
ar
X

iv
:c

s/
03

07
06

4v
1 

 [
cs

.C
E

] 
 2

9 
Ju

l 2
00

3

Implementing an Agent Trade Server

Magnus Boman

Swedish Institute of Computer Science (SICS) AB and The Royal Institute of
Technology, Kista, Sweden

Anna Sandin

Swedish Institute of Computer Science (SICS) AB, Kista, Sweden

Abstract

An experimental server for stock trading autonomous agents is presented and made
available, together with an agent shell for swift development. The server, written
in Java, was implemented as proof-of-concept for an agent trade server for a real
financial exchange.

Key words: Trading agent, Agent server, Financial exchange, Complex order,
Agent programming

1 Introduction

There are always investors seeking to place orders more complicated than
can be accepted by the software of a financial exchange (F/X) system, re-
gardless of its current level of sophistication. To some of these investors, the
agent metaphor is a means to implementing combinatorial, temporal, con-
tingent, or otherwise complex orders. In general, a trading agent is a piece
of encapsulated software that codes the preferences of its owner. In theoret-
ical research, trading agents have been used in idealized games [1], artificial
markets [2], and competitions such as the Trading Agent Competition [3]
(see http://www.sics.se/tac/). To economists, trading agents are specu-
lating noise traders (traders with non-rational expectations and potentially
zero intelligence) [4], often subjected to the Efficient Market Hypothesis and
the Rational Expectations Hypothesis [5], since the empirical evidence against
the accompanying assumptions are directed almost exclusively towards human
traders [6]. In the system of trading agents we consider, the agents interact
with the same order book as the human traders (cf. [7]), resulting in a sys-
tem only slightly more complex than an F/X is today, but a system that is

Preprint submitted to Elsevier Science 19 August 2018

http://arxiv.org/abs/cs/0307064v1
http://www.sics.se/tac/


extremely difficult to analyze (cf., e.g., [8]). From an academic perspective,
the introduction of agents in the actual exchange of real stocks is a formidable
challenge in that it prompts research in real-time control, agent programming,
decision analysis, user interaction, privacy, and security. Its theoretical mod-
els must go beyond agent-based computational finance [9] and agent-based
computational economics [10], and already simulation studies are highly com-
plex [11] [12] [13] [14]. From a commercial perspective, the concept is promising
in that it enables implementation of new services in the service portfolio of
the F/X. A vast range of commercial efforts have helped renew and refine
the concept of an electronic F/X, including ambitious liquidity-moving ap-
proaches, such as OptiMark [15] [16] [17]. This fact notwithstanding, there
has been no technical platform for real stock trading agent development and
no special-purpose server generally available. We rectify this matter by mak-
ing available our documented Java code [18] for such a platform. We have also
implemented an experimental server for supporting agent trading of stocks,
an Agent Trade Server (ATS). The conceptual development [19] was initiated
in 2001 (cf. Fig. 1) in cooperation with OM, the world’s largest supplier of
software to stock exchanges [20], and OM has filed a U.S. patent on the ATS
concept [21]. The ATS was built not with commercial operation in mind, but
as proof-of-concept. That said, OM’s trading package SAXESS and its third
party APIs provided for much inspiration. We have not designed the ATS
for any particular market design. Instead, all agents must abide by the rules
of the F/X. The submarket emerging from ATS operations will depend on
the agents’ business logic, including their decision-analytic [22] and normative
modeling [23] of the market, which we have previously investigated. We have
no illusion of ATS traffic accounting for more than one per cent of any stock
exchange before 2010, and whether or not investors will find the ATS attrac-
tive will to a large extent depend on pricing and other commercial or political
concerns.

The following section briefly describes the role that software, and agent soft-
ware in particular, plays at an electronic F/X. In Section 3, the architecture
of our ATS is explained. In Section 4, the issue of logging and other forms of
keeping history is highlighted. The various business roles, i.e. those interested
in the logs, are also discussed. We end with our conclusions and directions for
future research.

2 Development of Financial Exchange Software

Trading of stocks is normally done through a broker, as shown in Fig. 2. The
trader can be a professional investor, a daytrader, or any other person using
stocks as a means to invest. The broker could be a bank, an Internet broker,
or some other financial institution. The figure is simplified: orders can also be

2



Fig. 1. The four phases of the ATS implementation project, with the most fundamen-
tal at the bottom, and with all four still running. The Gantt schema also indicates
key breakthroughs in each of the four phases. The second conceptual design will
hopefully be made at OM, or at some other ITC provider for F/X software, while in
itself an interesting academic exercise. The first ATS was made publicly available in
January 2003, but the permission to run agents on the ATS was restricted to select
agent developers at SICS and at two Swedish universities. These developers came
up with a first shell in January, which was refined over the following months, and
sophisticated agents are now under development. As a result of a small empirical
study, not reported on here, the first user service—a trade notification service for
smart phones—was recently implemented.

placed by walking into a bank and filling out a form, IP phones are no require-
ment, the computer used is often a PDA, etc. Each broker communicates with
the core of the F/X via a gateway, over leased lines (at Stockholmsbörsen, the
Swedish stock exchange, backed up by an ISDN connection, as well as OMnet,
a fibre-optic MetroLAN option). In Fig. 2, the dissemination of information
from the F/X to the outside world is not shown. Suffice to say here that stock
exchange dissemination is an elaborate system of latencies and routing, in or-
der to secure fairness, and that such information is an important part of the
feedback from core to broker, and from broker to trader.

Suppliers of software to an electronic exchange system are basically of two
kinds: those that provide software serving the core (the order book), and those
that provide software for those interacting with the core (the traders). In most
countries, the software supplier in the first category is also competing in the
second category. In Sweden, for example, OM provides all of the software for
the core, and they also provide the SAXESS and CLICK (for the derivatives

3



Fig. 2. A schematic view of the current trade information flow. For simplicity, dis-
semination procedures are not shown.

market, which we will neglect entirely at this stage) software trading packages,
as well as the SECUR software clearing and back office package. The bulk of
the software aimed at traders and brokers is however developed by third party
software houses. We would like to complicate Fig. 2 slightly (see Fig. 3) by
considering individuals as service provisioners [24], thus introducing a third
kind of code developer. We anticipate that end-user code development in the
form of trading agents will be an increasingly important part of the future
F/X service portfolio.

The third party code pertains to the trading applications used. In order to
use the SAXESS system today, the broker needs a member SAXESS trade
application. Each such application must be certified, to guarantee smooth op-
eration alongside all other running applications. The OM application offered
is SAXESS Trade, an NT-based client-server solution with the trading data
being maintained on an SQL server. There are currently about two dozen cer-
tified alternatives. Each application connects to a SAXESS trade server, which
is in turn connected to the core. The transaction protocol used is XTP (open
eXchange Transaction Protocol) 2.40, an OSI Layer 7 protocol. The Session
Layer protocol used is XMP (eXchange Message Protocol). The transactions
involving the core are governed by a C program, essentially matching the stack
of sell orders with the stack of buy orders. It is important to note that the
matching is deterministic. The ATS concept is not a suggested alternative

4



Fig. 3. Three kinds of code development.

to the SAXESS (or any other) trade server currently in use, but a comple-
ment. In Fig. 4, the ordinary electronic trading is represented by SAXESS.
Upward arrows denote the placing of orders while downward arrows denote
feedback. Each trade application uses zero or more distributed instances of
the SAXESS Trade Server, a freeware available to all registered traders. In
practice, the ATS will also contain an instance of the SAXESS Trade Server,
since the latter contains the latest API for communicating with the core. All
communication with the core goes via the Front End (FE). The wall indicates
the physical and logical boundary between the market owner and the outside
world, while the barbed wire surrounding the core illustrates a further level of
protection. The shadow backup system is not shown.

Note that brokers may still be used, for example for legal reasons, when dele-
gating trading to an agent. While delegating the right to place orders in itself
does not introduce non-determinism in the marketplace, there is nothing that
per se stops an agent developer to introduce non-determinism in the business
logic of the agent. Security control of agent code is done at the time of agent
certification and testing, and also online in the ATS.

In SAXESS, each trade application must also connect to a dedicated Dis-
tributed Dissemination Server (DDS). With an ATS running together with a
SAXESS trade server, the owner of the F/X has the option to either route all
traffic feedback through the existing DDS channels, or to complement the

5



Fig. 4. The ATS as a complement to ordinary electronic trading.

6



DDS with ATS traffic feedback. In particular, the agents running on the
ATS could subscribe to ATS traffic feedback of various sorts, and at vari-
able cost. Even non-professional traders are no strangers to varying levels of
sophistication of the individually specified trading constraints built on feed-
back. The stop loss service offered by Internet brokers (such as Avanza; see
http://www.avanza.com) is a case in point.

The ATS concept provides the third party software houses with a business op-
portunity, viz. to provide code for the agents trading on the ATS. This involves
coding investor preferences and encapsulating these into agents, whereafter the
agents are placed on the ATS, without disclosure. Preference elicitation is as
always difficult, but suffice to say here that investors will come in many vari-
eties, from those that have developed advanced agents on their own, to those
that have no clue on agent programming. A template agent can be coded
based on the investor filling out a fairly simple questionnaire. The size and
structure of such template agents is simple, and the first agent shell for our
ATS has already been written [25]. After the agent is placed on the ATS,
there remains the challenge of providing software services for notification and
(depending on security issues) possibly for termination of agents. Investors
no doubt require interfaces for a variety of modalities, and will in the future
include roaming [26].

3 An Agent Trade Server Architecture

We developed the ATS in-house at SICS, in order to allow for free experimen-
tation with agent code and simultaneously adjusting and adding code to the
server. A jar-file containing an agent can be run locally or remotely. Each trad-
ing agent executes in its own thread. The three server packages implemented
(cf. Fig. 5) are described in turn below. The choice of Java was motivated,
among several factors, by smooth compatibility with small devices, such as
Java-enabled cell phones. While there is no theoretical reason to limit any
sandbox environment for agent development to only one language, Java cur-
rently seems the most practical first choice. For instance, Java’s policy files are
useful for defining the boundary between ATS and agent, and java.security

allows for basic signing of agent code.

3.1 se.sics.ats.core

This package represents the interface towards the agents, and is distributed to
agent developers. Initially, the list of agent developers will most likely overlap
considerably with the list of certified SAXESS members, and the principles

7

http://www.avanza.com


Fig. 5. The three ATS packages implemented.

for testing similar. The next step is then to automate the certification process
so that individual agent developers can submit agents to the ATS. Since there
are legal and practical reasons for the market owner not to certify every single
developer, there is room here for traditional as well as agent brokerage. The
class AgentComponent specifies all ATS interfacing demands on the agent. For
instance, the agent must have functionality for starting and stopping. The class
AgentContext is the agent’s handle on the server. AgentContext is inspired
by and adheres to the SAXESS Trade API for third party code development,
based on Microsoft’s Component Object Model (COM).

3.2 se.sics.ats.reference

This package contains the implementation of the ATS itself. It contains log
handlers and socket tranceivers.

8



3.3 se.sics.ats.data

This package represents the interface towards the stock exchange. This is
where the ATS will connect to the core of the F/X. For now, it contains
a parser which, like the connection, can easily be replaced by another. It
now parses data disseminated through the WWW (more specifically, it parses
http://www.stockholmsborsen.se). The ATS thus uses real stock exchange
data, albeit with a delay of up to 15 minutes. We have limited its capability
at the outset to the most traded stocks on the Stockholmsbörsen A-list. The
package also simulates an order book.

4 Agent Shell Execution

We can now specify the “Agent” rectangle from Fig. 5 above by explaining the
agent shell. We first turn to some more abstract aspects of ATS management,
however.

4.1 Roles

In our proof-of-concept implementation work, we have felt a need for a division
of labor between agent developers and ourselves: the ATS developers. In order
to leave the core software unchanged—a requirement from OM, and most likely
from any market owner—we also need to define the role of ATS administrator.
The regulation of trade in SAXESS is today done through surveillance of the
Trading Engine (SaxView), as well as through the official trading control and
supervisory functions units. These units operate on the core and will be used
also for agent trading. In addition, the ATS administrator must store and sign
certificates for authenticated agent code developers.

In addition, there are new business roles in the future scenario of commer-
cially available ATS services, perhaps including dedicated agent brokers. We
have enabled this new business role by implementing an object relating agent
brokers and their agents. This object maintains references, deducts brokerage
fees, and supplies data for notification services. For security reasons, the agent
broker object is placed in the same execution environment as the ATS. The
only agent manipulation granted the object is the killing of an agent thread,
should this become necessary.

9

http://www.stockholmsborsen.se


Fig. 6. Excerpt from a log of Daytrader, a simple agent running on the ATS.

10



4.2 Logs

The ATS administrator must monitor the actions of all agents on the ATS,
and activity logs are therefore needed. These logs are likely to be processed
only automatically, but in case of system failure or suspected illicit agent ac-
tion, manual inspection may be required. For this reason, the responsibility
for logging should not be distributed, but be the responsibility of the ATS
administrator. Each agent should be allowed read and write access to its own
action logs, since logs provide interesting information on top of the gener-
ally available trade statistics. Logged information could be used for machine
learning, which could occur offline or online, depending on the agent business
logic. An excerpt from a log of a simple agent, to be discussed further in the
next subsection, is shown in Fig. 6. The full source code of the agent, as well
as the full log, has been published [25]. Since all stakeholders are potentially
interested in parsing the log, it is in XML format. For instance, the ATS ad-
ministrator might like to find the agent responsible for some illegal action on
the ATS. Analogously, an agent broker might seek to attribute errors to the
ATS implementation, using logs as evidence. The error log of Java exceptions
and String objects is kept separate from all other logged data.

4.3 se.sics.ats.agent

The structurally designed agent shell packages are intended as support for ATS
agent development, and their JavaDoc is publicly available [27]. We give an
abstract overview here of the low coupling design, so that the role of the shell
in our implementation of the ATS is made clear. Agents extend the abstract
TradeAgent class (see Fig. 7), which handles all ATS interaction, including the
final methods initialize and start, invoked by the ATS [18]. The agent
(SubAgent) gets information about stocks through various get methods, or by
subscribing to stock changes (cf. Fig. 6). The latter alternative is the one used
by most non-artificial stock traders today, and so subscription procedures and
costs have already been carefully designed at most exchanges.

Agents place orders using the Order object, and its interface OrderListener [18].
An order is created by calling the method createOrder. The OrderListener
then implements the methods orderCancelled and orderClosed, which re-
sult in account updates and logging, as demonstrated in Fig. 6. The account
and portfolio maintenance should in any commercial implementation of the
ATS be handled by standard F/X middleware. Similarly, the AgentBroker

has only minimal functionality in this version of the ATS.

11



Fig. 7. The agent shell package structure.

5 Conclusions and Further Research

We have described a proof-of-concept implementation of a running agent trade
server, which we believe serves as a blueprint for future implementations in-
tended for live use on a real financial exchange. We have also constructed and
described an agent shell, currently in use for server implementation of agents
of increasing complexity. These agent developers are also providing the first
anecdotal evidence of the quality of our implementation. We intend to en-
gage more developers before a formal evaluation is made. Our future work (cf.
Fig. 1) includes demonstrating that the size of an agent with a sophisticated
business logic is manageable. We have also implemented various demonstra-
tors for notifying services, to be used for presenting agent logs to the agent
brokers and agent owners [28]. While professional trading is a highly collabo-
rative activity [29], the agents in our set-up model each other only in a weak
sense, based solely on their bidding. There are several multi-agent system as-
pects that deserve attention, such as multiple agent submission for teamwork,
or even for manipulative purposes. Finally, the effects on the entire financial
system as a result of wide adoption of agent trade is under investigation. This
work is being done together with the Stockholm School of Economics and OM.

Acknowledgments

The authors would like to thank Jesper Johansson and Michael Poijes, who
wrote the first agent shell and some of the server code, and kindly provided

12



log data. David Lybäck and Ulf Essler contributed with important comments
and fruitful discussions. The Vinnova project TAP on accessible autonomous
software provided the authors with the time required for this study.

References

[1] J. Rust, J. H. Miller, R. Palmer, Characterizing effective trading strategies–
insights from a computerized double auction tournament, Economic Dynamics
and Control 18 (1994) 61–96.

[2] R. G. Palmer, W. B. Arthur, J. H. Holland, B. LeBaron, P. Tayler, Artificial
economic life—a simple model of a stockmarket, Physica D 75 (1–3) (1994)
264–274.

[3] A. Greenwald, The 2002 trading agent competition—an overview of agent
strategies, AI Magazine 24 (1) (2003) 83–91.

[4] J. B. D. Long, A. Shleifer, L. H. Summers, R. Waldmann, The survival of noise
traders in financial markets, Journal of Business 64 (1991) 1–19.

[5] T. Lux, M. Ausloos, Market fluctuations I: Scaling, multi-scaling and their
possible origins, in: A. Bunde, J. Kropp, H.-J. Schellnhuber (Eds.), Science
of Disaster—Scaling Laws Governing Weather, Body, Stock-Market Dynamics,
Springer-Verlag, 2002, pp. 373–409.

[6] T. Lux, Herd behaviour, bubbles and crashes, The Economic Journal 105 (1995)
881–896.

[7] M. Boman, S. Johansson, D. Lybäck, Parrondo strategies for artificial traders,
in: N. Zhong, J. Liu, S. Ohsuga, J. Bradshaw (Eds.), Intelligent Agent
Technology, World Scientific, Singapore, 2001, pp. 150–159.

[8] P. Jefferies, M. Hart, P. Hui, N. Johnson, From market games to real-world
markets, European Physical Journal B 20 (1) (2001) 493–501.

[9] B. LeBaron, Agent-based computational finance–suggested readings and early
research, Economic Dynamics and Control 24 (2000) 679–702.

[10] L. Tesfatsion, Agent-based computational economics–growing economies from
the bottom up, Artificial Life 8 (1) (2002) 55–82.

[11] M. Lettau, Explaining the facts with adaptive agents–the case of mutual fund
flows, Journal of Economic Dynamics and Control 21 (1997) 1117–1147.

[12] T. Lux, M. Marchesi, Scaling and criticality in a stochastic multi-agent model
of a financial market, Nature 397 (1999) 498–500.

[13] K. Bertels, M. Boman, Agent-based social simulation in markets, Electronic
Commerce Research 1 (1–2) (2001) 149–158.

13



[14] J. D. Farmer, S. Joshi, The price dynamics of common trading strategies,
Journal of Economic Behavior and Organization 49 (2002) 149–171.

[15] W. A. Lupien, J. T. Rickard, Crossing Network Utilizing Optimal Mutual
Satisfaction Density Profile, uS Patent No. 5689652 (1997).

[16] E. K. Clemons, B. W. Weber, Restructuring institutional block trading—an
overview of the OptiMark system, in: Proc HICSS 6—Organizational Systems
and Technology, IEEE Computer Society, 1998, pp. 301–310.

[17] C. Gerber, J. Teich, H. Wallenius, J. Wallenius, A simulation of OptiMark’s
electronic matching algorithm and its simple variations of instutional block
trading, Decision Support Systems In press.

[18] A. Sandin, AgentTradeServer javaDoc, Available at
http://www.sics.se/~sandin/ats/doc/ (2002).

[19] D. Lybäck, M. Boman, Agent trade servers in financial exchange systems, ACM
Transactions on Internet Technology 3 (4), in press.

[20] R. Sales, First Europe, now the world, Wall Street and Technology online,
available
at http://www.wallstreetandtech.com/story/inDepth/WST20010816S0009
(August 2001).

[21] An Automated Semi-Deterministic Trading System, filed to US Patent and
Trademark Office (March 2002).

[22] L. Ekenberg, M. Danielson, M. Boman, Imposing security constraints on agent-
based decision support, Decision Support Systems 20 (1) (1997) 3–15.

[23] M. Boman, Norms in artificial decision making, Artificial Intelligence and Law
7 (1999) 17–35.

[24] F. Espinoza, Individual service provisioning, Ph.D. thesis, Dept of Computer
and Systems Sciences, Stockholm Univ (2003).

[25] J. Johansson, M. Poijes, Agent shell for stock market systems, Master’s thesis,
Dept of Computer and Systems Sciences, Stockholm Univ (2003).

[26] M. Boman, M. Bylund, F. Espinoza, M. Danielson, D. Lybäck, Trading agents
for roaming users, presented at the Tokyo Mobile Roundtable, May 2002.
Available at http://www.arxiv.org/abs/cs.CE/0204056 (May 2002).

[27] J. Johansson, M. Poijes, DayTrader agent javaDoc, Available at
http://www.dsv.su.se/~mich-poi/trade_agent/javadoc/ (2003).

[28] S. Nylander, M. Bylund, M. Boman, Mobile access to real-time information—
the case of autonomous stock brokering, submitted. (2003).

[29] C. Heath, M. Jirotka, P. Luff, J. Hindmarsh, Unpacking collaboration—the
interactional organisation of trading in a city dealing room, in: G. D. Michelis,
C. Simone, K. Schmidt (Eds.), Proc ECSCW’93, Kluwer Academic, 1993, pp.
155–170.

14

http://www.sics.se/~sandin/ats/doc/
http://www.wallstreetandtech.com/story/inDepth/WST20010816S0009
http://www.arxiv.org/abs/cs.CE/0204056
http://www.dsv.su.se/~mich-poi/trade_agent/javadoc/

	Introduction
	Development of Financial Exchange Software
	An Agent Trade Server Architecture
	se.sics.ats.core
	se.sics.ats.reference
	se.sics.ats.data

	Agent Shell Execution
	Roles
	Logs
	se.sics.ats.agent

	Conclusions and Further Research
	References

