
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/123503

García Mollá, VM.; San Juan-Sebastian, P.; Virtanen, T.; Vidal Maciá, AM.; Alonso-Jordá, P.
(2019). Generalization of the K-SVD algorithm for minimization of ß-divergence. Digital
Signal Processing. 92:47-53. https://doi.org/10.1016/j.dsp.2019.05.001

https://doi.org/10.1016/j.dsp.2019.05.001

Elsevier



Generalization of the K-SVD Algorithm for
Minimization of β-divergence

Victor M. Garcia-Mollaa,1, Pablo San Juana, Tuomas Virtanenb, Antonio M.
Vidala, Pedro Alonsoa

aVictor M. Garcia-Molla, Pablo San Juan, Antonio M. Vidal and Pedro Alonso are with
Department of Information Systems and Computing, Universitat Politècnica de València,
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Abstract

In this paper, we propose, describe, and test a modification of the K-SVD al-

gorithm. Given a set of training data, the proposed algorithm computes an

overcomplete dictionary by minimizing the β-divergence (β >= 1) between the

data and its representation as linear combinations of atoms of the dictionary,

under strict sparsity restrictions. For the special case β = 2, the proposed al-

gorithm minimizes the Frobenius norm and, therefore, for β = 2 the proposed

algorithm is equivalent to the original K-SVD algorithm. We describe the mod-

ifications needed and discuss the possible shortcomings of the new algorithm.

The algorithm is tested with random matrices and with an example based on

speech separation.

Keywords: K-SVD; Nonnegative K-SVD; beta-divergence; NMF; Matching

pursuit algorithms

1. Introduction

Nowadays, the computation of sparse representations of signals of any kind

is a very active research field. The generation of overcomplete dictionaries is

one of the specific goals in the field. A popular algorithm for computation of
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overcomplete dictionaries is the K-SVD algorithm, which was first proposed5

in [1]. More precisely, given a large family of signals yi, i = 1..m, stored as

columns of a large data matrix Y , and given an integer T0 (maximum number

of nonzero elements), the goal of the K-SVD algorithm is to obtain matrices

D (the dictionary of signals) and X (the coefficients matrix) such that the

Frobenius norm10

argminD,X‖Y −DX‖fro (1)

is minimized, while the maximum number of nonzero elements in each column of

X is T0. The K-SVD algorithm iteratively computes an overcomplete dictionary,

using as tools a sparse pursuit algorithm (such as Orthogonal Matching Pursuit

(OMP) [2, 3], Basis Pursuit (BP) [4], etc.) and an iterative algorithm that

improves the dictionary using the Singular Value Decomposition (SVD) [5].15

Applications of the K-SVD algorithm are discussed in a large number of papers

in image denoising, image classification, audio processing, etc. [6, 7, 8, 9].

There also exists a nonnegative K-SVD algorithm (NNKSVD) [10], where the

data matrix Y must be nonnegative (yi,j ≥ 0) and the obtained dictionaries

and coefficients matrices must also be nonnegative. As observed in [11], the20

NNKSVD can be regarded as a different algorithm for computing a Nonnegative

Matrix Factorization (NMF) [13, 12].

Both versions of the K-SVD algorithm have been applied successfully to dif-

ferent problems. However, they are based on the minimization of the Frobenius

norm. Minimizing the Frobenius norm corresponds to a maximum likelihood25

estimation in a model where additive Gaussian noise is assumed; however, in

other situations, some other noise model and related minimization criterion may

be more appropriate. It is well known that in research fields related to sound

(music analysis, sound separation, etc.) better results are often obtained work-

ing with β-divergence [14]. As mentioned in [15], β-divergence is a family of cost30

functions that are characterized by a single parameter β. β-divergence has as

special cases the Frobenius norm (when β=2), the Kullback-Leibler divergence
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(when β=1), or the Itakura-Saito divergence (when β =0). The β parameter

controls the statistical properties of the noise in the data being studied. Thus,

for example, β = 1 is equivalent to assuming a Poisson model of noise, while35

intermediate values of β can be appropriate in other situations. In this pa-

per, we propose a modification of the standard K-SVD algorithm so that the

β-divergence is minimized. Given that minimization of β-divergence with β = 2

is equivalent to minimizing the Frobenius norm, the proposed modification is

not really a different algorithm, but rather a generalization of the K-SVD algo-40

rithm, which allows the experimentation with values of β that might be more

appropriate. The extension to the nonnegative case is also considered. It must

be mentioned that the proposed algorithm does not converge for values of β

smaller than 1, which is a significant shortcoming.

The proposed algorithm might be useful in any research field where the K-45

SVD is used, and, by extension, in any field where computation of overcomplete

dictionaries is used. There are examples of minimization of β-divergences in im-

age analysis [15], but there are many more in the field of Sound Analysis (voice,

music, etc.) [16, 17]. A version of the K-SVD minimizing beta divergences can

be an interesting tool for researchers in that field.50

The paper has the following structure. First, we describe the standard K-

SVD algorithm, its nonnegative version, and the concepts of β-divergence. In the

second section, we discuss the adaptation of K-SVD for β-divergences. Finally,

we show the results for two test problems.

1.1. Notation55

-Given a vector u ∈ <m×1 and a scalar β ∈ <, the component-wise exponen-

tiation of the vector u to β is denoted as u.β and is the vector with components

uβi , i = 1 . . .m.

-Given vectors u ∈ <m×1, v ∈ <m×1, the component-wise product of the

vectors u and v is denoted as u. ∗ v and is the vector with components uivi, i =60

1 . . .m.

-Given vectors u ∈ <m×1, v ∈ <m×1, the component-wise division of the
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vectors u and v is denoted as u./v and is the vector with components ui/vi, i =

1 . . .m.

-Given a vector u ∈ <m×1, w = [u]+ denotes the vector with components65

wi = ui if ui ≥ 0; wi = 0 if ui < 0).

All the previous conventions extend naturally to matrices.

-Given a matrix A ∈ <m×n, we will denote the k-th column of A as Ak and

the k-th row of A as ATk . Given a set of column indices w = {i1, i2, ..., ik, 1 ≤

ij ≤ n}, Aw is the matrix formed with the columns of A whose index is in w.70

2. State of the Art

2.1. K-SVD algorithm

The K-SVD algorithm was thoroughly described and tested in [1, 10]. It is

built on top of two independent algorithms, a sparse pursuit algorithm and the

updating of the dictionary D.75

Given a dictionary D ∈ <m×K , a maximum number of nonzero elements

T0 and a data matrix Y ∈ <m×n, the sparse pursuit consists of obtaining a

representation of the columns of Y as linear combination of a few columns of D.

More precisely, it is the computation of the matrix X ∈ <K×n such that each

column of X has, at most, T0 nonzero elements and minimizes the Frobenius80

norm ‖Y −DX‖fro.

This computation can be done column by column, but, for each column,

the computation of the optimal solution is a NP-hard problem [25]. This prob-

lem is usually tackled through greedy approaches, such as the OMP algorithm.

The solutions obtained may be not optimal, but experience shows that these85

solutions are quite acceptable.

After the sparse pursuit phase, the dictionary D is updated by proceed-

ing column by column, using the SVD decomposition. Given a subroutine

sparsepurs that implements the sparse pursuit phase through any appropri-

ate pursuit algorithm, the complete K-SVD algorithm is as follows:90
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Algorithm 1 K-SVD Algorithm

1: Input: Y ∈ <m×n data matrix, K ∈ N+ desired number of columns of

the dictionary, D ∈ <m×K initial dictionary, T0 ∈ N+ maximum number of

nonzero elements

2: Output: D ∈ <m×K dictionary, X ∈ <K×n coefficients matrix

3: repeat

4: Apply sparse pursuit algorithm: X ← sparsepurs(Y,D,T0)

5: /* loop for update of the columns of the dictionary D */

6: for k = 1 to K do

7: Find the set of columns of Y that use the atom Dk, i.e. wk = {i|1 ≤

i ≤ n,X(k, i) 6= 0}. Let the cardinal |wk| be q.

8: Compute Ek ← Y − (DX −DkX
T
k )

9: Obtain Ewk as Ek restricted to columns with index in wk, therefore Ewk

has q columns

10: Compute SVD of Ewk , obtaining the first singular value σ1 and first

singular vectors: u1, vT1

11: update Dk ← u1, XT
k ← σ1v

T
1

12: end for

13: until convergence

The initial dictionary D can be initialized with random numbers or with

any other previously computed dictionary. The convergence of this algorithm

is discussed in [1]. The conclusion given there is that, since the sparse pursuit

phase is solved only approximately, the convergence cannot be theoretically

guaranteed. However, in practice, the algorithm works well and converges to a95

local minimum.

2.2. Nonnegative K-SVD algorithm

The NNKSVD algorithm was described in [10]. It turns out to be a type of

NMF, where sparsity is forced in the sparse pursuit phase. In order to obtain

nonnegative results, both phases must be adapted.100
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The nonnegative sparse pursuit procedure must minimize

‖Y −DX‖fro, X ≥ 0, (2)

where Y and D are fixed, enforcing the desired sparsity. The method proposed

in [10] has two phases. The first phase minimizes the Frobenius norm in (2)

through a multiplicative algorithm, like the one proposed in [13] (Actually, it is

clear that this is equivalent to computing one of the two matrices in a NMF.105

Therefore, the methods used for NMF could be used for this computation). In

the second phase, the sparsity is enforced. To this end, each column xj of X

is processed, and the largest T0 elements of each column xj are selected; let I

be the indices of these elements, and let xj,I be the corresponding subvector.

Then, let DI be the submatrix of D composed by the columns of D whose index110

is in I. Then, a small nonnegative least squares problem (min ‖yj −DIxj,I‖) is

solved for each column of X.

The nonnegative updating of the dictionary proposed in [10] is carried out

through an iterative method similar to the Power method, which is a method for

computing the largest eigenvalue and associated eigenvector of a given matrix115

[5]. The Power method can also be used to compute the two singular vectors of

a matrix associated with the largest singular value, as will be shown below.

2.3. β-Divergence

The β-divergence between vectors x and y is defined as

Dβ(x||y) =
∑
i

dβ(xi, yi) (3)

where the function dβ (β-divergence between scalars) is defined in [15] as120

dβ(x, y) =


1

β(β−1)
(
xβ + (β − 1)yβ − βxyβ−1

)
β ∈ < \ {0, 1}

x log xy − x+ y β = 1

x
y − log

x
y − 1 β = 0

(4)

The case with β = 1 is also known as the Kullback-Leibler divergence, while
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the case with β = 0 is also known as the Itakura-Saito divergence. The definition

given is valid for vectors, although it can be extended for matrices:

Dβ(X||Y ) =
∑
i,j

dβ(xi,j , yi,j) (5)

In the case of matrices, minimizing the β-divergence with β = 2 is equivalent

to minimizing the Frobenius norm.125

3. The Proposed K-SVD to use β-divergences

The goal of this paper is to propose a K-SVD algorithm that minimizes the β-

divergence between Y and DX, instead of the Frobenius norm. We will denote

this algorithm as β-K-SVD algorithm. Like the original K-SVD algorithm,

a nonnegative version can be considered. Actually, the nonnegative version130

is more important from a practical point of view than the standard version.

Indeed, most applications where β-divergences are used include non-negativity

constraints. All of the steps of the algorithms that should be modified to obtain

a nonnegative version will be marked.

In order to obtain such an algorithm, both phases of the K-SVD must be135

adapted to minimize β-divergences.

3.1. Adaptation of the updating of the dictionary

We will start by considering the second part, the updating of the dictionary.

This part is the main novelty of this paper. First, it is important to note that,

despite the name of the algorithm, the full SVD decomposition (which is quite140

an expensive algorithm that is executed inside the loop and is executed many

times) is actually not needed.

Indeed, as can be seen in Algorithm 1, only the singular vectors u1, v1 asso-

ciated to the largest singular value σ1 of the Ewk matrix are used (in line 11).

The full SVD algorithm computes all of the singular values and all of the sin-145

gular vectors, which is clearly unnecessary; there are simplified versions (SVDS
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command in Matlab) that are more appropriate, since they only compute a few

singular values and the associated singular vectors.

Furthermore, the singular value σ1 does not have to be calculated separately.

For the K-SVD algorithm, it is enough to compute two vectors, u and v, such150

that u is normalized (‖u‖2 = 1) and the Frobenius norm of the difference be-

tween the outer product of u and v and the residual matrix Ewk is minimized

(min‖Ewk − uvT ‖fro). This is equivalent to finding the best rank-one approx-

imation to Ewk . These facts have been previously recognized in several papers

[19, 20]. Therefore, fast implementations of the K-SVD do not use a full SVD,155

using instead incomplete SVD, or, even better, an appropriate version of the

Power method, which is a very fast method for obtaining the desired u and v

vectors. This algorithm is shown as Algorithm 2.

Algorithm 2 Power Algorithm for computation of the best rank-one ap-

proximation of a matrix A, i.e., computation of the vectors u, v such that

min‖A− uvT ‖fro is minimized

1: Input: A ∈ <m×n

2: Output: u ∈ <m×1, v ∈ <1×n

3: u← random vector ∈ <m×1

4: u← u
‖u‖2

5: repeat

6: v ← Atu

7: u← Av

8: u← u
‖u‖2

9: until convergence

This procedure is equivalent to finding the largest eigenvalue (and associ-

ated eigenvectors) of the symmetric and positive definite matrix ATA. All of160

the eigenvalues of this matrix are real and positive. Even in the case when

the maximum eigenvalue of ATA has multiplicity larger than 1, this algorithm

returns vectors that minimize ‖A− uvT ‖fro.
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Our goal is to obtain a similar algorithm, but for minimizing Dβ(A, uvT ).

Such an algorithm is derived by obtaining the gradient of Dβ(A, uvT ) with165

respect to u and with respect to v, and equating to 0. For example, deriving

Dβ(A, uvT ) with respect to ui:

∂

∂ui

∑
i,j

dβ(Ai,j , uivj) =

∂

∂ui

∑
i,j

(
Ai,j

β(β − 1)
+

(uivj)
β

β
− Ai,j(uivj)

β−1

β − 1

)
=

∑
j

(
uβ−1i vβj −Ai,ju

β−2
i vβ−1j

)
(6)

by equating the result in eq. 6 to zero and simplifying, we obtain an expres-

sion in the form of a matrix vector product that is similar to those in the power

method:170

u =
Av.β−1

(vT ).β−1v
(7)

and, through a similar process, a similar expression is obtained for v:

v =
ATu.β−1

(uT )u.β−1
(8)

These equations can be used in a power-like algorithm (listed as Algorithm

3) that we call power beta. The nonnegative version is trivially obtained, using

the alternative expressions shown as comments.
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Algorithm 3 Power algorithm (power beta) for computation of vectors u, v

such that the β-divergence between the input matrix A and uvT is minimized,

and such that ‖u‖2 = 1

1: Input: A ∈ <m×n, β ∈ <

2: Output: u ∈ <m×1, v ∈ <1×n

3: u← random vector ∈ <m×1 /*Nonnegative version u > 0 */

4: u← u
‖u‖2

5: repeat

6: uaux ← u.β−1

7: v ← Atuaux /*Nonnegative version v = [Atuaux]+ */

8: v ← v
utuaux

9: vaux ← v.β−1

10: u← Avaux /* Nonnegative version u = [Avaux]+*/

11: u← u
(vt).β−1vaux

12: u← u
‖u‖2

13: until convergence

The applicability of this algorithm is restricted if β < 1. In this case, the175

algorithm would fail if the matrix A contains any negative entry (or entry close

to zero). For values of β ≥ 1, the algorithm usually converges without problems.

If β = 2, Algorithm 3 minimizes the Frobenius norm between A and uvt and

therefore is equivalent to Algorithm 2. In all of the cases tested, Algorithm

3 (for β = 2) returns the same approximation uvT as Algorithm 2. From a180

mathematical point of view, the normalization in line 12 of Algorithm 3 is not

strictly necessary, but it avoids numerical problems.

Algorithms 2 and 3 are clearly related to the Hierarchical Alternating Least

Squares method (HALS), [12, 22], which is one of the better methods for compu-

tation of Nonnegative Matrix factorization. The HALS algorithm can work with185

the Frobenius norm or with β-divergence. Actually, the above derivation of the

formulas for minimization of Dβ(A, uvT ) is virtually identical to the derivation

of the formulas of HALS with β-divergence in [12] (although the use of these
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formulas is different in this paper and in [12]).

3.2. Adaptation of the sparse pursuit phase to β-divergence190

Now we will consider the sparse pursuit phase, which has been tackled in

several papers [11, 10], especially in the nonnegative case. The simplest choices

for the sparse pursuit algorithm are, either to use an adapted OMP [11] or to use

a two-phase approach similar to the one proposed in [10], for the nonnegative

case. For this paper, we have chosen the latter option.195

For the first stage (minimization of the β-divergence between Y and DX,

withD fixed), we initially used a multiplicative algorithm adapted to β-divergence

(Algorithm 4), proposed in [12, 18] for the computation of the NMF for β-

divergence, but which is used here for computing only the coefficient matrix

X. Multiplicative algorithms like Algorithm 4 are derived from the Karush-200

Kuhn-Tucker conditions (see [12]). Different versions have been derived for the

minimization of different metrics (Frobenius norm, β-divergence, α-divergence,

etc. [12] )and are the most popular family of algorithms for computing the

NMF.

Algorithm 4 Multiplicative algorithm for computation of matrix X such that

the β-divergence between the data matrix Y and D ·X is minimized

1: Input: Y ∈ <m×n, D ∈ <m×K , β ∈ <

2: Output: X ∈ <K×n

3: X ← random matrix ∈ <K×n /*Nonnegative version X > 0 */

4: E ← Y −D X

5: repeat

6: F1← DT (DX).β−2. ∗ Y

7: G1← DT (DX).β−1

8: X ← X. ∗ (F1./G1) /*Nonnegative version X ← X. ∗ [F1./G1]+ */

9: until convergence

However, we noticed that the β-divergence HALS algorithm (restricted to205

the coefficients matrix X, Algorithm 5) is usually faster than the multiplicative
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method 4 (save for the special case β = 1, to be discussed below).

Algorithm 5 HALS-like Algorithm for computation of matrix X such that the

β-divergence between the data matrix Y and DX is minimized

1: Input: Y ∈ <m×n, D ∈ <m×K , β ∈ <

2: Output: X ∈ <K×n

3: X ← random matrix ∈ <K×n /*Nonnegative version X > 0 */

4: E ← Y −DX

5: repeat

6: for j = 1 to K do

7: Y (j) ← E +DjX
T
j

8: XT
j ←

Y (j)T (Dj .
β−1)

DTj (Dj .β−1)
/*Nonneg. version XT

j ←
[
Y (j)T (Dj .

β−1)
]
+

DTj (Dj .β−1)
*/

9: E ← Y (j) −DjX
T
j

10: end for

11: until convergence

The sparsity-enforcing phase starts like the one proposed in [10], column

by column and selecting the T0 largest coefficients of each column Xj and its

indices I. However, the resulting subproblems are no longer least squares prob-210

lems. The new subproblems can be formulated as: for each column j, minimize

the β-divergence between Yj and DIXI
j . In this case, we chose to use a β-

divergence multiplicative method, with only 5 iterations, which seems to have

worked reasonably well in all of the cases tested.

Our proposed sparse pursuit algorithm for β-divergence can be seen as Al-215

gorithm 6.
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Algorithm 6 Sparse pursuit beta algorithm for computation of matrix X such

that the β-divergence between the data matrix Y and DX is minimized and the

maximum number of nonzero elements in each column of X is T0

1: Input: Y ∈ <m×n, D ∈ <m×K , T0 ∈ N , β ∈ <

2: Output: X ∈ <K×n

3: Z ← random matrix ∈ <K×n

4: /* First phase, minimization of β-divergence through a HALS-like algo-

rithm*/

5: E ← Y −DZ

6: repeat

7: for j = 1 to K do

8: Y (j) ← E +Dj Z
T
j

9: ZTj ←
Y (j)T (Dj .

β−1)

DTj (Dj .β−1)
/*Nonnegative version ZTj ←

[
Y (j)T (Dj .

β−1)
]
+

DTj (Dj .β−1)
*/

10: E ← Y (j) −DjZ
T
j

11: end for

12: until convergence

13: /* Second phase, sparsity enforcing */

14: X ← zero matrix ∈ <K×n

15: for j = 1 to n do

16: Let I be the set of the indices of the T0 largest elements in Zj ; let ZIj be

the subvector composed by the elements of the column Zj with index in

I.

17: Let DI be the submatrix composed by the columns of D whose indices

are in I.

18: XI
j ← ZIj /*The only nonzero elements in Xj are in the indices I. */

19: /*multiplicative algorithm for β-divergence*/

20: for iter = 1 to 5 do

21: F1← (DI)T (DIXI
j ).β−2. ∗ Yj

22: G1← (DI)T (DIXI
j ).β−1

23: XI
j ← XI

j . ∗ (F1./G1) /* Nonneg. version XI
j = XI

j . ∗ [F1./G1]+ */

24: end for

25: end for
13



Using the power beta algorithm for the updating phase and the sparse pur-

suit algorithm for β-divergence, the proposed β-K-SVD algorithm is the one

shown in Algorithm 7.

Algorithm 7 β-K-SVD Algorithm

1: Input: Y ∈ <m×n, D ∈ <m×K , T0, β ∈ <

2: Output: D ∈ <m×K , X ∈ <K×n

3: repeat

4: Apply sparse pursuit algorithm for β-divergence: W ←

sparse pursuit beta(Y,D,T0,β)

5: /* loop for update of the columns of the dictionary D */

6: for k = 1 to K do

7: Find the set of columns of Y that use the atom Dk, i.e. wk = {i|1 ≤

i ≤ n,X(k, i) 6= 0}. Let the cardinal |wk| be q.

8: Compute Ek ← Y − (DX −DxXk)

9: Obtain Ewk as Ek restricted to columns with index in Ik, therefore Ewk

has q columns

10: [u,v] ←power beta(Ewk , β)

11: update Dk ← u, XT
k ← v

12: end for

13: until convergence

The nonnegative version is obtained by carrying out the changes suggested220

in sparse purs beta and in power beta. When Comparing Algorithms 1 and 7,

the only differences are in the sparse pursuit algorithm and in the power beta

algorithm. As mentioned above, the power beta minimizes the Frobenius norm

between A and uvt if β = 2. Furthermore, the sparse pursuit algorithm is

composed of standard minimization procedures for beta-divergences, which min-225

imize the Frobenius norm in the case β = 2. Therefore, Algorithm 7 is equivalent

to Algorithm 1 when β = 2.
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3.3. Special cases

The proposed algorithm works properly when β > 1. However, when β < 1,

the proposed algorithm does not work. The reason is that, in the updating230

phase, the submatrices Ewk (obtained as the difference of two matrices) can

easily have negative numbers. When the power beta algorithm is applied to a

matrix with negative numbers, sooner or later the power of a negative number

will be computed (or the power of a number very close to zero, in the nonneg-

ative version); then, either complex numbers or huge numbers appear, and the235

computation fails.

The Itakura-Saito case (β = 0) can be formulated without powers; how-

ever, the algorithm still fails. The reason for this can be traced again to the

appearance of negative numbers in the submatrices Ewk .

The KullBack Leibler case (β = 1) is of great practical importance, but it has240

some special features. First, it can be observed that when β = 1, the problem of

finding the vectors u and v that minimize the KL divergence between a matrix

A and the product uvT is greatly simplified. Actually, the optimal vectors have

simple expressions: u is a multiple of the vector obtained with the sums of the

rows of A (u = ωs, si =
∑
j Ai,j) for some scalar ω, and v is a multiple of the245

vector obtained with the sums of the columns of A (v = ωs, si =
∑
iAi,j) for

some scalar ω. These optimal vectors are obtained straight away, after just one

iteration of the power beta method.

This has a positive influence on the computational cost of the updating of the

dictionary. However, there is also a drawback. This drawback appears when250

a HALS-like procedure is applied to try to obtain matrices U ∈ <m×K and

V ∈ <K×n, K > 1, such that the divergence between A and UV T is minimized.

When a HALS-like procedure is applied to minimize the divergence between

A and UV T , with β = 1, the procedure stagnates after the first iteration and

cannot reduce the β-divergence beyond the value obtained in the first iteration.255

The same phenomenon occurs if, with β = 1, one of the two matrices (U or V T )

is already known and we only seek the other matrix.

Nevertheless, it is easy to check that a multiplicative algorithm for the same
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purpose (when K > 1) can usually reduce the β-divergence more than the value

obtained in the first iteration of HALS. Therefore, our implementation of the260

sparse pursuit phase, in the case with β = 1, has been modified so that the

multiplicative algorithm (Algorithm 4) is used in the first stage of Algorithm 6,

instead of the HALS-like Algorithm 5.

In the updating of the dictionary, the number of inner iterations in Algorithm

3 is set to 1 when β = 1. As mentioned above, any additional iteration does not265

offer any improvement. In practice, and despite not having theoretical proof of

convergence, Algorithm 7 converges reasonably well for β ≥ 1.

4. Numerical Experiments

The goal of the paper is to propose a new algorithm that can be used to ob-

tain overcomplete dictionaries that are are different from those obtained through270

other methods. Our belief is that the performance of this method (in efficiency

and/or in accuracy) depends on many different parameters that must be cho-

sen by the user (size of the dictionaries, desired number of nonzero elements, β

parameter chosen, etc.), and, above all, on the problem being analyzed.

In order to give evidence of convergence of the algorithm, we have carried275

out experiments with random matrices, varying either the β parameter or the

number of nonzero elements T0. For the sake of completeness, we have also

applied the nonnegative version of the β-K-SVD algorithm to a voice separation

problem previously described in other papers [23].

4.1. Experiments with random matrices280

We designed a simple experiment, in order to give empirical proof of con-

vergence. We generated data matrices with 300 rows and 1000 columns, with

elements drawn from a standard normal distribution (”randn” function of Mat-

lab), setting all the negative numbers to 0. K = 50 was selected as the number

of columns of the dictionary. The nonnegative β-K-SVD algorithm was tested285

with four different values of β ∈ {1, 1.5, 2, 2.5} and 10 values for the maximum
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Figure 1: Ratios of final to initial β-divergences after 15 iterations for different numbers of

nonzero elements and different values of β.

number of nonzero elements T0 ∈ {2, 3, 4, 5, 8, 10, 12, 15, 18, 20}. For each com-

bination of values of the parameters, we generated 10 data matrices Yi. We also

generated (with random positive numbers) initial dictionaries Dini
i and initial

coefficient matrices Xini
i . The nonnegative β-K-SVD algorithm was applied to290

the data matrices Yi, using as initial dictionaries Dini
i and initial coefficient

matrices Xini
i , and obtaining as s result the final dictionaries Dfin

i and the co-

efficient matrices Xfin
i . A fixed number of iterations (15) was used in all of

the cases. The average ratio between initial β-divergences (Dβ(Yi||Dini
i Xini

i )

and the final β-divergences (Dβ(Yi||Dfin
i Xfin

i ) was computed. All of the ratios295

were below 0.05, indicating convergence in all the cases. Figure 1 displays the

average ratios, with error bars for standard deviation (although the standard

deviation is quite small and can only be noticed for the case β = 1).

The initial and final average β-divergences for all of the experiments for each
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β can be seen in Table 1. These results show that, while there is convergence300

in all of the cases tested, the convergence is better (beta divergence is reduced

more) for cases with larger β: the worst case is with β = 1. This seems consistent

with the algorithm failing to converge for β < 1.

β 1 1.5 2 2.5

Avg. initial β-divergences 2.6e+06 5.8e+06 1.4e+07 3.9e+07

Avg. final β-divergences 1.0e+05 5.8e+04 4.1e+04 3.4e+04

Table 1: Average initial and final β-divergences

4.2. Voice separation problem

An experiment of voice separation was carried out using as acoustic data the305

subset of the GRID corpus [26] that was used as the training set in the Speech

Separation Challenge [27].

In this problem, the algorithm should compute the weights matrix X to ap-

proximate the mixture matrix Y (created by mixing two speech signals) taking

into account the dictionary matrix D which contains dictionaries of both speak-310

ers from the original speech signals. The goal is to separate the mixed signal

into two individual signals, one for each speaker.

For these experiments, 100 signals were generated mixing 2 random speakers

for each signal from a pool of 34 speakers. Each signal is represented by a

magnitude spectrogram matrix Y that was obtained by using the short-time315

Fourier transform with o columns (observations) and f = 751 rows (features).

The number of observations o ranges between 94 and 177, with an average of

129.73.

The size of the dictionaries (number of columns) to be generated was chosen

as 500. For each experiment, 6 dictionaries were generated for each speaker,320

varying the parameter β from 1 (Kullback-Leibler) up to 2.25, with step 0.25.

In this problem, the optimal number of nonzero elements (from the point of

view of the final signal-to-distortion ratio, SDR) was obtained experimentally
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as 3, which was the number of nonzero elements used in the generation of the

dictionaries. Of course, this number will be different for other problems.325

Dictionaries Di,j were computed for all speakers i = 1, .., 34 and all values

of β j = 1, .., 6. If the signal of a given experiment e was the signal ye mixed

from speakers a and b, for each method j the dictionaries Da,j and Db,j were

appended; De
j = [Da,j , Db,j ], obtaining a dictionary of size 1000.

Then, the goal is to obtain the vector x that minimizes the β-divergence330

between De
j ·x and the mixed signal ye. The vector x is, again, obtained through

a multiplicative algorithm to minimize β-divergence, with the same parameter

β that was used for the generation of the dictionaries. The upper part of the

vector x can be used to recover the signal from speaker a, and the lower part

can be used to recover the signal from speaker b (See paper [23] for details).335

The recovered signals can be used to compute the SDR (as described in [23])

between the separated and the original signal.

The average SDRs in dBs obtained are displayed in Fig.2. Clearly, the best

result is obtained with β = 1. These results agree with other similar papers, that

show that algorithms that minimize the Kullback-Leibler divergence (β = 1)340

provide better results in problems of this kind than algorithms that minimize

Frobenius norm. In this case, this also means that the β-K-SVD algorithm can

be tuned to improve the accuracy obtained with the standard K-SVD.

This tuning is possible in any situation where standard K-SVD can be used

because, as was shown above, the standard K-SVD is actually a specific case345

(with β = 2) of the β-K-SVD algorithm.

5. Future Work

We have several active lines of research that are related to the β-K-SVD

algorithm. Most of them are oriented towards obtaining faster versions of the

β-K-SVD algorithm through GPU implementations. We are also looking for350

algorithmic improvements that could be applied to the β-K-SVD algorithm,

such as the ones proposed [28, 29] for the standard K-SVD.
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6. Conclusion

The standard K-SVD algorithm is a technique for obtaining overcomplete

dictionaries with a desired, predefined degree of sparsity. However, it has only355

been developed for the case in which the distance minimization is carried out

using the Frobenius norm of the difference between the signal matrix and the

estimated matrix. It is well known that the choice of the measure of divergence

between the signal matrix and the estimated matrix affects the solution ob-

tained. We have extended this algorithm to the case where β-divergence is used360

as a measure of the separation between observed and estimated signals. This

has involved reformulating the steps that are used in the K-SVD algorithm so

that the β-divergence is minimized, instead of the Frobenius norm. In this way,

an algorithm has been developed that is capable of addressing similar problems

to those of K-SVD in fields where β-divergence is preferable to distances based365

on the Frobenius norm.

An especially interesting case is that of audio processing where the Gaussian

noise model is less suitable than a noise model based on the Poisson distribution.

This is why the algorithms that are based on β-divergence are more suitable for

this field.370

The developed algorithm has been tested on a real audio problem, verifying

that the generated dictionaries are similar to those obtained by other methods.

Similarly to those methods the algorithm works better in the β = 1 case.

In short, we propose a new tool that addresses the coding of signals and

the computation of dictionaries by means of a reformulation of the K-SVD375

algorithm that minimizes the β-divergence instead of minimizing the Frobenius

norm. This is especially useful for fields where the additive Gaussian noise

model is not suitable.
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