubm
+ wi,ubmlog

wi,ubm

Ñi,s

) kl-avg

Q4(Ñs) =
∑C

i=1 |Ñi,s − wi,ubm| ℓ1 norm

Q5(Ñs) =
√

(
∑C

i=1 |Ñi,s − wi,ubm|2 ℓ2 norm

Q6(Ñs) =

√

(
∑C

i=1 Ñi,swi,ubm) bh

to compensate the performance of ASV in short duration. The work in [52] introduced an uncertainty mea-
sure computed from the the i-vector posterior parameter to compensate the duration variability effect. In
our current work, we propose to apply dissimilarity metrics between NBS (Ñi) and prior of corresponding
Gaussian component of UBM model (wi) to measure the impact of duration on speaker representation.
Subsequently, this is incorporated as supporting information in fusion of ASV system.

4.1. Quality Measure Modeling

The trends observed in Section 3, are exploited to empirically model the quality of speech segments. In
this paper, six types of dissimilarity measures are adopted to model the duration variability which degrades
quality of speaker model estimation. The mathematical expressions to model the quality Q of a segment s
are presented in Table 1. The adopted quality measures differ from the way of measuring dissimilarity of
Ñi from the weights of UBM (wi), which is treated as reference. Quality measure operators Q1, Q2 and Q3

models the Kullback-Liebler divergence between NBS (Ñi,s) and weights of Gaussian mixture components
of UBM wi,ubm. These metrics attempts to capture the divergence of the distribution of NBS and UBM
weights. Furthermore, we have also used other metrics to measure the dissimilarity. However, ℓ1-norm and
ℓ2-norm are applied in quality measure operator Q4andQ5 respectively. The Bhattacharyya distance is used
in to measure the overlap of the population samples of NBS and weights of UBM.

4.2. Statistical analysis of Quality Measures

An analysis for statistical relevance of the modeling of quality measures is illustrated in this section.
Segments from NIST 2008 short2 enrollment corpus with 1270 male speakers are used for assessment. The
distribution mean of dissimilarity measures Q̄j of all 1270 segments and its truncated versions (2 sec, 5 sec,
10 sec, 20 sec, full) are presented in Table 2. The mathematical expression for the mean of quality measures
of type Q̄j estimated from NIST 2008 short-2 corpus consisting of H utterances is given by

Q̄j =
1

H

H
∑

s=1

Qj(Ñs) j = 1, 2, . . .6 (8)

Separate analysis are presented in Table 2 for six types of dissimilarity measures (Qj , j = 1, 2, . . . 6) .
The distribution of quality measure of Q4 for truncated version of 2 sec, 10 sec and full duration are plotted
in Fig.4. Results indicate that Q̄j is decreased as the duration of speech segment rises as shown in Table 2
and Fig. 4. Hence, 2 sec segment shows highest value for Q̄j and full duration segment shows the lowest. In
Table 2, we observe gradual decrements in distribution mean of dissimilarity measure Q̄j with the increment
of speech duration. The decrements are consistent for almost all kind dissimilarity measures presented in
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Table 2: Mean of proposed quality measures of all segments in NIST 2008 short2 enrollment corpus and that of its truncated
versions for all six types quality measures.

duration Q̄1 Q̄2 Q̄3 Q̄4 Q̄5 Q̄6

kl-1 kl-2 kl-avg ℓ1 norm ℓ2 norm bh

2 sec 2.250 1.051 1.652 1.144 0.084 0.536
5 sec 1.314 0.679 0.997 0.899 0.061 0.399
10 sec 0.963 0.521 0.749 0.742 0.055 0.327
20 sec 0.782 0.437 0.608 0.654 0.050 0.273
Full 0.309 0.226 0.268 0.499 0.031 0.178
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Figure 4: Distribution of quality measure Q4 for 2 sec, 10 sec, and full segment, estimated from NIST 2008 short2 enrollment
corpus.

Table 1. These observations leads to use the proposed dissimilarity measure as the overall quality of speaker
model.

4.3. Fusion of ASV systems with quality measures

Quality measures can be incorporated in different stages of a speaker verification system like model
training [53], computation of scores [28, 27], scores fusion [54], etc. The existing literature show that
the quality information can be used in many applications, especially for score fusion in biometric person
recognition system [43, 44, 55, 36]. In our work also, we incorporate the quality measures in score fusion step.
In ASV, fusion-based approaches have found very much suitable for improving recognition accuracy [40, 56].
Though i-vector and GMM-UBM based ASV systems uses different approaches, we show in Section 6 that
GMM-UBM exhibit competitive or even better performance over i-vector in short utterance conditions. We
fuse i-vector and GMM-UBM to exploit the information captured simultaneously by two systems. The fusion
parameters are trained using logistic regression objective using the BOSARIS toolkit [57]. Separate NIST
corpora, SRE 2008 [58] and SRE 2010 [59], are used for training and evaluation of the fusion parameters
respectively.

We confine our work to score level fusion with fusion function f which combines two base classifier scores,
ΛUBM and ΛGPLDA, into a single score,

Λ = {ΛUBM ,ΛGPLDA}
⊤. (9)

The decision is made by comparing the fused score to a threshold. An annotated development set
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D = {(Λi, ci), i = 1, 2, . . . , Ndev} with ci ∈ {+1,−1} representing corresponding speech frame from target
speaker (ci ∈ {+1}) or imposter (ci ∈ {−1}) is used to train the fusion parameters.

The general model of linear fusion of the two systems is represented by:

flin(Λ) = α⊤Λ+ θ̄, (10)

where α is the fusion weight and θ is the bias. These fusion parameters are estimated by logistic regression
on the development scores.

After incorporating the quality measures for enrollment (Q(Ñenrol)) and test (Q(Ñtest)) utterances, the
general model of fusion is given by:

fQ(Λ) = α⊤
QΛ+ θQ + β ×Q(Ñenrol)Q(Ñtest), (11)

where αQ, θQ, and β are the parameters for quality measure fusion. Note that quality-based fusion is
also a type of linear fusion where the quality parameters are incorporated as additional similar scores. We
have also conducted a separate experiment where we have incorporated the proposed quality metric in single
i-vector system for duration-based score calibration [28]. The general model for adding quality measure in
single i-vector based system is given by,

fC(Λ) = αCΛGPLDA + θC + βC ×Q(Ñenrol)Q(Ñtest) (12)

where the parameters αC , θC and βC are the parameters for calibration and they are estimated on the
development set with known labels and applied evaluation set with unknown labels. In our experiments, we
have observed that the i-vector based scores and GMM-UBM based scores can be fused linearly which yields
encouraging performance improvement [46, 45, 60]. Hence, we attempt to add quality information in linear
fusion of i-vector and GMM-UBM system. However, while defining fusion model, we have incorporated the
quality information in score fusion using trial-by-trial manner. We have attempted to model the quality of a
trial by simply multiplying the quality measures, separately estimated from the BW statistics of enrolment
(Qenrol) and test (Qtest) utterance. Thus, we obtain the overall trial quality as. Qtrain × Qtest. We have
used six types of quality measures to improve the performance of ASV system in various duration condition
in Table 1.

For a quality fusion function fQ(Λ) with parameters (α, β, θ), the development data D and an empirical

cost function Ĉ((α, β, θ),D) are given, the optimal fusion function is obtained by

(αdev, βdev, θdev) = argminα,β,θĈ({α, β, θ},D), (13)

where decision cost function, C is defined as,

Cdet(ζ) = CmissPmiss(θ)Ptar + CfaPfa(ζ)(1 − Ptar) (14)

where ζ is the threshold, Ptar is the prior probability of the target speaker, Cmiss is the cost of the miss
and Cfa is the cost of the false alarm.

A schematic diagram for overall ASV system with linear as well as quality-measure based fusion is shown
in Fig. 5.

5. Experimental Setup

Both GMM-UBM and i-vector based systems use same mel frequency cepstral coefficients (MFCCs)[61]
as front-end acoustic features. We extract MFCCs using frame size of 20 ms and frame shift of 10 ms
as in [62]. The Hamming window is used in MFCC extraction process [63]. The non-speech frames are
dropped using energy-based speech activity detector (SAD) [64]. Finally, we performan cepstral mean and
variance normalization (CMVN) to remove the convolutive channel effect [62]. 19 dimensional MFCC with
appended delta and double delta coefficients (57 dimensional) are used throughout the experiments. Gender
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Figure 5: Schematic block diagram for proposed speaker verification system showing decisions obtained with both linear fusion
and quality-based fusion.

Table 3: Summary of speech corpora used in the experiments.

Specifications NIST SRE 2008 NIST SRE 2010
#target model 482 489
#test segments 858 351
#genuine trials 874 353
#imposter trials 11637 13707

dependent UBM of 512 mixture components are trained with 10 iterations of EM algorithm. We have
used NIST SRE 2004, 2005, 2006 and Switchboard II corpora as development data to estimate UBM, LDA
and GPLDA parameters. Total variability subspace of dimension 400 is chosen for i-vector extractor. We
perform LDA on i-vectors to improve the speaker discriminatibility and the dimensions are reduced to 200.
Finally, GPLDA with 150 eigen-voice space is used for scoring. We estimated the GPLDA parameters with
random initialization and 20 iterations of EM algorithm.

5.1. Experiments and Corpora

The performance of two major speaker modelling methods and proposed methods were evaluated on NIST
SRE 2008 [58] and NIST SRE 2010 [59] corpus. NIST 2008 short2-short-3 and NIST 2010 core-core speaker
recognition protocol is used as development and evaluation data respectively. Utterance truncated versions of
both databases are used for experiments in varying utterance duration condition. Only telephone-telephone
trials of male speakers from NIST SRE 2008 and NIST SRE 2010 are used in the following experiments.
The summary of the databases used in the experiments are shown in Table 3.

5.2. Utterance duration and truncation procedure

In core condition of NIST SRE corpora, the duration of speech segments are long ( 2.5 min of speech). In
order to conduct experiments in short duration conditions, truncation of speech utterances is done in 2 sec
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Table 4: Speaker verification performance on NIST 2008 using GMM-UBM (UBM) and i-vector (TV) based system. The
results are shown in terms of EER (in %) and DCF (× 100).

Train-Test EER EER RIEER
TV DCF DCF RIDCF

TV

duration (UBM) (TV) [%] (UBM) (TV) [%]

Truncated training - Truncated testing

2s-2s 35.24 36.84 -4.54 9.69 9.93 -2.47
5s-5s 25.25 24.37 3.49 8.89 8.65 2.69
10s-10s 19.67 14.98 23.84 8.23 6.58 20.04
20s-20s 16.93 9.72 42.58 8.19 4.62 43.58

Full training - Truncated testing

Full-2s 21.56 19.67 8.76 7.75 7.91 -2.06
Full-5s 17.73 13.50 23.85 7.32 5.99 18.16
Full-10s 16.66 8.78 46.93 6.75 4.50 33.33
Full-20s 15.52 7.32 52.83 6.58 3.63 41.90

Full-Full 14.75 4.86 67.05 6.23 2.70 59.09

(200 active frames), 5 sec (500 active frames), 10 sec (1000 active frames) and 20 sec (2000 active frames)
duration. For truncation of utterances, the prior 500 active speech frames are discarded at the feature level
after VAD to avoid phonetic similarity in initial greetings of telephonic conversations which introduces text
dependence.

The original utterances from the NIST SRE corpus without any truncation is referred to as full condition
in this paper. From the full condition features, and features generated from truncated segments, six test sets
with different duration conditions in both model and verification segments collection are designed. Fourteen
trial conditions are arranged by combining different duration train-test segments and <full>-<duration of
test segment> for both NIST SRE 2008 and 2010. We use the notation ‘<duration of model segment>-
<duration of test segment> condition,’ in which duration is measured in seconds or full.

5.3. Performance Evaluation Metrics

We have evaluated the performance using EER and DCF as performance evaluation metric. The EER is
the point on detection error trade-off (DET) plot where the probability of false acceptance and probability
of false rejection are equal. The DCF is computed by creating a cost function assigning separate weights on
false alarm and false rejection followed by computation of threshold where cost function is minimum. The
cost function is computed as

CDet = CMiss × PMiss|Target × PTarget + CFalseAlarm × PFalseAlarm|NonTarget × (1− PTarget) (15)

The DCF is calculated using the parameter value CMiss = 10, CFalseAlarm = 1 and Ptarget = 0.01 for
both databases NIST 2008 and NIST 2010 [58, 59]. We also report relative improvement for parameter p of
system s1 over system s2, calculated as

RIps1 =
(ps1

−ps2
)

ps2

× 100%

6. Experiments Results and Discussion

6.1. Baseline Performance

Initially, we have investigated the performance of state-of-the-art i-vector and classical GMM-UBM
based ASV system under various duration condition. The experiments are executed on male subset of both
NIST 2008 short2-short3 corpus. Comparison of performance is accomplished in eleven different duration
conditions separately.
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Figure 6: Speaker verification DET plot of i-vector (TV) system and UBM system in short2-short3 sub-condition of NIST SRE
2008 corpus.

The results of the experiments reported in Table 4. Fig.6 exhibits a systematic comparative study.
Table 4 depicts the relative performance improvement of i-vector based system over GMM-UBM based
system i.e. RIEER

TV and RIDCF
TV decreases monotonically with the reduction in utterance duration. Table

4 also shows that i-vector based system worked better than GMM-UBM for longer utterances but both
the system performance falls on duration as small as 2 sec, 5 sec etc. We also observed that in case very
similar to real-time requirements i.e., very short duration utterances, specially in full duration training - 2
sec testing and 2 sec training - 2 sec testing, GMM-UBM based system showed comparable or even better
performance over i-vector based system.

The above observations invoke to fuse GMM-UBM and i-vector system which should combine the ad-
vantage of both the systems. This is also provides opportunity to include the proposed quality metric as an
additional information. Fusion parameters are estimated on NIST 2008 short2-short3 corpus and validated
the same on NIST 2010 core-core task for the sake of generality. Quality measure are incorporated in the
ASV system to support the fusion device. Table 5, 6, 7 and 8 represents the results of both linear fusion
and quality measure based fusion. Table 5 and 7 represents the results in terms of EER whereas Table 6
and 8 represents in terms of DCF values on development data and evaluation data respectively. In all these
tables, we have shown the results for 15 different duration conditions including the Full-Full scenario.

6.2. Results of proposed ASV technique

It may be observed from Tables 5, 6, 7, 8, that the fusion gives higher improvement in shorter utterances.
Irrespective of enrollment and verification, as the utterance length of speech segments becomes longer, the
relative difference between performance of GMM-UBM and i-vector system increased considerably. The
fusion based system evolved to be more effective in cases where performance of GMM-UBM and i-vector
based system is more comparable i.e., in short utterance cases. The relative boost of the linear fusion based
system over i-vector GPLDA based baseline ASV system showed high values up-to 10%− 15% in cases like
full-2 sec, full-5 sec, 20 sec-5 sec, 2 sec-2 sec, etc. This advocates more potential of the fusion based system
in real-world scenario.

Quality measures of speech signals are used to support the fusion ASV system further. Inclusion of
proposed quality metrics derived from BW statistics in the proposed system showed significant improve-
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Table 5: Results in EER of fusion of GMM-UBM and i-vector based system on NIST 2008 telephone-telephone development
corpora

Train-Test i-vec linear Qtv Q1 Q2 Q3 Q4 Q5 Q6

duration GPLDA fusion kl-1 kl-2 kl-avg ℓ1 ℓ2 bh

Truncated training - Truncated testing

2s-2s 36.84 32.95 33.98 31.92 31.80 31.75 31.92 31.88 31.80

5s-2s 30.48 30.37 28.33 27.23 27.45 27.57 27.45 28.48 28.72
5s-5s 24.37 23.11 23.17 22.99 21.62 21.22 21.25 21.70 21.62
10s-2s 26.10 25.40 23.91 23.34 23.01 23.79 22.88 23.21 23.11
10s-5s 19.56 17.50 16.84 17.16 16.93 17.16 16.84 16.82 16.73

10s-10s 14.98 14.53 13.95 12.92 13.72 14.30 13.84 13.15 14.07
20s-2s 24.20 21.73 22.05 20.59 20.48 20.59 20.18 20.48 20.36
20s-5s 17.29 14.94 15.95 14.94 14.94 15.07 14.94 15.23 14.66

20s-10s 12.35 11.67 11.66 11.62 11.59 11.56 11.55 11.67 11.63
20s-20s 9.72 9.83 9.83 9.64 9.71 9.83 9.91 9.80 9.77

Full training - Truncated testing

Full-2s 19.67 19.10 21.51 16.47 16.70 16.47 16.81 17.45 16.76
Full-5s 13.50 12.70 13.79 11.78 11.67 11.70 11.89 11.83 12.12
Full-10s 9.29 9.72 14.73 9.15 9.24 9.27 9.09 9.26 9.49
Full-20s 7.32 7.30 9.14 7.32 7.36 7.31 7.26 7.39 7.35

Full training - Full testing

Full-Full 4.86 4.91 7.29 5.20 5.20 5.14 5.06 5.16 5.14

Table 6: Results in DCF of fusion of GMM-UBM and i-vector based system on NIST 2008 telephone-telephone development
corpora

Train-Test i-vec linear Qtv Q1 Q2 Q3 Q4 Q5 Q6

duration GPLDA fusion kl-1 kl-2 kl-avg ℓ1 ℓ2 bh

Truncated training - Truncated testing

2s-2s 9.93 9.53 9.64 9.52 9.50 9.53 9.50 9.56 9.54
5s-2s 9.75 9.67 9.73 8.85 8.87 8.87 8.92 9.13 8.89
5s-5s 8.65 8.27 8.33 8.19 8.16 8.13 8.19 8.24 8.24
10s-2s 9.23 9.05 8.54 8.27 8.28 8.27 8.30 8.36 8.32
10s-5s 7.80 7.34 7.30 7.15 7.12 7.15 7.13 7.29 7.29
10s-10s 6.58 6.40 6.32 5.93 6.04 6.04 5.86 6.03 5.99
20s-2s 8.77 8.20 8.14 7.79 7.73 7.76 7.79 7.79 7.80
20s-5s 6.98 6.65 6.71 6.39 6.37 6.34 6.34 6.47 6.46
20s-10s 5.48 5.42 5.28 5.36 5.24 5.26 5.22 5.33 5.30
20s-20s 4.62 4.59 4.61 4.55 4.52 4.53 4.51 4.52 4.51

Full training - Truncated testing

Full-2s 7.75 7.53 7.09 7.01 7.02 6.99 7.01 7.09 7.09
Full-5s 5.99 5.95 6.15 5.44 5.36 5.42 5.19 4.93 5.57
Full-10s 4.50 4.59 6.92 4.27 4.26 4.25 4.23 4.36 4.32
Full-20s 3.63 3.60 4.46 3.61 3.65 3.65 3.61 3.62 3.62

Full training - Full testing

Full-Full 2.70 2.73 3.61 2.63 2.63 2.63 2.66 2.64 2.61
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Table 7: Results in EER of fusion of GMM-UBM and i-vector based system on NIST 2010 telephone-telephone evaluation
corpora

Train-Test i-vec linear Qtv Q1 Q2 Q3 Q4 Q5 Q6

duration GPLDA fusion kl-1 kl-2 kl-avg ℓ1 ℓ2 bh

Truncated training - Truncated testing

2s-2s 37.67 33.52 34.59 33.71 33.42 33.66 32.91 33.28 32.84

5s-2s 32.01 31.44 29.13 27.44 27.53 27.47 27.76 28.13 27.97

5s-5s 25.95 23.93 24.17 21.62 22.09 21.81 21.92 22.37 22.37

10s-2s 28.61 27.76 24.95 24.92 24.65 24.65 24.54 24.92 24.92

10s-5s 20.52 18.13 17.01 17.56 16.93 16.84 16.84 16.82 16.99

10s-10s 14.44 14.16 13.88 13.59 13.31 13.59 13.59 13.99 13.94

20s-2s 24.44 21.81 21.65 21.24 21.74 21.55 21.12 21.51 21.50

20s-5s 16.94 14.44 15.45 14.44 14.44 14.57 14.44 14.73 14.16

20s-10s 11.28 10.19 10.08 10.07 9.91 10.02 10.33 10.19 10.04

20s-20s 8.78 8.03 9.87 8.49 8.47 8.44 8.49 8.21 8.30

Full training - Truncated testing

Full-2s 21.81 19.18 18.41 17.96 18.01 17.99 18.13 18.53 18.13

Full-5s 12.46 11.89 13.79 11.61 11.84 11.70 11.89 11.44 11.99

Full-10s 7.36 7.97 13.31 7.36 7.64 7.41 7.88 7.08 7.59

Full-20s 5.38 5.5 7.24 5.38 5.44 5.38 5.58 5.59 5.59

Full training - Full testing

Full-Full 2.90 2.95 5.26 3.11 3.11 3.11 3.39 3.11 3.11

ment in performance. Here quality measures are proposed in such a way that it requires almost negligible
additional computation and no additional parameters estimation. Performance measures of fusion method
using six types of quality measure are shown in Table 5, 6, 7 and 8. DET curve showing speaker verification
performance of the i-vector baseline system, GMM-UBM based system and proposed quality fusion based
system is presented in Fig. 7.

The performance of ASV system with proposed quality metrics improved irrespective of development and
evaluation corpora and utterance duration condition as well. It showed up-to 12% relative improvement
over the linear fusion (GMM-UBM+i-vector) based ASV system in conditions like full-10s, 10s-2s, 5s-2s
etc. These conditions are more close to desirable real-time requirements of ASV systems which encourages
to find implementations of proposed system. Indication of similar improvements both in development and
evaluation corpus, shown in Tables 5, 6, 7 and 8 respectively, authenticates generality of the proposed system.
Consistent improvement of accuracy of the ASV system in various duration and databases established
relevance of the proposed quality measures based on intermediate statistics. The system is more suitable
when the duration speech utterances are limited, especially when it is trained with long enrollment data
and tested with very short duration of speech.

6.3. Comparison with uncertainty based quality metric

A comparison of performance of the proposed quality metrics and an i-vector uncertainty based metric
Qtv as in [52], is accommodated in the aforementioned Tables for different duration condition. The quality
measure reflects the duration variability in data as the main source of uncertainty in i-vectors since it has
a high correlation with utterance duration. The posterior distribution of i-vector y is Gaussian with the
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Table 8: Results in DCF of fusion of GMM-UBM and i-vector based system on NIST 2010 telephone-telephone evaluation
corpora

Train-Test i-vec linear Qtv Q1 Q2 Q3 Q4 Q5 Q6

duration GPLDA fusion kl-1 kl-2 kl-avg ℓ1 ℓ2 bh

Truncated training - Truncated testing

2s-2s 9.98 9.77 9.86 9.74 9.77 9.74 9.76 9.77 9.77

5s-2s 9.74 9.72 9.31 9.16 9.14 9.14 9.11 9.15 9.14

5s-5s 9.01 8.10 8.68 8.01 8.05 8.03 8.05 8.07 8.07

10s-2s 9.50 9.32 8.66 8.59 8.54 8.50 8.56 8.48 8.48

10s-5s 7.67 7.17 7.14 7.20 7.21 7.14 7.20 7.04 7.04

10s-10s 6.52 6.29 6.18 5.97 6.17 6.05 6.05 5.93 6.19

20s-2s 9.04 8.05 8.14 7.89 7.89 7.84 7.97 7.94 7.88

20s-5s 6.98 6.57 6.91 6.34 6.34 6.33 6.28 6.34 6.35

20s-10s 5.47 4.93 4.94 4.92 4.90 4.90 4.92 4.89 4.92

20s-20s 4.11 3.85 4.89 4.03 3.96 3.94 3.88 3.94 3.97

Full training - Truncated testing

Full-2s 8.52 7.55 7.48 7.63 7.65 7.71 7.72 7.61 7.61

Full-5s 5.47 4.92 6.15 5.14 5.13 5.14 5.19 4.93 5.01

Full-10s 3.69 3.67 6.00 3.65 3.62 3.52 3.58 3.57 3.67

Full-20s 2.70 2.71 3.61 2.74 2.75 2.73 2.71 2.72 2.71

Full training - Full testing

Full-Full 2.01 2.00 2.67 1.96 1.96 1.97 1.95 1.95 1.95

following covariance matrix[65]

yΣ = (I+Φ⊤Σ−1NΦ)−1 (16)

Here the quality measure Qtv(yΣ) is calculated as

Qtv(yΣ) =
1

trace(yΣ)
(17)

Here, in the experiments, truncation of speech utterances are done in fixed durations. Hence, the duration
based quality metric, as used for calibration of ASV scores in [28], becomes non-functional. The recog-
nition performance with duration based quality metric are compared later in the experiments where the
enrollment/verification segment duration are randomized.

6.4. Results of quality metrics with only i-vector based system

The proposed quality metrics can also be applied for calibration of the stand-alone classifier based ASV
system. The recognition scores of i-vector based system can be calibrated using the proposed quality metrics
computed from the speech utterances of the corresponding trials. We have conducted separate experiments
to observe the performance of the quality metrics in single classifier based system. We have incorporated the
quality metric with the recognition score of i-vector based ASV system using the Eq. 12. The performance
on NIST 2008 is reported in Table 9 and 10 (in %EER and DCF × 100 respectively). Whereas, the results
on NIST 2010 is presented in Table 11 and 12 (in %EER and DCF × 100 respectively). The performance
metrics as depicted in Tables 9, 10, 11, 12, indicate that the quality metrics showed some improvement over
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Table 9: Results in EER of i-vector with proposed quality metrics on NIST 2008 telephone-telephone evaluation corpora

Train - Test

Duration

i-vec

GPLDA
Q 1 Q 2 Q 2 Q 4 Q 5 Q 6

Truncated Training - Truncated Testing

2s - 2s 36.84 36.76 36.84 36.38 36.84 36.84 36.84

5s - 2s 30.48 30.66 30.42 30.49 30.54 30.53 30.47

5s - 5s 24.37 24.29 24.48 24.37 24.48 24.37 24.37

10s - 2s 26.10 26.58 26.27 26.25 26.24 26.10 26.19

10s - 5s 19.56 19.56 19.01 19.31 18.99 19.22 19.20

10s - 10s 14.98 14.64 14.75 14.64 14.87 14.98 14.87

20s - 2s 24.20 23.94 23.90 23.91 23.82 23.91 23.91

20s - 5s 17.29 16.47 16.49 16.41 16.36 16.31 16.59

20s - 10s 12.35 12.14 12.31 12.12 12.35 12.24 12.24

20s - 20s 9.72 9.63 9.83 9.67 9.72 9.72 9.72

Full Training - Truncated Testing

Full - 2s 19.67 19.44 21.04 19.45 19.85 19.60 19.54

Full - 5s 13.50 13.17 13.25 13.32 13.23 13.50 13.38

Full - 10s 9.29 9.49 9.54 9.49 9.45 9.28 9.54

Full - 20s 7.32 7.38 7.30 7.33 7.32 7.32 7.35

Table 10: Results in DCF of i-vector with proposed quality metrics on NIST 2008 telephone-telephone evaluation corpora

Train - Test

Duration

i-vector

GPLDA
Q 1 Q 2 Q 2 Q 4 Q 5 Q 6

Truncated Training - Truncated Testing

2s - 2s 9.93 9.92 9.93 9.91 9.93 9.93 9.93

5s - 2s 9.75 9.74 9.76 9.74 9.76 9.75 9.71

5s - 5s 8.65 8.72 8.70 8.71 8.67 8.65 8.64

10s - 2s 9.23 9.34 9.25 9.27 9.24 9.23 9.22

10s - 5s 7.80 7.84 7.77 7.88 7.79 7.78 7.76

10s - 10s 6.58 6.46 6.42 6.44 6.42 6.57 6.45

20s - 2s 8.77 8.89 8.86 8.96 8.83 8.77 8.78

20s - 5s 6.98 7.01 6.95 6.95 6.94 6.95 6.99

20s - 10s 5.48 5.54 5.47 5.52 5.50 5.48 5.51

20s - 20s 4.61 4.64 4.61 4.61 4.61 4.62 4.60

Full Training - Truncated Testing

Full - 2s 7.75 7.88 7.89 7.87 7.91 7.91 7.87

Full - 5s 5.99 5.93 5.92 5.91 5.91 5.99 5.94

Full - 10s 4.50 4.38 4.35 4.34 4.34 4.50 4.42

Full - 20s 3.63 3.60 3.54 3.62 3.51 3.63 3.62

the stand-alone i-vector based ASV system. The results shows marginal improvements with the long and
very short duration like Full, 20sec, 2 sec etc. However, the experiments yielded better result in durations
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Table 11: Results in EER of i-vector with proposed quality metrics on NIST 2010 telephone-telephone evaluation corpora

Train - Test

Duration

i-vec

GPLDA
Q 1 Q 2 Q 2 Q 4 Q 5 Q 6

Truncated Training - Truncated Testing

2s - 2s 37.67 37.67 37.67 38.41 37.67 37.67 37.67

5s - 2s 32.01 32.17 32.35 32.57 32.57 32.01 32.01

5s - 5s 25.95 25.77 25.77 26.01 25.54 25.91 26.00

10s - 2s 28.61 28.32 28.51 28.32 28.32 28.54 28.39

10s - 5s 20.52 20.39 20.46 20.24 20.24 20.58 20.67

10s - 10s 14.44 14.34 14.16 14.16 14.16 14.44 14.32

20s - 2s 24.44 25.49 24.57 24.36 24.39 24.44 24.07

20s - 5s 16.94 16.43 16.02 16.37 16.14 16.43 15.86

20s - 10s 11.28 11.22 11.32 11.30 11.20 11.29 11.22

20s - 20s 8.21 8.49 8.49 8.50 8.49 8.78 8.49

Full Training - Truncated Testing

Full - 2s 21.81 21.24 21.26 21.04 21.52 21.81 21.81

Full - 5s 12.46 12.18 12.33 12.18 12.46 12.46 12.62

Full - 10s 7.36 7.41 7.41 7.36 7.37 7.36 7.42

Full - 20s 5.38 5.38 5.38 5.38 5.38 5.38 5.38

Table 12: Results in DCF of i-vector with proposed quality metrics on NIST 2010 telephone-telephone evaluation corpora

Train - Test

Duration

i-vector

GPLDA
Q 1 Q 2 Q 2 Q 4 Q 5 Q 6

Truncated Training - Truncated Testing

2s - 2s 9.98 9.99 9.99 9.99 9.99 9.98 9.99

5s - 2s 9.74 9.73 9.72 9.74 9..75 9.74 9.71

5s - 5s 9.01 8.98 9.02 8.99 9.02 9.01 9.01

10s - 2s 9.50 9.72 9.52 9.53 9.51 9.51 9.52

10s - 5s 7.67 7.89 7.73 7.93 7.86 7.65 7.73

10s - 10s 6.52 6.59 6.54 6.57 6.53 6.52 6.60

20s - 2s 9.04 9.02 9.02 9.17 9.02 9.04 9.03

20s - 5s 6.98 7.07 7.01 7.04 6.99 6.97 7.03

20s - 10s 5.47 5.43 5.44 5.46 5.46 5.46 5.44

20s - 20s 4.11 4.12 4.12 4.11 4.10 4.11 4.12

Full Training - Truncated Testing

Full - 2s 8.52 8.58 8.62 8.63 8.57 8.53 8.41

Full - 5s 5.47 5.37 5.39 5.44 5.51 5.47 5.32

Full - 10s 3.69 3.76 3.82 3.80 3.86 3.70 3.75

Full - 20s 2.71 2.72 2.73 2.70 2.71 2.70 2.73

like 5 sec, 10 sec etc.
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Table 13: Mathematical expressions of duration based quality measures as proposed in [28]. Here, dm and dt denote the
duration of enrolment and test segment where dc and k are additional parameters.

Quality Measure Additional parameter

Qdur1(Ñs) = k| log dm

dt
| k

Qdur2(Ñs) = k log2 dm

dt
k

Qdur3(Ñs) = k log dm

dc
log dc

dt
k, dc

Table 14: Comparison of performance of i-vector and GMM-UBM and their linear fusion based ASV system in NIST 2008
telephone-telephone evaluation corpora with Randomized short duration varying between (2 sec-20 sec).

Perf. i-vec GMM-UBM Linear Fusion

Metric GPLDA i-vec+GMM-UBM

NIST SRE 2008

EER 17.41 27.68 17.24

DCF 6.83 8.67 6.71

NIST SRE 2010

EER 17.93 27.64 17.28

DCF 7.09 8.40 6.94

6.5. Experiments and Results in Mixed duration

The evaluation of proposed quality metrics are further extended to more challenging variable duration
conditions. Both the enrollment and verification segments are truncated with random duration within a
range of 2 sec - 20 sec. Here the results of the proposed methods are compared with duration-based existing
quality metrics as used for calibration in [28]. We have used three types of duration based quality metrics
(Qdur1, Qdur2, Qdur3), as shown in Table 13. The quality measures Qdur1, Qdur2, Qdur3 denote function
related to the duration of model segment, dm and the duration of test segment, dt. The value of dc is kept
at 20 sec for the experiments. The fusion parameters (α, β, θ) as shown in equation 11 are estimated from the
development set using NIST SRE 2008 and applied for the evaluation with NIST SRE 2010. Table 15 and
14 present the results on this randomized duration condition for both NIST 2008 and NIST 2010 corpora. In
Table 14, we have compared the three baseline systems namely i-vector (GPLDA), GMM-UBM and linear
fusion of the two in randomized duration condition for both train and test utterances. However, in Table 15,
the performance of the existing duration based and uncertainty based quality metrics are compared with
proposed quality metrics, taking linear fusion of i-vector and GMM-UBM system as baseline. The results
show a consistent improvement for the proposed methods. Further, the proposed methods outperform the
duration-based and uncertainty based quality measures in both databases.

7. Conclusion and Future Scopes

In this work, we have introduced new quality measures for improving the speaker recognition performance
under short duration conditions. We derive the quality measures using Baum-Welch sufficient statistics
which are used for computing i-vector representation. We demonstrate that the dissimilarity between the
normalized zero-order Baum-Welch statistics and the weights of universal background model (UBM) is
associated with the speech duration. We formulate the quality measures based on the normalized zero-
order Baum-Welch statistics and UBM weights. This quality measure estimation method does not require
additional parameter estimation as they directly derived from already estimated parameters. The proposed
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Table 15: Comparison of performance of proposed Quality metrics in NIST 2008 telephone-telephone evaluation corpora with
randomized short duration varying between (2 sec-20 sec).

Baseline Existing Quality Metrics Proposed Quality Metrics

Linear Duration Uncertainty BW Statistics

Fusion Based Based Based

Perf. i-vec + Qdur1 Qdur2 Qdur3 Qtv Q1 Q2 Q3 Q4 Q5 Q6

Metric GMM-UBM kl-1 kl-2 kl-avg ℓ1 ℓ2 bh

NIST SRE 2008

EER 17.24 17.03 17.28 17.04 24.02 16.57 16.47 16.59 16.36 17.04 16.80

DCF 6.71 6.59 6.73 6.59 8.59 6.36 6.45 6.40 6.39 6.56 6.51

NIST SRE 2010

EER 17.28 16.14 15.86 15.58 25.77 15.58 15.58 15.58 15.58 15.83 15.93

DCF 6.94 6.77 6.95 6.52 8.81 6.52 6.49 6.46 6.50 6.53 6.59

quality measures of speech are incorporated as side information in fusion-based ASV system with i-vector
and Gaussian mixture model-Universal background model (GMM-UBM) system as two subsystems. The
score fusion with proposed quality measures substantially enhanced the ASV performance, especially for
short utterance. We observed up to 12.63% relative improvement over linear fusion based ASV system.
The performance is also considerably better than the performance obtained with existing speech duration
and uncertainty based quality measures. Even though we have observed considerable improvement with the
distance-based proposed quality measures, we do not observe any clear indication on which quality measure
distance function is most appropriate. This also opens up the possibility of further optimizing the distance
measures for quality estimation.

In this work, we have considered GMM-based i-vectors. As an extension of this study, similar inves-
tigations on quality measure fusion can be made with the latest DNN-ASR-based i-vector system. The
proposed method can also be explored for ASV system fusions including x-vector system as a subsystem.
Moreover, the distance-based quality measures implicitly represent the acoustic variations in the speech
utterance with respect to the mean of UBM or the distribution of acoustic space. Therefore, it would be
interesting to explore the general use case of the proposed quality measures where acoustic variability needs
to be computed.
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Figure 7: DET plot of Full duration training-2 sec testing and 2 sec training-2 sec testing 2 sec on NIST 2008 and NIST 2010
corpora
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