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Abstract

In this paper, an effective direction-of-arrival (DOA) and range estimations

method for mixed far-field and near-field non-circular sources is proposed based

on a large centrosymmetric uniform linear array (ULA). By exploiting the non-

circularity of the sources, an extended signal is generated by concatenating the

received array data and its conjugate counterparts. Then the DOAs of far-

field signals are estimated based on the extended covariance matrix with the

traditional MUSIC algorithm. After eliminating the far-field components from

the extended signal subspace, the extended covariance matrix of the near-field

signals is obtained. Thus a near-field estimator is constructed based on sym-

metric property of the extended array manifold where the generalized ESPRIT

method is adopted to estimate the DOAs of near-field sources. Finally, the range

estimator is derived using the DOA estimations of near-field sources. Simula-

tion results are provided to validate that the proposed method has achieved a

better performance than existing ones and is quite suitable for massive MIMO

(multiple-input multiple-out) system.
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1. Introduction

The massive MIMO provides a new perspective for increasing the spectral

efficiency and data rate to relieve the wireless mobile traffic, which is growing

at an exponential pace, by making the use of a large excess of service antennas

over active terminals and time-division duplex operation. Base stations (BSs)

with 64 fully digital transceiver chains were commercially deployed in several

countries, and the key ingredients of massive MIMO have made it into the 5G

standard. In a word, massive MIMO became a reality for cellular networks [1].

In massive MIMO systems, each BS is equipped with a hundred or a few

hundred antennas. With the extensive spatial freedoms offered by large antenna

arrays, abundant users are expected to occupy the same set of time and frequen-

cy resources with negligible interference, thus circumventing the longstanding

bandwidth limitation in wireless communications [2].

Attracted by the new characteristics of the massive MIMO technique, a lot

of researchers have devoted to related exploration [3, 4]. Among these studies,

one of hotspots is the mitigation or elimination of inter-cell interference caused

by the non-orthogonality of pilot sequences of different cell users. To solve this

issue, algorithm design [5], pilot design [6] and beamforming [7] are three typ-

ical strategies adopted by massive MIMO systems. However, for the first two

strategies, they either suffer from higher computational complexity or offer mid-

dling performance, while the last one, assisted by DOA estimation has become

an effective scheme. Accordingly, accurate DOA estimation becomes one of the

significant research directions of massive MIMO system.

For the DOA estimation, various algorithms have been proposed to deal

with the problem in the past decades, and most of them aim to locate either

far-field signals [8–16] or near-field signals [17–20]. However, in some practical

applications, far-field and near-field signals can be present at the same time.
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Taking the active user localization in massive MIMO system for instance, the

large antenna array exploited by the massive MIMO system contributes to a

large Rayleigh distance, and this means that the far-field model which is a plane

wave approximation over the array may be no longer suitable and the channel

can not be seen as wide sense stationary [21]. The algorithms only designed for

either far-field or near-field signals will become unreliable in this circumstance,

so it is important to develop algorithms and methods to solve the localization

problem with a mixture of near-field and far-field sources.

Some recent progress on the localization for the mixed far-field and near-field

sources includes the work in [22], where a higher order statistic (HOS)-based

algorithm is proposed, but its computational complexity is so high that limits its

applications. To reduce the computational complexity, an efficient second-order

statistics (SOS)-based method is presented in [23]. However, due to significant

loss of the array aperture, its estimation accuracy is not high and the number of

resolvable sources is also reduced. Based on the method in [23], Jiang proposed

a simple and effective classification and localization method for mixed sources

[24]. In [25], ESPRIT-like and polynomial rooting methods are developed to

solve the problem with mixed sources, while in [26] Zuo. et al exploit the oblique

projector to separate the mixed signals. In [27], Liu. et al first obtain the DOA

and power information of far-field sources, and then locate the near-field sources

based on the obtained information of far-field signals.

However, the aforementioned methods which solve the localization problem

with mixed far-field and near-field signals do not consider the non-circularity

of the impinging signals. In reality, non-circular signals are widely used in

modern wireless communication systems, such as AM, BPSK modulated signals.

The estimation performance can be improved if the non-circularity property

of signals is exploited properly [28–30]. To the best of our knowledge, the

estimation problem for mixed far-field and near-field non-circular sources has

not been addressed yet, let alone based on the massive MIMO system.

In this paper, we aim to tackle the estimation problem for mixed non-circular

sources by proposing an efficient localization method based on a large ULA.
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Fig. 1: Uniform linear array configuration.

Firstly, we combine the received array data and its conjugate counterpart to

construct a new data vector, based on which the extended signal subspace and

noise subspace are derived. Secondly, the extended covariance matrix and the

DOA estimator of far-field sources are obtained from the extended signal sub-

space. Finally, the DOAs and the range parameters of near-field sources are

obtained based on the symmetric property of the extended array manifold and

the extended covariance matrix of near-field signals. Although the computa-

tional complexity of the proposed method is the highest due to the operations

associated with the extended covariance matrix, the numerical simulations in-

dicate its performance is the best among the existing ones.

Notations: (·)∗, (·)T , (·)H , (·)−1 and (·)† represent conjugation, transpose,

conjugate transpose, inverse and pseudo inverse, respectively; E[·] is the expec-

tation operation; diag(·) stands for the diagonalization operation; Iω denotes

the ω × ω identity matrix; det[·] indicates the determinant of a matrix; ∥·∥

denotes the l2 norm.

2. Problem formulation

In this paper, we assume that the number of impinging signals is known or

estimated by some existing signal number detection techniques in advance [31].

Suppose there are M uncorrelated and non-circular narrowband signals (such

as AM, BPSK modulated signals) impinging upon a large ULA of K = 2L+ 1

sensors with M1 near-field sources skN (t)(kN = 1, 2, . . . ,M1) and M −M1 far-
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field sources skF (t)(kF = M1 + 1, . . . ,M) , where t is the sample index, with

t = 1, 2, · · · , T . The spacing between adjacent sensors is d (Fig. 1). Let the

center element of array be reference point, then the received data vector at

sample t can be expressed as

x(t) = ANsN (t) +AF sF (t) + n(t) (1)

where x(t) = [x−L(t), · · · , x−1(t), x0(t), x1(t), · · · , xL(t)]
T ,AN= [aN (θ1, r1), · · · ,

aN (θkN , rkN ), · · · ,aN (θM1
, rM1

)] and sN (t)= [s1(t), · · · , sM1
(t)]

T
are the array

steering matrix and the signal vectors of near-field signals, respectively. While

AF= [aF (θM1+1), · · · ,aF (θkF ), · · · ,aF (θM )] and sF (t)= [sM1+1(t), · · · , sM (t)]
T

are the array steering matrix and the signal vectors of far-field signals, respec-

tively. And n(t)= [n−L(t), · · · , n−1(t), n0(t), n1(t), · · · , nL(t)]
T

represents cir-

cular additive white Gaussian noise with power σ2, which is uncorrelated with

the impinging signals.

The near-field steering vector aN (θkN , rkN ) and far-field steering vector aF (θkF )

can be expressed in details as follow

aN (θkN , rkN ) = [ej(−LγkN+L2φkN ), · · · , ej(−γkN+φkN ), 1,

ej(γkN+φkN ), · · · , ej(LγkN+L2φkN )]T
(2)

aF (θkF ) = [ej(−LγkF ), · · · , ej(−γkF ), 1, ej(γkF ), · · · , ej(LγkF )]T (3)

where γkN = −2πdsinθkN /λ, φkN = πd2cos2θkN /(λrkN ), γkF = −2πdsinθkF /λ.

λ is the wavelength, θk ∈
[

−π
2 ,

π
2

]

(k = 1, · · ·M) presents the DOA of the

kth source, and rkN (kN = 1, · · ·M1) denotes the range parameter of the kN th

near-field source.

Due to the non-circularity of the sources, the signal vectors sN (t) and sF (t)

can be expressed as

sN (t)=ψ
1/2
N sN0

(t) (4)

sF (t)=ψ
1/2
F sF0

(t) (5)

where sN0
(t) = [s0,1(t), · · · , s0,M1

(t)]T is the zero-phase version of near-field

signal skN (t), kN = 1, · · · ,M1, and sF0
= [so,M1+1(t), · · · , so,M (t)]T is the zero-
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phase version of far-field signal skF (t), kF =M1+1, · · · ,M . The diagonal matri-

ces ψ
1/2
N = diag(ejψ1/2, · · · , ejψM1

/2) and ψ
1/2
F = diag(ejψM1+1/2, · · · , ejψM/2)

have the arbitrary phase shifts of the near-field and far-field sources, respectively.

And ψk, k = 1, · · · ,M is the original phase of source signal sk(t), k = 1, · · · ,M .

Thus, the conjugate counterpart of the received data vector x(t) can be

written as

x∗(t) = [ANsN (t)+AF sF (t)+n(t)]
∗

=A∗
Ns∗N (t)+A∗

F s
∗
F (t)+n∗(t)

=A∗
N (ψ

1/2
N sN0

(t))∗ +A∗
F (ψ

1/2
F sF0

(t))∗+n∗(t)

=A∗
Nψ

−1/2
N s∗N0

(t) +A∗
Fψ

−1/2
F s∗F0

(t)+n∗(t)

=A∗
Nψ

−1
N sN (t) +A∗

Fψ
−1
F sF (t)+n∗(t)

=A∗
Nψ

∗
NsN (t) +A∗

Fψ
∗
F sF (t)+n∗(t)

(6)

3. The proposed method

3.1. Estimator of far-field sources

First, we define a new vector Y(t) by combining the observed data vector

x(t) and its conjugate counterpart x∗(t) as follows

Y(t) =





x(t)

x∗(t)





=





AN

A∗
Nψ

∗
N



 sN (t) +





AF

A∗
Fψ

∗
F



 sF (t) +





n(t)

n∗(t)





= AeNsN (t) +AeF sF (t) + ne(t)

(7)

where AeN=





AN

A∗
Nψ

∗
N



= [ãN (θ1, r1, ψ1), · · · , ãN (θM1
, rM1

, ψM1
)], and

ãN (θkN , rkN , ψkN ) =





aN (θkN , rkN )

aN
∗(θkN , rkN )e

−jψkN



, kN = 1, · · · ,M1; AeF=





AF

A∗
Fψ

∗
F



= [ãF (θM1+1, ψM1+1), · · · , ãF (θM , ψM )], and ãF (θkF , ψkF ) =





aF (θkF )

aF
∗(θkF )e

−jψkF



, kF =M1 + 1, · · · ,M .
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Then the covariance matrix of Y(t) is calculated by

R = E[Y(t)YH(t)]

= AeNRsNAeN
H +AeFRsFAeF

H + σ2I2K

= RN +RF + σ2I2K

(8)

where RN is the near-field covariance matrix of the received data, and RsN =

E[sN (t)sN
H(t)] is the covariance matrix of near-field source signals. RF is the

far-field covariance matrix of the received data, and RsF = E[sF (t)sF
H(t)]

represent the corresponding far-field ones.

The eigenvalue decomposition of R is given by

R = UsΛsUs
H +UnΛnUn

H= UΛUH (9)

where the 2K × M matrix Us and the 2K × (2K − M) matrix Un are the

signal subspace and noise subspace, respectively. The M × M matrix Λs =

diag(λ1, λ2, . . . , λM ) and the (2K−M)×(2K−M) matrixΛn = diag(λM+1, λM+2,

. . . , λ2K) are diagonal matrices; Λ = diag(λ1, λ2, . . . , λ2K), where λ1 ≥ λ2 ≥

· · · ≥ λM > λM+1= · · ·=λ2K=σ2 are the eigenvalues of R.

Based on the orthogonality between Un and ãF (θkF , ψkF ), the following

result can be obtained

Un
H ãF (θkF , ψkF ) = Un

H





aF(θkF )

aF
∗(θkF )e

−jψkF





= Un
H





aF(θkF )

aF
∗(θkF )









1

e−jψkF



 = 0

(10)

Based on the rank reduction (RARE) principle [32], according to (10),

Un
H





aF(θkF )

aF
∗(θkF )



 = 0 for





1

e−jψkF



 ̸= 0. Define a 2K×2 matrix

VF (θ) =





aF (θ)

aF
∗(θ)



, which is only related to θ, and a 2 × 2 matrix

QF (θ) = VF (θ)
HUnUn

HVF (θ). If θ is not the true DOA angle of far-field

sources, QF (θ) will be of full rank, which means (10) holds true only when θ

is the true DOA angle of the far-field signals (QF (θ) drops rank). Since the
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covariance matrix of Y(t) is obtained from a finite number of samples, the re-

duction of the rank of QF (θ) can roughly be replaced by the minimum of the

determinant of QF (θ). Therefore, we can get the estimator of θ for far-field

sources as follows

fF (θ) =
1

det{QF (θ)}
=

1

det{VF (θ)
H
UnUn

HVF (θ)}
(11)

By searching over the range of θ ∈
[

−π
2 ,

π
2

]

, the DOAs of far-field sources

can be obtained from the peaks of fF (θ).

3.2. Estimator of near-field sources

Since Un is orthogonal to ãN (θkN , rkN , ψkN ), the following equation can be

obtained

Un
H ãN (θkN , rkN , ψkN ) = Un

H





aN (θkN , rkN )

aN
∗(θkN , rkN )e

−jψkN





= Un
H





aN (θkN , rkN )

aN
∗(θkN , rkN )









1

e−jψkN



 = 0

(12)

Again based on the RARE principle, we get the estimator of near-field

sources as follows

fN (θ, r) =
1

det{PN (θ, r)}
=

1

det{VN (θ, r)
H
UnUn

HVN (θ, r)}
(13)

whereVN (θ, r) =





aN (θ, r)

aN
∗(θ, r)



, PN (θ, r) = VN (θ, r)HUnUn
HVN (θ, r).

It’s obvious that fN (θ, r) has two parameters (include θ and r) to be esti-

mated, in other words, formulation (13) is a two-dimensional search problem.

To avoid the complexity, we adopt a new strategy to estimate these two param-

eters: 1) Estimate the DOA of the near-field sources firstly. 2) Estimate the

range r based on formulation (13) after the DOA have been estimated in the

former step.
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3.2.1. The derivation of the covariance matrix for near-field sources

To estimate the DOA of near-field sources, we first estimate the far-field

covariance matrix from the obtained DOA and power information of far-field

signals, and then derive the near-field covariance matrix, based on which an

DOA estimator for near-field sources can be developed.

Based on (8) and (9), we have

UHRU =UHUΛUHU = Λ

=UH(AeNRsNAeN
H +AeFRsFAeF

H + σ2I2K)U

=UH(AeNRsNAeN
H +AeFRsFAeF

H)U+ σ2UHU

=UH(AeRsAe
H)U+ σ2I2K

(14)

where AeRsAe
H=AeNRsNAeN

H +AeFRsFAeF
H , thus

UH(AeRsAe
H)U = Λ− σ2I2K (15)

= diag(α1, α2, · · · , αM , 0, · · · , 0) (16)

where α1, α2, · · · , αM are the eigenvalues of the covariance matrix of Ỹ(t), and

Ỹ(t) =





x̃(t)

x̃∗(t)



 (17)

where

x̃(t) = ANsN (t) +AF sF (t) (18)

It is obvious that x̃(t) doesn’t include additive noise n(t) compared with

x(t). Then we obtain

Us(Λs − σ2IM )UH
s = AeRsA

H
e (19)

where the noise power σ2 can be obtained by averaging the 2K −M smallest

eigenvalues of R.
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We can calculate the power of the kF th far-field source as follows

σ2
kF

=
{

eHkF diag{1/σ
2
1 , · · · , 1/σ

2
M}ekF

}−1

=
{[

A†
eãF (θkF , ψkF )

]H

R†
s

[

A†
eãF (θkF , ψkF )

]

}−1

=
{

ãHF (θkF , ψkF )
[

Us(Λs − σ2IM )Us
H
]†

ãF (θkF , ψkF )

}−1

=















1

e−jψkF





H 



aF (θkF )

aF
∗(θkF )





H

·

[

Us(Λs − σ2IM )Us
H
]†

·




aF (θkF )

aF
∗(θkF )









1

e−jψkF











−1

(20)

where ekF is the kF th column vector of the identity matrix IM .

To calculate the phase shifts ψkF of far-field sources, we adopt a general

method in [20, 33]. Partitioning Un into Un =





Un1

Un2



, where Un1 and Un2

are two submatrices of the same size K × (2K −M). We obtain

g(θkF , ψkF ) = ãHF (θkF , ψkF )UnU
H
n ãF (θkF , ψkF )

= ãHF (θkF , ψkF )


 Un1U

H
n1 Un1U

H
n2

Un2U
H
n1 Un2U

H
n2


 ãF (θkF , ψkF )

=


 aF (θkF )

aF
∗(θkF )e

−jψkF



H 
 Un1U

H
n1 Un1U

H
n2

Un2U
H
n1 Un2U

H
n2




 aF (θkF )

aF
∗(θkF )e

−jψkF




=


 1

e−jψkF



H
 aF (θkF )

aF
∗(θkF )



H 
 Un1U

H
n1 Un1U

H
n2

Un2U
H
n1 Un2U

H
n2





 aF (θkF )

aF
∗(θkF )




 1

e−jψkF




=


 1

e−jψkF



H 
 aHF (θkF )Un1U

H
n1aF (θkF ) aHF (θkF )Un1U

H
n2aF

∗(θkF )

(aHF (θkF )Un1U
H
n2aF

∗(θkF ))
H

aTF (θkF )Un2U
H
n2aF

∗(θkF )





 1

e−jψkF




= q(ψkF )
HC(θkF )q(ψkF )

(21)
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where C(θkF ) =





aHF (θkF )Un1U
H
n1aF (θkF ) aHF (θkF )Un1U

H
n2a

∗
F (θkF )

(aHF (θkF )Un1U
H
n2a

∗
F (θkF ))

H
aTF (θkF )Un2U

H
n2a

∗
F (θkF )





and q(ψkF ) = [1, e−jψkF ]T .

Setting the partial derivative of g(θkF , ψkF ) with respect to ψkF to zero,

i.e.,∂g(θkF , ψkF )/∂ψkF = 0, we have

ejψkF = ±
aHF (θkF )Un1U

H
n2a

∗
F (θkF )

∥

∥

∥
aHF (θkF )Un1U

H
n2a

∗
F (θkF )

∥

∥

∥

(22)

The minima of (21) are obtained when the sign of the right-hand side of (22)

is minus. Therefore, we can get the ultimate expression for ejψkF .

Substituting the estimated θ̂kF into (20), we then obtain the power of the

far-field signals. Then the far-field covariance matrix can be derived as follows

RF = AeF diag(σ
2
M1+1, σ

2
M1+2, · · · , σ

2
M )AH

eF (23)

and the near-field covariance matrix is then given by

RN = Us(Λs − σ2IM )Us
H −RF (24)

Apply eigenvalue decomposition to RN , leading to

RN = Es∆sE
H
s +En∆nE

H
n (25)

where the 2K×M1 matrix Es and the 2K×(2K−M1) matrix En are the signal

subspace and noise subspace, respectively. The diagonal matrix ∆s includes the

M1 largest eigenvalues and ∆n has the 2K −M1 smallest ones.

3.2.2. DOA estimation for near-field sources

With the covariance matrix of near-field sources being obtained, in other

words, the information of near-field sources is separated from the mixed sources,

we further study the derivation of DOA estimator for near-field sources.

By analysing the centrosymmetric structure of the ULA and exploring the

inner relationship of the steering vectors, we find

J2aN (θkN , rkN )=D(θkN )J1aN (θkN , rkN ) (26)
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where J1 =











0 · · · 1
...

. . .
...

1 · · · 0











∈ K × K, J2 =











1 · · · 0
...

. . .
...

0 · · · 1











∈ K × K, Jnc1 =





J1 0

0 J1



, Jnc2 =





J2 0

0 J2



, andD(θkN ) =diag{e
j(−2LγkN ), · · · ,ej(−2γkN ), 1,

ej(2γkN ), · · · ,ej(2LγkN )}.

In fact, the formulation (26) is coincident with the key ingredient of the

generalized ESPRIT (GESPRIT) algorithm [10]. For the GESPRIT algorith-

m, the inner relationship of the steering vectors is explored and each steering

vector is reformulated as the product of itself and a diagonal matrix with some

trivial transformation (in (26), the steering vector is aN (θkN , rkN ) and the di-

agonal matrix is D(θkN )). While in the conventional ESPRIT algorithm, the

relationship of the steering vectors is integrated and is shown as the relationship

of the whole manifold [34]. Owing to the representation in (26), the DOAs to

be estimated forms a mapping relationship to the corresponding steering vec-

tors and thus can be evaluated one by one in the following analyses. Besides,

this improvement makes the GESPRIT applicable to a much more general class

array of geometries than assumed by the conventional ESPRIT algorithm.

Note that J2a
∗
N (θkN , rkN )=D∗(θkN )J1a

∗
N (θkN , rkN ) by conjugating (26), there-

fore,

Jnc2 ãN (θkN , rkN , ψkN )=

[

J2aN(θkN ,rkN )

J2a
∗

N
(θkN ,rkN )e

−jψkN

]

=

[

D(θkN )J1aN(θkN ,rkN )

D∗(θkN )J1a
∗

N
(θkN ,rkN )e

−jψkN

]

=
[

D(θkN ) 0

0 D∗(θkN )

] [

J1 0
0 J1

]

[

aN(θkN ,rkN )

a∗

N
(θkN ,rkN )e

−jψkN

]

=D̃(θkN )J
nc
1 ãN (θkN , rkN , ψkN )

(27)

where D̃(θkN ) =





D(θkN
) 0

0 D∗(θkN
)



, so we get

Jnc2 AeN= [D̃(θ1)J
nc
1 ãN (θ1, r1, ψ1), · · · ,

D̃(θkN )J
nc
1 ãN (θkN , rkN , ψkN ), · · · ,

D̃(θK)Jnc1 ãN (θM1
, rM1

, ψM1
)]

(28)

12



According to [20], there exists a full-rank M1 × M1 matrix G satisfying

Es = AeNG. And we can form a 2K × 2K diagonal matrix:

Φ(θ)=diag{ej(−2Lγ), · · · , ej(−2γ), 1, ej(2γ), · · · ,ej(2Lγ),

ej(2Lγ), · · · , ej(2γ), 1, ej(−2γ), · · · , ej(−2Lγ)}
(29)

with γ = − 2πd sin θ/λ.

Now we can construct the 2K ×M1 matrix:

QN (θ) = Jnc2 Es −Φ(θ)Jnc1 Es

= [(D̃(θ1)−Φ(θ))Jnc1 ãN (θ1, r1, ψ1), · · · ,

(D̃(θkN )−Φ(θ))Jnc1 ãN (θkN , rkN , ψkN ), · · · ,

(D̃(θM1)−Φ(θ))Jnc1 ãN (θM1
, rM1

, ψM1
)]G

(30)

For formulation (30), if θ is the true angle of the near-field sources, such

as θ = θkN , kN = 1, · · · ,M1, the kN th column of QN (θ) will become zero,

which means that the M1 ×M1 matrix WHQN (θ) is singular, with W being

an arbitrary 2K ×M1 full-rank matrix. A related discussion on the choice of

W can be found in [35] from the traditional ESPRIT viewpoint. Therefore, we

can have the estimator of θ for near-field sources as follows

fN (θ) =
1

det{WHQN (θ)}
(31)

where the range parameter r makes no difference to the estimation of the DOAs

and for θ ∈
[

−π
2 ,

π
2

]

, the DOAs of near-field sources can be obtained by finding

the peaks of fN (θ).

3.2.3. Range estimation of near-Field sources

By substituting the estimated θ̂kN of near-field sources (kN = 1, 2, · · · ,M1)

into (13), we can obtain the estimator of the range of near-field sources.

fN (θ̂, r) =
1

det{PN (θ̂, r)}
=

1

det{VN (θ̂, r)
H
UnUn

HVN (θ̂, r)}
(32)

By searching within the range r ∈
[

0.62(D3/λ)1/2, 2D2/λ
]

, where D is the

array aperture, the range of near-field signals can be obtained from the peaks

of fN (θ̂, r). Note that the DOA and range estimates of near-field sources can

be automatically paired without any additional operation.

13



3.3. Summary of the proposed method

The proposed method can be described as follows

Algorithm 1 The Proposed Method

Step 1: Concatenate the original received vector x(t) and its conjugate coun-

terpart x∗(t) to obtain the augment vector Y(t) =
[

x(t)
x∗(t)

]

.

Step 2: Calculate the covariance matrix R̂= 1
T

T
∑

t=1
Y (t)Y H(t).

Step 3: Implement the eigenvalue decomposition on R̂ to obtain the augment

signal subspace Ûs and augment noise subpace Ûn.

Step 4: Similarly to the traditional MUSIC algorithm, obtain the DOAs

(θ̂kF , kF =M1 +1, · · · ,M) of the far-field sources based on formulation (11).

Step 5: Calculate noise power (σ̂2
kF
, kF =M1 + 1, · · · ,M) of far-field signal

space based on formulation (20).

Step 6: Obtain the augment near-field signals covariance matrix R̂N based on

formulation (24) after getting the augment far-field signals covariance matrix

R̂F from formulation (23).

Step 7: Implement the eigenvalue decomposition of R̂N to obtain the near-

field signal subspace Es and noise subspace En.

Step 8: Based on the generalized ESPRIT method, obtain the DOAs

(θ̂kN , kN = 1, · · · ,M1) of the near-field sources according to formulation (31).

Step 9: Obtain the range (r̂kN , kN = 1, · · · ,M1) of the near-field source

based on formulation (32) with θ̂kN estimated in Step 8.

3.4. Discussion

3.4.1. Computational complexity

For the computational complexity of the proposed method, we compare it

with He’s method in [23], Zuo’s method in [26], and Liu’s method in [27]. The

complexity lies mainly in constructing the covariance matrix and performing

the eigendecomposition. For the method in [23], it is about O((2L+ 1)2η +

(L+ 2)2L + (2L+ 1)3 + (L+ 2)3); for Zuo’s method, we have O((2L+ 1)2η +

14



(2L+ 1−M)3+(2L+ 1)3+(2L+ 1)3); Liu’s method in [27] has a complexity of

O((2L+ 1)2η+(2L+ 1)3+2(2L+ 1)2+(2L+ 1)3), while the proposed algorithm

is O((4L+ 2)2η + (4L+ 2)3 + 2(4L+ 2)2 + (4L+ 2)3). We can see that the

computational complexity of the proposed method is the highest due to the

operations associated with the extended covariance matrix, but its performance

is the best as the following simulation results will prove.

3.4.2. Array aperture

Since the augment vector Y(t) in the proposed method has higher dimension

than the original received data x(t), the method actually extends the array

aperture. Therefore, the proposed method can estimate more sources than

other methods and it can estimate 2L sources at most with a ULA consisting

of 2L+ 1 elements. To verify it, a set of experiments is demonstrated in the

fourth subsection of Section 4 to examine the largest number of the sources that

can be detected by the proposed method for a given ULA.

3.4.3. Suitability for massive MIMO systems

The proposed method can be applied to the massive MIMO system. To

prove this point, simulation verification is carried out in the last part of the

simulation section. As the experimental results will show, the proposed method

has good performance in large ULA.

4. Simulation results

For the highlight of the proposed method is to exploit the property of mixed

non-circular sources, it is supposed to compare its performance with other meth-

ods dealing with mixed non-circular sources. However, to the best of my knowl-

edge, the existing methods are aimed at either pure non-circular sources or

mixed circular sources. Thus, we divide the performance analyses into three

parts: the performance analyses for mixed non-circular sources, the performance

analyses for pure far-field non-circular sources and the performance analyses for

pure near-field non-circular sources.
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Fig. 2: Spatial spectrum for the DOA and range estimation results of mixed non-circular

sources: θ1 = −8◦, r1 = 2λ, θ2 = 10◦, r2 = 6λ, θ3 = 10◦, r3 = +∞, θ4 = 30◦, r4 = +∞,

SNR = 15 dB, and the number of snapshots is 500.

For all simulations in this section, the inter-sensor spacing of a ULA is

quarter-wavelength (d = λ/4) and the impinging sources are BPSK signals

with the additive noise being spatially and temporally white complex Gaussian.

The root mean square error (RMSE) is adopted as a performance metric.

In subsection 1 to subsection 3, a ULA of 9 sensors (L = 4) is employed,

and its Fresnel region is 1.75λ < r < 8λ.

4.1. Mixed non-circular sources

In this subsection, we examine the DOAs and ranges of the proposed method

compared with that of some other methods under the mixed far-field and near-

field non-circular sources.

4.1.1. DOAs estimation

The scenario of two near-field and two far-field non-circular sources im-

pinging on the ULA is assumed. They are located at (−8◦, 2λ), (10◦, 6λ) and
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Fig. 3: RMSEs for DOA and range estimation for mixed non-circular sources versus SNR:

θ1 = 5◦, r1 = 1.9λ, θ2 = 30◦, r2 = 2.6λ, θ3 = −25◦, r3 = +∞, θ4 = 5◦, r4 = +∞, and the

number of snapshots is 500 with 500 independent trials.

(10◦,+∞), (30◦,+∞), respectively. The SNR is 15 dB and the number of snap-

shots is 500. The resultant spatial spectrum for DOA and range estimation are

shown in Fig. 2. Clearly both the DOAs and relevant ranges have been identi-

fied successfully. Besides, the proposed algorithm is applicable to the scenario

that the near-field sources and the far-field sources have the same azimuth.

4.1.2. Performance versus SNR

Consider two near-field signals located at (5◦, 1.9λ), (30◦, 2.6λ) and two far-

field signals located at (−25◦,+∞), (5◦,+∞), respectively. Fig. 3 shows the

RMSE results of the azimuth and range estimations after 500 independent trials.

The SNR varies from 2 dB to 14 dB with the number of snapshots fixed at

500. Besides, the results obtained by He’s method [23], Zuo’s method [26] and

Liu’s method [27] all of which are designed for mixed circular sources, are also

provided for comparisons in this figure. In addition, the deterministic CRB is

also shown as a benchmark [32]. From the results, we can see that the proposed
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Fig. 4: RMSEs for DOA and range estimation for mixed non-circular sources versus snapshots:

θ1 = 5◦, r1 = 1.9λ, θ2 = 30◦, r2 = 2.6λ, θ3 = −25◦, r3 = +∞, θ4 = 5◦, r4 = +∞, and SNR

= 10dB with 500 independent trials.

algorithm consistently outperforms the other three algorithms in both azimuth

and range estimations.

4.1.3. Performance versus snapshots

The incident signals are the same as the second set of simulations in this

subsection. The number of snapshots varies from 200 to 1000, with the SNR

fixed at 10dB. In addition, three methods in the second set of simulations and

the criterion for evaluation provided in [32] are also presented for comparisons

in Fig. 4. From the results, we can see that the proposed method has achieved

the best performance over the considered region again.

From the simulations above, we note that the methods in [23, 26, 27] which

are transplanted to deal with mixed non-circular sources have worse perfor-

mances than the proposed methods derived for mixed non-circular sources. To

this degree, it exactly proves the significance to exploit the characteristic of

non-circular sources. In addition, the reasonable design of the proposed method
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Fig. 5: DOA estimation results of pure far-field non-circular sources: θ1 = −15◦, r1 = +∞,

θ2 = 0◦, r2 = +∞, θ3 = 15◦, r3 = +∞, θ4 = 30◦, r4 = +∞, SNR = 10 dB, and the number

of snapshots is 500.

is another factor contributing to the performance as shown in the following

simulations.

4.2. Pure far-field non-circular sources

In this subsection, the DOA estimation of the proposed method with the pure

far-field non-circular sources which is considered as a special case of the mixed

non-circular sources is performed. And as P.Charge’s method in[11] explores the

nature of pure far-field non-circular sources with polynomial rooting technique,

it is added as a comparison in the following simulations.

4.2.1. DOAs estimation

The azimuth estimation for pure far-field non-circular sources are performed

based on the method in [11] and the proposed method, respectively. Four

far-field non-circular sources located at (−15◦,+∞), (0◦,+∞), (15◦,+∞) and

(30◦,+∞) impinging on the ULA are considered. The SNR is 10 dB and the
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Fig. 6: RMSEs for DOA estimation of pure far-field non-circular sources versus SNR: θ1 =

−15◦, r1 = +∞, θ2 = 0◦, r2 = +∞, θ3 = 15◦, r3 = +∞, θ4 = 30◦, r4 = +∞, and the

number of snapshots is 500 with 500 independent trials.

number of snapshots is 500. In Fig. 5, it’s proved that both these two meth-

ods can estimate the DOAs of pure far-field non-circular sources successfully.

However, it has to be pointed out that when the DOA separations among the

sources become closer, the performance of the method in [11] will deteriorate

rapidly (not shown in the figure).

4.2.2. Performance versus SNR

The impinging signals are the same as the first set of experiments in this

subsection. The SNR ranges from 2 dB to 14 dB with the number of snapshots

fixed at 500. Together with the result in [11], the results from the methods in

[23, 26, 27, 32] for pure far-field non-circular sources are also plotted in Fig. 6.

It’s apparent that even though [11] is designed for pure far-field non-circular

sources, its performance is unsatisfactory. For those methods aimed at mixed

circular sources, they have lower accuracy than the proposed method specially

derived for mixed non-circular sources.
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Fig. 7: RMSEs for DOA estimation of pure far-field non-circular sources versus snapshot:

θ1 = −15◦, r1 = +∞, θ2 = 0◦, r2 = +∞, θ3 = 15◦, r3 = +∞, θ4 = 30◦, r4 = +∞, SNR =

10dB with 500 independent trials.

4.2.3. Performance versus snapshots

The simulation conditions are similar to those in the second example in this

subsection, except that the number of snapshots varies from 200 to 1000, with

the SNR set at 10dB. The results of the performance can be obtained from Fig.

7, and the proposed method shows the best capability among these methods.

4.3. Pure near-field noncircular sources

In this subsection, the azimuth and range estimations for the proposed

method under the pure near-field non-circular sources which is treated as anoth-

er special case of the mixed non-circular sources is conducted. And the method

in [20] which is aimed at the pure near-field non-circular sources is supplemented

to the simulations.

4.3.1. DOAs Estimation

Let’s consider the scenario of four near-field non-circular sources imping-

ing on the ULA. They are located at (−10◦, 1.8λ), (0◦, 2λ), (20◦, 2.2λ) and

(30◦, 2.4λ), respectively. The SNR is 15 dB and the number of snapshots is

500. In Fig. 8, it’s clear that the DOAs estimation of Xie’s method brings some
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Fig. 8: Spatial spectrum for the DOA estimation results of pure near-field non-circular sources:

θ1 = −10◦, r1 = 1.8λ, θ2 = 0◦, r2 = 2λ, θ3 = 20◦, r3 = 2.2λ, θ4 = 30◦, r4 = 2.4λ, SNR = 15

dB, and the number of snapshots is 500.

pseudo-peaks while the proposed method doesn’t. In Xie’s simulation results,

we remove the pseudo-peaks and use the reliable estimation value of DOAs to

get the range of near-field sources (for the following simulations in Performance

versus SNR and Performance versus snapshots of this subsection, the same

preprocessing is conducted for Xie’s method). The related spatial spectrum for

range estimation by Xie’s method is shown in Fig. 9(a). And the proposed

method’s related spatial spectrum for range estimation is shown in Fig. 9(b).

Through Fig. 9, we can see that two of them can identify the ranges successfully.

4.3.2. Performance versus SNR

In this part, the performance comparison for the proposed method versus

SNR is performed. The parameter settings are the same with the DOAs esti-

mation in this subsection except for the SNR varying from 2dB to 14dB. The
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Fig. 9: The range estimation results of pure near-field non-circular sources: θ1 = −10◦,

r1 = 1.8λ, θ2 = 0◦, r2 = 2λ, θ3 = 20◦, r3 = 2.2λ, θ4 = 30◦, r4 = 2.4λ, SNR = 15 dB, and

the number of snapshots is 500.

corresponding experiments of the methods in [23, 26, 27, 32] are also performed.

From Fig. 10, we can see that the performance of the proposed method exceeds

Xie’s method by a narrow margin. This is because Xie’s selection matrices J1

and J2 (see Lemma 1, [20]) determine that only part of the extended near-field

steering matrix can be utilized to examine the DOAs of near-field sources, while

the proposed method takes the whole extended near-field steering matrix into

consideration (formulation (26) in 11th page).

4.3.3. Performance versus snapshots

In this set of simulations, we assess the performance of the proposed method

versus the number of snapshots. The incident signals and simulation conditions

are the same as DOAs estimation in this subsection. The number of snapshots

is between 200 and 1000 with SNR fixed at 10dB. Fig. 11 shows the RMSE

results of the azimuth and range estimations, where we can see that the proposed
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Fig. 10: RMSEs for DOA and range estimation for pure near-field non-circular sources versus

SNR: θ1 = −10◦, r1 = 1.8λ, θ2 = 0◦, r2 = 2λ, θ3 = 20◦, r3 = 2.2λ, θ4 = 30◦, r4 = 2.4λ, and

the number of snapshots fixed at 500, with 500 independent trials.

algorithm has a better performance.

The experiments in subsection 4.2 and subsection 4.3 explore two special

cases of mixed non-circular sources, respectively. As the simulation results have

shown, the proposed method outperforms other methods designed for circular

sources or pure non-circular sources. Therefore, these experiments are con-

vincing proofs that the proposed method is an effective localization method for

non-circular sources.

4.4. Array aperture verification

For all simulations in this subsection, a ULA of 7 sensors (L= 3) is assumed,

and its Fresnel region is 1.14λ < r < 4.5λ. The SNR is fixed at 15 dB and the

number of snapshots is 200.

In the first simulation, as a most general case, four far-field non-circular

sources (they are located at (0◦,+∞), (20◦,+∞), (30◦,+∞) and (50◦,+∞), re-

spectively) and two near-field non-circular sources (they are located at (−20◦, 1.5λ)
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Fig. 11: RMSEs for DOA and range estimation for pure near-field non-circular sources versus

the number of snapshots: θ1 = −10◦, r1 = 1.8λ, θ2 = 0◦, r2 = 2λ, θ3 = 20◦, r3 = 2.2λ,

θ4 = 30◦, r4 = 2.4λ, and the SNR fixed at 10dB, with 500 independent trials.

and (0◦, 2λ), respectively) coexist. Fig. 12(a) shows the DOA estimation results

of these six impinging sources, and Fig. 12(b) demonstrates the range estima-

tion results of these two near-field sources. Apparently, both the DOAs and

relevant ranges have been identified correctly.

In the second one, six far-field non-circular sources are assumed to imping on

the ULA. They are located at (−40◦,+∞), (−20◦,+∞), (0◦,+∞), (20◦,+∞),

(40◦,+∞) and (60◦,+∞), respectively. As Fig. 13 (at the top of 27th page)

shows, all the estimated DOAs of the far-field sources are consistent with the

original DOAs.

In the last case, there are six near-field non-circular sources located at

(−40◦, 1.2λ), (−20◦, 1.3λ), (0◦, 1.4λ), (20◦, 1.5λ), (40◦, 1.6λ), and (60◦, 2λ), re-

spectively. The resultant spatial spectrum for DOA and range estimation is

shown in Fig. 14 (at the top of 28th page). Clearly the proposed method have

accurately estimated the DOAs and relevant ranges.
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Fig. 12: Array aperture’s verification test for the DOA and range estimation results of mixed

non-circular sources: θ1 = 0◦, r1 = +∞, θ2 = 20◦, r2 = +∞, θ3 = 30◦, r3 = +∞,θ4 = 50◦,

r4 = +∞, θ5 = −20◦, r5 = 1.5λ, θ6 = 0◦, r6 = 2λ, SNR = 15 dB, and the number of

snapshots is 200.

From the simulation results in this subsection, we verify that the maximum

number of sources which can be distinguished by the proposed method is 2L

with a ULA composed of 2L+ 1 sensors.

4.5. Suitability test for massive MIMO system

To show the suitability of the proposed method for the massive MIMO

system, the performance test versus the number of array element is carried

out in this subsection. Suppose there are two far-field strictly non-circular

sources impinging upon a large ULA consisting of M elements at directions

θ1 = −12.1◦, θ2 = 15◦. The SNR and the number of snapshots are fixed at

0dB and 200, respectively. Again, the methods in [23, 26, 27] are adopted as

comparisons. As Fig. 15 (at the top of 29th page) shows, the RMSEs of all al-

gorithms decrease monotonously when the number of elements increases, which

means that these algorithms are suitable for massive MIMO scenarios.
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Fig. 13: Array aperture’s verification test for the DOA estimation results of pure far-field

non-circular sources: θ1 = −40◦, r1 = +∞, θ2 = −20◦, r2 = +∞, θ3 = 0◦, r3 = +∞,

θ4 = 20◦, r4 = +∞, θ5 = 40◦, r5 = +∞, θ6 = 60◦, r6 = +∞, SNR = 15 dB, and the number

of snapshots is 200.

5. Conclusion

In this paper, an effective localization method for a mixture of near-field and

far-field non-circular sources has been proposed based on a large centrosymmet-

ric ULA. The proposed method makes full use of the property of the impinging

sources and the tricks of the traditional source localization methods, where the

extended received data model is constructed by utilizing the non-circularity of

the incident sources and the DOA and range estimation problems are separated

into three 1-dimensional parameter estimation problems solved by the conven-

tional MUSIC algorithm and the generalized ESPRIT method, respectively. As

verified by the simulation results, the proposed method has achieved a better

DOA and range estimation performance than all the considered existing meth-

ods. In addition, the proposed method is suitable for massive MIMO system.
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