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In a wireless sensor network, multilevel quantization is necessary to find a compromise between 
minimizing the power consumption of sensors and maximizing the detection performance at the 
fusion center (FC). The previous methods have been using distance measures such as J-divergence 
and Bhattacharyya distance in this quantization. This work proposes a different approach based on 
the maximum average entropy of the output of the sensors under both hypotheses and utilizes it in 
a Neyman-Pearson criterion-based distributed detection scheme to detect a point source. The receiver 
operating characteristics of the proposed maximum average entropy (MAE) method in quantizing sensor 
outputs have been evaluated for multilevel quantization both when the sensor outputs are available 
error-free at the FC and when non-coherent M-ary frequency shift keying communication is used 
for transmitting MAE based multilevel quantized sensor outputs over a Rayleigh fading channel. The 
simulation studies show the success of the MAE in the cases of both error-free fusion and where the 
effect of the wireless channel has been incorporated. As expected, the performance improves as the level 
of quantization increases and with six-level quantization approaches the performance of non-quantized 
data transmission.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Wireless Sensor Networks (WSNs) have come into the spotlight 
recently due to a significant development in the Micro-Electro-
Mechanical Systems (MEMS) [1],[2]. The recent development of 
WSNs has made this field a research focus of intensive researches. 
Researchers have been widely using it to monitor and character-
ize large physical environments and trace various environmental 
or physical conditions such as temperature, pressure, wind, and 
humidity. Apart from these, WSNs have vast fields to be applied 
in, such as harmful environmental exploration, wildlife monitor-
ing, target tracking and smart cities established based on Internet 
of Things (IoT) [3–7]. Typically a WSN uses many comparatively 
inexpensive and low-energy sensors to collect observations and 
pre-process the observations. These sensors are generally deployed 
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in the environment. Owing to strict energy and bandwidth re-
strictions, the sensors’ observations are frequently needed to be 
quantized before transmitting them to a fusion center (FC) which 
makes a global decision [8,9]. This work concentrates on the dis-
tributed detection problem using a WSN and, particularly, how the 
local observations are quantized.

1.1. Pioneering studies on distributed detection

The additional requirement in detection because of the dis-
tributed nature is to jointly optimize both the sensors’ processing 
and how their outputs are fused. The pioneering research on fusion 
rules was made by Tenney and Sandell [10] and Chair and Varsh-
ney [11]. In [10], a detection problem consisting of two sensors 
and one FC with a fixed fusion rule was considered to show that 
the optimum local decision rule is the likelihood ratio test (LRT) 
under the Bayesian criterion. However, the individual thresholds 
are coupled. Later, in [11], it was shown that the optimum fusion 
rule at the FC for multiple observations is also an LRT both under 
the Neyman-Pearson (NP) and the Bayesian criteria. Determining 
the optimal local decision rule is significantly more complicated. 
The optimality of LRT for each local decision rule was consid-
ered in [12] and [13] by assuming conditional independence of the 
observations under each hypothesis. But because of the coupling 
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between the LRT thresholds at the local detectors among them-
selves and with the one at the FC, solving the global optimization 
problem is complex, although not intractable [14]. This suggested 
determining the thresholds of the local detectors independently, 
that is, the threshold of each sensor is optimized for fixed decision 
rules at the other detectors and the FC, which is called person-by-
person optimization (PBPO) [14–16]. Those works’ adopted con-
ditional independence assumption produces only locally optimal 
decisions, but even they become prohibitively complex for large 
sensor networks, and simpler solutions are needed. Additionally, 
the gain obtained by having more sensor nodes outperforms get-
ting more information from each sensor in WSNs [17].

1.2. Studies on system models

The optimal fusion rule under the known probability of false 
alarm (pfa) and probability of detection (pd) of local sensors is 
given by the Chair-Varshney fusion rule in [11]. Many works are 
dedicated to studying the counting fusion rule, which achieved 
comparable performance to that optimum fusion rule [18–20]. 
Specifically, these works have suggested transmitting only the local 
decisions and using the counting rule at FC instead of transmitting 
the raw data, which is expensive, particularly for a typical WSN 
with limited bandwidth and energy.

Most of the previously mentioned WSN applications considered 
the case where signal-to-noise ratio (SNR) or the pd and pfa at 
local sensors are known to the FC. On the other hand, in many 
scenarios, an isotropic source of an unknown location is consid-
ered where the emitted signal is assumed to decay as a function 
of the distance from the source [20–22]. In [20], the detection 
performances, namely pfa and pd, were derived using numerous 
simplifying assumptions by several methods in order to simplify 
its computations for binary data transmissions.

On the contrary, in [21], a generalized likelihood ratio test 
(GLRT) detector and the Cramer-Rao lower bound (CRLB) are de-
rived; however, GLRT needs a grid search on both the emitted 
power from the target and the location domains. A computation-
ally simpler solution was given in [22], where one-bit distributed 
detection of an uncooperative target was considered, which as-
sumes that both the target location and the emitted signal are 
unknown at FC. In that work, a Generalized Locally-Optimum De-
tector (G-LOD) test with nuisance parameters was proposed for 
a fixed value of local sensor thresholds. However, most of these 
mentioned works examined binary data transmissions, and the ef-
fect of Rayleigh fading was not considered. In contrast, this paper 
proposes a new type of quantization (MAE) for M-ary data trans-
missions by considering Rayleigh fading channel between the sen-
sors and the FC. Consider the literature [23–26] for more details on 
the fusion rules for different network topologies such as parallel, 
serial, and tree topologies.

1.3. Studies on quantization for distributed detection

Optimum quantization levels in the sense of information-
theoretic criteria for distributed detection systems were presented 
in [27–31]. In [27], the quantization based on Ali-Silvey distances 
between two simple hypotheses was investigated. After that, in 
[28], [29], the divergence was proposed as a distortion measure by 
considering a class of f-divergence measures which shows that the 
loss in divergence is quadratic with the quantization step size.

In [30,31], the authors considered that each local detector 
transmits a multiple-bit decision to the FC. The solution for par-
titioning the local decision space was derived by maximizing the 
distance between the mean values of the quantized hypotheses. It 
was shown that the global decision performance increases mono-
tonically by increasing the number of partitions at the individ-
2

ual detector. This method is locally optimum in the sense of J-
divergence (JD), but it does not necessarily yield a globally opti-
mum solution. Even when four quantization levels are considered, 
the solution is given by complicated analytic expressions explain-
ing the functional relationships between the detection probability 
and the false alarm probability of all detectors and their deriva-
tives. Those works assumed that all local sensors are identical NP 
detectors observing the same SNR.

In [32,33], to perform optimum quantization in the sense of 
mean-error, deflection criterion (DC) and Chernoff information (CI) 
were defined for distributed detection systems consisting of one FC 
and multiple sensors by using the Bayesian detection criterion. DC 
and CI pose a nonlinear and non-convex problem, which mostly 
has more than one extreme. These optimization criteria are suit-
able for the case of known SNR, where the pd and pfa are known 
for each local detector.

There are also a few other information-theoretic methods of 
quantization that we can consider as not based on distance mea-
sures [34,35]. [34] called their approach as minimum equivocation 
detection, which is equivalent to maximizing mutual information 
(MI). Later, [35] used conditional-MI (CMI) method for distributed 
detection. The MI and CMI methods applied the PBPO approach to 
optimize both the sensor thresholds and the fusion rule; however, 
they were confined to binary sensor decisions and used for known 
SNR.

1.4. Some other works

In another work, a multi-bit Rao test was considered for fusing 
sensor outputs, and a quantizer design method was proposed to 
maximize the non-centrality parameter of the test statistic distri-
bution [36]. That optimization problem was solved using a particle 
swarm optimization algorithm because of its nonlinear and non-
convex nature.

Early distributed detection systems were developed by assum-
ing an error-free communication between the local detectors and 
the FC [13]. Applying this theory to WSNs leads to a detection 
performance loss in the case of erroneous channels. Fusion rules 
for distributed detection systems considering fading channels were 
first discussed in [37] and later in [38–40] mainly for binary hy-
pothesis testing, whereas [41–44] considered M-ary hypothesis 
testing problems.

Dependence between observations of spatially distributed sen-
sors is a critical subject in DD problems. This dependence oc-
curs for various reasons, such as sensing the same phenomenon 
and contamination by correlated noise. Some works have studied 
the influence of dependence on the performance of DD systems 
[45,46]. But, in many DD scenarios, this dependence is ignored and 
the sensor observations are considered to be independent.

1.5. Contributions of the paper

Inspired by quantizing signals using the Maximum Output En-
tropy (MOE) in [47], we propose an entropy-based method by 
maximizing the average entropy of observations under both hy-
potheses. We aim to determine the quantization intervals at dis-
tributed sensors to optimize the global binary decision at the FC 
about the existence of a point source under the NP criterion where 
sensors observe different signal levels which they do not know. Al-
though maximizing the entropy is a well-known approach, only 
MI and CMI were used for maximization in decision problems 
[34,35]. The most probable reason for this is the widespread accep-
tance that an information-theoretic criterion for decision problems 
should concentrate on the distance of rival hypotheses. We con-
sider scenarios with non-equivalently important hypotheses; that 
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Fig. 1. Parallel distributed detection system.
is why the NP criterion is considered more suitable than the prob-
ability of error criterion in this work. This paper extends its pre-
liminary version [48] in the following aspects. We compare the 
proposed method to DC [32,33], CI [33], MI [34,35], CMI [35] and 
JD [30,31] based methods, demonstrate its positively proportional 
relation with JD, include increased quantization levels resulting in 
a similar performance to non-quantized signaling. Instead of the 
binary symmetric channel as a simplified model for the channel 
from the sensors to the FC, we use a regular Rayleigh fading chan-
nel model for the wireless channel. Additionally, we utilize optimal 
and sub-optimal fusion rules modified from those for M-ary hy-
pothesis testing in [44] to match the binary hypothesis testing 
problem with M-ary modulated data transmission.

1.6. Paper organization

The remaining part of this paper is organized as follows. First, 
we formulate the parallel distributed detection problem of a point 
source, including sensors to FC transmissions over a Rayleigh fad-
ing channel and various fusion rules in Section 2. Section 3 covers 
the development of the proposed average entropy-based quantiza-
tion method, the JD-based method and their relation. Simulation 
results are given in Section 4, and conclusions are drawn in Sec-
tion 5.

1.7. Manuscript notation

Boldface lower and upper case letters denote vectors and ma-
trices, respectively. The symbol “∼” stands for “distributed accord-
ing to”, whereas N (μ, σ 2) denotes Gaussian probability density 
function (pdf) with mean μ and variance σ 2. CN (μ, C) indicates 
complex Gaussian pdf with mean vector μ and covariance matrix 
C; pfa and pd denote the probability of false alarm and probability 
of detection, respectively; uk represents the local M-ary decision at 
the kth sensor and u0 represents the global binary decision at the 
FC. εk refers to the additive white Gaussian noise at the kth sensor; 
hk denotes complex channel coefficient multiplying the kth sensor’s 
output. βM is a vector of local thresholds for M-level quantization; 
η is the global threshold, F̂ is entropy function; Ê(·) is expecta-
tion operation, A is signal amplitude; yk denotes the observation 
at sensor k; DKL is Kullback–Leibler divergence; �(·) is likelihood 
ratio; ûk is the estimate of the scalar uk and uk is M-FSK modu-
lated sensor output.

2. System model

A binary hypothesis testing problem has been considered in this 
work, where a group of K sensors and one FC cooperate to detect 
the existence of a point source, as shown in Fig. 1. The hypothesis 
testing at each sensor node can be described as
3

H0 : yk = εk,

versus

H1 : yk = Ak + εk,

(1)

where yk denotes the observation at the kth sensor and εk de-
notes additive white Gaussian noise (AWGN) with variance σ 2 and 
zero mean. Ak denotes the received signal amplitude, which is 
equal to αk Amax. Each sensor in the range of the point source 
measures a signal attenuated with a factor of αk and makes an 
M-level local decision uk ∈ {0, 1, ..., M − 1}. The local decision is 
transmitted through multiplicative channel hk to the FC, where the 
final decision u0 is made. In Fig. 1, the sensor outputs {uk, k =
1, 2, ..., K }, the AWGNs in the channel from the sensors to the 
FC {nk, k = 1, 2, ..., K } and the received signals {ȳk, k = 1, 2, ..., K }
are shown as vectors following the M-dimensional signal model 
of Frequency Shift Keying (FSK) related modulated signal model, 
explained in detail in section 2.2.1. Additionally, 

√
Pk denotes the 

received power from the kth sensor which includes the large scale 
fading effect.

2.1. The signal density with punctured disk simplification and optimal 
centralized detection

In this work, we consider an isotropic, static point event source 
for which the signal power decays with the square of the dis-
tance from the source [20]. We can equivalently say that the signal 
amplitude, Ak , received at the kth sensor will be inversely propor-
tional to the Euclidean distance, rk , between the source and the 
kth sensor. Practical receivers or sensors will have some sensitivity 
that is the minimum signal level, Amin, which can be measured. 
Consequently, among the sensors uniformly deployed in a much 
larger area, only those located in a circle with radius rmax, as 
given in Fig. 2, will be able to receive a signal. An upper limit 
for the received signal level should also be considered for practi-
cal sensors, which corresponds to saturation. Because of this, we 
preferred defining the smallest distance, rmin, from the event loca-
tion, which corresponds to the saturation signal level, Amax, of the 
sensors. The signal amplitude at the kth sensor can be given as

Ak = αk Amax, (2)

where αk = rmin/rk .
The pdf of A is inversely proportional with A. When we take its 

integral to find the area under the curve, we encounter a difficulty 
for large A. [20] solved this problem, limiting A to a maximum 
value corresponding to a small distance rmin. Our choice in this 
paper is to neglect any sources in the source neighborhood defined 
by a distance of rmin. So, dropping the index for the sensors, the 
pdf of the normalized signal amplitude, An = A/Amax, at a sensor 
will have the form shown in Fig. 3 and will be given as:
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Fig. 2. Positions of the event location and uniformly distributed sensors in a scenario 
for detecting a point source.

Fig. 3. The pdf of the signal amplitude observed at the sensors, p(An).

p(An) = 1

An [log(Amax) − log(Amin)]

= 1

An log(L)
,

(3)

where L = Amax/Amin = rmax/rmin and log(·) is the natural log-
arithm. We define the SNR as the ratio between the maximum 
signal power, A2

max, and the noise power, σ 2. Let us assume that 
K of the sensors uniformly deployed in the area will be in the 
fat ring (or punctured disk) described by the radii rmin and rmax. 
Then, the signal amplitudes at these sensors will be independent 
and come from the pdf given in (3) in the case of an event. Assum-
ing that the sensor observations are available distortion-free at the 
FC, i.e., without transmission over a wireless channel, we have a 
centralized detection system, effectively, and the optimal Bayesian 
NP detector can be written as:

�(y) =

K∏
k=1

Amax∫
Amax/L

p(yk|H1; Ak)p(Ak)dAk

p(y|H )

H1
≷ η. (4)
0 H0

4

Note that our approach differs from [20,22], where an averaging 
over the target’s position is applied. Such an averaging is not re-
quired since only the sensors in the reception range of a signal are 
considered. A question arises about the selection of those sensors 
in the reception range. However, this should not be an issue since 
the FC, which knows the locations of sensors, can easily determine 
more or less such a circular region around the true target location 
based on the locations of sensors sending H1 decisions. Since each 
Ak comes from the independent and identical pdf given in (3), we 
eliminate the index, k, and express the likelihood ratio as

�(y) =

K∏
k=1

Amax∫
Amax/L

1√
2πσ 2

exp

(−(yk − A)2

2σ 2

)
1

A log(L)
dA

(
1√

2πσ 2

)K
exp

(
−∑K

k=1(yk)
2

2σ 2

) H1
≷
H0

η,

(5)

where y = [y1, y2, ..., yK ]T denotes the K × 1 column vector of 
observations from K sensors.

2.2. Fusion system: channel between sensors and FC

This section will investigate the complete model for the sen-
sor to FC communication using a Rayleigh fading channel model 
and an M-ary frequency-shift keying (M-FSK) modulation scheme 
where for M different symbols carrier waves of M different fre-
quencies are transmitted. M-FSK is a suitable modulation scheme 
for low-power low data rate transmission preferred by the majority 
of the sensor device equipment. It was shown in [44] that allocat-
ing some of the limited power at the sensors for training to make 
coherent reception of FSK signals at the FC results in worse per-
formance in terms of error probability. Accordingly, non-coherent 
demodulation of M-FSK was adopted in this paper. Additionally, to 
concentrate on the fusion of sensor data with non-identical signal 
levels, firstly, we considered the case of error-free channels, i.e., 
when error-free sensor outputs are available at the FC, which we 
called direct data transmission (DDT). Once M-level quantized data 
from the sensors are at the FC, an equal gain fusion rule is applied 
since the relative reliability of sensor outputs is not evaluated.

2.2.1. Fading channel
This subsection considers the problem of fusing the data trans-

mitted over a fading channel, as shown in Fig. 1. The FC has only 
information on the channel statistics. Non-coherent M-FSK modu-
lation is employed for sending data to the FC. Let uk denote the M-
FSK modulated symbol at sensor k, where uk ∈ {em, m = 1, ..., M}
and em is an M ×1 column vector, all elements of which except the 
mth one are zero. We refer to the transmit power of the data sym-
bol as P t . Assuming M-dimensional signal model for representing 
the orthogonal channels of M-FSK modulation scheme between 
the sensors and the FC [44] simplifies the analysis. Then, the signal 
at the FC received from the kth sensor can be given as

ȳk = √
Pkhkuk + nk,

= hkūk + nk,
(6)

where Pk represents the received power which is a function of 
P t, the wavelength, the path loss exponent and the distance be-
tween the kth sensor and the FC [44], and it describes the effect 
of large-scale fading. The channel noise is denoted as nk which is 
a zero-mean complex Gaussian vector nk ∼ CN (0, σ 2

n I), where I is 
an M × M identity matrix. The complex channel coefficient hk in 
(6) is modeled as hk ∼ CN (0, 1), which can be also represented as 
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hk = ξke jφk , where ξk represents the amplitude with Rayleigh dis-
tribution and φk represents the phase with uniform distribution. 
We adopt the NP criterion to find the optimal and a sub-optimal 
fusion rule at the FC to obtain a global decision u0 ∈ {H0, H1} as 
follows:

(i) The optimal fusion rule for the independent and identically 
distributed (i.i.d.) vectors, ȳk, k = 1, 2, ..., K , is defined as

log�(Ȳ) = log
p(Ȳ|H1)

p(Ȳ|H0)
= log

K∏
k=1

p(ȳk|H1)

p(ȳk|H0)

H1
≷
H0

η, (7)

where Ȳ is the matrix composed of row-wise stacking col-
umn vectors ȳk .

Expanding p(ȳk|H1) and p(ȳk|H0) in (7) over the M-level 
sensor decisions, we obtain

log�(Ȳ) =
K∑

k=1

log

(∑M
m=1 p(ȳk|uk(m))p(uk(m)|H1)∑M
m=1 p(ȳk|uk(m))p(uk(m)|H0)

)
H1
≷
H0

η.

(8)

The conditional density p(ȳk|uk(m)) in (8) is a complex 
multi-variate Gaussian density, ȳk ∼ CN (0, Cȳ), Cȳ repre-
sents the diagonal matrix with entries Cȳ( j, j) = σ 2

n for j �=
m and Cȳ( j, j) = Pkσ

2
h + σ 2

n for j = m, where j = 1, ..., M . 
We can prove that

p(ȳk|uk(m)) = 1√
π M det |Cȳm |

× exp
{
−(ȳk − μ)H C−1

ȳm
(ȳk − μ)

}
, (9)

which can be re-written as in [44]

p(ȳk|uk(m)) = 1√
π M det |Cȳm |

exp

(
Pkσ

2
h | ȳk(m)|2

σ 2
n (σ 2

h + σ 2
n )

)

×
M∏

j=1

exp

( | ȳk( j)|2
σ 2

n

)
. (10)

Note that | ȳk(m)|2 in (10) denotes M cross-correlator squared 
envelopes corresponding to non-coherent FSK detection. The 
values of p(uk(m)|H1) represent the probability masses un-
der hypothesis H1, which are estimated as

pH1
m =

Amax∫
Amax/L

pH1
m (An)p(An)dAn, (11)

where pH1
m (An) represents the probability mass under H1 as 

shown in Fig. 4 for an observed signal level An , the Gaussian 
signal’s mean.

The values of p(uk(m)|H0) represent the probability 
masses under hypothesis H0:

p(uk(m)|H0) = pH0
m . (12)

Fig. 4 shows a possible partitioning of a pdf under hypoth-
esis Hi , i = 0, 1 and the probability masses for M = 4 cor-
responding to the areas under the pdf between successive 
thresholds.
5

Fig. 4. A partitioning of the pdf for the observations at each sensor for 4-level quan-
tization.

(ii) A sub-optimal fusion rule can be derived as follows: This 
is a type of decode-then-fuse class of fusion rule, as in-
troduced in [49]. In (8), we see both the effects of fading 
channel and the local detection outputs to achieve the opti-
mal performance. An alternate formulation could be used as 
a sub-optimal fusion rule by separating this into two steps. 
First, ȳk is used to infer about the local detector by applying 
the maximum likelihood (ML) estimate as an intermediate 
decision, ûk . Then, the optimum fusion rule based on ûk is 
applied:

ûk = arg max
m

p(ȳk|uk(m)). (13)

By substituting (10) in (13) after eliminating the terms 
which are irrelevant to m, we can re-write (13) as

ûk = arg max
m

exp

(
Pkσ

2
h | ȳk(m)|2

σ 2
n (σ 2

h + σ 2
n )

)
, (14)

where m = 1, ..., M . The final decision rule is given as

u0 =
K∑

k=1

ûk

H1
≷
H0

η. (15)

3. Quantizer design

This paper aims to make a global decision at the FC under 
the NP criterion. Let us assume that each sensor will only make 
a single observation and will transmit this observation to the FC. 
Then, sensors will make i.i.d. observations under H0, and none can 
estimate the signal level under H1. Consequently, there is no ad-
ditional information at the sensors to use different quantization 
thresholds under H1. So, it is reasonable to use identical quantiza-
tion thresholds at each sensor irrespective of their distance to the 
event location since it cannot be estimated. Definitely, the choice 
of the quantization thresholds affects the performance, making 
it desirable to choose the quantization thresholds that maximize 
the system performance. This paper proposes the maximum av-
erage entropy (MAE) method, that is, determining the quantiza-
tion thresholds at the sensors to maximize the average entropy 
of the discrete information collected at the FC under both hy-
potheses without considering the effects of the succeeding wireless 
channel. Besides the MI and CMI methods [34,35], most entropy-
based quantizers for detection problems are distance measures 
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[27,33]. Like MI and CMI, the proposed MAE method is not dis-
tance measure based and maximizes the transmitted information 
corresponding to both of the underlying probability mass functions 
(pmfs) jointly.

The optimum detector at the FC is based on likelihood ratios as 
given in (5). Equivalently, one can use log-likelihood (logarithm of 
likelihood) ratios. The log-likelihood ratio for the kth sensor with 
an unknown signal amplitude can be calculated using the expected 
value of the signal amplitude, Ā , as follows:

log(	) = − Ā2

2σ 2 + Ā

σ 2 yk. (16)

The linear (or more appropriately affine) transformation of obser-
vations in (16) to log-likelihood ratios is irrelevant in entropy-
based quantization because that kind of transformation only re-
sults in translation and scaling of the underlying pdfs and will 
preserve the resulting probability masses corresponding to a vec-
tor of thresholds (such as β1, β2 and β3 in Fig. 4). Consequently, 
the sensors will transmit quantized observation signals to the FC. 
A common information-based criterion for determining the quan-
tization thresholds, which will be the best rival of the proposed 
MAE method as shown in Section 4.1, is the maximum JD (MJD) 
method which was used in the case of the constant signal level 
at sensors formerly [30]. We will first explain these criteria and, 
subsequently, their relation.

3.1. MAE method

An intuitive idea to have optimum performance at the FC is to 
maximize the entropy under both hypotheses, which we call as 
MAE method. So, we propose determining the quantization inter-
vals at the sensors as resulting in MAE under both hypotheses. The 
entropy of a quantized sensor output can be calculated based on 
the partitioning of the observation pdf at each sensor, as shown in 
Fig. 4. In this figure, the number of quantization intervals is 4. For 
a general number of M quantization intervals, there will be M − 1
thresholds, {β1, β2, ..., βM−1}, and M partitions with correspond-

ing probability masses of observations 
{

pHi
1 , pHi

2 , ..., pHi
M

}
, where 

i = 0, 1. Under Hi , one can estimate the entropy of the observation 
as

F̂ Hi = Ê

(
−

M∑
m=1

pHi
m log2(pHi

m )

)
bit. (17)

The expectation, Ê(·), is with respect to the distribution of the 
K sensor observations, and in the particular case of the scenario 
described in Fig. 2, this distribution is uniform in the sensing 
range of the sensors defined by a fat ring between radii rmin and 
rmax from the event location. pH0

M =
[

pH0
1 , pH0

2 , ..., pH0
M

]
denotes 

the vector of these probability masses, i.e., the probabilities of the 
partitions. In practice, one obtains an estimate of this expecta-
tion by averaging the sensors’ information over the distribution of 
the sensor locations and AWGN realizations which is called a his-
togram method [50]. Fig. 5 shows the entropy functions F̂ H0 , F̂ H1

and F̂av = 1
2

(
F̂ H0 + F̂ H1

)
for binary quantization. For M-ary quan-

tization, β∗
M = [

β∗
1 , β∗

2 , ..., β∗
M−1

]
denotes the vector of optimum 

quantization thresholds in the sense of MAE which is found as

β∗
M = arg max

βM

F̂av. (18)

For binary quantization, the optimal quantization threshold is 
β∗

2 = 0.093, as depicted in Fig. 5. Similarly, the entropy func-

tions F̂ H0 , F̂ H1 and F̂av for three-level quantization are given as 
6

Fig. 5. The entropy functions F̂ H0 , F̂ H1 and F̂av for binary quantization.

Fig. 6. The entropy functions F̂ H0 , F̂ H1 and F̂av for three level quantization.

contour plots in Fig. 6. The optimal quantization threshold vec-
tor is found as β∗

3 = [−0.341, 0.528], as shown in this fig-
ure. Similarly, the optimum thresholds in the 4-level and 6-level 
quantization cases are β∗

4 = [−0.367, 0.195, 0.835] and β∗
6 =

[−1.08, −0.572, −0.060, 0.4513, 0.963], respectively. The 
pseudo-code of the MAE method for quantization is given in Al-
gorithm 1.

3.2. MJD method

JD can be written in terms of the relative entropy for discrete 
probability distributions P and Q observed under the two hy-
potheses H0 and H1, respectively, as follows:

J = D K L(P ||Q ) + D K L(Q ||P ), (19)

where the relative entropy between two pmfs P (x) and Q (x) is 
given as follows:

D K L(P ||Q ) =
∑
x∈χ

P (x) log2

(
P (x)

Q (x)

)
, (20)

where χ denotes the alphabet of the pmfs for P and Q . In our 
context, JD measures the distributional distance, i.e., the dissim-
ilarity between the distributions, of the observations under two 
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Algorithm 1 The procedure of performing MAE quantization.
1: Input Amin, Amax, δA, M , δβ

2: Define (M − 1)-vector βm of thresholds with βM−1 ≥ βM−2 ≥ ... ≥ β1

3: for βm = [βM−1min , βM−2min , ...β1min ] : [βM−1max , βM−2max , ...β1max ] � (M − 1)

nested loop with δβ = 0.01 step size in each dimension
4: for A = Amin : δA : Amin do � Averaging over the histogram of A
5: w A = 1

A log(L)
� calculate the weight of each A

6: for m = 1 : M do
7: pH1

m (A) = ∫
Aream

p(y|H1)dy
8: end for
9: H1(A) = w A × (− ∑M

m=1 pH1
m (A) log2(pH1

m (A))) bit.
10: end for
11: F̂ H1 (βm) = ∑

A(H1(A))

12: for m = 1 : M do
13: pH0

m = ∫
Aream

p(y|H0)dy
14: end for
15: F̂ H0 (βm) = − ∑M

m=1 pH0
m log2(pH1

m )bit. � calculate the entropy under hypothesis 
H0

16: F̂av(βm) = 1
2 ( F̂ H0 + F̂ H1 )

17: β∗
M = arg max{βM } F̂av. � find the optimal thresholds

Fig. 7. The JD for binary quantization.

hypotheses, H0, H1. So, one can use it to find the local thresholds. 
The choice of local thresholds facilitates the design of local detec-
tors, which determines the whole system’s performance. One can 
estimate the expectation of JD by averaging the contribution to the 
JD over the distribution of sensor locations and noise realizations 
as performed for the entropy of the observations in (17) and can 
be written as:

Ĵ = Ê

(
M∑

m=1

[
pH1

m log2

(
pH1

m

pH0
m

)
− pH0

m log2

(
pH1

m

pH0
m

)])
. (21)

It is evident that Ĵ , as specified by (21), is a function of the prob-
ability masses corresponding to the partitions of the pdf. For M-
ary quantization, β	

M = [β	
1 , β	

2 , ..., β	
M−1] denotes the JD optimized 

vector of quantization thresholds which can be given as

β	
M = arg max

βM

Ĵ . (22)

Optimal quantization thresholds correspond to the maximum of Ĵ , 
which is β	

2 = 0.17 for binary quantization, as shown in Fig. 7. 
Similarly, we can estimate the optimal thresholds for 3-level quan-
tization to be β	

3 = [−0.444, 0.784], as shown in Fig. 8. Likewise, 
the optimal thresholds are β	

4 = [−0.725, −0.699, 0.6559] and 
β	

6 = [−6.19, −0.572, −0.0603, 0.9628, 6.59] in the cases 
of 4-level and 6-level quantizations, respectively.
7

Fig. 8. The JD for three level quantization.

3.3. Relation of MAE and MJD methods

In this subsection, we will demonstrate that the information-
based criteria, MAE and MJD, maximize similar quantities in show-
ing that they are positively proportional. Let us first express 
D K L(P ||Q ) given in (20) as follows:

D K L(P ||Q ) =
∑
x∈χ

P (x) log2

(
1

Q (x)

)
︸ ︷︷ ︸

R1

+
∑
x∈χ

P (x) log2(P (x))

︸ ︷︷ ︸
−F H0

≥ 0.

(23)

The equality holds only when P = Q . Similarly,

D K L(Q ||P ) = R2 − F H1 ≥ 0, (24)

where R2 = ∑
x∈χ Q (x) log2

(
1

P (x)

)
. Substituting (23) and (24) into 

(19)

J = R1 + R2 − (F H0 + F H1) ≥ 0. (25)

In (25), we consider R1, R2, F H0 and F H1 with their scalar values 
representing some information in bits. Then, defining D K L(P ||Q ) =
c1 F H0 and D K L(Q ||P ) = c2 F H1 , we can re-write the JD in (25) to 
show that there is a proportionality relation between the JD and 
the average entropy (AE):

J = c1 F H0 + c2 F H1

= min{c1, c2} (F H0 + F H1)︸ ︷︷ ︸
2Fav

+c3 (26)

with

c3 =
{

(c1 − c2)F H0 for c1 ≥ c2,

(c2 − c1)F H1 for c1 ≤ c2.
(27)

Obviously, ci ≥ 0 for i = 1, 2, 3. Therefore, AE and JD are positively 
proportional.

4. Simulation results

Monte Carlo simulations have been performed in order to eval-
uate the detection performance for the proposed method at SNR=
0 dB for K = 25 transmitting sensors and L = Amax/Amin = 10. 
First, we have performed simulations using the DDT method, that 
is, assuming the sensor outputs are available error-free at the FC. 
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Fig. 9. Comparison between the ROC curves obtained using MAE, MJD, CI, DC, MI 
and K th root methods for binary and Gaussian (non-quantized) DDT.

Then, a Rayleigh fading channel is considered to show the channel 
effect on the performance of our proposed quantization method, 
MAE. It is important to notice that, in distributed detection sys-
tems, randomized tests are not optimum when the local likelihood 
ratios contain no point masses of probability [51]. Nevertheless, 
dashed lines for ROCs of our simulation results correspond to ran-
domization at the FC to achieve a particular pfa.

4.1. Binary quantization and DDT

In Fig. 9, the Receiver Operating Characteristics (ROC), that is 
pd versus pfa, curves are plotted for the cases of using the quan-
tization intervals from DC, CI, MI, K th root, MJD and MAE meth-
ods for binary quantization with DDT and the corresponding non-
quantized data transmissions. We also used Kth root quantization, 
which determines the local threshold assuming that AND-rule is 
applied at the FC. AND-rule corresponds to setting the false alarm 
threshold at the FC to all “one”s coming from K sensors, and for 
the global pfa = 0.1, the local threshold will be the threshold, 
which makes the local pmf pH0

2 = 0.912 at each sensor. However, 
we apply the fusion rule given in (15) as for all other quantiza-
tion methods in the DDT scenario. In this figure, we observe that 
MAE and MJD performed significantly better than other methods. 
MI and CI performed similarly, sharing the third and fourth-best 
place in the performance. K th root method showed the fifth-best 
performance, and DC was the worst-performing method. The figure 
also depicts a slightly better performance of MAE-based method 
compared to MJD-based one. Additionally, we observe that they 
are clearly inferior to the non-quantized case, which shows that 
there is quite a large space for gain in using higher quantization 
levels. Considering the clear superiority of MAE and MJD compared 
to other methods, we pursued the subsequent simulation studies 
only using MAE and MJD methods.

4.2. Performance of MAE and MJD with multilevel quantization and 
DDT

The simulation performances for the three-level, four-level and 
six-level quantizations by using the MAE and MJD methods are 
also obtained for DDT. ROC curves obtained using MAE and MJD 
methods for three levels of quantization and non-quantized data 
are shown in Fig. 10. This figure depicts that at global pfa = 0.2, 
the pd, attains the values 0.653, 0.684 and 0.803 for the cases 
8

Fig. 10. Comparison between the ROC curves obtained using MAE and MJD methods 
for three-level quantized and Gaussian (non-quantized) DDT.

of three-level data transmissions with MJD, MAE and the non-
quantized data transmission, respectively. Increasing the quantiza-
tion level makes the MAE and MJD methods perform closer to the 
performance without quantization depicted in Tables 1 and 2.

Table 1 shows the pd for 2, 3, 4 and 6 level MAE and MJD based 
quantized and non-quantized data transmissions for the values of 
pfa = 0.1, 0.2, 0.3 and 0.4. The MAE method performs better at 
each quantization level than MJD, and the performance increases 
when the quantization level increases. At 6-level quantization pd
obtained by the MAE-based method is only slightly inferior to the 
limiting case with no quantization. Quantitatively, the difference 
in pd is 0.022, 0.014, 0.018 and 0.002 for pfa values of 0.1, 0.2, 
0.3 and 0.4, respectively. Note that, at 6 level quantization for 
pfa = 0.4, the performance with MAE is only 0.002 worse com-
pared to the best possible pd, which is the case with no quantiza-
tion. The corresponding performance difference is 0.021 with MJD, 
approximately ten times the performance difference with MAE. Ta-
ble 2 shows the achieved gain in pd by using the MAE method 
with respect to MJD method and is given by G =

(
pMAEi

d − p
MJDi
d

)
with the resulting percentage gain P G = (G × 100%)/pMAEi

d , where 
i = 2, 3, 4, 6.

The previous tables show that MAE outperforms MJD for M ≥ 2
levels. The achieved gain of MAE with respect to MJD is on av-
erage 0.0138 with a corresponding percentage gain of 2.13% for 
binary quantization. Likewise, the average gains are = 0.0305, 
0.0318 and 0.0168 with corresponding average percentage gains 
of 4.31%, 4.12% and 2.09% for 3-level, 4-level and 6-level quanti-
zations, respectively. In the same manner, the average difference 
in pd, for pfa = 0.1, 0.2, 0.3 and 0.4, between the 6-level quantiza-
tions achieved by MAE and no quantization equals 0.014 and 1.8%. 
The corresponding differences are 0.03 and 3.9% for MJD. These 
results show that with 6-level quantization, MAE performs nearly 
as well as no quantization, achieving better performance than the 
MJD method.

4.3. Multiple level quantization and Rayleigh fading channel

Fig. 11 shows the ROC curves for 2, 3, 4 and 6 levels MAE-
based quantized and non-quantized data transmissions by using 
M-FSK modulation scheme with non-coherent demodulation over 
Rayleigh fading channels and using the optimal fusion rule in (8). 
The threshold, η, for each pfa was estimated by running a Monte 
Carlo simulation under no event case. This figure shows that the 
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Table 1
The relation between pd and pfa for different levels of quantization obtained with MAE and MJD methods.

pfa

pd MJD2 MAE2 MJD3 MAE3 MJD4 MAE4 MJD6 MAE6 non-quantized

0.1 0.425 0.432 0.497 0.520 0.567 0.592 0.629 0.643 0.665
0.2 0.590 0.610 0.653 0.684 0.728 0.760 0.772 0.789 0.803
0.3 0.710 0.720 0.755 0.790 0.810 0.845 0.850 0.867 0.885
0.4 0.787 0.805 0.825 0.858 0.860 0.895 0.903 0.922 0.924

Table 2
Achieved gain in pd by using the MAE method in quantization instead of MJD.

pfa

pd 2-Level 3-Level 4-Level 6-Level

Gain %Gain Gain %Gain Gain %Gain Gain %Gain

0.1 0.01 1.63 0.023 4.42 0.025 4.22 0.014 2.17
0.2 0.02 3.28 0.031 4.53 0.032 4.21 0.017 2.15
0.3 0.01 1.39 0.035 4.43 0.035 4.14 0.017 1.96
0.4 0.018 2.2 0.0330 3.85 0.035 3.914 0.019 2.06
Fig. 11. ROC curves in the case of fading channel by using MAE based quantization 
and optimum fusion rule.

obtained pd for 6-level quantization falls behind the limiting case 
of no quantization by 0.09 at pfa = 0.1. This gain diminishes at 
pfa = 0.7. When we compare the performances at different quanti-
zation levels, the achieved gain in pd by transmitting 6-level quan-
tized data instead of 2-level quantization is 0.21 for pfa = 0.1 and 
this gain diminishes at pfa = 0.99. Also, the sub-optimal fusion rule 
in (15) has been used to find the ROCs for the different levels of 
quantization. Fig. 12 shows a comparison between the optimal and 
sub-optimal fusion rule for 2 and 6 level quantization and com-
pare them with the case of non-quantized data. The dashed line 
in ROCs for the sub-optimal fusion rule corresponds to randomiza-
tion in the tests. This figure shows that the achieved gain using 
the optimum fusion rule with respect to the sub-optimal rule is 
0.3 and 0.6 at pfa = 0.1 for 2-level and 6-level quantizations, re-
spectively.

5. Conclusion

In this study, we have proposed quantizing the sensor outputs 
by maximizing their average information in the presence and non-
presence of an event in decentralized detection.

Although there are methods of maximizing information such as 
MI and CMI, quantization for decision processes has generally been 
based on distance measures such as JD and Bhattacharyya distance. 
Inspired by an intuitive idea of maximizing the information in the 
decision process MAE method of quantization is proposed.
9

Fig. 12. A comparison between the ROCs of the optimal and sub-optimal fusion rule 
for binary and six level quantizations and the corresponding non-quantized data 
transmissions in the case of fading channel.

One reason for suggesting another method like MAE instead 
of MJD is the non-symmetric nature of the considered problem, 
that is, probability of false alarm and probability of a miss are 
not equally important, and the fact that the advantage of Ali-
Silvey type criteria [27] which MJD is a member of, is only valid 
for the symmetric performance measure probability of error. Al-
though maximizing the transferred information under each hy-
pothesis proposed by the MAE method is a conceptually different 
approach, we showed that average entropy and JD are positively 
proportional quantities. This means that one might expect com-
parable performances using either of them for determining the 
quantization levels, which was indeed the observation in the sim-
ulation results.

In order to spotlight the effects of how the sensor outputs 
are quantized on the system performance, we performed extensive 
simulation studies for the case that the sensor outputs are avail-
able error-free at the FC, which we called DDT. We adopted DC, 
CI, MI, CMI and MJD to compare the proposed method. In the sim-
ulation studies with binary quantization, the performances of DC, 
CI, MI and CMI were significantly inferior to MAE. A possible rea-
son is that these methods are developed for known signal power 
or SNR at the sensors. Consequently, we continued further com-
parisons only with MJD.

The performances of considered information-based methods, 
namely MAE and MJD, gradually improved as the quantization 
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level was increased from binary to six-levels, and they approached 
the version of non-quantized data transmission. The proposed 
method, MAE, also performed significantly better than MJD for any 
quantization level. Additionally, the effects of the Rayleigh fading 
channel from the sensors to the FC have been investigated using 
the optimal and a sub-optimal fusion rule for MAE. Due to the 
power efficiency and small degradation in non-coherent commu-
nication, MFSK was adopted as the sensor to FC communication 
modulation scheme. In the case of the wireless channel model, 
similar results were obtained as in the case of DDT. Results with 
6-level quantization were comparable to non-quantized data trans-
mission.

This work showed that MAE is a valid and promising method 
in quantization for detection problems. A possible future work will 
be applying the MAE quantization method to discriminate between 
M-hypotheses, where M > 2. This type of problem is important, in 
which one of M signals needs to be detected. Also, it frequently 
arises in pattern recognition systems to distinguish between dif-
ferent patterns. Additionally, this work considers a parallel network 
topology, whereas, in WSNs, there are other network topologies to 
investigate, such as tree and serial topologies.

CRediT authorship contribution statement

Muath A. Wahdan: Data curation, Formal analysis, Investiga-
tion, Methodology, Writing – original draft. Mustafa A. Altınkaya:
Conceptualization, Supervision, Writing – original draft, Writing – 
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgment

Muath A. Wahdan was supported by Türkiye Bursları/Scholar-
ship under grant number 13PS148104 for his Ph.D. studies at İzmir 
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