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Abstract

The research presents a procedure of the closed-form average bit error rate evaluation for wireless communication

systems in the presence of multipath fading. A generalization of the classical moment generating function is applied,

and a connection between the Hankel-type contour-integral representation of the Marcum Q-function and Gauss Q-

function is obtained and applied to the analytic derivation of the quadrature amplitude modulated signal average

bit error rate in the presence of Nakagami-m fading. The correctness of the obtained solution was verified, and its

computational efficiency (in terms of accuracy and time gain), compared with the prevailing approximation, was

demonstrated. The proposed methodology can be extended to a wide variety of composite channels.

Keywords: Gaussian Q-function, contour integral, closed-form, average bit error rate, Nakagami-m, multipath

fading channel

1. Introduction

Modern wireless communication systems (for instance, 5th generation standard (5G) [1]) and services [2], like

ultra-reliable low latency communications (URLLC) and enhanced mobile broadband (eMBB), place heavy demands

on the spectrum resource allocation, which can be addressed by employing such approaches as carrier aggregation

and ultrawideband signal application. At the same time, the usage of those methodologies raises the profiles of

accounting wireless channel fading effects and their impact on communication link quality and reliability, which is

usually described in terms of bit error rate (BER) and its averaged (over the fluctuating instantaneous signal-to-noise

ratio (SNR)) version (ABER) [3, 4].

A classical approach to considering the fading effects resides in the application of various multipath propagation

channel models [3, 4, 5] among which one can mention two families: the classic models (like Rayleigh, Rician,

Hoyt, Weibull, etc.) and composite ones (for example, κ − µ , α − µ , η − µ , generalized-gamma, etc.). Nevertheless,

the composite models generalize the classical incorporating them as the specific limiting cases and are robust to the

change in fading conditions they are given in terms of very complex mathematical description, which in many cases

prevents from obtaining closed-form analytical expressions for link quality; hence, various simplifying assumptions

and approximations are used.

Thus, in most of these applications, a balance between analytical description simplicity and correspondence with

the real-life channel measurements is required. One of the possible solutions is the widely renowned Nakagami-

m fading model [6]. Although proposed in the middle of the 20th century, it is still extensively used in various

applications [7, 8, 9] delivering high adequacy with measurements. Its main advantage is the combination of the

relative simplicity of the mathematical treatment [5] and the ability to cover a wide range of fading scenarios: it

successfully handles light fading (turning into the Rician model in the extreme case [3]), classical Rayleigh fading

(being a specific subcase of Nakagami-m [3]) and heavier than Rayleigh fading (the so-called hyper-Rayleigh [10]).
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The last one has drawn specific attention in the last few years in the light of the ad hoc communication systems (see,

for instance, [11, 12]).

The main problem with the direct implementation of that assumed model is that the derivation of the ABER ex-

pression requires the solution of integrals involving the Gaussian Q-function and its square. Despite the fact that

the first one is widely addressed in the literature [3, 13, 14, 15, 16, 17], the second has been reported only several

times [3, 18, 19, 20]. The approach of computing integrals with the squared Gaussian Q-function (proposed initially

in [18]) exhibits a specific flaw of applicability only to the cases of integer and half-integer Nakagami fading pa-

rameter m, hence doesn’t convey the important case of hyper-Rayleigh fading (m < 1). Later, it was elaborated in

[19, 20] and applied to the Generalized K model (and its extended version), delivering the closed-form expressions

in terms of the multivariate Fox H-function and Meijer G-function that are not common in modern computer algebra

systems and though can be treated numerically by multiple series representation, cause problems with their trunca-

tion, error estimation and practical application. On the other hand, numerous researches proposed a wide variety

of numerically efficient Gaussian Q-function approximations, among which one can mention piecewise linear ap-

proximations (proposed recently in [21, 22]) and well-established exponential-type approximations (see, for instance,

[23, 24, 25, 26]). Although their application can help derive easy to implement expressions, their accuracy depends

heavily upon channel and signal models. Furthermore, for propagation conditions with heavy fading combined with

higher-order modulations (for example, for 4096-level quadrature amplitude modulation (4k-QAM) [27, 28]), the ap-

proximation quality sufficiently degrades, thus, leaving with under/overestimation of the overall system performance

quality. Thus, closed-form analytical representation (valid for arbitrary system parameters) or its computationally

efficient approximation of the ABER for the Nakagami-m fading model is still a highly relevant problem.

At the same time, in detection theory integrals involving similar functions were successfully treated via the clas-

sical moment generating function (MGF) approach [29, 4, 3], which relates the arising special functions (namely,

Marcum Q-function and Toronto function) with the closed-loop integral that is further applied to derive, for example,

the probability of detection [30, 31, 32, 33], or bit error [4, 34, 29]) as the sum (finite or infinite) of residues inside

this loop (see [35, 36, 32, 31]). It was demonstrated that such an approach is valid only for specific cases: most of

the system and the channel parameters and their combinations must be integer-value. Hence, the feasible applications

of the derived expressions are heavily confined. A possible remedy to this problem was proposed in [37] and was

successfully applied for the extension of the classical contour-integral MGF approach.

The correspondence proposes an approach for evaluating the integrals involving the Gauss Q-function and its

square. It relies upon the generalized MGF methodology and the relation between some special functions arising

in many problems of wireless communications. By deriving such a connection and applying their contour-integral

representations, a novel form for closed-form ABER and its approximate version for Nakagami-m fading channel is

evaluated. Lastly, a numeric simulation was performed to demonstrate their computational efficiency (in terms of

computational error and time).

The research is structured as follows: Section 2 gives a brief review of some preliminary aspects of ABER def-

inition and its approximation widely used in the literature; Section 3 discusses the derived expressions for the inte-

grals involving the Gauss Q-function and its square: general integral form, stated in Lemma 1, and applied to the

Nakagami-m fading model, stated in Lemma 2 and Lemma 3, and the final result of the ABER for the assumed model

(closed-form and approximation) stated in Theorem 4; Section 4 demonstrates the correctness and efficiency of the

derived representations; Section 5 gives final conclusions.

2. Preliminaries

Let us assume that a microwave signal propagates through a wireless random fading channel with the probability

density function of the instantaneous SNR given by fγ (γ). Thus, the ABER can be defined as

BER =

ˆ ∞

0

BER(γ) fγ (γ)dγ, (1)

with BER(γ) being the instantaneous BER, calculated for most of the modern modulation types in terms of Gauss

Q-function or squared Gauss Q-function, which in many cases prevents closed-form analytic evaluation of (1), for
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instance, in the case of M-ary quadrature amplitude modulation (see, for instance, [4, 3]):

BERth (γ) = 4c0Q
(√

2c1γ
)

− 4c2
0Q2

(√

2c1γ
)

, (2)

where c0 =
(
√

M−1)√
M log2(M)

and c1 =
3 log2(M)
2(M−1) . To cope with this problem, various approximations were proposed, hence

yielding closed-form results (see [3], section 5.1.4). According to the prevailing one

BERap (γ) = a1

a3

∑
j=1

Q
(√

a2( j)γ
)

(3)

with the set of coefficients {a1,a2( j),a3} explicitly defined for specific modulation (see [38, 3]), for example in case

of M-QAM: {a1,a2( j),a3}=
{

4c0,c1(2 j− 1)2,
√

M/2
}

.

Although (3) makes it possible to avoid squared Gauss Q-function the result is satisfactory only in high SNR

regime and low-dimensional modulation. The situation worsens when (3) is being averaged in (1) and the discrepancy

between (3) and (2) increases. Moreover, for multipath fading channels, the SNR factor comes as a multiplier of

fading parameter. Hence for deep fading, high-dimensional modulation and small SNR regime (which is of primary

interest for modern wireless communication systems, like 5G), the approximation results are usually unsatisfactory.

Consequently, it is important to have at hand a possible closed-form solution rather than its approximation.

3. Derived results

As it was stated, the problem of evaluating (1), with BER being given by (2) or (3), can be tackled with the help of

the extended MGF approach. The key point is to find a relation between the arising Gauss Q-function and its suitable

contour-integral representation, given by the following Lemma.

Lemma 1. The Gauss Q-function can be represented as an integral in the complex domain

Q(z) =
1

2

1

2π i
e−

z2

2

ˆ (0+)

−∞

e
z2 p

2

√
p(1− p)

dp (4)

with the integration Hankel-type integration contour.

PROOF. The representation (4) can be proved establishing the connection between the Gauss Q-function and the

generalized Marcum Q-function, and then by applying the contour-integral representation of the latter (see [37]):

Q(z) =
1

2
Q 1

2
(0,z) =

1

2

1

2π i
e−

z2

2

ˆ (0+)

−∞

e
z2 p

2

√
p(1− p)

dp

=
1

2

{
1

2π i
e−

z2

2

Q1(η,z)
︷ ︸︸ ︷

‰

Cη\{−η}

e
z2 p

2

√
p(1− p)

dp +
sin

(
π
2

)

π
e−

z2

2

ˆ ∞

η

e−
z2x
2√

x(1+ x)
dx






, (5)

with the contour of integration Cη \{−η} of the first term being the counterclockwise running circle with a radius

η < 1 excluding point −η .

Applying the polar substitution p = ρeiϕ in Q1 (η ,z) and collapsing the contour Cη yields:

lim
η→0

Q1 (η ,z)∼

∣
∣
∣
∣
∣
∣

ˆ π

−π

i
√

ρe
z2

2 ρ cos(ϕ)

(1−ρeiϕ)
e

i
(

z2

2 ρ sin(ϕ)+ϕ
)

dϕ

∣
∣
∣
∣
∣
∣
ρ→0

≤
ˆ π

−π

∣
∣
∣
∣
∣
∣

i
√

ρe
z2

2 ρ cos(ϕ)

(1−ρeiϕ)
e

i
(

z2

2 ρ sin(ϕ)+ϕ
)

∣
∣
∣
∣
∣
∣
ρ→0

dϕ

≤
ˆ π

−π

√
ρe

z2

2 ρ cos(ϕ)

(1−ρ)

∣
∣
∣
∣
∣
∣
ρ→0

dϕ →0. (6)
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Thus (5) turns into:

Q(z) =
1

2π
e−

z2

2

ˆ ∞

0

e−
z2x
2

√
x(1+ x)

dx =
1

2
erfc

(
z√
2

)

.

The last equality relates Gauss Q-function with complementary error function and is well known [39]. Hence the

contour-integral representation in (4) is justified.

Lemma 2. The integral of Gauss Q-function Q(
√

2αγ) weighted with the probability density function of Nakagami-m

distribution fγ (γ) can be represented as

ˆ ∞

0

Q
(√

2αγ
)

fγ (γ)dγ =
1

2
I m

m+αγ̄

(

m,
1

2

)

(7)

where Ix (y,z) is the regularized incomplete beta function

PROOF. Denoting J1 =

ˆ ∞

0

Q
(√

2αγ
)

fγ (γ)dγ and applying Lemma 1 one obtains:

J1 =
1

2

1

2π i

ˆ (0+)

−∞

1√
p(1− p)

ˆ ∞

0

fγ (γ)eα(p−1)γdγdp

=
1

2

1

2π i

ˆ (0+)

−∞

M (α(p− 1))√
p(1− p)

dp, (8)

where M (·) is the moment generating function (MGF), defined as M (p),E{epγ}. Assuming that for the Nakagami-

m fading channel [3] MGF is given by M (p) =
(

1− pγ̄
m

)−m

, (8) can be represented as:

J1=
bm

2π

ˆ ∞

0

1√
p(1+ p)(b+ 1+ p)m

dp, (9)

with b = m
αγ̄ . The last equality was obtained by deforming the integration contour as it was done in [37].

Using the integral representation of Gauss hypergeometric function (see § 2.2.6 in [40]) 2F1 (a,b;c;z) yields:

J1 =
bmB

(
1
2
,m+ 1

2

)

2π(1+ b)2 2F1

(
1

2
,m;m+ 1;

b

1+ b

)

=
bmB

(
1
2
,m+ 1

2

)

2π
B b

1+b

(
1

2
,m+

1

2

)

=
1

2
I m

m+αγ̄

(

m,
1

2

)

, (10)

where Ix (y,z) =
Bx(y,z)
B(y,z)

is the regularized incomplete beta function (see § 8.17.2 in [39]). Hence (7) holds.

Lemma 3. The integral of squared Gauss Q-function Q2 (
√

2αγ) weighted with the probability density function of

Nakagami-m distribution fγ (γ) can be represented as

ˆ ∞

0

Q2
(√

2αγ
)

fγ (γ)dγ =
I m

m+αγ̄

(
m, 1

2

)

4
−R2 (α, γ̄,m) (11)

where R2 (α, γ̄ ,m) is defined in ( 19).

PROOF. Denoting the initial integral as J2 =

ˆ ∞

0

Q2
(√

2αγ
)

fγ (γ)dγ and sequentially applying Lemma 1 twice one

obtains:

J2 =
1

2

1

2π i

ˆ (0+)

−∞

{
1
2

1
2π i

´ (0+)
−∞

M (α(q+p−2))√
q(1−q) dq

}

√
p(1− p)

dp (12)
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The inner integral can be evaluated by applying the result of Lemma 2.

ˆ (0+)

−∞

M (α(q+ p− 2))

4π i
√

q(1− q)
dq=

bm
(

1− I 1
b+2−p

(
1
2
,m

))

2(b+ 1− p)m
(13)

Applying the property of the regularized incomplete beta function Ix (y,z) = 1− I1−x (z,y) (see § 8.17.4 in [39]) gives:

J2 =
1

4π i

bm

2

ˆ (0+)

−∞

1√
p(1− p)(b+ 1− p)m

dp− 1

4π i

bm

2

ˆ (0+)

−∞

I 1
b+2−p

(
1
2
,m

)

√
p(1− p)(b+ 1− p)m

dp

︸ ︷︷ ︸

R2(α ,γ̄,m)

=
1

4
I m

m+αγ̄

(

m,
1

2

)

−R2 (α, γ̄ ,m) , (14)

where R2 (α, γ̄ ,m) is defined as

R2 (α, γ̄ ,m)=
bm

4π

ˆ ∞

0

I 1
b+2+p

(
1
2
,m

)

√
p(1+ p)(b+ 1+ p)m

dp. (15)

Recall the series expansion of the regularized incomplete beta function: (see § 15.2.1 in [39])

I 1
b+2+p

(
1

2
,m

)

=
∞

∑
n=0

(1−m)n (b+ 2+ p)−n− 1
2

B
(

1
2
,m

)
n!
(
n+ 1

2

) . (16)

Substituting (16) into (13) and performing the change of integration variable t = 1
1+p

yields:

R2 (α, γ̄,m) =
bm

4πB
(

1
2
,m

)

∞

∑
n=0

(1−m)n

n!
(
n+ 1

2

)

ˆ 1

0

(1+(1+ b)t)−n− 1
2

t−(m+n) (1− t)
1
2 (1+ bt)m

dt. (17)

Using the definition of the Appell hypergeometric function F1 (α,β ,β ′;γ;x1;x2) (see § 16.15.1 [39])

ˆ a

0

xα−1 (a− x)β−1 (1− ux)−ρ (1− vx)−λ
dx = aα+β B(α,β )F1 (α,ρ ,λ ;α +β ;ua;va), (18)

the second term in (14) can be represented as:

R2 (α, γ̄ ,m) =

(
m
αγ̄

)m

4π

∞

∑
n=0

(1−m)n B
(
n+m+ 1, 1

2

)

n!
(
n+ 1

2

)
B
(

1
2
,m

) F1

(

n+m+ 1,m,n+
1

2
;m+ n+

3

2
;− m

αγ̄
;−

(

1+
m

αγ̄

))

. (19)

Collecting (14) and (19) completes the proof.

Although the derived expression is analytically rigorous, from a practical viewpoint, the series (19) has to be ter-

minated, but it should be noted that the series converges quite fast and only a few terms are needed to obtain high

accuracy (see Section 4). Moreover, even though the derived solution is given in terms of the hypergeometric func-

tion of two variables, one can remark that it is readily accessible in modern computer-algebra systems, like Wolfram

MATHEMATICA, Matlab, MAPLE, etc., delivering high computational efficiency of (11).

The obtained expressions help to formulate the final result.

Theorem 4. For Nakagami-m multipath fading channel the closed-form and approximating expressions for the aver-

age bit error rate of M-QAM are given by

BERth =

ˆ ∞

0

BERth (γ) fγ (γ)dγ =c0I m
m+c1 γ̄

(

m,
1

2

)

+ 4c2
0R2 (c1, γ̄,m) , (20)

5



BERap =

ˆ ∞

0

BERap (γ) fγ (γ)dγ = 2c0

√
M/2

∑
j=1

I m

m+c1(2 j−1)2 γ̄

(

m,
1

2

)

, (21)

with coefficients c0,c1 being defined as in (2).

PROOF. To prove the first part of Theorem 4, one should substitute the closed-form BER definition (20) and apply

the results of Lemma 2 and Lemma 3, i.e.,

BERth =

ˆ ∞

0

BERth (γ) fγ (γ)dγ = 4c0

ˆ ∞

0

Q
(√

2c1γ
)

fγ (γ)dγ − 4c2
0

ˆ ∞

0

Q2
(√

2c1γ
)

fγ (γ)dγ

= c0I m
m+c1 γ̄

(

m,
1

2

)

+ 4c2
0R2 (c1, γ̄,m) , (22)

The second part of Theorem 4 can be justified in a similar manner: one should combine BER approximation (21)

and utilize the expression derived in Lemma 2, i.e.,

BERap =

ˆ ∞

0

BERap (γ) fγ (γ)dγ = 4c0

√
M/2

∑
j=1

ˆ ∞

0

Q

(√

c1(2 j− 1)2γ

)

fγ (γ)dγ

= 2c0

√
M/2

∑
j=1

I m

m+c1(2 j−1)2 γ̄

(

m,
1

2

)

(23)

From the practical perspective, the evaluation of (20) needs infinite summation in (19), but as it will be demon-

strated in Section IV, it can be efficiently truncated to only few first terms. Thus, for further calculations (19) will be

replaced with its substitute a truncated to N-term version of, i.e. R2 (N,c1, γ̄,m).

● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

■ ■ ■ ■
■

■
■

■
■

■
■

■

■

■

■

■

■

■

■

■

■

■

■

◆ ◆ ◆ ◆
◆

◆
◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

▲ ▲ ▲ ▲
▲

▲
▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

■ ■ ■ ■
■

■
■

■
■

■
■

■

■

■

■

■

■

■

■

■

■

■

■

◆ ◆ ◆ ◆
◆

◆
◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

● Eq.(15) with N=0 ■ Eq.(3)+ num. integration

◆ Eq.(3)+[21, Eq.(14)] ▲ Eq.(3)+[22, Eq.(13d)]

● Eq.(3)+[23, Eq.(2)+Tab.II] ■ Eq.(3)+[24, Eq.(8b)]

◆ Eq.(2)+ num. integration

●

●

●

●

●

●●●●●●●●

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

▲

▲

▲

▲

▲

▲

●

●

●

●

●

●

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆
10 11 12 13 14 15

10-4

3·10-4

10-3

3·10-3

0 10 20 30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

γ, dB

A
B
E
R
(γ
)

Figure 1: Average BER for light fading and low-order modulation (i.e., m = 4.1 and 8-QAM)
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Figure 2: Average BER for light fading and high-order modulation (i.e., m = 4.1 and 256-QAM)

To this extent, one can see that due to the intimate connections between incomplete Gamma and Beta functions

with Gauss hypergeometric function (see (10)), (7), although being a compact and neat new notation, can be rearranged

in a well-known form (see [3]). On the other hand, the representations (8), (12) and the proposed procedure of

evaluating the initial integrals (7) and (11) are novel and can be further extended to various channel models.

It should be specifically pointed out that the derived closed-form solution (19) lacks the drawback of validity under

the assumption of an integer m, inherited by the existing solution (see, [3] Section 5.1.6, equation (5.30)), and thus is

valid for arbitrary values of fading parameter. Therefore, for further numerical evaluations, only non-integer m will

be assumed (i.e. that are not covered by the existing closed-form results).

4. Numeric simulation and analysis

4.1. ABER analysis

To verify the correctness of the proposed results, the numeric analysis of the average BER was performed for

high and low modulation orders combined with heavy and light fading (see Fig (1)-Fig (4) respectively). The derived

solution (20) was compared with the brute-force numeric integration of (1) with: closed-form BER expression (2)

(plotted with pink lines and pink diamond-shaped markers) and with approximated BER expression (21) (plotted with

blue lines and blue square markers). The obtained solution (20) for all of the assumed situations was restricted only

to the one-term series truncation (N = 0) (solid black line with black circle markers). In addition to that, a two-term

(N = 1) truncation curve was plotted in Fig (4) (depicted with a solid black line and black star markers)) to demonstrate

approximation quality improvement. Those analytic results were compared with the solutions derived under Gaussian

Q-function exponential-type approximation ([23, 25, 26, 24]), which differ in the way the approximating coefficients

are defined: in [23] they are found by minimizing the integral of the relative error in the range of values of interest,

in [24] they are derived via trapezoidal-rule integration with 4 subintervals (defined as optimal), in [25] a three-term

7
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Figure 3: Average BER for heavy fading and low-order modulation (i.e., m = 0.6 and 8-QAM)

Prony series approximation is used and in [26] obtained by minimizing the log-scaled relative minimum mean-squared

error.

The performed analysis demonstrated that all of the prevailing approximations work fine for light shadowing

and low-order modulation schemes (see Fig (1 and Fig (3)), but degrading the propagation conditions (or increasing

modulation) (see Fig (2)and Fig (4)) heavily impairs approximation quality: the energy efficiency loss is from 0.5 dB

up to 1 dB for m = 4.1 (depending on the error level) and from 1 dB to 15 dB for m = 0.6. At the same time, the

proposed solution (even in the case of the single-term series truncation) delivers excellent results for all of the assumed

scenarios.

4.2. Proposed approximation analysis

As it was already mentioned, the number of summands in (20) that deliver the desired quality (ABER) depends

on the average SNR, and even the first few terms that can provide reasonable quality. To estimate the loss of accuracy

(see Fig (5)) one assumes the logarithmically-scaled discrepancy ε = 10lg

∣
∣
∣

BERnum(γ)−BER(γ)

BERnum(γ)

∣
∣
∣ between BERnum (γ),

that is computed via numerical integration of (1) (with (2) being substituted) and BER(γ) equals to

• BERth (γ) given by the derived closed-form solution (20)truncated to N terms (black, blue, green and red lines);

• BERap (γ) given by the derived approximation (21) (brown lines);

The results were obtained under heavy m = 0.6 (solid lines) and light fading m = 4.1 (dashed lines) for 256-QAM.

It is clear that for heavy fading (which is of primary interest), even the zero-term truncation in (20) yields better

performance compared to the existing approximation (see [38]); for light fading one needs more than a single term,

but still, even three terms are enough. Moreover, increasing N up to two to five terms improves the accuracy by

several orders of magnitude. It can be noticed that even in the case of not very high γ (up to 15 dB), the approximating
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Figure 4: Average BER for heavy fading and high-order modulation (i.e., m = 0.6 and 256-QAM)

expression is strictly worse (in terms of ε) than the proposed solution; this is mainly due to the fact that (21) is

commonly considered for the case of large symbol SNR, for which the only significant symbol errors are those that

occur in adjacent signal levels (see [3], section 5.1.4).

It can be argued whether the computational accuracy is achieved at the expense of computational time. Therefore,

computational time gain defined as εt =
∆tth

∆tnum
was analyzed (with ∆tth is the interval time needed to compute BERth (γ)

defined as earlier, and ∆tnum is the same for BERnum (γ) with the same five digit precision). The performed numerical

simulation of the direct comparison between the two (see (6) for the case of m = 0.6 and 256-QAM) demonstrated that

εt ≥ 1 for the proposed expression, delivering computational speedup from 1.5 to 12 times depending on the number

of summands (from 0 to 5).

5. Further generalization and discussion

It can be pointed out that the solutions to a large number of modern wireless communications problems depend

heavily on the normality assumption of some stochastic physical effects (e.g., reflection, multiple diffractions, fading);

thus, the expressions with Gauss Q-function and its squared version naturally arise. An important example is the

problem of signal detection with the help of the energy-based spectrum sensing procedure for ad hoc systems and

networks, including polar-coding transmission for 5G [41], MIMO-OFDM Cognitive Radio Systems [42], listen-

before-talk procedure in 5G networks [43], etc.

Since the proposed research makes use of an MGF approach, and a wide range of channels (including non-

line-of-sight and shadowed line-of-sight) have the same power-type MGFs (including η − µ [5], Hoyt [5], complex

Nakagami-m [44], etc.), the derived results can be further generalized for those models. Nevertheless, the possible

overcomplication of the derived mathematical description for such generalizations and its applicability in engineering

practice is still an open question.
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Figure 5: Logarithmically-scaled discrepancy ε for different number of summands in (19)

Other possible extensions of the proposed research encompass wireless physical layer security and higher-order

capacity analysis due to the existing connection between the MGF and the spectral efficiency [45].

6. Conclusions

Closed-form average bit error rate calculation for wireless communication systems in the presence multipath fad-

ing is an important tool that helps to solve various engineering problems. At the same time, it requires the solutions of

integrals involving the Gauss Q-function and its square, which for many fading channel models cannot be obtained.

One of the possible solutions relies upon the widely renowned moment generating function approach. Its generaliza-

tion that makes use of contour-integral representation of several more general special functions can be successfully

applied to yield analytic solutions. This research has presented a novel procedure for evaluating such integrals for

the case of the Nakagami-m fading channel. A new notation for the closed-form ABER of the QAM signal and its

approximate version were evaluated. The correctness of the obtained solution was verified, and its computational

efficiency (in terms of accuracy and time gain), compared to the prevailing approximation was demonstrated.
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