
Is This Brand Ephemeral? A Multivariate Tree-based Decision Analysis of New 

Product Sustainability 

INTRODUCTION 

Globalization, technological innovation, advances in supply chain management, 

and perhaps most importantly the diversification of consumer needs have led to 

the proliferation of new brands of consumer goods and services. Every year in the 

U.S. market approximately 1,000 new types of ice cream and other diary products 

are launched (New Product News, 1999). In the consumer service industry, one of 

the leading credit card issuers, Capital One, issues over 1,000 new types of credit 

cards every year to target specific segments of the consumer market (Fishman, 

1999). The proliferation of new consumer goods and services is not only restricted 

to developed countries. In China, for example, for categories such as packaged 

food (e.g., bottled water) and popular electronics equipment (e.g., mobile phones 

and Discmans) a substantial number of new brands appear in the market every 

month—while an equally large number of brands vanish every month. Because of 

the relatively low overhead for manufacturers to produce goods that are slightly 

differentiated from existing products, it is common practice for manufacturers to 

launch multiple items under one brand name, multiple lines of brands, or 

multiple lines of products under the same or different brand names. This is often 

used by companies as a defensive strategy in protecting existing market, or as a 

proactive approach in opening untapped market segments. While some of the 
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new launches will successfully meet the preference and taste of specific market 

segments and survive the initial launching phase, the reality is that others will 

fail and prove to be ephemeral. Indeed, for consumer packaged goods such as 

snacks and stationery, it is estimated that only one-quarter to one-third of new 

launches will survive more than two years (Kotler, 2000). 

The commoditization of consumer goods and the proliferation of new 

brands have increasingly shifted the focus of the decision concerning new product 

launches from the supply chain to the so-called “demand chain” (Kahn, McLister, 

1997). In order to quickly adjust to changing consumer tastes and preferences, 

information about consumer reception of a new launch has to be gathered quickly, 

and a timely assessment of the product must be made before further resources 

are committed. Because shelf space in retail outlets is limited, new launches 

generally do not enjoy an extended period of time to prove themselves. Managers 

are pressured to make a quick decision as to whether a product should be allowed 

to remain in the market. In many cases, these decisions are based on limited 

performance data from the initial period of product launching. Prolonged 

decisions to discontinue unsuccessful products may unnecessarily lead to 

increased losses and to the wasting of resources that otherwise could have been 

used for launching new brands or promoting more promising existing brands. On 

the other hand, prematurely terminating potentially successful products would 

mean lost opportunities and profits.  



 3

In this paper, we propose a method that aims to help managers determine 

whether a newly launched product should be allowed to remain in the market 

given only early performance data from the initial phase of the launch. The 

proposed method is based on a data-driven, multivariate decision-tree approach, 

and is tailored to the action requirements of decision science applications. 

Organizations have now extensively used data-driven, learning-based systems to 

support their decision-making process, and many have reported significant 

financial gains as a result of such improvement (e.g., Goonatilake, 1995). To 

illustrate the proposed method, we apply it to transaction data from a popular 

consumer packaged good—the instant noodle cup—which are gathered from its 

largest market, which is the Japanese market. Conventional wisdom suggests 

that the decision to continue or terminate a new product can be based on 

aggregated sales volume or profit data gathered during the launching period. 

However, our experience with the packaged food industry in Japan was that such 

a method might fail. For example, our analysis indicated that in the instant 

noodle cup market a new launch typically can only achieve a small market share. 

When a new product has high trial volume (the first purchase) but low repeat 

volume (the second and future purchases), the product is more likely to fail than 

one that has smaller trial volume but high repeat rates. A decision that solely 

relies on early sales volume may identify a potentially weak product that has 
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good initial volume (perhaps because of promotional cuts) as a success and a 

potentially strong product that does not have high initial volume as a failure.  

As far as we know, the literature on decision analysis for continuing or 

terminating new products in a mature market is sparse. The most recent 

example that we found is Lin & Chen (2004). The authors described a fuzzy-logic 

based decision system that was used to support a go/no go business decision for 

launching a new product. There are, however, several related literatures— 

managing new, innovative products and brands; demand forecasting; and new 

product adoption. The first literature mainly concerns the development and 

introduction of innovative and often radically designed new products into a 

market, either traditional or new (Cohen, Eliahberg & Ho, 1996; Crawford & 

Benedetto, 2003). Thus, their focus is not on the point of decision after the initial 

launch of undifferentiated products in a mature market. On the other hand, 

demand forecast models tend to study demand under the framework of predictive 

models, and models for repeat purchase (Fourt et al., 1960; for Japanese market 

application, Nakanishi, 1984). Some other recent examples include Cooper et. al. 

(1999) where a knowledge discovery system for tactical planning forecast was 

proposed. Although companies do require accurate forecast models to predict 

sales during and after the launching phase, this specific information is not 

particularly helpful for predicting the fate of a new launch. Finally, new product 

adoption literature aims at predicting the trajectory of sales of new products and 
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their diffusion after they are introduced in the market (Bass, 1969; Kalish, 1985; 

Mahajan, Muller, & Wind, 2000). All three bodies of literature, while related to 

our current interest, are not immediately relevant to solving the problems we 

encountered.  

There are several distinctive features about our approach. First, instead of 

requiring a forecast model for predicting sales volume for future periods, the 

approach provides an action-oriented decision tool to help managers arrive at and, 

perhaps to a lesser extent, justify a “go or not go’’ decision. Second, it integrates 

information from several sources—product, customer, and market conditions. 

Furthermore, the tool allows distinct types of input. For example, it can 

simultaneously handle sequential pattern data such as sales volume as a 

function of time and other non-time-varying input. Accordingly, it generates a set 

of interpretable multivariate induction rules as output.  

 

MANAGING NEW LAUNCHES 

In this section, we describe the specific example under which the decision 

problem arises—the instant noodle cup market in Japan, which also happens to 

be the largest market for instant cup noodles. Although the example contains 

conditions that are rather specific to the instant noodle industry, the problem we 

illustrate should be rather general in nature. Providers of other consumer 

products (e.g., snacks) and services (e.g., credit cards) face similar problems, 
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although in different contexts (e.g., the launching and observation period may be 

longer).  

The Japanese instant noodle market is the largest in the world, and is 

approximately U.S. $4 billion in size. Six major companies—among them Nissin 

Food, which first launched packaged instant noodles—controls approximately 

90% of the market (Yano, 2002). Each manufacturer maintains several lines of 

products under different brand names. The instant noodles are usually 

differentiated by factors such as price (a unit sells for U.S. 70 cents to $2.00 in 

Japan), flavor (traditional chicken and beef tastes to newer ones such as green 

tea and cheese-curry), type (e.g., ramen, udon), and package (e.g., cup, bowl, 

pillow-like package). In this paper, we focus on instant cup noodles. While the 

number of new launches differs from year to year, our recent survey showed that 

there were over 300 new products of instant cup noodles introduced in the year 

2001. There are several primary retail channels for instant cup noodles in Japan, 

including supermarkets, convenience stores, and local grocery stores. Shelf space 

differs across channels and generally is highly competitive. For example, the 

shelf space available in a supermarket for instant noodles allows the display of 40 

to 50 products, while in convenience stores such as Seven-Eleven™, the 

competition is more intense, and only 20 to 30 products may be displayed. 

Because of the competition for shelf space, brand managers often have to 

constantly review performance data and make decisions about which products 
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are to be displayed in each market. More importantly, they are also required to 

make judicious decisions as to whether or not a newly launched product should be 

allowed to continue.  

The traditional method for making this decision is often based on a 

combination of aggregated sales data and the experience of brand managers. For 

example, when early aggregated sales volume is not satisfactory, the brand will 

be terminated. However, this approach is dependent upon the experience of the 

individual manager. The decision is also complicated by the fact that for most 

newly launched products the initial sales volumes are generally small and 

contain high variance. A seemingly unpopular product in the first two weeks may 

suddenly gather momentum because it takes time for word of mouth to spread. 

On the other hand, a product may be seemingly popular in the first two weeks 

because of the initial promotional price cut—a factor that often confounds the 

performance of the product during the initial launching period—but fail to 

sustain its popularity when the price promotion is stopped. Furthermore, 

aggregated sales data do not take into account the characteristics of who is 

buying (or not buying) the product. For example, when a large proportion of the 

consumers are trial buyers and only buy because of the initial price promotion, 

using only aggregated data on sales volume could be misleading.  

It is also important to incorporate marketing variables into the decision. 

Some new items are merely extensions of an existing, strong brand line, and 
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some are designed as flanker brands targeting a different group of consumers 

from the established brand. In such cases, the strength of the existing brand or 

the reputation of a manufacturer may play a role in increasing the likelihood of 

survival. Some other marketing variables are more complex. For example, in 

order to develop new flavors for instant cup noodles, manufacturers often scout 

famous local restaurants for recipes. Once they have found a marketable recipe, 

the manufacturer licenses the brand name of the selected restaurant and uses it 

as the brand name for their new product. Some marketers also use the names of 

local places as brand names (this is common practice in the bottled water 

industry). Besides a few brand names that have broad reach, most instant cup 

noodle brands appeal to local tastes and preferences and will likely survive if the 

products can sell well in a concentrated region. Such marketing variables, which 

could enhance the quality of decisions, are not made explicit in traditional 

analysis.  

The problem we describe above presents a challenge and an opportunity 

for decision science researchers and practitioners. To satisfactorily solve the 

problem, efficient data learning systems that incorporate comprehensive 

information need to be developed. In this paper, we describe a tree-based decision 

system that directly addresses the shortcomings of traditional methods, and we 

compare its performance to several commonly used algorithms.  

 



 9

THE DECISION SYSTEM 

This section describes the decision support system and the data set. Comprising 

three components, the decision system analyzes historical data and provides 

interpretable results for supporting marketing decisions. The first component is a 

preprocessing machine, which extracts relevant input variables from raw 

transaction data collected from frequent shopper programs (FSP) from various 

retail channels. The input variables are then relayed to the second component, 

the knowledge discovery machine EBONSAI, which contains two subcomponents: 

the Data Transformation Engine (DTE) and the Inference Engine (IE). The  

DTE transforms temporal data into string sequence patterns, and the IE 

attempts to learn from the sequence and determine a set of induction rules. 

Finally, the reporting component reports the set of induction rules. Figure 1 

depicts the decision system.  

Insert Figure 1 Here 

 

Data Description  

The raw transaction data sample collected from our FSP system contains 38 

million transactions from 43,363 customers. The data set includes purchase 

history collected by a system of seven retail stores in a supermarket store chain 

from August 2000 to October 2001. At least 3 weeks of data were collected after 

the release of each product, and there were a total of 579 new products of instant 
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noodle introduced during this period of time. Figure 2 shows the distribution of 

the survival time for this sample of new launches. It can be seen that the new 

launches approximately cluster into several classes : 

• Class I. These products quickly disappeared from the shelf within 30 days 

after launching. 

• Class II. These products survived for 2 to 4 months and eventually 

vanished from the shelves. 

• Class III. These products lingered on for 5 to 8 months. 

• Class IV. These products survived for more than eight months. The 

products in class are regarded as successful launches. 

 

Insert Figure 2 here. 

 

A portion of products from Class I in fact consisted of test-market cup 

noodles. Test market products were only launched to gather pilot data on how the 

market would respond to an experimental new product. By design, test market 

products were not intended to last, and so this class of products was excluded in 

the subsequent analysis. In order to focus our analysis on surviving and 

non-surviving brands, we collapsed Class II and III and defined the combined 

class as non-survivors, whereas Class IV was defined as survivors. The variable 
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that indicated survival status was denoted by SURV. This variable will be used as 

our primary outcome variable in the subsequent analysis. 

 We further partitioned the sample to form the training and the test data 

sets, respectively. Table 1 shows the number of products cross-tabulated by the 

class variable and by whether it belongs to the training or the test set. The 

decision system was first trained on the training data set to produce an 

EBONSAI tree-based model. Then the performance of the model was evaluated 

on the hold-out sample of test data set. This blinded approach to evaluation 

ensures an objective assessment of how the system may perform with a new and 

unseen data set.  

 

 

 

 

 

Target Test Train Total 

Non-survivors  84 163 247 

Survivors  25 175 200 

Total 109 338 447 

 

 Table 1. Distribution of surviving products in training and test sets 
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To predict survival, three sources of information—customer information, product 

attributes, and marketing information—were used. Customer information was 

extracted from the FSP raw data by the preprocessing machine. It included the 

variables REPR and RHUSER, which respectively represented the repeat 

purchase rate and the ratio of heavy instant cup noodle users. REPR was defined 

as the proportion of buyers who had purchased the product in the previous week 

and also bought in the current week. A heavy user was defined as someone who 

fell into the top 33% of the buyers by volume (number of units). Both variables 

are time-varying (i.e., these variables changed over time). Specifically, they were 

coded as a time sequence of alphabets, with each alphabet indicating the status 

at a specific time point. The second source of information, product attributes, 

included the variables MANUF and TASTE. They were categorical variables 

respectively representing the manufacturer of the product and the flavor of the 

product, and both were non-time-varying. The third category of variables was 

related to sales and pricing: SALES was weekly sales volume of each product, 

which was a time-varying variable; REDPRICE was the largest discount ratio of 

sales price to regular price for the first 3 weeks after the release date (value: 

between 0 to1); and DISC was the time at which the product was first sold with 

discounted price (value: 1st week, 2nd week or 3rd week). Table 2 shows the list of 

important input variables to the decision system and their summary statistics. 
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Except for the variables REPR and RHUSER, the correlations among the other 

variables were not significant. The correlation between REPR and RHUSER was 

approximately 0.48 (both measured at the 3rd week).  

 

Variables Average 
Standard 

Deviation 
Data Type 

SALES(1) 3.01 1.41 Time-varying 

SALES(2) 3.07 1.40 Time-varying 

SALES(3) 3.05 1.41 Time-varying 

REDPRICE 0.94 0.12 
Non-time-varying 

0-1 

DISC 0.56 1.03 
Non-time-varying 

(1,2,3) 

REPR(2) 2.10 1.06 Time-varying 

REPR(3) 1.86 1.16 Time-varying 

RHUSER(1) 2.99 1.42 Time-varying 

RHUSER(2) 2.66 1.62 Time-varying 

RHUSER(3) 2.46 1.74 Time-varying 

Table 2. Descriptive statistics of important variables in the model. The week 

number is represented as (1), (2), and (3).  
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Knowledge Discovery Engine : EBONSAI 

EBONSAI, or Extended-BONSAI is a tree-based rule-induction engine that 

classifies pattern data in the form of character substrings. EBONSAI extends the 

work of BONSAI, which was first developed by Shimozono et al. (1994). The 

underlying concept of BONSAI originates from Arikawa et al., 1993, in which the 

authors applied the idea to the identification of genome sequences. Effectively, 

EBONSAI is a multi-attribute version of a commonly used induction method, ID3, 

of which later versions are known by other names such as C4.5 and C5.0 (Quilian, 

1986, 1993). A rule-induction engine achieves automatic learning from a set of 

examples (called a training or learning set) for which the outcome is known. With 

sufficient examples, the system generates induction rules that mimic the decision 

outcome of the examples in the training set. Many tree-based rule-induction 

methods, including ID3 and EBONSAI, create a tree from a series of binary splits 

on attributes. The collection of splits partitions the attribute space into a set of 

non-overlapping rectangles.  

The unique feature of EBONSAI is its treatment of string variables (e.g., 

weekly observations of an outcome such as a high or low pattern of sales). Instead 

of treating a string as comprising individual variables in splitting, EBONSAI 

seeks “character substring” to optimize splits (Hamuro, et al., 2002). An example 

of a character substring is an observed sales pattern for a five-week period: 

(VH,H,M,L,L), in which we first see a very high level of sales (VH) in the first 
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week, then a high-level of sales (H) in the second week , then moderate sales (M) 

in the third week, and finally low sales (L) in the fourth and fifth weeks. Now, we 

see a high proportion of failure cases containing the pattern (VH,H,M,L,L), then 

a learning algorithm may want to include the string as a criterion for splitting 

the data—namely, partitioning the data into those that contain the pattern and 

those that do not. In general, EBONSAI treats patterns as strings of categories, 

and the collection of categories is called the alphabet set. For example, 

{VH,H,M,L} forms an alphabet set. Details of the learning algorithm will be 

provided in the following subsections.  

EBONSAI comprises two engines—the data transformation engine (DTE) 

and the knowledge discovery engine (KDE). DTE transforms data into the 

appropriate character strings suitable for input into KDE. Then KDE applies a 

greedy algorithm to search over the space that contains combinations of 

character strings to identify the appropriate candidate for splitting the data 

space. We separately describe the two engines as follows: 

 

Data Transformation Engine 

DTE transforms pattern data into character strings. The term “pattern data” 

refers to time-varying input: SALES, REPR, and RHUSER. The variable SALES, 

for example, is a d-tuple (from d weeks of sales data) and is required to be 

transformed into a string of characters in which each character represents a 
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category of level of sales. The transformation takes place in two steps: first, each 

continuous variate is discretized into k levels, where k is predetermined. Second, 

the d-tuple of the continuous variates is mapped to a corresponding d-tuple of the 

categorical variable. Note that the order of the d-tuple is important and that each 

d-tuple will be treated as multivariate data in the implementation of the 

inference engine. Figure 3 illustrates the two-step transformation procedure of 

DTS. 

 

Insert Figure 3 Here 

 

We use the following method to determine the number of categories k in 

discretizing a continuous variable. First, we use k = 3,5 for each time-varying 

input. As a result, there are altogether d2 possible ways to create a transformed 

data set, which we called the k-subsample. Second, we apply the learning 

algorithm to each of the d2 k-subsamples and select the best combination of k 

according to the criterion of predictive accuracy in the test set. As we shall see 

later, the result from EBONSAI is rather robust with regard to the choice of the 

value of k.  
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Inference Engine 

KDE is designed to learn from the data (the training set) a set of induction rules 

K so that K can be used to classify new observations. EBONSAI is distinguished 

from other tree-based methods in its ability to process pattern strings. When the 

attributes are not strings, EBONSAI is functionally similar to ID3. However, 

when some of the variables contain strings such as five-week sales volume 

(VH,H,M,L,L), EBONSAI performs differently from ID3 in that it will search for 

candidate substrings for an optimal split. Generally, the space of candidate 

substrings is quite large (e.g., besides (VH,H,M,L,L) there may be other 

candidate substrings such as (H, VH, L, M, M) that are eligible to compete for 

being the optimal split. EBONSAI applies a greedy algorithm to select the 

optimal split among a pool of possible combinations of substring patterns, and the 

algorithm then recursively searches for optimal splits in the subsequently 

partitioned data spaces. As with other tree-based algorithms, one can either 

terminate splitting when a predetermined criterion is reached or prune an overly 

grown tree by first allowing the splitting process to continue until the recursively 

partitioned data spaces become very small. However, unlike traditional 

classifying learning algorithms such as ID3 and CART (Breiman et al., 1984), 

which recursively partition the data space by univariate splits, EBONSAI splits 

the data space by combinations of substring patterns of varying lengths.  
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 Specifically, let P and N, respectively, denote the set of positive and 

negative examples. In the current application, P is the set of surviving brands, 

and N is the set of failed brands. A regular pattern π is defined as a string 

0 1 1 2 k kx x xα α α , where each iα is a constant substring and each ix is a variable 

that matches any string. Thus, the pattern 0 1 1 2 k kx x xα α α  represents a string 

that contains the specific substrings 0 1, , , kα α α , and in that order. Each iα is 

some substring in the set P N∪ . For any regular pattern π generated from P 

and N  the cost function ( )E π  is given by 

  0 01 1
1 1 0 0( ) ( , ) ( , )p np nE I p n I p n

P N P N
π ++

= +
+ +

,  (1) 

where 1 1( )p n  denotes the number of positive examples in P(N) that match π , 

0 0( )p n  denotes the number of positive examples in P(N) that do not match π , 

and  

( , ) log log ,p p n nI p n
p n p n p n p n

= −
+ + + +

   (2) 

and 0 if either p or n is 0. The cost function is similar to the Gini or the entropy 

function, which are used in CART and other tree-based methods. They basically 

measure how well a split performs in separating the examples into homogeneous 

groups. EBONSAI uses a greedy algorithm to search for a pattern π that 

minimizes the cost ( )E π at a node.  

 Because the set of all possible strings can get extremely large, EBONSAI 

employs an alphabet indexing procedure to simplify the search. Alphabet 



 19

indexing is a mapping from an alphabet that contains a large number of symbols 

into another alphabet with fewer symbols without losing any information for 

classifying positive and negative examples. The indexing procedure employs a 

leap-and-bound search algorithm that starts by randomly selecting two small 

subsets of positive and negative examples and an index that is randomly 

generated—e.g., (VH, H, M, L,L) can be given an index (1,0,0,0,0). Then the 

algorithm searches a new index (by randomly flipping the 1’s and 0’s) from its 

neighborhood in such a way that the new index has a score that is best within 

that neighborhood (Hamuro et al., 2003). The score is defined in a way to reflect 

the average success rates of classifying the positive and negative examples.  

 With the flexibility in directly handling strings, EBONSAI can incorporate 

substrings of the form ^α and $α , which respectively represent the initiation 

and the termination of the sequence α . This feature, which is not present in the 

original BONSAI, can be quite powerful. For example, a certain pattern 

appearing at the beginning of the launching period may have greater predictive 

power than the same pattern appearing at other positions.  

Statistically speaking, EBONSAI uses multivariate split to preserve 

positional information and possible interaction between variables. This has an 

important advantage over systems that are based upon univarate split, which is 

implemented in machine learning algorithms such as C5.0 and CART. We provide 

a simple example to illustrate how character string-based systems can overcome 
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a shortcoming in univariate systems. A similar example is used in (Giuffrida, Chu, 

& Hanssens, 2000). Table 3 shows a simple data set that contains the variable on 

sales volume of the first two weeks—SALES1 and SALES2—and the target 

variable SURV (0 = not survive, 1 = survive). An inspection of the data reveals 

that neither SALES1 nor SALES2 alone has strong predictive power. However, 

there is strong interaction between the two variables. A strong rule exists within 

the data: “If SALES1 = L and SALES2 = L, then SURV = 0.” When EBONSAI was 

applied to the data set, it successfully recovered the strong rule. Figure 4(a) 

shows the tree from EBONSAI induced by the data. Algorithms that are based on 

univariate split cannot exactly recover the strong rule—they may determine that 

no split can improve the performance of the tree or rely purely on univariate 

splits to recover the rule. Figure 4(b) shows the tree obtained via ID3 (Giuffrida, 

Chu, & Hanssens, 2000). Indeed, when the dimensionality of the multivariate 

problem increases, the interaction pattern between variables will become 

increasingly complex. Accordingly, the univariate approach will become even less 

powerful in detecting and summarizing potentially strong or interesting rules. 

EBONSAI is designed to overcome this difficulty.  
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SALES1 SALES2 SURV 

L H 1 

L M 1 

L VH 1 

VH L 1 

H L 1 

M L 1 

L L 0 

L L 0 

L L 0 

Table 3. An example data set to illustrate the shortcoming of learning based on 

univariate split 

 

INSERT FIGURE 4(a) and (b) HERE 

 

RESULTS AND COMPARISON WITH OTHER METHODS 

The decision tree that EBONSAI produced from the training data set contained 

16 nodes. Both the variable repeat purchase rate and the ratio of heavy cup users 

occurred multiple times in the tree and thus are seen to be critical in predicting 
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the survival of the brand. For example, if the ratio of heavy users consistently 

decreases in the three-week period, then the brand is likely to fail.  

 We evaluated the performance of EBONSAI by several measures of 

accuracy., and the result is given in Table 4. Predictive accuracy is defined as the 

proportion of correctly classified brand for SURV = 1 (and SURV = 0)—i.e., the 

number of corrected classified statuses (survive or not survive) divided by the 

total number of products with that status. Overall accuracy is defined as the total 

number of correctly classified brands divided by the total number of brands in the 

sample.  

 

 Training Set Test Set 

Predictive accuracy for survivors 97.7 84.0 

Predictive accuracy for 

non-survivors 

60.3 32.1 

Overall predictive accuracy 75.1 48.0 

 

Table 4. Accuracy of EBONSAI for the training set and the test set 

 

 The results partly reflect the choice of the cost matrix. After consulting 

with the marketing experts in the industry with regard to misclassifying a 

surviving brand as a non-survivor, we imposed a penalty three times as large as 
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for misclassifying a non-surviving brand as a survivor. This skewed the decision 

tree toward tending to include more predicted survivors.  

To further examine the robustness of the tree, we randomly split the 

sample into two halves and compared the trees that each half produced. We found 

that the tree structures appeared to be rather similar, as were their classification 

rates 

We also compared the predictive accuracy between EBONSAI and three 

other commonly used machine learning methods: C5.0, CART, and neural 

network. Comparisons between neural network and decision tree methods have 

been reported in the decision science and machine learning literature (e.g., 

Bhattacharyya, 1998; Liu Sheng et al., 2000). We evaluated the accuracies of the 

four methods on both the training and the test sets. For neural network, we used 

an architecture with one hidden layer with 20 nodes and the back-propagation 

algorithm for training. The neural network procedure was implemented in 

Clementine.  

Figure 5 displays the prediction accuracies of EBONSAI and the other 

methods on both the training set and the test set. Recall that we created different 

k-sub-samples to evaluate the effect of discretizing the continuous-variable sales 

volume into k levels (k = 3,5). The label for each set of bar chart represents how 

the value of k over the time span. The overall prediction accuracy of EBONSAI 

for the training data set is similar to those of the other three methods (Figure 5a). 
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However, the overall predictive accuracy of EBONSAI for test data is 

significantly higher than for any of the other three methods (Figure 5b).  

It appears that both C5.0 and CART exhibit some overfitting to the 

training data set. C5.0, in particular, tends to be sensitive to how the continuous 

variable has been discretized. For EBONSAI, the results appeared to be rather 

consistent across the various sub-samples, which implies that the performance of 

the proposed procedure is rather robust with regard to variation in the way the 

continuous variable was discretized. 

    In order to see how the prediction accuracy of EBONSAI varies by changing 

its pruning parameter, we performed some experiments. Pruning parameters are 

used to indicate the complexity of a tree model. To find an optimal pruning 

parameter, one needs to solve the trade-off between pruning the tree too much 

(resulting in the introduction of bias) and pruning too little (resulting in excessive 

variance). Using C5.0 as a benchmark for comparison, we varied the pruning 

parameter (cut rate) of both trees. For EBONSAI, we pruned the tree through 

assessing the binomial probability of misclassifications within the set of cases 

presented to the node by varying the minimum allowable number of cases falling 

into a node. Figures 6 (a) and (b) illustrate the change in the prediction accuracy 

(for survivors) of EBONSAI and C5.0 for the training and test sets with respect to 

the change of pruning parameters. Figure 6 suggests that EBONSAI maintains a 

high level of accuracy with a range of pruning parameters and performs quite 
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well relative to C5.0 in terms of robustness. We note that accuracy for EBONSAI 

remains constant for a range of pruning parameters for the training data. This 

could be an artifact of the possible ceiling effect for predictive accuracy.  

 

 

 

CONCLUSION 

Companies that provide consumer goods and services are facing tremendous 

challenges. The marketplace is becoming increasingly commoditized, with 

fast-changing market conditions as competitors continually enter and exit the 

market. Managers and marketers have to make decisions under time constraints 

and often without full information. To manage the risk that is associated with the 

uncertain outcomes, a disciplined approach to decision making, based on data 

and modern decision tools, can be more profitable than relying on ad hoc methods 

or experience alone. In this paper, we showed how detailed data that are 

routinely collected from business transactions, coupled with innovative 

technology, can be combined to help managers arrive at decisions concerning the 

sustainability of newly launched consumer products. An important feature of our 

approach is the use of string patterns for tree growing, which has demonstrated 

that it can lead to improvement over methods that are based on univariate splits. 

Like other tree-based methods, our approach provides managers with a set of 
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interpretable induction rules. While our analyses are directed toward a specific 

industry—instant cup noodles—our methodology is rather general and can be 

easily adapted to other industries of consumer products. 

A limitation of the study reported in this paper is that we have neither 

included new product development process variables nor marketing strategy 

variables. Both of these may provide insight into why a new product will succeed. 

For example, how a company originates and manages the new product 

development process may create a strategic advantage in the product’s long-term 

success (Ettlie & Subramaniam, 2004). Further, competitive forces in the market 

will also shape the destiny of a new launch (Hultlink & Langerak, 2002). In a 

future study, we plan to design methods to measure these attributes and 

incorporate them into the decision model.  
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Figure 1. System architecture for a decision system for newly launched products. 
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Figure 2: The distribution of survival time of new products. The horizontal axis 

indicates range of days. The vertical axis indicates counts of brands. 
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Figure 3. The two-step transformation procedure for input variables. 

Sales volume 1 week 2 week 3 week
Product A 32 14 5
Product B 15 30 35

… … … …

Sales volume 1 week 2 week 3 week
Product A Class 3 Class 2 Class 1
Product B Class 2 Class 3 Class 3

… … … …

Sales Volume
Product A 321

… …
Product B 233

Transform numeric data
into categorical data

Transform categorical data
into categorical sequence data
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Figure 4a. The tree obtained from EBONSAI applied on the data set in Table 3.  
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Figure 4b. Single node produced by ID3 applied to data set in Table 3. 

 

Single node 

Survival = Y 



 37

 

 

 

 

 

 

 

 

Figure 5a Overall predictive accuracy of EBONSAI, CART and C5.0 on the 

training set. Vertical axis shows percentage correctly classified. 
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Figure 5b Overall predictive accuracy of EBONSAI, CART and C5.0 on the test 

set. Vertical axis shows percentage correctly classified. 
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Figure 6 a: Change of prediction accuracy of EBONSAI and C5.0 by varying 

pruning parameters for the training set. Vertical axis shows percentage correctly 

classified. 
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Figure 6 b: Change of prediction accuracy of EBONSAI and C5.0 by varying 

pruning parameters for the test set. Vertical axis shows percentage correctly 

classified. 

 


