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ABSTRACT
Protein coding regions prediction is a very important but overlooked subtask for tasks such as
prediction of complete gene structure, coding/noncoding RNA.Many machine learning methods
have been proposed for this problem, they first encode a biological sequence into numerical val-
ues and then feed them into a classifier for final prediction. However, encoding schemes directly
influence the classifier’s capability to capture coding features and how to choose a proper encod-
ing scheme remains uncertain. Recently, we proposed a protein coding region prediction method
in transcript sequences based on a bidirectional recurrent neural network with non-overlapping
3-mer feature, and achieved considerable improvement over existing methods, but there is still
much room to improve the performance. First, 3-mer feature that counts the occurrence fre-
quency of trinucleotides in a biological sequence only reflect local sequence order information
between the most contiguous nucleotides, which loses almost all the global sequence order in-
formation. Second, kmer features of length k larger than three (e.g., hexamer) may also contain
useful information. Based on the two points, we here present a deep learning framework with
hybrid encoding for protein coding regions prediction in biological sequences, which effectively
exploit global sequence order information, non-overlapping gapped kmer (gkm) features and
statistical dependencies among coding labels. 3-fold cross-validation tests on human and mouse
biological sequences demonstrate that our proposed method significantly outperforms existing
state-of-the-art methods.

1. Introduction
Genome annotation helps in understanding complicated biological mechanisms underlying gene regulation and

remains a challenging problem in biology. The development of next-generation sequencing (NGS) technologies give
rise to an exponential increase of sequence data. Many efforts have been dedicated to the identification of genomic
mutations by using NGS datasets Yuan, Zhang, Yang, Bai and Fan (2017); Tuo, Liu and Chen (2020) in the past few
years, it is urgent to find effective genome annotation techniques for predicting genes Catherine, Marie-France, Thomas
and Pierre (2002).

The prediction of protein coding regions in genomic or transcript sequences is a very important but overlooked
subtask for genome annotation. Many well-known gene prediction tools (e.g., GenScan Burge and Karlin (1997),
Augustus Stanke, Steinkamp, Waack and Morgenstern (2004)) are integrated models, in which the task of identifying
gene structure is first divided into subtasks such as the prediction of functional sites and coding regions, and then
these subtasks are integrated into a structured learning framework for the prediction of gene structure Al-Turaiki,
Mathkour, Touir and Hammami (2011). Moreover, coding features is also very important for computational methods
to discriminate mRNAs from long non-coding RNAs Li, Zhang and Zhou (2014); Tong and Liu (2019). However,
prediction of protein coding regions from uncharacterized biological sequences (e.g., genomic or transcript sequences)
is a very challenging task. This is because (1) genomic sequences contain introns that disrupt the coding structure
Catherine et al. (2002). (2) there exists a considerable number of short exons bordered by large introns, which is easily
missed by computational methods Catherine et al. (2002). (3) unlike consensus motifs, coding features often exhibit
higher-order distant interactions among nucleotides and more difficult to capture Rajapakse and Ho (2005).

Many existing computational methods Hatzigeorgiou, Mache and Reczko (1996); Guigó (1997); Zhang, Lin, Yan
and Zhang (1998); Hatzigeorgiou (2002); Shuo and Yi-sheng (2009); Tzanis, Berberidis and Vlahavas (2012); Wei,
Zhang, Yuan, He, Liu andWu (2020) have been proposed for protein coding regions prediction in genomic or transcript
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sequence during the past decades. They first encode a biological sequence into numerical values and then feed them
into a classifier for final prediction. There are mainly two types according to the encoding scheme they use: sequential
model and discrete model. The sequential model converts each nucleotide of a biological sequence into a numerical
value one by one, which preserves the original order of the bases that appears in the biological sequence. A widely used
encoding scheme is one-hot representation (also called C4 encoding) Voss (1992) that encodes four nucleotides with
a binary vector of four bits (A-[1,0,0,0], C-[0,1,0,0], etc.). The binary numbers for each nucleotide are orthonormal to
each other and have identical Hamming distance. The one-hot encoding scheme is not only applied to protein coding
regions prediction, but also a large number of applications Alipanahi, Delong, Weirauch and Frey (2015); Min, Zeng,
Chen, Chen, Chen and Jiang (2017); Du, Yao, Diao, Zhu, Zhang and Li (2018); Zuallaert, Kim, Soete, Saeys and
Neve (2018). In contrast, the discrete model exerts efforts on engineering a set of features based on prior knowledge
from a biological sequence. Some widely used biological features include the codon usage Staden and McLachian
(1982), codon prototype Shepherd and J. (1981), hexmer usage Claverie, Sauvaget and Bougueleret (1990), and Z
curves of biological sequence Chun-Ting and Ren (1991), which have been comprehensively reviewed by Fickett and
Tung (1992).

The abovementioned two models have both merits and demerits. In fact, data representation in genome analysis
plays an important role in computational methods to learn relevant biological features Yu, Li and Yu (2018); Kalkatawi,
Magana-Mora, Jankovic and Bajic (2019), however, effectively encoding biological sequences and building compu-
tational methods for features learning remains uncertain Yu et al. (2018). The sequential model preserves the global
sequences order information Chen, Feng, Deng, Lin and Chou (2014) but computational methods could not fully cap-
ture biological features by this model. As mentioned by Rajapakse and Ho (2005); Li, Liu, Wong and Yap (2004),
it is not easy for neural networks to learn high-order correlations from extremely low-level inputs, e.g., a string of
nucleotides. The work Fu, Peng and Chai (2019) also claim that sequential model like one-hot encoding may contain
limited useful information compared to other objects like images or sounds that is more suitable for deep learning. Re-
cently, Choong and Lee (2017) claims that one-hot encoding is unable to capture the frequency domain of features like
kmer. On the contrary, a discrete model like 3-mer representation of biological sequences is a feature that has proved to
be a successful means to discriminate between coding and non-coding regions for the fact that the distribution over the
64 different codons is significantly different in coding regions compared to non-coding regions Axelson-Fisk (2010).
Despite the effectiveness of 3-mer, it can only incorporate local sequence order information between the most con-
tiguous nucleotides and none of the global sequence order information can be reflected Chen et al. (2014). Moreover,
kmer features of different length k (e.g., hexamer) may also be useful for coding potential prediction Guigó (1997); Li
et al. (2014).

Based on the aforementioned analysis, we explore how to enhance the prediction of protein coding regions in ge-
nomic and transcript sequences by integrating sequential with the discrete model. We propose a novel method for
protein coding regions prediction by using a hybrid convolutional neural network Lecun, Bengio and Hinton (2015)
and bidirectional recurrent neural network Schuster and Paliwal (1997) framework (CNN-BRNN), which effectively
exploits global sequence order information, non-overlapping gapped kmer (gkm) features, and statistical dependencies
among coding labels. Evaluated on genomic and transcript sequences, our method gives an excellent prediction per-
formance, which significantly outperforms existing state-of-the-art method. There are three contributions which may
explain the excellent performance of our proposed framework:

• We present a CNN-BRNN framework for protein coding regions prediction both in genomic and transcript
sequences, which significantly outperforms existing state-of-the-art methods.

• We exploit a hybrid encoding (e.g., C2 Arniker, Kwan, Law and Lun (2011) and gkm Ghandi, Lee, Mohammad-
Noori and Beer (2014)) for protein coding regions prediction for the first time, it fuses global sequence order
information and kmer features simultaneously, which demonstrate improved prediction performance over using
each single encoding.

• Inspired by our previous work Wei et al. (2020), we extend label dependencies to genomic sequences and sig-
nificantly improve the prediction performance on genomic sequences over existing methods.

The source code and the dataset used in the paper are publicly available at: https://github.com/xdcwei/
DeepCoding/.
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2. Related works
We here review the most relevant works to us.
Hybrid encoding. A few previous works demonstrate that combining sequence information with biological fea-

tures can bring considerable performance improvement in specific applications. It is firstly introduced for promoter
prediction in Xie, Wu, Lam and Yan (2006), who proposes a method called PromoterExplorer which integrates various
biological features (e.g., local distribution of pentamers, positional CpG island features) with digitized DNA sequence
in a cascade AdaBoost-based classifier and achieves promising performance. The work Chen et al. (2014) presents
a sequence-based predictor, called iTIS-PseTNC, for identifying translation initiation site in human genes and claims
that using kmer representation of DNA sequences only reflect local sequence order information but lose all global
sequence order information. They Chen et al. (2014) remedy this by using a collaborative representation called pseudo
trinucleotide composition which incorporates the physicochemical properties into DNA sequence and combines with
kmer features. Recently, in the work of Fu et al. (2019), they propose a hybrid sequence-based deep learning model
called MHCpG, which integrates MeDIP-seq data with Histone information to predict DNA methylated CpG states, it
exceeds the other approaches and gained more satisfactory promoter prediction performance owing to fusing multiple
biological relevant features and sequence information.

Gapped kmer. kmer is a simple but effective feature that has been successfully applied to bioinformatics, e.g., the
prediction of protein coding regions Staden and McLachian (1982); Hatzigeorgiou (2002), coding potential Li et al.
(2014); Tong and Liu (2019), regulation elements Ghandi et al. (2014); Fu et al. (2019). However, it suffers from
the inherent limitation that the increase of k leads to a very long and sparse feature vector Ghandi et al. (2014). To
address this problem, Ghandi et al. (2014) introduces a concept of gaps that is defined as mismatches exist in kmer.
Gapped kmer (gkm) is not only effective at reducing the length and sparseness of feature vector, but also biological
significant–as the results of changes during the evolution process, initial and resultant biological sequences still share
many common features in spite of sequence dissimilarities Wang, Xu and Liu (2016b). There are a considerable
number of works demonstrate that gkm can achieve improved prediction performance over kmer Ghandi et al. (2014);
Wang et al. (2016b).

All the above works give us a strong intuition that we can enhance the prediction of protein coding regions by
incorporating global sequence order information and biological features like gkm Ghandi et al. (2014).

3. Materials and Method
In this section, datasets, definitions of problems, data representation of biological sequences, the CNN-BRNN

framework for protein coding regions prediction are introduced. The graphical illustration of the proposed method is
shown in Figure 1.
3.1. Datasets

As shown in Table 4, we bulid genomic and transcript datasets of human and mouse from Refseq Pruitt, Tatusova
and Maglott (2007) that provides comprehensive, non-redundant and well-annotated set of sequences. For genomic
datasets, only one isoform is randomly selected from alternative isoforms of the same gene. A total number of 19,288
and 16,473 sequences are obtained for human and mouse dataset, respectively. For transcript datasets, mRNA se-
quences with prefixes ‘NM_’ is selected. A total number of 24,842 and 19,900 sequences are obtained for human and
mouse dataset, respectively. Then coding samples are selected from all the biological sequences and randomly shuf-
fled. To avoid the imbalanced data problem, negative examples are chosen such that their number equals that of the
positive examples. Finally, all the samples are split into 3 parts to perform 3-fold cross-validation and similar samples
are removed from test data to guarantee that each sample in test data has no more than 50% identity with any sample
in training data.
3.2. Preliminaries

In what follows, s = s1s2...sn is a biological sequence (e.g., DNA or mRNA), where si ∈ {A,C, T , G}, and
y = y1y2...yn is the label sequence of s, where yi ∈ {1, 0} denote the position i in s is coding (yi = 1) or not (yi = 0).
Then the protein coding regions prediction is equivalent to solve the followingmaximum a posteriori (MAP) estimation
problem

y∗ = argmax
y
p(y|s) (1)
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Figure 1: A graphical illustration of the proposed CNN-BRNN architecture for protein coding regions prediction. For each
position in a biological sequence, the current subsequence and its neighboring subsequences are firstly encoded into C2
and gkm encoding, then C2 encoding into a CNN and merges with gkm, which are finally fed into a BRNN for protein
coding regions prediction.

Almost all previous machine learning methods regard protein coding regions prediction as an independent binary
classification problem and adopt a sliding window strategy to discriminate coding or non-coding, then the Eq. 1 can
be formulated as:

y∗ = argmax
y

n
∏

i=1
p(yi|si,r) (2)

and the predictions can be made separately, in the form
y∗i = argmax

yi
p(yi|si,r) (3)

where sp,r indicate a subsequence of s centered at position p with a fixed length window 2 × r + 1. In our previous
work, we demonstrate the significance of exploiting label dependencies among coding labels and improve the prediction
performance in transcripts. In this work, we also extend the label dependencies to genomic sequences. Hence, for a
position i in a genomic or transcript sequence, we here consider the following MAP problem:

y∗i = argmax
yi

p(yi|si,r, y¬i,u) (4)
where ¬ denote not operator and y¬i,u = yi−u...yi−1yi+1...yi+u. It can be observed from Eq. 4 that whether the position
i in s is coding or not depends on not only its local region si,r, but also its neighboring coding labels y¬i,u. This
characteristic resembles the linear-chain conditional random fields (CRF) Lafferty, Mccallum and Pereira (2001) that
encodes state features and transition features. State features encode the content properties of the current position, while
transition features focus on state transition information (e.g., in our work, coding to coding or non-coding to non-
coding). It is worth emphasizing that the main difference of our model from CRF is that, we here consider long-range
dependencies between labels while CRF consider the most neighboring two labels (e.g., yi and yi−1). In the followingsubsection, we introduce a CNN-BRNN architecture to effectively estimate conditional probability p(yi|si,r, y¬i,u).
3.3. CNN-BRNN for protein coding regions prediction
3.3.1. Hybrid encoding

The basic problem of machine learning methods for protein coding regions prediction is designing an effective
encoding scheme for a biological sequence. Considering the demerits of the sequential model and discrete model, we
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propose a hybrid encoding scheme that combines the sequential model and discrete model, which could exploit the
joint merits of each model. Given a subsequence si,r, the hybrid encoding can be represented as:

E = [E1;E2] (5)
we here adopt a sequential model such as C2 Arniker et al. (2011) to capture global sequence order information and
hence E1 can be formulated as:

E1 = [C2(si−r), C2(si−r+1), ..., C2(si+r)] (6)
whereC2 converts a nucleotide into 2-bit binary (e.g., A-[0,0], C-[1,1],G-[1,0],T-[0,1]), note that C4 encoding Arniker
et al. (2011) is also a sequential model that preserves the global sequence order information, however, it is more com-
putationally expensive than C2 encoding, hence we here adopt C2 encoding to substitute for C4 encoding. Meanwhile,
the sliding window size is relevant to prediction performance, the use of a smaller size can increase the accuracy on
the border of exon but leads to of higher rate of false positive prediction Hatzigeorgiou et al. (1996). They Hatzigeor-
giou et al. (1996); Shuo and Yi-sheng (2009) use 91 whereas we adopt 90 in practice for convenience of counting the
number of codons. The slight difference has almost no effect on the prediction performance.

As for discrete model, we adopt a non-overlapping gkm Ghandi et al. (2014) to capture local sequence order
information. There are two parameters for gkm. (1) the whole word length l and (2) the number of non-gapped
(informative) positions k. The number of gaps is thus l − k. We here set l = 5 and k = 3, which not only effectively
reduce the dimensions of feature vector from 45 = 1024 to C2

54
3 = 640, but also contain non-overlapping 3-mer

information (e.g., AAAXX, ..., T T TXX). Hence, E2 can be formulated as:
E2 = [f (XXAAA), f (XAXAA), ..., f (TTTXX)] (7)

where f (XXAAA) counts the occurrence frequency of non-overlapping gapped trinucleotides XXAAA in biolog-
ical sequence. By introducing two gaps XX, two words GTGCA and CTACA of length 5 have the same gapped
trinucleotides XTXCA.
3.3.2. CNN-BRNN

Given hybrid encoding for each sliding window si,r, another problem is how to build an effective machine learning
method to integrate global sequence order information, non-overlapping kmer features, and label dependencies. We
present a hybrid CNN-BRNN architecture to achieve this goal. The graphical illustration is shown in Figure 1.

The hybrid CNN-RNN architecture has been successfully applied to many applications including image segmen-
tation Wang, Yang, Mao, Huang and Xu (2016a), speech emotion recognition Yao, Wang, Liu, Liu and Pan (2020).
It provides a very natural way for feature extraction and statistical dependency modeling. As one part of CNN-RNN,
CNN Lecun et al. (2015) is a specialized feedforward neural network, which is characterized by the presence of convo-
lutional layers that use a stack of convolutional kernels to detect local patterns. Typically, a CNN consists of an input
layer, multiple pairs of convolutional-pooling layers, a flatten layer, one or more fully connected layers, and the last
softmax layer. The convolutional layer is the most crucial part of CNN. The output of a layer comes from its previous
layer convolved with a set of filters, that is

H (k) = �(W (k−1) ⊗H (k−1) + b(k)) (8)
whereH (k),W (k), and b(k) respectively denote the featuremap, convolutional filter, and biases of k-th layer,H (0) = E1,
� denotes an activation function that is usually employed to guarantee the non-linearity of neural network. The most
popular activation function is the rectified linear unit (ReLU) defined as ReLU (x) = max(0, x). In contrast, as shown
in Figure 1, we employ a CNN architecture that receives two inputs, which separates two kinds of features (e.g., C2
encoding and kmer) by feeding them into additional univariate networks summed at the flatten layer of CNN, and then
for a fixed window si,r, the flatten layer of CNN can be formulated as:

Oi = H (l) ⊕E2 (9)
where ⊕ is the concatenation operator. l denotes the flatten layer of CNN. We adopt CNN to incorporate global
sequence information and non-overlapping kmer features in viewing of its capabilities of modeling non-linearities and
capturing local patterns such as codon. It is worth noting that this network architecture is very common in recent
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Figure 2: Performance comparison of the proposed method with C4+MLP, C4+SVM, Z curve+LDA, kmer+MLP,
kmer+SVM and kmer+BRNN. (A) the ROC curves on genomic Human dataset; (B) the ROC curves on genomic Mouse
dataset; (C) the ROC curves on transcript Human dataset; (D) the ROC curves on transcript Mouse dataset.

works Ghafoorian (2017); Zhehuan, Zhihao, Ling, Hongfei and Jian (2016) which claim that a better performance can
be obtained when domain knowledge is incorporated into CNN.

The other part of CNN-RNN is an RNN which has been successfully applied to bioinformatics. Sequence data
usually exhibit statistical dependencies and consider these dependencies usually yield performance benefits. There
exists a considerable number of works that exert efforts to exploit statistical dependencies in DNA sequences, such as
quantifying the function of DNA sequences Daniel and Xie (2016), subcellular protein localization Snderby, Snderby,
Nielsen andWinther (2015), protein secondary structure prediction Spencer, Eickholt and Cheng (2015), segmentation
of DNA sequences Cheng, Huang and Liou (2012). In our previous work Wei et al. (2020), we demonstrate that
label dependencies among coding labels play an important role in protein coding regions prediction for transcript
sequences. In this work, we extend this characteristic to genomic sequences and adopt the same BRNN architecture
in Wei et al. (2020). Instead of estimating the conditional probability p(yi|si,r, y¬i,u) that has high-order dependenciesamong coding labels, the BRNN architecture in Wei et al. (2020) consider two-order dependencies among coding
labels, and hence more computationally efficient, it reduces the problem of Eq. 4 to the following formula:

y∗i = argmax
yi

p(yi|si,r, yi−v, yi+v) (10)

where v is a step interval that defines how far that two positions correlate. As shown in Figure 1, after obtaining the
output of CNN for three subsequences, the forward and backward pass of BRNN can be formulated as:

Ii−v = �2(W 2(�1(W fIi−2v +W 1Oi−v)))) (11)
Ji+v = �2(W 2(�1(W bJi+2v +W 1Oi+v)))) (12)

where W 1,W 2,W b,W f respectively denote the weight matrices in the first hidden layer, second hidden layer, for-
ward recurrent layer, backward recurrent layer of BRNN. �1 and �2 denote sigmoid and softmax activation function,
respectively. Ii and Ji respectively denote the forward and backward passing message in a position i of a sequence. I0
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Table 1
Different network architectures in experiments.

ID Layer gkm+MLP C2+CNN C2+gkm+CNN C2+gkm+CNN+BRNN

0 input layer 640 90 × 2 640 90 × 2 3 × 640 3 × 90 × 2
1 conv layer - 250 × (7,2) - 250 × (7,2) - 250 × (7,2)
2 maxpool layer - (2,1) - (2,1) - (2,1)
3 dropout layer - 0.3 - 0.3 - 0.3
4 conv layer - 200 × (3,1) - 200 × (3,1) - 200 × (3,1)
5 maxpool layer - (2,1) - (2,1) - (2,1)
6 dropout layer - 0.3 - 0.3 - 0.3
7 dense layer 30 30 30 30
8 recurrent layer - - - W fW b ∶ 2 × 30
9 softmax layer 2 2 2 2
Note: - means empty

Table 2
Performance comparison of our proposed method with the other state-of-the-art methods on genomic datasets.

Method Human Mouse
Sn Sp auROC Sn Sp auROC

Z curve+LDA Zhang et al. (1998) .8010 .8462 - .7829 .8114 -
C4+MLP Hatzigeorgiou et al. (1996) .8993 .8900 .9615 .9032 .8708 .9558
C4+SVM Shuo and Yi-sheng (2009) .8609 .8629 - .8369 .8369 -
kmer+MLP Guigó (1997) .8528 .8836 .9413 .8645 .8723 .9425
gkm+MLP .8831 .8977 .9588 .8775 .8957 .9562
C2+CNN .9406 .9043 .9772 .9445 .8922 .9755
C2+gkm+CNN .9227 .9360 .9808 .9256 .9260 .9789
C2+gkm+CNN+BRNN .9621 .9631 .9930 .9635 .9598 .9926

and J0 denote the initial states with constant zero entries. From Eq. 11, we can see that the forward passing message
Ii in a position i is composed of the forward passing message in a position i−v, and the output of CNN in the position
i. Similarly, the backward passing message Ji in the position i is composed of the backward passing message in a
position i + v, and the output of CNN in the position i. Actually, Ii and Ji is the estimations of yi, and the difference
lies in that Ii determines yi by the current and past information whereas Ji determines yi by the current and future
information. Finally, the prediction for the sample si,r can be formulated as:

ŷi = �2(W 2(�1(W fIi−v +W 1Oi +W bJi+v)))) (13)
where ŷi indicates how likely is it that the nucleotide in the center of the sliding window is coding. From Eq. 13, we
can see that the prediction of a sample si,r is dependent on the feedbacks from its neighboring positions i−v and i+v,
and the output Oi of CNN in the position i.

Note that the step interval v must be a multiple of three for the reason that in practice the coding label sequence
y is actually not always 1 in open reading frame, but shows a periodicity of three nucleotides (e.g., [1,0,0,1,0,0,...]).
Meanwhile, as confirmed by experiments in Wei et al. (2020), the setting of v is significantly relevant to the prediction
performance. Theoretically, the most neighboring positions (v=3) contribute the most to position i, while the reverse
is true in our situation. If v is set small, si is almost the same as si−v and si+v, in which case Ii−v and Ji+v providealmost no additional information for the prediction ŷi. Hence, the setting of v is optimal when it equals the sliding
window size, in which case si, si−v and si+v is completely different so that Ii−v and Ji+v provide the most information
for the prediction ŷi.
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Table 3
Performance comparison of our proposed method with the other state-of-the-art methods on transcript datasets.

Method Human Mouse
Sn Sp auROC Sn Sp auROC

Z curve+LDA Zhang et al. (1998) .8131 .8407 - .8339 .8422 -
kmer+MLP Hatzigeorgiou (2002) .9479 .9172 .9810 .9403 .9180 .9793
kmer+SVM Tzanis et al. (2012) .9276 .9292 - .9291 .9271 -
kmer+BRNN Wei et al. (2020) .9825 .9739 .9975 .9793 .9791 .9973
gkm+MLP .9416 .9462 .9864 .9571 .9237 .9851
C2+CNN .9491 .9323 .9856 .9329 .9352 .9826
C2+gkm+CNN .9595 .9360 .9885 .9563 .9330 .9870
C2+gkm+CNN+BRNN .9908 .9797 .9986 .9910 .9814 .9985

Table 4
Brief description of time cost on four datasets with regard to the proposed method.

Dataset Type Number of sequences Number of codons Time Cost (s/epoch)
Human genomic 19,288 6,809,025 4,340
Mouse genomic 16,473 5,787,480 3,684
Human transcript 24,842 7,855,557 5,072
Mouse transcript 19,900 6,549,798 4,104

4. Result
In this section, we conduct three experiments on four gene datasets. The first is to prove the significance of hybrid

encoding. In the second experiment, we make a comparison of the proposed method to existing state-of-art methods
such as C4+MLPHatzigeorgiou et al. (1996), C4+SVMShuo and Yi-sheng (2009), Z curve+LDAZhang et al. (1998),
kmer+MLP Guigó (1997); Hatzigeorgiou (2002), kmer+SVM Tzanis et al. (2012), kmer+BRNN Wei et al. (2020).
The goal of the last experiment is to evaluate the time cost of the proposed method. The network architectures are
shown in Table 1.
4.1. Performance measurements

In order to evaluate the performance of the proposed method for coding regions prediction, the analysis in this
paper employs three evaluation criteria in terms of Sensitivity (Sn), Specificities (Sp) and Area Under the Receiver
Operating Characteristic curve (auROC). All these criteria are based on the notions of TP, FP, TN, and FN, which
correspond to number of true positives, false positives, true negatives, and false negatives. In a ROC, one typically
plots the true positive rate (TPR=TP/(TP+FN)) as a function of the false negative rate (FNR=FN/(FN+TN)). The
auROC can be calculated by using the trapezoidal areas created between each ROC points. The detailed definition can
be found in Mitchell, Carbonell and Michalski (1997); Davis and Goadrich (2006).
4.2. Significance of hybird encoding

In order to prove the effectiveness of hybrid encoding, we conduct an ablation study to separate the hybrid encoding
and observe the prediction performance for each single encoding. To be specific, hybrid encoding is separated into C2
and gkm encoding and then fed into CNN and MLP (e.g., C2+CNN and gkm+MLP). As it can be seen from Table
2-3, C2+gkm+CNN significantly outperform C2+CNN and kmer+MLP, both on genomic and transcript sequences.
Moreover, it is worth noting that C2 encoding achieves better performance than kmer+MLP and gkm+MLP in ge-
nomic sequences, which prove the effectiveness of global sequence order information, but at the cost of computational
complexity. Moreover, gkm+MLP achieves a little better performance than C2+CNN in transcript sequences. Also it
achieves much better performance than kmer+MLP, which proves that larger k can provide more useful information
than using k = 3. All the prediction performance of the above methods decreases from transcript sequences to ge-
nomic sequences for the fact that coding regions are continuous on transcript sequences but interrupted by introns on
genomic sequences. In brief, we can conclude from the result that there exists a complementation relationship between
C2 encoding and gkm features, integration of which can facilitate the machine learning method to fully capture coding
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features.
4.3. Performance comparison with existing state-of-the art methods on genomic and transcript

sequences
We compare the performance of the proposed method with that of existing methods such as C4+MLP, C4+SVM, Z

curve+LDA, kmer+MLP, kmer+SVM, kmer+BRNN. All the methods are trained and evaluated with the same dataset
for a fair comparison. From Table 1-2, it is observed that our proposed method performs the best among the existing
methods and achieves the highest Sn, Sp and auROC scores on all the four datasets, the average Sn, Sp, auROC scores
reach .9628, .9615, .9928 on genomic datasets, and .9909, .9806, .9985 on transcript datasets, respectively. We also plot
the ROC curve on genomic and transcript sequences. As it can be seen in Figure 2, given a fixed false positive rate of
.05, our proposed method respectively achieves an average sensitivity of .9720 on genomic datasets, an improvement
of .2021 over the second best method, C4+MLP. Meanwhile, given a fixed false positive rate of .01, our proposed
method respectively achieves an average sensitivity of .9805 on transcript datasets, an improvement of .0224 over the
second best method, kmer+BRNN. All the results demonstrate that our proposed method is a high-accuracy protein
coding regions prediction method, especially in transcript sequences.
4.4. Time cost of the proposed method

We further briefly analyze the computational cost of the proposed method. All the experiments are conducted on an
Intel Core i5-10400 CPU 2.90 GHz PC with 16 GB RAM. The proposed method is implemented mainly in Tensorflow
and partly in Matlab. Table 4 gives the time cost of the proposed method on four datasets.

5. Conclusions
In summary, protein coding regions prediction is a very important but overlooked subtask for tasks such as predic-

tion of complete gene structure, coding/non-coding RNA. However, it is still a lack of effective computational methods
to learn coding features from genomic and transcript sequences. Indeed, coding features in biological sequences usu-
ally exhibit heterogeneity (e.g., global sequence order information, frequency domain of features like kmer, statistical
dependencies among coding labels) and are difficult to capture by using a single encoding scheme andmachine learning
method. In this paper, we present a deep learning framework with hybrid encoding for protein coding regions predic-
tion, which effectively incorporates the three kinds of features into a hybrid CNN-BRNN architecture and achieves a
remarkable prediction performance when compared with existing state-of-the-art methods on genomic and transcript
sequences.
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