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Abstract

Direct blast is a strong interference in bistatic sonar and difficult to
suppress due to multipath propagation for blasts and signals. A gener-
alized likelihood ratio test (GLRT) based detection scheme in the fre-
quency domain of the received signals is proposed in this study, and the
unknown parameters are estimated using Maximum Likelihood Estimates
and Weighted Fourier Transform and Relaxation in a multipath environ-
ment. The distributions of the test statistic of detectors for known and
unknown noise power are given in theory, and the detection probability is
determined. The performance of the detector decreases by 4 dB when the
noise power is evaluated with maximum likelihood estimates. Simulations
show the effectiveness of the detector under a forward scattering detec-
tion configuration with a low signal-to-direct blast ratio. The sensitivity
of many factors is discussed, and robustness is achieved.

keywords:GLRT, forward scattering detection, bistatic sonar, detection
probability.
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1 Introduction

Bistatic sonar has many advantages over monostatic sonar; for example, the
detection area of bistatic sonar is larger, the concealment is better, and it is
not easily suppressed by the underwater acoustic countermeasure device. How-
ever, the application of bistatic sonar entails unfavorable factors, and direct
blast interference is one of the important problems. When a strong direct blast
and the target echo overlap, detection becomes difficult. The aberrations of
the received signal caused by the target echo are considerably weak and diffi-
cult to detect because the strength of direct blasts is several decibels over the
scattered waves when the receiver is far from the target. Furthermore, the dy-
namics of the environment can cause fluctuations of the received signal, which
make the detection of target echoes highly complicated. Overlapping is un-
avoidable when the target is near the baseline of the bistatic sonar, which leads
to a blind zone in bistatic detection using traditional technologies. Short pulse
signals have been introduced as a common solution, but they are inefficient
underwater because multipath propagation decreases the temporal resolution;
thus, weak targets are lost. Many researchers have proposed new algorithms
and techniques to solve the problem of bistatic sonar detection in blind zones.
Gillespie [1] and Matveev [2, 3] developed intuitive and preliminary methods
that use matched filtering techniques to detect weak disturbances caused by the
target. Song et al. [4] proposed time reversal mirror technology and constructed
a high-frequency acoustic barrier. Folegot et al. [5] developed a localization al-
gorithm on the basis of an ambiguity image composed of sound rays. A premise
of this method is that the sound rays pass through the target position, and
the target blocks the sound lines. Marandet et al. [6] proposed a scheme via
strength comparison using the double-beamforming technique and designed a
laboratory-scale experiment. Sabra et al. [7] extracted the aberrations of re-
ceived signals on hydrophones caused by a target by using principal component
analysis (PCA). Lei et al. [8] further combined PCA with array processing to
enhance the aberrations of the recorded direct arrival data on a short verti-
cal receiver array (VRA), validated the performance of the proposed method
via a lake experiment, and identified the relationship between sound field aber-
ration and crossing distance in theory. The adaptive processing scheme and
PCA-based concept were executed after acquiring several pulses. He et al. [9]
proposed a processing scheme based on adaptive filtering to decrease the de-
gree of received data association, and Lei et al. [10] developed this technology
for a dynamic environment. He et al. [11] developed an approach called low
Doppler analysis and recording gram to separate target scattered waves from
direct blasts in the Doppler domain. Lei et al. [12] further proposed the use of an
anomaly detection method to detect sound field aberrations caused by the tar-
get. The generalized likelihood ratio test in passive radar signal processing has
become an attractive research topic, and modified schemes have been proposed
in many studies [13–19]. In [13], [14], and [15], distributed target detectors in
Gaussian white noise and with the constant false alarm rate (CFAR) property
were developed based on GLRT. In [16], Gerlach and Steiner derived a modified
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GLRT for the adaptive detection of range-spread targets. After outlining the
model of the detection problem in the surveillance channel as a composite in
the hypothesis test, a GLRT was derived in [17]. Two detectors [18] under the
GLRT framework were developed for a multistatic passive radar in the presence
of noise and direct path interference. Bistatic sonar faces a similar problem
as passive bistatic radar, namely, strong interference of direct blast influence
and noise. However, serious multipath propagations for the direct blast and
scattered signal are present in bistatic sonar, particularly in cases with a very
large bistatic angle (e.g., forward scattering detection). In continuous active
sonar, a simple generalized likelihood ratio (GLR)-based criterion was devel-
oped to enhance the range-Doppler and range-compression images generated by
the standard matched filter [19]. Here we examine the target detection problem
for a bistatic sonar with forward scattering wherein the receivers are contami-
nated by a strong blast. A scheme based on the GLRT framework is proposed
to achieve target detection in the blind zone. A hypothesis test model is estab-
lished based on the received signal models, and model parameters are estimated
to derive a generalized likelihood ratio. The first detector assumes that the
noise level is known. The noise level in this case must be measured in advance.
Another detector is proposed for the case with an unknown noise level. Max-
imum likelihood (ML) in the closed form and weighted Fourier transform and
relaxation (WRELAX) algorithm [20] were used for the parameter estimates.
Numerical results are provided to show the performance of the proposed detec-
tors in forward scattering detection. The remainder of this paper is organized
as follows. Section II is devoted to the problems in bistatic sonar. Section III
presents a hypothesis test and describes the ML estimate of the model param-
eters. Section IV shows the derivation of the generalized likelihood ratio in the
two cases, and Section V analyzes the performance of GLRT. The conclusions
are provided in Section VI.

Notation: Vectors (matrices) are denoted by boldface lower (upper) case

letters, and all vectors are column ones. Superscripts (·)∗, (·)T , and (·)H denote
complex conjugate, transpose, and complex conjugate transpose, respectively.
The Euclidean norm of vector x is denoted by ‖x‖, the Frobenius norm of vector
x is denoted by ‖x‖F, and |x| represents the modulus of x. I denotes the identity
matrix, and tr(A) is the trace of square matrix A.

2 PROBLEMS IN BISTATIC SONAR

Consider a shallow water multipath environment where the transmitter and
receiver are separated for a bistatic sonar system (Fig. 1). A priori known signal
s(t) is transmitted repeatedly to the receiver through a multipath environment.
When the target is absent, the received signal is called a direct blast. It is
expressed as

x0(t) =

M∑

i=1

ais
(
t− τdi

)
+ n(t), (1)
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where M is the number of multipath components. {ai}Mi=1 and
{
τdi
}M
i=1

are
the complex path factor and time delay for each multipath, respectively. n(t)
is complex white Gaussian noise and n(t) ∼ CN(0, σ2). The target scattered
signals propagate through a multipath channel and are hence covered by the
direct blast. The mixture can be expressed as

x1(t) =

M∑

i=1

ais
(
t− τdi

)
+

K∑

k=1

bks (t− τ sk) e
j2πfdt + n(t), (2)

where K is the number of multipath components for scattered signals. {bk}Kk=1

and {τ sk}
K
k=1 are the complex path factor and time delay for each multipath of

the scattered signal, respectively. fd is the Doppler shift. This component is
extremely weak for the case of detection in a blind zone.

(a)

(b)

Figure 1: Schematic of bistatic sonar under a multipath environment. (a) Cov-
erage area and blind zone of bistatic sonar detection with traditional technology
due to the strong direct blast. (b) Multipath propagation in the shallow water
environment.

Considering the frequency domain form, (1) and (2) are subjected to fast
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Fourier transform (FFT), thereby yielding

X0 = Φd(τ
d)a+W,

X1 = Φd(τ
d)a+Φs(τ

s)b+W,
(3)

whereX = [X(0),X(1), . . . ,X(N − 1)]T is viewed as the received vector andW =

[W(0),W(1), . . . ,W(N − 1)]
T
is a complex white Gaussian noise vector n(t)

containing the FFT coefficients of samples of the additive noise; thus, W ∼
CN(0, Nσ2). N is the number of FFT points. a = [a1, a2, . . . , aM ]

T
and

b = [b1, b2, . . . , bK ]
T
. Matrices Φd(τ) and Φs(τ) depend only on the unknown

delays of the multipath direct blast and scattered signal, respectively. They are
given by

Φd(τ
d) =

[
φ
(
τd1
)
, φ
(
τd2
)
, . . . , φ

(
τdM
)]

,

Φs(τ
s) = [φ (τ s1) , φ (τ s2) , . . . , φ (τ sK)] ,

(4)

with the columns defined as

φ (τi) =
[
S(0),S(1)e−

j2πfsτi
N , . . . ,S(N − 1)e−

j2πfs(N−1)τi
N

]T
,

(5)

where S = [S(0),S(1), . . . ,S(N − 1)]T is viewed as the transmitted vector and
fs is the sampling frequency.

The general problem of detecting a target characterized by unknown complex
amplitude b, unknown time delay [τ1, . . . , τK ], and Doppler frequency fd in the
presence of clutter/multipath with unknown complex amplitude a and unknown
time delay [τ1, . . . , τM ] can be described by the hypotheses

H0 : X = Φd(τ
d)a+W,

H1 : X = Φd(τ
d)a+Φs(τ

s)b+W.
(6)

To solve the detection problem, the following assumptions are made:

1. The number of multipaths for direct blast M and scattered signal K is
assumed to be unknown.

2. The direct blast amplitudes of multipath complex-valued [a1, . . . , aM ] and
their delays

[
τd1 , . . . , τ

d
M

]
are assumed to be deterministic and unknown.

The scattered signal amplitudes of multipath complex-valued [b1, . . . , bM ]
and their delays [τ s1 , . . . , τ

s
M ] are assumed to be deterministic and un-

known.

3. Doppler shift is ignored in the hypothesis for two reasons. First, the
underwater vehicle is generally at a low speed, and the transmitted signal
works at a low frequency. Hence, the Doppler shift is not obvious. Second,
the Doppler shift of the target in the bistatic sonar configuration can be
expressed as

fd =
2vf

c
cos

β

2
cos θ, (7)
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where f is the transmitted signal frequency, v is the target speed, c is the
sound speed, β is the bistatic separation angle, and θ is the angle between
the target motion direction and angle bisector of β. In this scenario, when
the target is in the detection blind zone near the baseline, β ≈ π, and the
Doppler shift is very weak.

4. The two cases of known and unknown spectrum power of the noise σ2 are
discussed separately.

The probability density function (PDF) of X parameterized by a and τd can
be written as

f (X|H0) =
1

(2πNσ2)
N/2

exp

{
− [X−Φda]

H [X−Φda]

2Nσ2

}
(8)

under H0. The PDF of X parameterized by a, b, τd, and τs can be written as

f (X|H1) =
1

(2πNσ2)N/2
·

exp

{
− [X−Φda−Φsb]

H
[X−Φda−Φsb]

2Nσ2

} (9)

under H1.
According to the NewmanPearson criterion [21], the optimal solution to

the hypothesis testing problem is the likelihood ratio test, but it cannot be

directly implemented here because knowledge of the parameters a,b,
{
τdi
}M
i=1

,

and {τ sk}
K
k=1 are required; these parameters are unknown in practical situations.

Their maximum likelihood estimates (MLEs) in the likelihood ratio test provide
good solutions.

3 Parameters Estimation

3.1 Maximum likelihood estimates of path factors

When the target is not present, the received signal is the same as the direct
blast, and the path factor can be estimated as

â0 =
(
ΦH

d Φd

)−1
ΦH

d X (10)

under hypothesis H0. Compared with hypothesis H0, estimating the path fac-
tors under hypothesis H1 is complicated. For the convenience of expression, we
define

Q = [Φd,Φs] , (11)

and
c = [a,b]

T
. (12)
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ĉ1 =
(
QHQ

)−1
QHx

=

[
ΦH

d Φd ΦH
d Φs

ΦH
s Φd ΦH

s Φs

]−1 [
ΦH

d X

ΦH
s X

]

=

[ (
ΦH

d Φd

)−1
+
(
ΦH

d Φd

)−1
ΦH

d ΦsKΦH
s Φd

(
ΦH

d Φd

)−1 −
(
ΦH

d Φd

)−1
ΦH

d ΦsK

−KΦH
s Φd

(
ΦH

d Φd

)−1
K

][
ΦH

d X

ΦH
s X

]

=

[
â0 +

(
ΦH

d Φd

)−1
ΦH

d ΦsKΦH
s (Φdâ0 −X)

−KΦH
s (Φdâ0 −X)

]
,

(14)

K =
(
ΦH

s Φs −ΦH
s Φd

(
ΦH

d Φd

)−1
ΦH

d Φs

)−1

=
[
ΦH

s

(
I−Φd

(
ΦH

d Φd

)−1
ΦH

d

)
Φs

]−1

.

(15)

Then, (9) can be simplified to

f (X|H1) =
1

(2πNσ2)N/2
exp

{
− [X−Qc]

H
[X−Qc]

2Nσ2

}
. (13)

With Lemma 1, path factors c can be estimated as (14) and (15). Then we
derive the estimates

[
â1

b̂1

]
=

[
â0 +

(
ΦH

d Φd

)−1
ΦH

d ΦsKΦH
s (Φdâ0 −X)

−KΦH
s (Φdâ0 −X)

]
. (16)

3.2 Estimates of parameters of time delays

Time delay estimation is a classic problem in sonar signal processing. Re-
searchers have proposed several time delay estimators, such as matched filter
approach [22], expectation maximization (EM) algorithm [23], and WRELAX
algorithm [20]. Compared with other existing algorithms, WRELAX is more
systematic and efficient and has fewer limitations on the signal waveforms. Fur-
thermore, the mean squared error (MSE) of WRELAX is very close to the cor-
responding Cramer-Rao lower bound (CRLB) for a wide range of signal-to-noise
ratios (SNRs). Therefore, the WRELAX algorithm is applied here to estimate
τd and τ s.

The processing steps of the WRELAX algorithm are as follows:

1. Assume that the number of multipaths is M = 1. Compute a1, τ1.

2. Assume that the number of multipaths is M = 2. Compute a2, τ2 from
the residual signal and redetermine a1, τ1.

Repeat the two previous sub-steps until convergence is achieved.
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3. Assume that the number of multipaths is M = 3. Compute a3, τ3 from
the residual signal. Redetermine a1, τ1 then a2, τ2.

Repeat the three previous sub-steps until convergence is achieved.

4. Continue similarly until M is equal to the desired or estimated number of
signals.

The residual signal and estimators are as follows:

Xm = X−
M∑

i=1,i6=m

âiφ (τ̂i) , (17)

τ̂m = argmax
τm

|φ (τm) ∗Xm| , (18)

âm =
φ (τm) ∗Xm

‖S‖2F

∣∣∣∣∣
τm=τ̂m

. (19)

To estimate the multipath delay, we need to determine the number of mul-
tipaths. Therefore, some prior information is needed to decide the number of
multipaths. The maximum number of multipaths can be evaluated with the un-
derwater sound propagation model. The evaluated path number might be larger
than that in the real environment because sounds with large grazing angles at-
tenuate rapidly. The evaluation of these extra but non-existent paths may not
result in the performance decrease, since it provides a maximum likelihood esti-
mates. This intuition will be discussed in the simulation section. Furthermore,
the number of multipaths of the scattered signal is larger than that of the direct
blast, but many of them have only small path factors that can be ignored. For
convenience, we assume that M = K. Therefore, M delays τ̂d = [τ1, τ2, · · · , τM ]
are estimated for hypothesis H0, and 2M delays τ̂d ∪ τ̂ s = [τ1, τ2, · · · , τ2M ] are
estimated for hypothesis H1. Then, the M time delay estimates that are the
closest to τ̂d are deleted, and the remaining M time delay estimates are τ̂ s.

3.3 Maximum likelihood estimates of spectrum power of

noise

In practice, noise strength is usually known because it has a considerable impact
on sonar performance. However, noise might vary due to shipping, winds, topog-
raphy, and other factors. Hence, it is difficult to know well. If noise parameter
is unknown, then it is estimated as

σ2
0 =

1

N2
[X−Φdâ]

H [X−Φdâ] (20)

under hypothesis H0 and as

σ2
1 =

1

N2
[X−Φdâ−Φsb̂]

H [X−Φdâ−Φsb̂] (21)

under hypothesis H1.
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4 GLRT DERIVATIONS

4.1 Known spectrum power of noise

GLRT can be written as

LGLR(X) =
maxa,b,τd,τsf

(
X|a,b, τd, τ s;H1

)

maxa,τdf (X|a, τd;H0)

H1

≷
H0

η. (22)

Substituting the maximum likelihood estimates (MLEs) of the parameters
under each hypothesis into the PDFs, constructing the likelihood ratio, taking
the logarithm of it, and performing some simplification yield the test statistic

ln lGLR(X)

= − 1

2Nσ2

{[
X−Φdâ1 −Φsb̂1

]H [
X−Φdâ1 −Φsb̂1

]

−[X−Φdâ0]
H
[X−Φdâ0]

}

=
XH

[
Q
(
QHQ

)−1
QH −Φd

(
ΦH

d Φd

)−1
ΦH

d

]
X

2Nσ2

=
1

2Nσ2

{
XH

(
I−Φd

(
ΦH

d Φd

)−1
ΦH

d

)
ΦsKΦH

s

·
(
I−Φd

(
ΦH

d Φd

)−1
ΦH

d

)
X
}H1

≷
H0

η.

(23)

When only one path exists for the signal, matrix K decreases to one di-
mension, and the expression is similar as (30) in [24]. The test statistic can be
further expressed as

T0(X) = 2 ln lGLR(X)

=
1

Nσ2
XH

(
I−Φd

(
ΦH

d Φd

)−1
ΦH

d

)
Φs

·
[
ΦH

s

(
I−Φd

(
ΦH

d Φd

)−1
ΦH

d

)
Φs

]−1

·ΦH
s

(
I−Φd

(
ΦH

d Φd

)−1
ΦH

d

)
X

=
1

Nσ2
XHP⊥

d Φs

[
ΦH

s P⊥
d Φs

]−1
ΦH

s P⊥
d X

=
1

Nσ2

∥∥∥Λ− 1
2UHΦH

s P⊥
d X

∥∥∥
2 H1

≷
H0

η,

(24)

where Pd = Φd

(
ΦH

d Φd

)−1
ΦH

d is the projection matrix that projects a vector

onto the column of Φd and P⊥
d = I−Φd

(
ΦH

d Φd

)−1
ΦH

d is the orthogonal pro-
jection matrix that projects a vector onto the space orthogonal to that spanned
by the columns of Φd. The matrix ΦH

s P⊥
d Φs = UΛUH involves eigen decom-

position. Orthogonal projection matrix P⊥
d has the Hermitian and idempotent

property, that is,P⊥
d =

(
P⊥

d

)H
and P⊥

d =
(
P⊥

d

)2
.
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If the subspace spanned by the columns of Φd is considered a blast subspace
and the orthogonal subspace is regarded as the signal subspace, P⊥

d in (24) rep-
resents the projection of received vector X onto the signal subspace at the given
time delays of the direct blast. When the threshold of detection is independent
of the blast power, the detection exhibits the CFAR property. Equation (24) in-
dicates that GLRT is dependent on the signal subspace dimension or number of
components. Ref. [25] showed that given matrix A, the quadratic form XHAX

is χ2 distributed with 2p degrees of freedom, and p is the rank of A if and only
if A is idempotent, i.e., A2 = A. With this property, the detection statistic is
χ2 distributed with 2p degrees of freedom. Consequently,

XH

√
Nσ

P⊥
d Φs

[
ΦH

s P⊥
d Φs

]−1
ΦH

s P⊥
d

X√
Nσ

∼
{

χ2
v(δ0) under H0

χ2
v(δ1) under H1

.

(25)

Hence, we have

v = rank
{
P⊥

d Φs

[
ΦH

s P⊥
d Φs

]−1
ΦH

s P⊥
d

}

≤ min
{
rank

{
P⊥

d Φs

[
ΦH

s P⊥
d Φs

]−1
}
, rank

(
ΦH

s P⊥
d

)}

= min
{
rank (Φs) , rank

(
ΦH

s

)}
= rank (Φs) .

(26)

From Lemma 2, the noncentrality parameters (δ0, δ1) are respectively ex-
pressed as

δ0 =

(
Φda√
Nσ

)H

P⊥
d Φs

[
ΦH

s P⊥
d Φs

]−1
ΦH

s P⊥
d

(
Φda√
Nσ

)

δ1 =

(
Φda+Φsb√

Nσ

)H

P⊥
d Φs

[
ΦH

s P⊥
d Φs

]−1

·ΦH
s P⊥

d

(
Φda+Φsb√

Nσ

)
.

(27)

Thus, the probability of false alarm and detection can be written as

PFA = Pr {T0(X) > η;H0} = Qχ2
v(δ0)

(η),

PD = Pr {T0(X) > η;H1} = Qχ2
v(δ1)

(η).
(28)

The right tail probability for noncentral central chi-squared distribution can
be achieved using the recursive method proposed by Mitchell and Walker [26].
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4.2 Unknown spectrum power of noise

GLR can be expressed as

LGLR(X) =
maxa,b,τd,τs,σ2f

(
X|a,b, τd, τ s, σ2;H1

)

maxa,τd,σ2f (X|a, τd, σ2;H0)

=

(
σ2
0

σ2
1

)N/2

=

(
[X−Φdâ0]

H [X−Φdâ0]

[X−Φdâ1 −Φsb̂1]
H
[X−Φdâ1 −Φsb̂1]

)N/2

=

(
XH(I−Φd(Φ

H
d Φd)

−1
ΦH

d )X

XH(I−Q(QHQ)
−1

QH)X

)N/2

.

(29)

Let the test statistic be

T1(X) = LGLR(X)2/N − 1

=
XHP⊥

d Φs

[
ΦH

s P⊥
d Φs

]−1
ΦH

s P⊥
d X

XHP⊥
d X

=
XHP⊥

d Φs

[
ΦH

s P⊥
d Φs

]−1
ΦH

s P⊥
d X/(Nσ2)

XHP⊥
d X/(Nσ2)

=
M(X)

D(X)

H1

≷
H0

η.

(30)

Similar to (25), we obtain

M(X) ∼
{

χ2
v(δ0) under H0

χ2
v(δ1) under H1

, (31)

D(X) ∼
{

χ2
r(λ0) under H0

χ2
r(λ1) under H1

, (32)

where r is the rank of matrix P⊥
d . The noncentrality parameters are given by

λ0 =

(
Φda√
Nσ

)H

P⊥
d

(
Φda√
Nσ

)
,

λ1 =

(
Φda+Φsb√

Nσ

)H

P⊥
d

(
Φda+Φsb√

Nσ

)
.

(33)

By normalizing the numerator and denominator with degrees of freedom, we
achieve a new equivalence test statistic

T1
′(X) =

r

v
T1(X) =

M(X)/v

D(X)/r

H1

≷
H0

η. (34)
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Clearly, the distribution of the test statistic is doubly noncentral F distribu-
tion, which is expressed as

T1
′(X) ∼

{
F (v, r, δ0, λ0) under H0

F (v, r, δ1, λ1) under H1
. (35)

Thus, the probability of false alarm and detection can be written as

PFA = Pr
{
T1

′(X) > η;H0

}
= QF (v,r,δ0,λ0)(η),

PD = Pr
{
T1

′(X) > η;H1

}
= QF (v,r,δ1,λ1)(η).

(36)

The right tail probability for the doubly noncentral F distribution can be
calculated using the method proposed by Marc S. Paolella [27].

5 Simulation results

5.1 Experimental configuration

In a shallow water environment, the bistatic sonar consists of a transmitter and
a receiver separated by 3 km and located at a depth of 10 m. The water depth
is set to 40 m, and the sound speed profile is shown in Fig. 2(a). The bottom
is assumed to be a half-space with a density of 1.6 g/cm3 and sound speed of
1720 m/s. A linear frequency modulation (LFM) signal with a duration of 0.5 s,
center frequency of 2 kHz, and bandwidth of 200 Hz is transmitted repeatedly
every 2 s. The received signals are simulated using the BELLHOP ray model [28]
with the consideration of 10 main propagation paths shown in Fig. 2(b). The
received signal is shown in Fig. 2(c). The intruder is a rigid prolate ellipsoid
with a length of 8 and 2 m for the long and short halves, respectively.

To simplify the problem, we assume that the target is at the same depth as
the transceiver and that the target pitch angle is 0 degree. As shown in Fig.
3(a), the underwater target travels straight through the source-receiver line at a
speed of 3 m/s in an observation duration of 1000 s. At 500 s, the target crosses
the source-receiver line at (200, 0)m on the horizontal plane. Given that the
movement of the target changes the geometric relationship between the target
and bistatic system, the target strength (TS) fluctuates continuously during the
closing event. The bistatic separation angle increases as the target approaches
the baseline. It is 180 when the target is on the baseline. The bistatic separation
angle gradually decreases during the departure event. Fig. 3(b) shows the TS
variation for the bistatic system during the crossing event calculated using the
deformed cylinder method [29]. During this crossing event, the receiver receives
a total of 500 sets of transmitted signal pulses, and the sampling rate is set to 10
kHz. In the event of the intruder crossing the source-receiver line, an aberration
in the received signals occurs due to the interference between the direct blast
and scattered signal. When an object crosses at midpoint between the source
and receiver, the acoustic field aberration is at the minimum [30]. Hence, to
show the performance of the method in forward detection, a worse situation
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(a)

(b) (c)

Figure 2: Acoustic environment and received waveforms. (a) Sound speed pro-
file in shallow water. The upper volume is approximate isovelocity, and the
lower volume has a negative gradient sound speed profile. (b) Channel impulse
response simulated using the BELLHOP ray model. (c) Received signal without
the target using the BELLHOP ray model.

is considered in the simulation. Multipath time delays are estimated under a
signal-to-noise ratio (SNR) of 0 dB in advance (the scattered signal strength
constantly varies with the movement, so the scattered signals at the crossing
point are used as a reference, and the signal-to-direct blast ratio (SDR) at this
moment is approximately -18.5 dB).As shown in Fig. 4, Gaussian white noise
is added to the received signals with an SNR of 0 dB. When the target reaches
the baseline, the maximum fluctuation occurs, but it does not exceed 0.5 dB.

5.2 Detection Results

GLRT for known σ2 and unknown σ2 are performed on each of the received
signals, and the detection results are shown in Figs. 5(a) and 5(b), respectively.
The received signal achieves a high GLR when the target is beyond the baseline.
The detection results are shown in Figs. 5(c) and 5(d), with the threshold set
at 15.28 and 10.79 dB from (28) and (36), respectively, under the probability
of false alarm 10−6. Given that the estimated multipath delays will not exactly
match the true values when the target is moving, some missing detection exists

13



(a) (b)

Figure 3: Target position and target strength during the crossing event. (a)
Bistatic configuration and target trajectory. (b) Corresponding target strength
under bistatic configuration.
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Figure 4: Variation in the received signal power. When the target reaches the
baseline, the maximum fluctuation occurs, but it does not exceed 0.5 dB.

in the detection results. Moreover, T0 performs better than T1
′ because it has

more prior information on noise power.

5.3 Influence of Noises

Further analysis of the method is performed. We add Gaussian white noise to
obtain different SNRs. The GLRs of hypotheses H0 and H1 computed with
1000 Monte Carlo simulations are shown in Fig. 6. As SNR decreases, the value
of GRL under hypothesis H1 approaches that under hypothesis H0, and their
variances increase. With the setting PFA = 10−6, the Monte Carlo experimental
results are consistent with the theoretical values obtained by (28) and (36), as
shown in Fig. 7. Minimal variations originate from the error of computation.
Furthermore, the performance of T0 is much better than that of T1

′. Under
the SNR of -15dB, the probability of detection is greater than 0.9 for T0 but
is under 0.5 for T1

′. When a probability of detection of 0.9 is required, SNRs
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(a) (b)

(c) (d)

Figure 5: GLRT results in the crossing event. (a) and (b) are the GLR of each
received signal. The dashed line indicates the distance from the target to the
baseline. (c) and (d) are the detection result for and with , respectively. 1
indicates that the target is detected, and 0 indicates that no target is present.

of approximately -15 and -13 dB are needed for T0 and T1
′, respectively. This

condition indicates that the performance decreases by 2-3 dB when the noise
power is unknown.

5.4 Influence of SDR

As can be seen from (25) and (31), detection performance has a significant
relationship with the direct blast, which depends on Φd. Thus, the performance
is associated with SDR. In this part, the performance of the detection method
is analyzed in consideration of SDR. The results under different SDRs for T0

and T1
′ are shown in Fig. 8. A large SDR has better detection performance

than a low SDR. When the SDR is -15 dB, a small decrease in performance
occurs compared with the SDR of -10 dB. When the SDR decreases to -20 dB,
a large decrease occurs. The probability of detection decreases sharply when
SDR decreases.

5.5 Influence of Number of Paths

As discussed in the previous parts, time delay estimates exert a great impact on
detection performance. Time delay resolution is associated with the frequency
band of the transmitted signal. Generally, a wideband signal provides a high
resolution in time delays, such that time delay estimates may be accurately
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(a) (b)

Figure 6: T0 of hypothesis H0 and T1
′ of hypothesis H1 under different SNRs.

The error bars indicate standard deviation.
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Figure 7: Probability of detection under different SNRs for PFA = 10−6.

achieved with super-resolution methods [31, 32]. In the time delay estimation
procedure, two similar estimated values may appear sometimes, particularly in
cases with low SNRs. When the number of estimated paths is more than the
number of main paths in reality, the delay estimates are well evaluated even
though some of the paths are duplicate. As shown in Fig. 9(a), duplicate esti-
mates exist when 10 paths are considered. Meanwhile, the four delay estimates
of about 2.04 and 2.05 are accurate when 12 paths are considered. This finding
indicates that this method works when the number of estimated paths reaches or
exceeds the number of main paths of the received signal. As shown in Fig. 9(b),
when there are 10 paths for the received signal, the method works if we make 10
multipath delay estimations. A slight improvement in the method is observed
when 12 multipath delays are estimated. For T0, the performance is about 1
dB for SNRs and not more than 1 dB for T1

′. Notably, when the number of
estimated paths is smaller than the number of main paths of the received signal,
the distributions of the test statistics under the two hypotheses are almost the
same, resulting in the failure of the method. If the number of estimated paths
is much larger than the number of true paths, then the inversion of matrix in
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Figure 8: Probability of detection under different SDRs for PFA = 10−6.

(24) and (29) will be singular.

(a) (b)

Figure 9: Influence of the number of paths. (a) Comparison of time delay
estimation results. (b) Probability of detection under different numbers of paths
for PFA = 10−6

5.6 Influence of Number of FFT Points

Only the effect of the number of FFT points N on T0 is calculated here because
numerical calculation of the right-tailed probability of the double non-center F
distribution has a low degree of confidence under high degrees of freedom. The
length of the signal in the time domain is 7000. When the number of FFT points
is smaller than the signal length, truncation occurs and leads to a considerable
reduction in performance. Meanwhile, increasing the number of points to above
8000 will improve the performance of this method slightly, as shown in Fig. 10.
Specifically, calculating T0 requires N3 +(3M +2)N2 +6M2N multiplications,
and calculating T1

′ requiresN3 + (3M + 4)N2 + 6M2N multiplications. Hence,
in-creasing the number of points N will improve the computation burden with
a cubic in-crease.
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Figure 10: Probability of detection under different FFT lengths for PFA = 10−6.

6 Conclusion

A strong direct blast restricts the application of bistatic sonar and makes the
area near the baseline a blind zone for detection. This study presents a novel
and robust method that addresses this problem.

On the basis of the generalized likelihood ratio test, the corresponding test
statistics for known and unknown noise power are proposed by building a fre-
quency domain received signal model. The noncentral central chi-squared dis-
tribution and doubly noncentral F distribution for known and unknown noise
power situations, respectively, are given in theory. The intrinsic CFA is thus
represented.

The developed method requires the transmitted signal to have a certain
duration because multipath propagation overlap in the receiver is required to
satisfy the frequency domain model in hypothesis. In addition, the method is
sensitive to multipath delay estimations; hence, the transmitted signal needs
bandwidth. Although a high-resolution time delay estimation method may be
used, a large bandwidth is still beneficial for accurate time delay estimation.

The simulation results reveal the effectiveness of the method under forward
scattering detection configuration with a strong blast. The sensitivity of many
factors, such as noise, SDR, number of paths, and FFT size, is discussed. The
theoretical and simulated results seem promising, and further sea trials are
needed.

7 Lemma involved in the article

7.1 Lemma 1

For a partitioned matrix, if all inverses exist for proper dimensions of the ma-
trices, then

[
A B

E F

]−1

=

[
A−1 +A−1BKA −A−1BK

−KCA−1 K

]
, (37)
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K =
(
F−EA−1B

)−1
. (38)

7.2 Lemma 2

Let X ∼ CN(u, I) be a complex N × 1 vector, and let A be a Hermitian matrix
of dimension N × N . Then, XHAX has a noncentral, complex, chi-squared
random variable with k complex degrees of freedom and noncentrality parameter
δ if and only if A is an idempotent matrix, in which case the complex degree of
freedom and noncentrality parameters are k = rank(A) = tr(A) and δ = µHAµ,
respectively.
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